
Network require
vi

Juan L. Font (*), Daniel Cascado,

Avda.

Abstract—In this paper, the network traffic r

virtual world based on Wonderland are

synchronization and voice traffic are stud

experimental measures are made in order to ob

model. A simulator based on ns-3 is developed

obtain some useful preliminary results about

resources needed to execute Wonderland. The

used in this preliminary study can be used in fu

to obtain useful results on scalability and

resources when the Wonderland Virtual Wor

number of distributed users placed in different l

Keywords-Virtual Worlds, Wonderland, Netw

simulations.

I. INTRODUCTION

Recently, a number of so-called “persuasiv
proliferated as a way to motivate users to
lifestyle habits, perform physical exercises and
systems try to overcome the lack of motivati
usually suffered by elderly people and/or peo
diseases, which is a very important con
demonstrated benefits of exercise and heal
research group has developed a persuasive sys
use of virtual worlds to motivate the user to
exercises [2 , 3]. In this system, named “
commercial devices are used to detect the
while performing the exercise (eg. Wiimot
Board) together with sensors for mon
parameters during exercise (eg, oximeter). The
are incorporated into the virtual world allowin
games that encourage them to complete/conti
program. Additionally, the social component
allows users to perform the exercise with their
remotely connected to the virtual world. Doct
can monitor and supervise the patient´s
rehabilitation. Figure 1 shows a screenshot of V

Virtual Valley is based on Wonderland, a
software for creating collaborative 3-D virtu
known as Collaborative, Networked or Di
Environments). It was originally conceived
collaborative working by Sun employees [4], a
some characteristics that make it very int
application: focuses on social interaction and
open platform that allows new developments;

ements evaluation of a m
irtual environment

 Jose L. Sevillano, Gema Lopez, Salvador Romero,

ETS Ingenieria Informatica
Universidad de Sevilla

. Reina Mercedes s/n. 41012, Sevilla (Spain)
(*) juanlu@atc.us.es

requirements of a

studied. Object

died and several

btain an accurate

that allows us to

t the networking

simulation model

uture experiments

needed network

rld is used by a

locations.

work Traffic, ns-3

ve systems” have
acquire healthy

d so on [1]. These
ion and isolation

ople with chronic
ncern given the
lthy habits. Our

stem based on the
perform physical

“Virtual Valley”,
user movements
te, Wii Balance

nitoring medical
e user movements
ng him/her to play
inue the exercise
of virtual worlds
family or friends

tors and/or carers
s exercises and
Virtual Valley.

Java open source
tual worlds (also
stributed Virtual
d as a tool for
and as such it has
teresting for our
communications;
; can be installed

and used by organizations within
without the cost of renting a virtu
server and also allowing control of
[5].

Figure 1. Screenshot of the Wonde

The latest version of this client-s
Wonderland 0.5, which relies on th
(see Figure 2) [6]:

• Darkstar: The server software a

• jVoiceBridge: Real-time immer
distance attenuation and a selec

• jMonkeyEngine: Scene graph w
texture, programmable shader, e

One of the most important feat
possibility of sharing applications am
of these applications are already inte
the multi-user PDF Viewer and th
users can also share additional exter
the server (like Firefox or Open
Applications Server-SAS.

In Wonderland, like in any othe
represented by a 3D object known
many other objects in the virtual
objects like pieces of furniture, bui
like screens with applications (web
and so on). The usual way to mod
between objects is using a scene gr

multi-user

Gabriel Jimenez.

n their own infrastructure,
ual space on a third party
f private medical data; etc.

erland-based virtual world.

server architecture is Project
he following main projects

architecture

rsive audio (via VoIP) with
table range of qualities.

with features like render-to-
etc.

tures in Wonderland is the
mong different users. Some
egrated in Wonderland, like
he SVG White board. But
rnal applications installed in
nOffice) using the Shared

er Virtual World, the user is
as an avatar. There can be
world, which can be 3-D

ildings, etc.; or 2-D objects
browsers, word processors,

del the spatial relationships
raph. Each object is a node

(or Cell in Wonderland terminology) in this
(representing any volume of space of the v
organized in a graph with a tree hierarchy [7]
such a tree is shown in Figure 3.

Figure 2. Wonderland Client-Server Archi

As we will discuss in the next section, th
derived from Wonderland is mainly due to thr
object synchronization which allows all u
coherent view of the virtual world (including
like avatars). Second, messages intend
communications among users, including voice
source of traffic) but also text messages (cha
traffic due to the execution of application
different users. The latter is very difficult
depends on the particular application. Therefo
we will focus on the first two sources: object
and voice traffic. Our aim is twofold: on the
to perform a simulation and experimental st
configuration that allows us to obtain some u
results about the networking resources nee
Wonderland. On the other hand, the simulatio
this preliminary study will be used in future
obtain some results on scalability and
resources when the Wonderland Virtual Wo
number of distributed users placed in different

Cell 1

House1 Road Hous

Car1 Car2 Room1

Sofa Cha

Room1

Lamp

Figure 3. An example of a tree representing a Wo

graph. The Cells
irtual world) are
]. An example of

itecture.

he network traffic
ree sources. First,
users to have a
g moving objects
ded to support
e traffic (the main
at). And, finally,

ns shared among
to model, as it

ore, in this paper
t synchronization
one hand, we try
tudy of a simple
seful preliminary
eded to execute
on model used in
e experiments to
needed network

orld is used by a
locations.

e2

Room2

air Table

onderland cell.

There are not many works in the
networking resources needed to
Networked Virtual Environments
architectures and approaches to p
(QoS) for NVEs can be found in [8
results are provided in [9]. Most of
on multi-player online games. In
latency with a high number of on-lin
the network bandwidth requiremen
player online games are expe
monitoring the network traffic ge
tournaments in a LAN Party. To t
there are no published studies abou
needed to support the execution o
Wonderland. The results obtained i
when designing and implementing
applications, like e-health systems, w
like a minimum level of dependa
critical messages (e.g. alarms in ca
parameters, etc.), limited resources
on.

The rest of the paper is organiz
section, the Wonderland v0.5 com
described, identifying the main
experimental measures are made in
volume and to identify possible
Then, in section III the ns-3 bas
Section IV shows some prelimin
section V we present our conclusion

II. WONDERLAND V0.5 COMMU

Wonderland is based on a Clie
The Wonderland server must have a
which clients can connect. Initially
from the server until it calls a Wo
this succeeds, the session goes into
client may connect multiple sessions
session is connected to a server, co
it. Each connection in Wonderlan
sending different types of data. For
one connection for sending cell dat
voice communications data. Cli
connections as are necessary for
server. The only limitation is that
single connection of a given type co
Clients may also use multiple sessio
a single connection type.

Once in the CONNECTED stat
from a client to the server, from th
necessarily in response to a client m
the same message can be sent by
clients. From version 0.5 on, ther
communication, that is, all message
the server.

The traffic between clients an
divided into the following categories

e literature dealing with the
support the execution of

s (NVE). A review of
provide Quality of Service
8]. Some QoS experimental
f the available studies focus
[10] the effect of network
ne players is studied. In [11]
nts of some popular multi-
erimentally measured by
nerated by different game
the best of our knowledge,
ut the networking resources
f Virtual Worlds based on
in this paper will be useful

g these systems, mainly in
with specific characteristics
ability, timeliness of some
ase of falls, altered medical
s (bandwidth, etc.), and so

zed as follows: In the next
mmunications architecture is

traffic sources. Several
order to confirm the traffic
non documented sources.

sed simulator is described.
nary results and finally in
ns and future work.

UNICATIONS ARCHITECTURE

nt-Server architecture [12].
a fixed, public IP address to
y, a Client is disconnected
onderlandSession.login(). If
the CONNECTED state. A
s to the same server. Once a

onnections may be added to
nd has a unique type for
r example, a client may use
ta, and another for sending
ients may use as many

their interaction with the
a client may only have a

onnected to a given session.
ons to get multiple copies of

te, messages can be passed
he server to one client (not

message or request) and also
the server to a number of

re is no more client-client
s from clients go directly to

nd server/s can be broadly
s:

A. Object Synchronization

Objects in the virtual world have a set of attributes that can
have different values. For instance, coordinates in the virtual
world, velocity (for moving objects), etc. The state of each
object (or cell) is defined as the values of these attributes at a
given time. In Wonderland, the server keeps a copy of all the
world data, with data about the cells stored in xml files. When a
client connects to Wonderland, it obtains from the server the
information about the visible objects (cells). These objects can
be classified as static (with fixed attributes that do not vary in
time, as is the case of a mountain or a building) or dynamic
(with attributes that can vary in time, like an avatar moving
from one region to another) [13]. Every client should have a
consistent view of the virtual world, and therefore a mechanism
must exist to ensure synchronization between clients. When an
object moves in the virtual word, all clients that want to view
the dynamic object must provide the same sequence of state
changes. In Wonderland, if anything changes (such as the
position of an object), this data is updated on the server and
then sent to all the clients, which then update their own local
views of the world. For instance, if a client moves its avatar,
the client notifies the server and sends the new state of the cell
to the server. The server then sends the new state of this object
to all other clients, which then update their copies of the cell
[7]. A typical sequence is as follows: a client sends a
MOVE_REQ message to the server when the position of an
object changes. Then the server sends a MOVED message to
every other client, one per client. An ACK message is then sent
back to the server by every client. The server does not send any
other MOVED message until the corresponding ACK has been
received. This sequence has been confirmed by several
experiments.

Although these MOVE_REQ object synchronization
messages are sent every time the object moves, in principle
they are limited to five updates per second by the
MoveableComponent [14]. However, as we will see shortly,
this limitation does not always work.

Object synchronization messages are sent by default
through port TCP 1139, and their length varies between 280-
400 bytes, depending on the needed information about the
object position, orientation, identification within the virtual
world, etc. There are also other protocol messages (ack,
presencemanager, audiomanager, etc.) that contribute very little
to the TCP traffic. Although all this information can be get
from the Wonderland documentation, it is not easy to model
the actual workload in a real setting as it depends on what kind
of movements or how often the avatar moves. There may also
be some differences depending on the configuration of the
client platform. That is why we performed several experiments
to try to confirm the actual network workload using different
Operating Systems and different number of clients. One
important conclusion that can be drawn from our experiments
is that when GNU/Linux is used on the client side,
synchronization messages are not limited to five updates per
second. For instance, Figure 4 shows a trace of Wonderland
TCP traffic with only one client running on a Linux system.
We asked the only user to continuously move her avatar in
order to generate as many synchronization messages as
possible. Both the client and the server run on the same
machine, so that what we see is the traffic due only to
Wonderland operation. At this stage, we were not interested in
any other issue but to model the actual network workload. It
can be seen that the vast majority of TCP traffic is due to object
synchronization messages (movement requests and/or
confirmation), while other messages (presencemanager,
audiomanager, ack, etc.) contribute very little, as expected. The
peak traffic is about 10 times higher than would be expected if
the limit of 5 updates per second were observed. This fact was
confirmed in the Wonderland forum, and seems to be due to an
issue related with key repeat in Linux [14]. If the same
configuration is measured on a Windows-based client, the 5
updates per second limit works, providing an upper-bound on
the mean object synchronization traffic. Figure 5 compares the
TCP traffic generated by one Wonderland client in these two
cases: one GNU/Linux based client and one Windows-based
client. The results are shown in bytes per second.

Figure 4. Outgoing and incoming TCP traffic (bytes/s) for one Wonderland
client (GNU/Linux). Blue: Total Traffic; Green: Object Synchronization;

Other Colours: Protocol Traffic.

Figure 5. Outgoing TCP traffic by one Wonderland client with different
operating systems (bytes/s)

It can be seen that the difference in generated traffic is
dramatic. Of course, these data are obtained for a user

0 20 40 60 80 100 120 140

0

5

10

15

20

25

30

35

40

45

50

t(s)

K
B

y
te

s

All

Obj Sync

Other

0 30 60 90 120 160 200 240

0

2

4

6

8

10

12

14

16

18

20

t(s)

K
B

y
te

s

GNU/Linux

Windows

generating as many object synchronization messages as
possible, moving her avatar as much as possible. But it is
apparent how important it is to guarantee the limit of 5 updates
per second in a real Wonderland deployment, as it will avoid
saturation when a high number of users simultaneously move
in the virtual world. Note that allowing users to interact with
other users is more important in this kind of systems than to
quickly respond to their movements. In other words, in a virtual
world system performance is perceived not only as system
latency, but also as system throughput (defined as the
maximum number of users that the system can simultaneously

support) [15].

B. Voice

In Wonderland, the standard conversation allows users to
speak and hear each other depending on the distance between
them. But in addition, users can also initiate a voice chat
session with other users. This conversation can be private but
can also be made public. The voice functionality can be
extended depending on the application. For instance, in [16] a
system for virtual meetings is described, where voice
communications between users are supported even if a user is
not present in the virtual world (using a Virtual Phone for real-
time communication). In our system, we currently use the
standard Wonderland voice functionality offered by
jVoiceBridge, which uses the standard SIP (Session Initiation
Protocol) and RTP (Real-time Transport Protocol) protocols to
transmit voice data from the Wonderland server to the various
clients. jVoiceBridge uses a single UDP port for all control
data, and an additional two UDP ports per call connected. The
UDP control port is used by SIP, and by default is UDP port
5060 [17].

In Wonderland, a conference has members which can talk
to each other. Calls are the individual parts of a conference,
and data from all calls in the conference are added into a
“common mix”. Data samples from every member are added
together to create the output from the server to the clients. Each
client’s audio must be subtracted out of the common mix when
the data is sent to that client, so that the user does not hear
him/herself when he/she talks [18]. Therefore, the traffic from
the server to the clients has to be sent as different streams. As a
result, the voice traffic increases linearly as the number of
members in a conference increase.

jVoiceBridge handles audio at 3 different fidelities:

• 8k ulaw, 8 bits per sample, 8000 samples per second. This
means 64kbits/s.

• 16k pcm, 16 bits per sample, 16000 samples per second.
This means 256kbits/s.

• 44.1k pcm, 16 bits per sample, 44100 samples per second.
This means 705600kbits/s.

The voice system sends packets every 20ms, or 50 times
per second. In addition, the client may send/receive a mono or
stereo stream to/from the voice bridge. For example:

• send 256 kbit/s = 32 kbyte/s = 50 x 640 bytes/packet

• receive stereo 256 kbit/s = 64 kbyte/s= 50 x 1280
bytes/packet

Finally, packet headers should be included which add up to
about 40 bytes per packet. Our experimental observations
confirm these assumptions: the traffic due to one client sending
messages to the server would be approximately constant and
equal to 64kbytes per second, assuming stereo streams. The
following experiment illustrates the voice traffic in
Wonderland. Figure 6 shows the traffic generated by three
clients: the first one receives a voice traffic, the second one
transmits a voice traffic and the third one begins receiving a
voice stream when its avatar come closer to the other clients’
avatars. Figure 7 shows the traffic in the server. Note that all
these events imply a proportional increase in voice traffic, with
the server assuming the sum of all this traffic as it has to mix-
up and resend all the voice streams to every client.

Figure 6. Voice traffic generated by several clients (Kbytes/s), in both
directions.

Client, only transmission

0 50 100 150 200

0

20

40

60

80

100

120

140

t(s)

K
B

y
te

s

Tx

Rx

Tx

Rx

Client, only listening

0 50 100 150 200

0

20

40

60

80

100

120

140

t(s)

K
B

y
te

s

Tx

Rx

Tx

Rx

Client, joined as listener

0 50 100 150 200

0

20

40

60

80

100

120

140

t(s)

K
B

y
te

s

Tx

Rx

Tx

Rx

Figure 7. Voice traffic at the server (Kbytes/s).

III. SIMULATION MODEL

In order to evaluate the performance of the Wonderland
communications architecture, a simulation model of
Wonderland communications has been developed which is
based on ns-3 [19], a discrete-even simulator conceived as ns-
2's successor. Ns-3 and ns-2 share common background and
concepts, but ns-3 is a new project that tries to solve or mitigate
many of ns-2's well-known drawbacks as well as to apply new
concepts, such as validation and software engineering
techniques. For example, it has dropped ns-2's dual language
design, and it emphasizes both code and model structuring as
well as encouraging software engineering practices to improve
code and documentation maintenance. A new architectural
approach characterized by modularity, source code reuse and
software pattern application is used [20].

Other interesting characteristics of ns-3 are:

• Internal project policies that encourage code correction,
cleanliness and exhaustive documentation, which make
understanding, extending and working with ns-3 a much
easier task, in spite of being such a big and complex
project.

• Open source licenses such as GPL make ns-3 very
convenient for developers and users who have a
considerable freedom to use and adapt it to their needs,
being able to run it in different context such as research or
industrial environments. The open source focus is
especially valuable from researches' point of view due to
source code availability, which allows them to freely study
and modify it.

• The own project organization as world-wide distributed
effort opens a great opportunity for new developers to join
and contribute with their own code, patches and bug fixes.
This is an important added value for the ns-3 tool itself:
users can have a powerful simulation framework plus a
wide range of third-party tools and extensions that will
fulfill their needs.

An ns-3 simulation divides a network model into several
main entities: communication channels, network devices,
protocol stacks, nodes and applications [21]:

• Channel models abstract different physical communication
channel types and their characteristics: point to point links,
CSMA buses, wireless channels, underwater

environments, etc. These models are complemented with
auxiliary models that describe different physical channel
behavior: path loss, propagation, noise, etc.

• Network device models simulate the functionality of the
network hardware that makes physical channel access
possible. The network devices provide the rest of the
entities in the simulation with access to the communication
channel. Ns-3 includes classes for CSMA network devices,
WIFI and WIMAX among other communication
technologies.

• Protocol stack models abstract the functionality of real
protocol stacks, implementing their APIs. These protocols
give communication services to the applications and use
the network devices to send and receive data through a
communication channel. IPv4 and IPv6 are examples of
protocol stacks modeled and included in ns-3 simulator by
default.

• A node model is the equivalent to a computer or device
connected to a network. In ns-3 the mission of the Node
entity is to be the container of both hardware models
(network devices) and software models (applications,
protocol stacks). They are connected to each other by a
communication channel and they need network devices to
be able to access that channel. Their applications and
protocols use these network devices to obtain
communication services.

• Application modes are abstractions of the real software
applications deployed on the network. These entities act as
packet generators or consumers. They use the rest of
entities to send or receive data through the simulated
network.

Regarding the simulation of our Wonderland prototype, the
model is articulated by the simulation file alice.cc, written in
C++ and located in the special ns-3 folder "scratch". This file
makes use of several modules, auxiliary classes and services
provided by ns-3. Besides some default classes, there are
several new custom classes developed as part of this work to
model both audio and object synchronization traffic between
Wonderland clients and servers.

In this preliminary study, the network is assumed to be
based on Ethernet technology, so CSMA channel and network
devices are used. The first simulation prototype defines a
common CSMA bus which interconnects two nodes, a
Wonderland client and server respectively. We begin with this
basic set-up as we are interested in modeling the traffic and in
comparing the simulation with the real traces described in the
previous section.

Each node has a CSMA device and a IPv4 protocol stack.
The ns-3 helpers automate the IP address assignment process
given a certain IP range.

The client node acts as container of both audio and object
synchronization applications which share its resources and
CSMA network device. The server node contains the
corresponding audio and server applications.

Server

0 50 100 150 200

0

20

40

60

80

100

120

140

t(s)

K
B

y
te

s

Tx

Rx

Tx

Rx

The simulation results are stored as traffic dump using the
ns-3 tracing system which can generate several output file
formats. The simulation generates its traces in PCAP format,
which can be read by Wireshark among other common traffic
analysis tools. This way simulation and experimental traces can
be easily compared.

A. Audio client application

This class derives from ns3::Application which describes
the basic common methods and attributes of an ns-3
application, a simulation entity devised for generating and
consuming network traffic.

The "udp-echo-client" application has been used as
template due to their similar basic functionality. The original
udp-echo-client only sends a specific amount of packets, while
the WonderAudioClient can stop when it reaches a certain
number of sent packets, or it can send information until it
reaches the stop time defined in the simulation. Any of the
above modes can be chosen depending on our needs.

Like udp-echo-client, WonderAudioclient uses UDP
sockets to periodically send packets to its associated Audio
Server. The programmer defines the audio packet size
attending to Wonderland specifications. Both 8bits and 16K x
16bits modes audio streams produce packets which don't
require fragmentation and fit into a single CSMA packet with a
MTU of 1500 bytes. For the 3rd and higher quality, 41k x
16bits, a basic mechanism has been implemented to avoid ns-3
lack of packet fragmentation. The total audio payload is split
between several consecutive packets. There is no sequence
control mechanism in the server as long as the main purpose of
the simulation is to generate network traffic similar to the real
modelled system.

The proposed audio client model uses the UDP port 5060
for all the audio transmissions, unlike the real Wonderland
clients which use this port for audio protocol purposes and as
many pairs of UDP ports as needed from the 10000 to 10200
range. The audio client automatically sends UDP packets every
fixed time period, set by default to 20 ns as described in
Wonderland technical documentation [18].

The other audio client function is receiving audio traffic
generated by other Wonderland clients and forwarded by the
audio server. No extra protocol packets or ACKs have been
used in this model.

B. Audio client application

Analogously to the audio client, the WonderAudioServer
derives from the ns3::Application class and uses udp-echo-
server as template to build up its own functionality.

The WonderAudioServer receives all the UDP traffic from
the 5060 port. It also manages an IP address list of all the nodes
that have sent UDP packets to the server. When a new UPD
packet is received, the server extracts the sender IP address and
checks it against its client list. If the address is not in the list, it
is added to it.

The list is used later to know the destination of the
forwarded audio packets. The server sends a copy of each

forwarded message to each node, instead of using multicast
mechanism.

C. Object synchronization client.

WonderMovClient class, the Wonderland object
synchronization client, shares many similarities with the audio
client and their source code share a common base. The main
difference is that object synchronization uses TCP protocol to
send packets. The configuration of the TCP sockets and IPv4
protocol were extrapolated from the ns-3 packet-sink
application instead of udp-echo-client.

All the TCP traffic flows through the 1139 TCP port which
is a simplification of the real Wonderland behavior. The object
synchronization client also generates TCP traffic periodically,
but in this case both the packet size and the sending interval
depend on probability distributions. The packet size is
calculated from a Uniform distribution which generates values
between 280 and 400, the packet sizes that we experimentally
measured for Wonderland. As for the time between object
synchronization messages, they are sent every time the object
moves, and it is very difficult to model the actual movements
made by the user through the keyboard, joystick or the like.
Therefore, we model this traffic in our simulator using for the
time between synchronization messages an exponential
distribution. This simple solution is in principle a good way to
model the time between this kind of random and un-correlated
events caused by a number of independent factors. The mean
time between messages a is used as a parameter that allows us
to mimic the actual mean time between synchronization
messages. A limit of five updates per second is used, with the
exponential distribution modeling the randomness of the user
movements. Ns-3 provides the classes ns3::Uniformvariable
and ns3::ExponentialVariabe classes respectively to model the
behavior of these probability distributions.

The object synchronization client sends object position
updates to the server, and it receives as well object
synchronization updates from the server, which are originated
by other clients. The client sends a 66 bytes ACK packet to the
server for each received update.

D. Object synchronization server.

The WonderMovServer class is a redefinition of the
WonderAudioServer, adapting it to the object synchronization
traffic which includes the use of TCP protocol and ACK
packets to confirm the reception of updates.

Like its audio counterpart, the server listens the incoming
TCP connections from the port 1139, and also maintains an IP
address list of all the simulated Wonderland clients which have
sent at least one packet. The server also forwards a copy of
each update packets to the rest of clients to keep their virtual
world instances synchronized, and waits for the corresponding
ACKs of the clients.

IV. SIMULATION RESULTS

In this section, we present some preliminary results that
show that our simulator is able to mimic the behavior of a real
Wonderland setting, therefore becoming a useful tool to study
different configurations. First, we focus on the results for
object synchronization messages as this traffic is the more

difficult to model. From the previous sections we know that
Wonderland clients limit object synchronization updates to 5
per second. This reduces the amount of traffic avoiding
saturation when a high number of users simultaneously move
in the virtual world. GNU/Linux Wonderland clients cannot
meet this constraint and as a result the generated traffic shoots
up. Of course this fact can be considered a bug so the main
focus should be on the “regular” case with up to 5 updates per
second.

The traffic has been modeled using an exponential
distribution with a=0.4 and it has been truncated to avoid
values lower than 0.2 (that would break the restriction of
maximum 5 updates per second). A mean value of 0.4s
performs well when comparing the simulated results with the
real ones, as shown in Figure 8. Note that the results are similar
to the experimental results shown in Figure 4, at least the peak
values which are the most interesting ones.

Figure 8. Simulated Object Synchronization traffic (bytes/s) for one
Wonderland client (with the 5 updates/s limit).

Finally, the simulator also allows us to study several
interesting configurations. For instance, it allows us to study
how the traffic scales as the number of clients increases.
Figures 10 and 11 show the total UDP (audio) and TCP (object
synchronization) traffic at the server for the case of 10 and 20
clients, respectively. In the left side of these figures the number
of clients gradually increases, showing how the traffic
increases accordingly. The results for the audio traffic show a
linear increase with the number of clients N, as expected.
Clearly, in situations with scarce bandwidth resources clients
may switch the audio off to reduce this traffic source. On the
other hand, the object synchronization traffic increases with N2.
This is also an expected result. When the position of an object
changes, for every MOVE_REQ message sent by the client to
the server, the server sends a MOVED message to every other
clients. Ignoring other messages like ACK, if P is the mean
packet length in bytes (P 400bytes), then given the restriction
of 5 updates per second the mean traffic would be
approximately (in bytes per second): N2*5*P, where N
corresponds to the number of clients and P the size in bytes of
the packet. . Therefore, as the number of clients increases the
object synchronization traffic may reach values similar to those
of the audio traffic. It can be imagined what would happen
when the number of GNU/Linux clients increase which do not
limit the number or object synchronization messages.

Figure 9. Simulated total UDP (audio) and TCP (object synchronization)
traffic for the case of 10 clients (bytes/s).

Figure 10. Simulated total UDP (audio) and TCP (object synchronization)
traffic for the case of 20 clients (bytes/s).

V. CONCLUSIONS

In this paper, we try to model two of the main network
traffic sources in a Wonderland-based networked virtual world.
First, object synchronization which allows all users to have a
coherent view of the virtual world (including moving objects
like avatars), and second voice traffic intended to support
communications among users. Some experimental measures
were made in order to correctly model this traffic. Some
interesting conclusions were drawn from this experimental
study, which were not described in the Wonderland
documentation. Particularly, the fact that GNU/Linux clients do
not meet the limit of five updates per second imposed to object
synchronization traffic from the clients.

The obtained traffic model is used as input of an ns-3 based
simulation model which can be used to study different
Wonderland configurations. Some preliminary simulation
results are presented. Future work will make extensive use of
this simulator with different communications links to study
issues like scalability, latency, bandwidth, etc.

ACKNOWLEDGMENTS

This work has been partially supported by contract
Vulcano: TEC2009-10639-C04-02 as well as by the Telefonica
Chair “Intelligence in Networks” of the University of Sevilla

0 20 40 60 80 100 120 140

0

1

2

3

4

5

t(s)

K
B

y
te

s

Sim.

Real

0 20 40 60 80 100 120 140

0

200

400

600

800

1000

1200

1400

1600

t(s)

K
B

y
te

s

TCP

UDP

TCP

UDP

0 20 40 60 80 100 120 140

0

200

400

600

800

1000

1200

1400

1600

t(s)

K
B

y
te

s

TCP

UDPTCP

UDP

(Spain). We would also like to thank the people from the Open
Wonderland Forum who answered some of our questions.

REFERENCES

[1] Fogg, BJ.; “Persuasive Technology: using computers to change what we
think and do,” Morgan Kaufmann Series in interative technologies,
ISBN 1-55860-643-2, Morgan Kaufmann 2003.

[2] S. J. Romero, et al., Open source virtual worlds and low cost sensors for
physical rehab of patients with chronic diseases. P. Kostkova (Ed.):
eHealth 2009, LNICST 27, pp. 84–87, 2010.

[3] Cascado, D.; Romero, S.J.; Hors, S.; Brasero, A.; Fernandez-Luque, L.;
Sevillano, J.L.; , "Virtual worlds to enhance Ambient-Assisted Living,"
Engineering in Medicine and Biology Society (EMBC), 2010 Annual
International Conference of the IEEE, Aug. 31 2010-Sept. 4 2010

[4] N. Yankelovich et al. Meeting central: making distributed meetings
more effective. Proceedings of the 2004 ACM conference on Computer
supported cooperative work. Pp. 419-428. Chicago, IL (USA), Nov.
2004.

[5] Gardner M, Sheaffer W (2009). Designing and building immersive
education spaces using Project Wonderland: from pedagogy through to
practice. University of Oregon, Immersive Education Days, 18th – 20th
August 2009.

[6] Open Wonderland: http://www.openwonderland.org/ Accessed
15/03/2011

[7] Wonderland Tutorial. Available at http://www.openwonderland.org/

[8] Denis Gracanin, Yunxian Zhou, and Luiz A. DaSilva. Quality of Service
for Networked Virtual Environments. IEEE Communications Magazine.
Pp. 42-48. April 2004

[9] T. Henderson and S. Bhatti, “Networked Games: A QoS-Sensitive
Application for QoS-Insensitive Users,” Proc. ACM Int’l Conf.
Applications, Technologies, Architectures, and Protocols for Computer
Comm. (SIGCOMM ’03), pp. 141-147, 2003.

[10] T. Fritsch, H. Ritter, J. Schiller. The Effect of Latency and Network
Limitations on MMORPGs. NetGames’05, October 10.11, 2005,
Hawthorne, New York, USA.

[11] Enrique Asensio, Juan M. Orduña, Pedro Morillo Analyzing the
Network Traffic Requirements of Multiplayer Online Games. The
Second International Conference on Advanced Engineering Computing
and Applications in Sciences. Valencia (Spain), Sept. 2008.

[12] Wonderland Communications Architecture. Available at
http://www.openwonderland.org/

[13] J.C.S. Lui, Constructing Communication Subgraphs and Deriving an
Optimal Synchronization Interval for Distributed Virtual Environment
Systems. IEEE Transactions on Knowledge and Data Engineering, Vol.
13, No. 5, pp. 778-792. September/October 2001

[14] Open Wonderland Forum.
http://groups.google.com/group/openwonderland

[15] P. Morillo, S. Rueda, J.M. Orduña, and J. Duato “A Latency-Aware
Partitioning Method for Distributed Virtual Environment Systems”.
IEEE Transactions on Parallel and Distributed Systems, vol. 18, no. 9,
pp. 1215-1226. September 2007.

[16] Mirza Hadži . Supporting Distributed Software Teams with 3D Virtual
Worlds. Master’s Thesis. Institute for Information Systems and
Computer Media (IICM), Graz University of Technology (Austria),
2010.

[17] Firewall Configuration. Available at http://www.openwonderland.org/

[18] jVoiceBridge Developer Documentation. Available at
http://www.openwonderland.org/

[19] Ns-3 overview. http://www.nsnam.org/docs/ns-3-overview.pdf, August
2010.

[20] J.L. Font et al., Analysis of source code metrics from ns-2 and ns-3
network simulators, Simulat. Modell. Pract. Theory 19 (2011), pp. 1330-
1346.

[21] Ns-3 Manual: 4.1 Object Model.
http://www.nsnam.org/docs/release/manual.html#Objectmodel

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00540068006500730065002000730065007400740069006e00670073002000610072006500200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e003000200061006e00640020006d0061007400630068002000740068006500200022005200650071007500690072006500640022002000730065007400740069006e0067002000660069006c0065007300200066006f00720020005000440046002000730070006500630069006600690063006100740069006f006e002000760065007200730069006f006e00200034002e0030002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

