
Model-Driven Engineering for Constraint
Database Query Evaluation

Maŕıa Teresa Gómez-López and Antonia M. Reina-Quintero and Rafael M.
Gasca

Departamento de Lenguajes y Sistemas Informáticos, Universidad de Sevilla, Sevilla,
Spain,

{maytegomez, reinaqu, gasca}@us.es

Abstract. Data used in applications such as CAD, CAM or GIS are
complex, but the techniques developed for their treatment and stor-
age are not adapted enough to their needs. Examples of these types of
data are spatiotemporal, scientific, economic or industrial information,
in which data has not a single value because is defined by parameters,
variables, functions, equations These complex data cannot be repre-
sented nor evaluated with the relational algebra types, then a new, more
complex, data type is needed, the Constraint type. Constraint Databases
were defined and implemented in order to handle this type of constraint
data. When a Constraint Database is implemented, different configura-
tion parameters can be set up, depending on which database manager
is going to be used, which constraint programming tool is going to solve
the query evaluation, or which type of constraints can be involved. When
some of these parameters are changed, the implementation that supports
the evaluation of queries over constraints have to be changed too. For
this reason, we propose the use of Model-Driven Engineering to model
the queries over Constraint Databases in an independent way of the im-
plementation and the techniques used to evaluate the queries.

1 Introduction

When a great quantity of data is used in a classical application, a database is
necessary. However, there are certain types of data that cannot be represented
as classical data and treated with relational algebra, such a set of objects located
in a zone, where the location of one of the objects may be represented by the
constraint (x + 5)2 + (y − 2)2 ≤ 36. This more complex information can be
represented using constraints, where a constraint comprises a set of variables,
domains and a relation between them. Nevertheless there is no standard database
that permits constraints to be handled in the same terms as classical data, and
which shields the user from how the information is stored and how the queries
are evaluated. In this paper, the term constraint is used to describe the data
itself, formed by a set of variables in a determined domain, not a restriction over
classical attributes. The use of constraints leads to more expressiveness, but it
also implies more processes of a complex nature to handle these constraints.

For this reason, some proposals related to Constraint Databases (CDBs) [1],
[2], [3] have been developed, since CDBs allow the storage of equations and
the variables which relate them as constraints. Hence, the problem is how to
store and to evaluate the selection operator, that, depending upon a condition,
obtains a horizontal subset of tuples. The selected tuples are those that satisfy a
condition, which can relate an attribute either with a constant or with attributes
of different relations.

Model-Driven Engineering (MDE) [4] is an approach to software development
in which models are used to drive the development of all software artifacts,
from code to documentation and tests. MDE is gaining acceptance in several
software domains with demonstrated benefits such as cost reduction and quality
improvement.

There are a lot of approaches related with Constraint Databases, in which
different definitions have been proposed changing the characteristics that de-
scribe what a Constraint Database is, and how the queries over them can be
evaluated. In this paper, we use the definitions of [5], although the limitation
of this solution is that the obtained product is very dependent on the tools and
on how the constraints are stored in the database. Thus, if the constraint solver
tools, the database manager or the types of constraints are changed, the whole
implementation has to be analysed in order to isolate the changes. Then, this
paper proposes a set of meta-models related to query evaluation over Constraint
Databases which are independent of the types of stored constraints, constraint
satisfaction solvers and database management system. The proposal starts from
a Platform Independent Model (PIM), where the Constraint Database Meta-
model and the queries over the database are defined. We have used MOF [6]
to describe the metamodels. In order to evaluate the queries, in this paper we
use a metamodel based in Constraint Satisfaction Problems, then we define the
Metamodel of it in the Platform Specific Model (PSM), but other models can be
defined to use other techniques. The model of a Constraint Satisfaction Problem
can be translated into code for an specific Constraint Satisfaction solver, that
evaluates the query and reports on which tuples satisfy a condition. OCL cannot
be used to describe the constraints, since constraints in Constraints Databases
are used as data itself. It means that an evaluation of a query is not the analysis
of correctness or satisfiability of the model, that is the common use of OCL. The
evaluation of the a query implies the selection of the tuples that satisfy a condi-
tion and then will be part of the output relation. Moreover, OCL cannot obtain
the possible values of the variables that satisfy a set of constraints, it can only
be used to describe the correctness of the instantiation of a metamodel. Note
that the evaluation of an OCL constraint is true or false, while the evaluation of
a constraint can be a set of numeric values.

For these reasons, we think that the use of Model-Driven Engineering can
be a good way of modeling the system, making independent the definition of
the model from a specific implementation. The way to solve the different queries
have to take into account a lot of things: the database conceptual model, the
related specific constraints, the type of constraints (linear or polynomial), the

conditions of the query, the constraint solver, the domain of the variables... All
these characteristics are in different levels of abstraction, but finally all of them
are combined to obtain the tuples of the database that satisfy the condition of
the query. The main aim of this paper is to define where each of these charac-
teristics have to be located in the levels of modelling proposed in Model-Driven
Architecture (MDA) proposed by OMG [7]. MDA solves the problem of inter-
operability by using conceptualized (formal) system models. The key idea is the
successful integration and interoperability in the intelligent use and management
of metadata across all applications, platforms, tools, and databases.

In the Platform Independent Model (PIM), we propose to describe the meta-
models related to Constraint Databases, Constraints and Queries over Constraint
data. The details of the Platform Specific Model are related to the use of Con-
straint Satisfaction Problems to evaluate the queries. Then, the PSM can be
transformed into Code that could be solved by means of ChocoTM [8], JsolverTM

[9], CometTM [10]... In general, the needed metamodels are:

– The metamodel of Numeric Constraints.
– The metamodel of Constraint Databases.
– The metamodel of selection query over the Constraint Database metamodel.
– The metamodel of Constraint Satisfaction Problem.
– The metamodel of Constraint Databases combined with Constraint Satis-

faction Problem metamodel.

This work is organised as follows: Section 2 presents an example of Con-
straint Database, and what types of queries can be evaluated. Section 3 shows
the MDA-based modelling architecture proposed in this paper. The metamodels
defined in each modelling level are detailed in the following sections. Section 4
presents the needed definitions and an example about Constraint Database and
Constraint to understand the proposed metamodel. Section 5 shows the meta-
model of the selection operator for Constraints stored in a Constraint Database.
Section 6 describes the metamodels defined in the PSM level, Constraint Sat-
isfaction Problems and Constraint Databases for query evaluation. Section 7
analyses the previous works related to this paper. Finally, conclusions and fu-
ture work are presented.

2 Motivating Example

An example of query evaluation over Constraint Data can be the information
presented in Figure 1. Figure 1 shows a map in which cicles represent the broad-
casting areas of differente radio stations, and Figure 2 shows how this information
can be stored in a Constraint Database by means of two tables. One of them
stores information about cities and the other one about broadcasting areas. The
tables Cities and Radio Stations are formed by classical attributes (such as id-
City or Name) and Constraints attributes (such as Location). The queries over
the tables can define conditions over constraint or classical attributes, being nec-
essary a solver to know the tuples of the relations that will be part of the output

relation of the queries. An example of query over these tables can be to obtain
the frequency of the radio stations available in all places of a city:

∏
radioStations.Frequency(σcities.location⊆RadioStations.location(cities ./ radioStations))

This paper focus on the selection operator (σ) over constraint data stored in
a Constraint Database, and how these queries can be evaluated.

Fig. 1. Broadcast of radio stations

3 MDA Architecture for Constraint Database Query
Evaluation

In this section we describe the MDA-architecture to model the possible queries
over Constraint Databases. This architecture is depicted in Figure 3, where the
three levels of modeling are shown, although this paper is focused on the PIM
and PSM levels since its aim is to specify the metamodels that are needed in these
levels. The main metamodel in the PIM level is the Constraint Database Query
metamodel which uses the Constraint Database and Constraint metamodels. The
evaluation of the queries is modeled with the CDB-CSP metamodel, that uses
the CSP metamodel. Note that models that conform the CDB-CSP metamodel
are obtained by means of a model-to-model transformation. This transformation
has as input a model that conforms the Constraint Database Query metamodel.
The notation used in Figure 3 is based on that used by Gronback [11]. Finally

IdCity Name Location
IdRadioStation Frequency Location

...41 Seville
101 94.1 (x-190)*(x-190)+(y-267)(y-267)<=170*170102 97.8 (x-370)*(x-370)+(y-131)(y-131)<=66*66103 101.2 (x-423)*(x-423)+(y-307)(y-307)<=73*73...

y <= 219+0.5x AND y <= 506-0.4x AND y <= 1267-7x+0.01x*x AND y >= 753-2x AND y <= 9.25311x-2071...Cities

Radio
Stations

Fig. 2. Example of tables with Constraint Data

note that the code for different solvers (Choco, JSolver and Comet) can be
obtained from the CDB-CSP metamodel by means of different model-to-text
transformations.

4 Platform Independent Model for Constraint Database
Development

Many database applications have to deal with an enormous quantity of data
which can even be infinite such as data for time and space. However, databases
have a finite capacity. Constraints represent the relation between different vari-
ables, and can therefore represent an infinite group of values of variables in a
compact way, by using a single appropriate expression.

The basic idea behind the CDB definition is to generalize the notion of a tuple
in a relational database to a conjunction of constraints, since a tuple in relational
algebra can be represented as an equality constraint between an attribute of the
database and a constant.

4.1 CDB Definitions and MetaModel

The definition about Constraint Databases used in this paper is based on Chap-
ter 2 of [12] with some variants proposed in [5] where the entities in a CDB can
be formed by classical attributes (an equality between a variable and a constant),
and constraint attributes (set of variables defined over a domain that describe
the possible correct values that the variables can take).

First of all, it is necessary to introduce what a constraint is. A Constraint is
a relation between a set of variables defined over a domain [13], in which there
is a limitation over the values for the instantiation of the variables.

CSP

Metamodel

PIM

PSM

Code

M M

M T

Choco

Code

M T

JSolver

Code

M T

Comet

Code

CDB-CSP

Metamodel

<<uses>>

<<uses>> <<uses>>

Constraint

Database

Query

Metamodel

Constraint

Database

Metamodel

Constraint

Metamodel

Fig. 3. MDA-based architecture

Definition 4.1: Constraint. Let Ω be a vocabulary, thereby a constraint
over Ω is a first-order formula over Ω, and is also called an Ω-constraint.

The previous definition can be expressed with the following grammar:

Constraint := Atomic−Constraint BOOL−OP Constraint

| ’¬’ Constraint ;
| Atomic−Constraint ;

BOOL−OP:= ’∨’ | ’∧’ ;
Atomic−Constraint:= function COMPARATOR function ;
function:= Var FUNCTION−SYMBOL function

| Var
| Value ;

COMPARATOR:= ’=’ | ’<’ | ’≤’ | ’>’ | ’≥’ ;
FUNCTION−SYMBOL:= ’+’ | ’−’ | ’∗’ | ’/’ ;

This grammar can be described with the Constraint metamodel shown in
Figure 4. A Constraint is represented as an Atomic Constraint, a negation of a

constraint (¬), or a binary combination using logic operations (∨, ∧) of Con-
straints. An Atomic Constraint is the comparison of two Functions using com-
parators operators (=, <, >, ≤, ≥). Each Function is a combination using arith-
metical operations of numeric variables, instantiated and non-instantiates, where
each Variable is defined over a domain.

Constraint

domain : VariableType

name : String

Variable

FLOAT

INTEGER

NATURAL

<<enum>>

VariableType

isDefinedBy

* 1

NOT_EQUAL

EQUAL

GREATER_EQUAL

GREATER

LESS_EQUAL

LESS

<<enum>>

Comparator

comparator : Comparator

AtomicConstraint NegationConstraint

booleanOp : LogicOperator

BinaryConstraint

OR

AND

<<enum>>

LogicOperator

Function

isFormedBy2

1

UnaryFunction

has

1

value : String

Constant

funcOperator : FunctionOperator

BinaryFunction

DIVIDE

MULTIPLY

MINUS

PLUS

<<enum>>

FunctionOperator

has

2

1

relates

2

negates

1

Fig. 4. Constraint metamodel

– A constraint k-tuple with the variables x1, . . . , xk over the vocabulary Ω
is a finite conjunction ϕ1 ∧ . . . ∧ ϕN where each ϕi, for 1 ≤ i ≤ N , is
either a constraint such that {xj=Constant}, where xj ∈ {x1, . . . , xk}, called
Classical Attribute, or an Ω-constraint over the variables x1, . . . , xk which
do not correspond to a classical attribute, called constraint attribute.

– A constraint relation is defined as a finite set of Classical Attributes and
Constraint Attributes. A constraint relation of arity k, is a finite set r =
{ψ1, . . . , ψM}, where each ψj for 1 ≤ j ≤ M is a constraint k-tuple over
{x1, . . . , xk}. The corresponding formula is the disjunction ψ1 ∨ . . . ∨ ψM ,
such that ψj = ϕ1 ∧ . . . ∧ ϕN for each ϕi is a constraint k-tuple, where
1 ≤ i ≤ N . If in each ψj ∈ r there is a ϕi such that {x=Constant}, where
x is the same variable in all ϕi belonging to different ψj , and x does not

appear in the rest of the ϕi of the same ψj , then the x variable is a classical
attribute, while the rest of the variables belong to constraint attributes.

classic
attributes

589

72*37

3135

825

=++∧=∧=
<+∧>∧=∧=

<+∧>−+∧=∧=
<+∧>+∧=∧=

cbayx

adcdyx

aecbayx

adcbayx
x y Constraint

5 2

5 3

7 3

9 8

8<+∧>+ adcba

31 <+∧>−+ aecba

72* <+∧> adcd
5=++ cba

constraint
attribute

for a, b, c, d, e: Natural
Fig. 5. Constraint k-tuples and constraint relation example

A relation has classical attributes if and only if:
ϕij is a ϕi ∈ ϕ1 ∧ . . . ∧ ϕN and ψj ∈ ψ1 ∨ . . . ∨ ψM , such that ψj =

ϕ1j ∧ . . . ∧ ϕNj , then a constraint relation will have a classical attribute (x)
if:
∃ϕij • ∀j ∈ 1..M | i ∈ 1..N , {ϕij ≡ x = cj}
∧ ∀t ∈ 1..N ∧ t 6= i ∧ ϕtj(x1, . . . , xk) ∧ x ∈/{x1, . . . , xk}
where cj is a constant, M the number of tuples and N the number of

attributes (columns).
This implies that if an equality relation exists between a variable and a
constant (the same variable in all tuples) in all constraint k-tuples, and
that if this variable does not appear in another constraint attribute, then
this variable is a classical attribute, since this variable follows the relational
algebra.
An example is presented in Figure 5, where the shown relation (table) is
composed of one constraint attribute and two classical attributes. These
data can be represented exclusively with constraints, as it is shown in the
left side of the picture, or using a table with different types of attributes.

– Therefore, a Constraint Database is a finite collection of constraint rela-
tions composed of Classical and Constraint Attributes. Derived from
the combination of classical an constraint attribute, the metamodel that
describes the Constraint Database is shown in Figure 6. This metamodel
represents that a CDB is described by a set of tables which attributes can
be Constraint or Classical (String, date, numeric, ...). In the same way, each
table is formed by different tuples whose values depend on the types of the
attributes of the relation.

5 Modeling Constraint Database Queries

The relational data model proposed by E.F. Codd (1970) has all the information
structured logically using relations (tables). Each relation has a name and is

FLOAT

INTEGER

DATE

STRING

CONSTRAINT

<<enum>>

DataType

name : String

Schema

name : String

Tableindexes

*1

Tuplehas

*

1

type : DataType

PK : Boolean

name : String

Column

Attribute

has

*

1

isComposedBy *

1

belongs*

*

Constraint ClassicType

value : String

StringType

value : Date

DateType

value : Integer

NumericType

...

Fig. 6. Constraint Database metamodel

formed by attributes (columns), and where each tuple (row) contains a value
for each attribute. Therefore, a relational database is a collection of normalised
relations where each relation has a different name. The schema of CDB is very
similar, but with the difference that attributes, can be constraint or classical
attributes. One of the main problems in CDB is that the algebraic operators
have to be syntactically and semantically extended, and it is also necessary
to evaluate them over constraint attributes. In this paper, only the selection
operator is analysed, being the rest of operators the objective of a future work.

5.1 Selection Operator for CDBs

Selection Operator (σ) has the signature R1 = σpredicate(R2), where R1 and
R2 are relations and predicate is a condition involving attributes of relation
R2. Relation R1 is a subset of relation R2, and represents those tuples which
satisfy the conditions of the predicate. A predicate is a Boolean expression whose
operators are the logical connectives χ ={and, or} and arithmetic comparators
θ =(<, ≤, >, ≥, =, 6=), and whose operands are either attribute names or domain
constants. This means that the predicate is represented as:

a1θc1 χ a2θc2 χ . . . χ anθcn

where ai is an attribute and ci can be a constant of the domain of the attribute
ai or another attribute of the same domain than ai.

The main difference of the CDB selection operator with respect to classical
relational algebra is when the attributes are constraints. Hence, the redefinition
of the comparators (<, ≤, >, ≥, =, 6=) is necessary, and the possible extension
of new comparators such as (⊂, ⊆, ⊃, ⊇, &).

In the selection operator each tuple of the input relation is analised in order
to obtain a new relation only with the satisfiable tuples. In the next section, we
explain the meaning of the comparators for constraints attributes.

5.2 Types of comparators between constraints attributes

Let Cx and Cy be two constraints where X ={x1, x2, . . ., xn} are the variables
of Cx, and Y ={y1, y2, . . ., ym} are the variables of Cy. If xi∈X, and yj ∈ Y ,
then xi ≡S yj is true if both variables are syntactically equal, it means that they
have the same name.

The comparison operators between constraints are:

– Cx < Cy is true if for all xi ≡S yj , the maximum value of xi is smaller than
the minimum value of yj . This definition can be extended to Cx > Cy. An
example based of Figure 7 can be that A < D but ¬(C < D).

AB

C

D

Fig. 7. Example Of Relation between Constraints

– Cx ≤ Cy is true if for all xi ≡S yj , the maximum value of xi is smaller or
equal than the minimum value of yj . This definition can be extended to Cx

≥ Cy. An example based of Figure 7 can be that B ≤ D but ¬C ≤ D.
– Cx = Cy. In this case is not possible compare both constraints syntactically,

due to two constraints can be morphologically different but to have the same
solutions. Cx = Cy is true if all the solutions of Cx for xi ≡S yj are solutions
of Cy and vice versa. It means that there are no solutions of Cx that do not
to belong to Cy. In this case, it is not necessary to rename the variables, due
to Cx and Cy could share solutions. The operation <>, which describes the
inequality of two constraints, represents if two constraints are different. For
the example shown in Figure 7, there are not two constraints equals, but for
example it is possible to ensure that A <> B.

– Ca & Cb is true if there is a solution that satisfied both constraints, where
all the variables are syntactically equal. An example based of Figure 7 can
be that C&A but ¬(C ≤ B).

– Ca ⊆ Cb is true if all the solutions of Ca are also solutions of Cb. In order
to analyse the inclusion operator in constraints, both constraints have to
be defined over the same variables. Therefore, since Ca and Cb are two
constraints where X = {x1, x2, . . ., xn} are the variables of Ca and Cb,
then Ca ⊆ Cb is equal to the implication (Ca → Cb) [14]. This comparison
determines if all the solutions of Ca are also solutions of Cb, although it is

possible that Cb has solutions that do not belong to Ca. An example based of
Figure 7 can be that B ⊆ A but ¬(C ⊆ A). This definition can be extended
to Cx ⊇ Cy.

– Ca ⊂ Cb returns true if all the solutions of Ca are also solutions of Cb, and
Cb has at least one solution which does not belong to Ca. As for the previous
operator, both constraints have to be defined over the same variables. This
definition can be extended to Cx ⊃ Cy.

5.3 Constraint Query Extension Metamodel

Figure 8 presents the metamodel of a simplification of the constraint query
language explained in the above section. This metamodel represents that a query
is defined as the evaluation of a condition over two attributes of the involved
tables, although it is a simplification of the problem since in the relational algebra
a boolean combination of conditions are allowed. The type of comparators (<, ≤,
⊂, ⊆, ...) depends on the types of attributes involved in the query (Constraint,
String, Date, ...).

FLOAT

INTEGER

DATE

STRING

CONSTRAINT

<<enum>>

DataType

name : String

Schema

name : String

Table

indexes

*

1

Tuplehas

*

1

type : DataType

PK : Boolean

name : String

Column

Attribute

has

*

1

isComposedBy *

1

belongs*

*

Constraint ClassicType

value : String

StringType

value : Date

DateType

value : Integer

NumericType

Query

type : ConstraintComparator

Condition

- defines
1

1

asksFor

*1

compares

21

<<enum>>

NOT_EQUAL

EXCLUSION_EQUAL

EXCLUSION

INCLUSION_EQUAL

INCLUSION

GREATER_EQUAL

GREATER

EQUAL

LESS_EQUAL

LESS

ConstraintComparator ...

Fig. 8. Constraint Query Metamodel

6 Platform Specific Model for Constraint Query
Evaluation

The metamodels explained in the previous sections can be transformed into other
metamodels according to different techniques, for example neural networks or
symbolic elimination paradigm. In this paper we explain how Constraint Satisfac-
tion Problem metamodel can help us to model solutions that can be transformed
into an specific code in function of the solver tool. First, we need to explain what
is a Constraint Satisfaction Problem.

6.1 Constraint Satisfaction Problem Metamodel

In order to work with constraints, constraint satisfaction problems are built
dynamically to obtain the solution of each query over ORCDBs. Hence, some
aspects about constraint satisfaction problems are presented.

Problems of engineering have been modelled as Constraint Satisfaction Prob-
lems (CSP) [15] and [16]. A Constraint Satisfaction Problem is a representation
and reasoning framework consisting on variables, domains, and constraints. For-
mally, it is defined as a triple <X , D, C> where X = {x1, x2, . . ., xn} is a
finite set of variables, D = {d(x1), d(x2), . . ., d(xn)} is a set of domains of the
values of the variables, and C = {C1, C2, . . ., Cm} is a set of constraints. Each
constraint Ci is defined as a relation R on a subset of variables V = {xi, xj ,
. . ., xk}, called the constraint scope. The relation R may be represented as a
subset of the Cartesian Product d(xi) × d(xj) × . . . × d(xk). A constraint Ci =
(Vi,Ri) specifies the possible values of the variables in V simultaneously in order
to satisfy R. Let Vk = {xk1 , xk2 , . . ., xkl

} be a subset of X. An l-tuple (xk1 , xk2 ,
. . ., xkl

) from d(xk1), d(xk2), . . ., d(xkl
) is called an instantiation of variables in

Vk. An instantiation of all variables in X is a solution.
A CSP can be solved by searching using standard backtracking algorithms

[17], [18]. Usually, a combination of search with consistency techniques is used to
solve these problems. The consistency techniques remove inconsistent values from
variables’ domains during the search. Several local consistency and optimization
techniques have been proposed as ways of improving the efficiency of search
algorithms.

The metamodel that we propose is shown in Figure 9, that represents a CSP
as a set of constraints formed by variables defined for a domain. Each variable
is described by a domain and the minimum of maximum values that can take.

6.2 Metamodel of Constraint Databases Query evaluation using
CSPs

In order to represent the condition that each tuple has to satisfy to belong to
the resulted relation, we propose the use of CSPs. The metamodel is very similar
to the Constraint Database Metamodel, since relational algebra has defined the
closure property, then the inputs and outputs of a query are relations. The main

hasSolution() : Boolean

CSP

domain : DataDomain

name : String

Variable

defines

*1

Constraint

has*

1

maxValue : Integer

minValue : Integer

Integer

maxValue : Integer

minValue : Integer

Natural

maxValue : Double

minValue : Double

Float

FLOAT

NATURAL

INTEGER

<<enum>>

DataDomain

relates

*

1

Fig. 9. Constraint Satisfaction Problem Metamodel

difference is that there is a BooleanCSP class associated to each tuple. This
class is also related to a CSP model. The BooleanCSP class represents if to find
a solution of the CSP implies that this tuple will form part of the output or not.
For example, to know if Ca ⊆ Cb, a CSP model has to be built to determine
if exists a satisfiable value of Ca where Cb is not satisfiable. If this value is
found, we can ensure that Ca ⊆ Cb is fault. For this example the value of the
findASolution attribute of the class BooleanCSP will be false in this example.

FLOAT

INTEGER

DATE

STRING

CONSTRAINT

<<enum>>

DataType

name : String

Schema

name : String

Tableindexes

*1

Tuplehas

*

1

type : DataType

PK : Boolean

name : String

Column

Attribute

- has

*

1

isComposedBy *

1

belongs*

*

Constraint ClassicType

value : String

StringType

value : Date

DateType

value : Integer

NumericType

findASolution : Boolean

BooleanCSP
belongsToTheSolution

1

CSP

solves1

1

...

Fig. 10. Constraint Database with CSP Metamodel

7 Related Work

CDBs were defined in 1990 with a paper by Kanellakis, Kuper and Revesz [1].
The first works about query language were based on a subset of Prolog (Datalog
[19]) and Constraint Logic Programming (CLP) [20], that were used to define
Constraint Databases [2], [3]. Different solutions have been developed, for exam-
ple: DISCO [21] based on Datalog; MLPQ/PReSTO [22] for Spatio Temporal
Object; DEDALE [23] uses the object-oriented paradigm; CCUBE [24] is an in-
tegration of constraint calculus for extensible constraint domains within monoid
comprehension; CQA/CDB [25] that uses linear constraints for spatiotemporal
area. The main disadvantages of the proposals mentioned above are that none
of them offers a versatile solution for any type of application, neither do they
offer a general solution independent of the nature of the problem domain or the
platform. Most of these prototypes are developed to work with spatiotemporal
data such as those in [26][27], since the domain is specific. Another important
issue is that some of the described query languages have a syntax greatly differ
from SQL. It implies that although they use similar models to represent Con-
straint Databases and the query operators, each of them has a totally different
solution to store, represent and evaluate the queries.

In other works, Constraint Satisfaction Problem has been used in Model-
Driven Engineering to transform models with OCL constraints [28] into models
evaluated for Constraint Satisfaction Solvers. In [29], an extension of QVT is
proposed to avoid the transformation by hand of a model with OCL rules into
a model that can be evaluated in terms of constraints. Also in [30] is analysed
how the use of Constraint Satisfaction Problem can be applied to detect incon-
sistences in the models.

In [5] the proposed solution is based on how to store the constraints in an
Object-Relational Database [31], that could be treated from the point of view of
Model-Driven Engineering as is proposed in [32]. How Model-Driven Engineering
can help in the Object-Relational Databases development has been analysed in
[32], the problem of this representation is the query evaluation of the constraint
data. The idea of our paper is related to a way of representing Constraint data
when they are stored in an Object-Relational Database, and evaluate queries
over data. Likewise, we should consider the works from Atzeni, Bernstein et al.
on model management [33].

However, to the best of our knowledge there are no previous works applying
model-driven techniques for Constraint Satisfaction Problem in Query evaluation
development.

8 Conclusions and Future work

In this work we propose the use of MDE in the definition of Constraint Databases
and the evaluation of the selection operator. For this, three different metamod-
els have been defined in the PIM Level (Constraint, Constraint Database and
Constraint Database Query). Also the PSM level has been discussed, since we

propose the use of CSPs to evaluate the selection operator over the constraint
stored in a CDB. In the PSM level two metamodels have been defined (Con-
straint Satisfaction Problem and CDB with CSPs).

As future work, we propose to enrich the query metamodel for boolean com-
bination of conditions. Also we consider interesting to extend the query evalu-
ation to the rest of primitive operators of relational algebra: projection, union,
cartesian product and difference.

Acknowledgment

This work has been partially funded by the Junta de Andalućıa by means of
la Consejeŕıa de Innovación, Ciencia y Empresa (P08-TIC-04095) and by the
Ministry of Science and Technology of Spain (TIN2009-13714 and TIN2010-
21744-C02-01) and the European Regional Development Fund (ERDF/FEDER).

References

1. G. M. Kuper P. C. Kanellakis and P. Z. Revesz. Constraint query languages.
Symposium on Principles of Database Systems, pages 299–313, 1990.

2. Peter Z. Revesz. Datalog queries of set constraint databases. In ICDT’95: Pro-
ceedings of the 5th International Conference on Database Theory, pages 425–438,
London, UK, 1995. Springer-Verlag.

3. Peter Z. Revesz. Safe query languages for constraint databases. ACM Trans.
Database Syst., 23(1):58–99, 1998.

4. Douglas C. Schmidt. Model-driven engineering. IEEE Computer, 39(2):25–31,
February 2006.

5. Maŕıa Teresa Gómez López, Rafael Ceballos, Rafael M. Gasca, and Carmelo Del
Valle. Developing a labelled object-relational constraint database architecture for
the projection operator. Data Knowl. Eng., 68(1):146–172, 2009.

6. OMG. Meta object facility 2.0 core final adopted specification. 2003.
7. OMG. Mmda guide version 1.0.1. 2003.
8. Reference Manual. Choco solver. 2011.
9. Reference Manual. Ilog jsolver. 2001.

10. The Comet Hybrid Optimization Platform 2.1.1. Dynadec. 2010.
11. Richard C. Gronback. Eclipse Modeling Project: A Domain-Specific Language

(DSL) Toolkit. Addison-Wesley Professional, 2009.
12. P. Revesz. Spatial Constraint Database. Springer, 2001.
13. Rina Dechter. Constraint Processing (The Morgan Kaufmann Series in Artificial

Intelligence). Morgan Kaufmann, May 2003.
14. Kim Marriott and Peter J. Stuckey. ”Programming with Constraints. An introduc-

tion”, Simplification, Optimization and Implication. The Mitt Press, 1998.
15. Martin Sachenbacher and Brian Williams. Diagnosis as semiring-based constraint

optimization. In 15th International Workshop on Principles of Diagnosis, pages
15–20, 2004.

16. Albert Croker and Vasant Dhar. A knowledge representation for constraint satis-
faction problems. IEEE Trans. Knowl. Data Eng., 5(5):740–752, 1993.

17. J.R. Bitner and E. M. Reingold. Backtracking programming techniques. Comm of
the ACM, 18(11):651–656, 1975.

18. Solomon W. Golomb and Leonard D. Baumert. Backtrack programming. J. ACM,
12(4):516–524, 1965.

19. S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to know about datalog
(and never dared to ask). IEEE Transactions on Knowledge and Data Engineering,
1(1):146–166, 1989.

20. Joxan Jaffar and Michael J. Maher. Constraint logic programming: A survey. J.
Log. Program., 19/20:503–581, 1994.

21. Jo-Hag Byon and Peter Z. Revesz. Disco: A constraint database system with sets.
In CDB, pages 68–83, 1995.

22. P. Z. Revesz, R. Chen, P. Kanjamala, Y. Li, Y. Liu, and Y. Wang. The mlpq/gis
constraint database system. In ACM SIGMOD Conference, May 16-18, Dallas,
Texas, USA, page 601. ACM, 2000.

23. S. Grumbach, P. Rigaux, and L. Segoufin. The DEDALE system for complex
spatial queries. In SIGMOD Conference, pages 213–224, 1998.

24. A. Brodsky, V. E. Segal, J. Chen, and P. A. Exarkhopoulo. The CCUBE constraint
object-oriented database system. In ACM SIGMOD Conference, pages 577–579.
ACM Press, 1999.

25. D. Goldin, A. Kutlu, and M. Song. Extending the constraint database framework.
In PCK50, pages 42–54, New York, USA, 2003. ACM Press.

26. Annalisa Di Deo. Modeling Spatial and Temporal Data in an Object-Oriented
Constraint Database Framework. PhD thesis, von der Fakultät IV-Elektrotechnik
und Informatik der Technish Universität zur Erlangung des akademischem Grades,
Berĺın, 2002.

27. David Toman. SQL/TP: A temporal extension of SQL. In Constraint Databases,
pages 391–399. Springer, 2000.

28. J. Warmer and A. Kleppe. The Object Constraint Language: Getting Your Models
Ready for MDA. Addison-Wesley, 2 edition, 2003.

29. Andreas Petter, Alexander Behring, and Max Mühlhäuser. Solving constraints in
model transformations. In ICMT, pages 132–147, 2009.

30. Ákos Horváth and Dániel Varró. Csp(m): Constraint satisfaction problem over
models. In MoDELS, pages 107–121, 2009.

31. Michael Stonebraker, Dorothy Moore, and Paul Brown. Object-Relational DBMSs:
Tracking the Next Great Wave. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1998.

32. Juan Manuel Vara, Belén Vela, Verónica Andrea Bollati, and Esperanza Marcos.
Supporting model—driven development of object—relational database schemas:
A case study. In Proceedings of the 2nd International Conference on Theory and
Practice of Model Transformations, ICMT ’09, pages 181–196. Springer-Verlag,
2009.

33. Paolo Atzeni, Paolo Cappellari, and Giorgio Gianforme. Midst: model independent
schema and data translation. In SIGMOD Conference, pages 1134–1136, 2007.

