
make it difficult to develop a real-time autonomous system.

However brains perform powerful and fast vision processing

using millions of small and slow cells working in parallel in a

totally different way. Primate brains are structured in layers of

neurons, in which the neurons in a layer connect to a very

large number (~104) of neurons in the following layer [2].

Many times the connectivity includes paths between non-

consecutive layers, and even feedback connections are

present.

Vision sensing and object recognition in brains is not

processed frame by frame; it is processed in a continuous way,

spike by spike, in the brain-cortex. The visual cortex is

composed by a set of layers ([1][2]), starting from the retina.

The processing starts when the retina captures the information.

In recent years significant progress has been made in the study

of the processing by the visual cortex. Many artificial systems

that implement bio-inspired software models use biological-

like processing that outperform more conventionally

engineered machines [3][4][10]. However, these systems

generally run at extremely low speeds because the models are

implemented as software programs. For real-time solutions

direct hardware implementations of these models are required.

A growing number of research groups world-wide are

implementing some of these computational principles onto

real-time spiking hardware through the development and

exploitation of the so-called AER (Address Event

Representation) technology.

AER was proposed by the Mead lab in 1991 [5][7] for

communicating between neuromorphic chips with spikes.

Every time a cell on a sender device generates a spike, it

transmits a digital word representing a code or address for that

pixel, using an external inter-chip digital bus (the AER bus).

In the receiver the spikes are directed to the pixels whose code

or address was on the bus. In this way, cells with the same

address in the emitter and receiver chips are virtually

connected by streams of spikes. Arbitration circuits ensure

that cells do not access the bus simultaneously (See figure 1).

Usually, these AER circuits are built using self-timed

asynchronous logic [6].

Several works are already present in the literature regarding

the spike-based visual processing filters. Serrano et al.

presented a chip-processor able to implement image

convolution filters based on spikes that work at very high

performance parameters (~3GOPS for 32x32 kernel size)

compared to traditional digital frame-based convolution

processors [11][12][10].

Frames-to-AER efficiency study based on

CPUs Performance Counters

M. Domínguez-Morales, P. Iñigo, J.L. Font, D. Cascado, G. Jimenez, F. Díaz, J.L. Sevillano, A.

Linares-Barranco

 Abstract— Image processing in digital computer systems
usually considers the visual information as a sequence of frames.

These frames are from photographs that capture reality for a

short period of time. They are renewed and transmitted at a rate

of 25-30 frames per second, in a typical real-time scenario. Each

of these frames needs to be filtered and processed in order to

detect a feature on it. This processing is usually based on very

expensive operations in terms of resource consumption

(processor resources and processing time) for an efficient real-

time application. In contrast, neuro-inspired systems, which

work in a manner similar to the nervous system, may resolve

those and others more complex problems, such as visual

recognition in real-time. The spike-based philosophy for visual

information processing based on the neuro-inspired Address-

Event- Representation (AER) is achieving nowadays very high

performances. Address-Event-Representation (AER) is a

neuromorphic interchip communication protocol that allows for

real-time virtual massive connectivity between huge numbers of

neurons located on different chips. When building multi-chip

muti-layered AER systems it is absolutely necessary to have a

computer interface that allows (a) to read AER interchip traffic

into the computer and visualize it on screen, and (b) convert

conventional frame-based video stream in the computer into

AER and inject it at some point of the AER structure. This is

necessary for test and debugging of complex AER systems. A set

of software methods for converting digital frames into AER

format are present in the literature. In this work we study the

low level performance lacks of these methods monitoring internal

performance hardware counters for an Intel Core 2 Quad. We

discuss the results obtained and we propose improvements for

those software methods that did not achieve real-time properties.

Index Terms—AER, neuro-inspired, multicore, Core 2 Quad,
performance hardware counters, real-time vision, spiking

systems.

I. INTRODUCTION

IGITAL vision systems process sequences of frames

Dfrom conventional video sources, like cameras. For
performing complex object recognition algorithms,

sequences of computational operations must be performed for
each frame. The computational power and speed required

This work has been supported by the following projects: Spanish
Science and Education Ministry Research Projects TEC2009-10639-

C04-02 (VULCANO) and TIN2006-15617-C03-03 (AmbienNet), Andalussian

Council grants P06-TIC-01417 (BrainSystem) and P06-TIC-02298.

Authors are with the Robotic and Technology of Computers group of the

University of Seville, ETSI Informática, Av. Reina Mercedes s/n, 41012,

Seville, SPAIN. Phone: +34954556145, Email: {mdominguez, pinigo,

alinares, gaji, civit, sevi}@atc.us.es

Figure 1. AER inter-chip communication scheme.

Another approach for solving frame-based convolutions with

very high performances are the ConvNets [13][14], based on

cellular neural networks, that are able to achieve a theoretical

sustained 4 GOPS for 7x7 kernel sizes.

There is a community of AER protocol users for bio-inspired

applications in vision and audition systems, as demonstrated

by the success in the last years of the AER group at the

Neuromorphic Engineering Workshop series [3]. One of the

goals of this community is to build large multi-chip and multi-

layer hierarchically structured systems capable of performing

complicated array data processing in real time. The power of

these systems can be used in computer based systems under co

processing. This purpose strongly depends on the availability

of robust and efficient AER interfaces [9]. One such tool is a

PCI-AER interface that allows not only reading an AER

stream into a computer memory and displaying it on screen in

real-time, but also the opposite: from images available in the

computer's memory, generate a synthetic AER stream in a

similar manner a dedicated VLSI AER emitter chip [6][7]

would do. This PCI-AER interface is able to reach up to

10Meps bandwidth, which allows a frame-rate of 2’5fps with

an AER traffic load of 100% for 128x128 frames, and 25 fps

with a typical 10% AER traffic load.

In [19] we evaluated the performance of several frame-to-

AER software conversion methods for real-time video

applications by measuring execution times in several

processors. That work demonstrated that for low AER traffic

loads any method in any CPU achieved real-time, but for high

bandwidth AER traffics, it depends on which method and

CPU are selected in order to obtain real-time. In this work we

focus on the best processor of that study and then we analyze

the reasons that made non real-time adequate for some of the

methods. This can be done by monitoring internal hardware

performance counters available in some CPUs like the Intel

Core 2 Quad processor. We have compiled those methods

proposed with advanced techniques for modern processors

with powerful architectural advances like multi-core and

hyper threading. We have evaluated and compared

performance for different Frame-to-AER methods applying

parallel compilation techniques (called OpenMP [20]) or not,

focusing the performance study in monitoring internal events

by using performance hardware counter of the Intel Core 2

Quad processor. These internal counters can be accessed by

linux drivers and libraries or by an Intel application under

Windows, the VTune [17]. Several parameters regarding the

internal caches and branch prediction buffers have been

analyzed in order to determine why the performance revealed

in [19] concluded that OpenMP was not appropriate for

improving results. Next section briefly explains the software

methods for converting digital frames into AER format in the

computer’s memory. Section III reviews selected performance

hardware internal counters of Intel processors. Then in section

IV we evaluate performance of the methods for different

hardware counters and compilation techniques. In section V

we present a new method for synthetic generation that solves

real-time problems of previous ones. And in section VI we

conclude.

II. SOFTWARE SYNTHETIC AER GENERATION

One can think of many software algorithms to transform a

bitmap image (stored in a computer’s memory) into an AER

stream of pixel addresses [8]. In all of them the frequency of

appearance of the address of a given pixel must be

proportional to the intensity of that pixel. Note that the precise

location of the address pulses is not critical. The pulses can be

slightly shifted from their nominal positions; the AER

receivers will integrate them to recover the original pixel

waveform.

Whatever algorithm is used, it will generate a vector of

addresses that will be sent to an AER receiver chip via an

AER bus. Let us call this vector the “frame vector”. The frame

vector has a fixed number of time slots to be filled with event

addresses. The number of time slots depends on the time

assigned to a frame (for example Tframe=40ms) and the time

required to transmit a single event (for example Tpulse=10ns).

If we have an image of NxM pixels and each pixel can have a

grey level value from 0 to K, one possibility is to place each

pixel address in the frame vector as many times as the value of

its intensity, and distribute it with equidistant positions. In the

worst case (all pixels with maximum value K), the frame

vector would be filled with NxMxK addresses. Note that this

number should be less than the total number of time slots in

the frame vector. Depending on the total intensity of the image

there will be more or less empty slots in the frame vector

Tframe/Tpulse. Each algorithm would implement a particular

way of distributing these address events, and will require a

certain time.

A. The Uniform method

In this method, the objective is to distribute equidistantly the

events of one pixel along the frame vector. The image is

scanned pixel by pixel only once. For each pixel, the

generated pulses must be distributed at equal distances. As the

frame vector is getting filled, the algorithm may want to place

addresses in slots that are already occupied. This situation is

called a 'collision'. In this case, we will put the event in the

nearest empty slot of the frame vector. This method,

apparently, will make more mistakes at the end of the process

than at the beginning and the execution time grows because of

the collisions increases at the end of the process, consuming

more time to be resolved. The algorithm can be optimized to

be divided in threads by compilers by dividing the processing

for different period array sections. But since the frame vector

is a shared resource, collision will decrease the performance

because the probability of interference between different

threads grows with the number of collisions.

B. The Random method

 This method places the address events in the slots obtained

by a pseudo-random number generator based on Linear

Feedback Shift Registers (LFSR) [18]. Due to the properties

of the LFSR used, each slot position is generated only once,

except position zero, and no collisions appear. If a pixel in the

image has intensity p, then the method will take p values from

the pseudo-random number generator and places the pixel

address in the corresponding p slots of the frame vector. They

will not be equidistant but will appear along the complete

address sequence randomly. This method is faster than any of

the Uniform methods.

 Note that by using an LFSR it would be possible to obtain

two very close addresses in a few calls. This can be avoided

using an n-bit counter for the most significant bits of the

address. Figure 2 (top) shows the LFSR structure with a 2-bit

counter for a 128x128 frame with 256 gray levels.

 The software implies to call a rand function, whose result is

used to select a position in the frame vector, but it is also used

by the same function as input parameter to warranty the

correct pseudo-random distribution of events. Thus, this

function represents a critical section for dividing the process

into threads. Furthermore, since the access to the frame vector

is random, the method cannot extract best results from cache

memory hierarchy.

Figure 2. Random method LFSR (top) and Random-Square (bottom).

C. The Random-Square method

For the Random method with a fixed size counter, the event

distribution is poor for low activity pixels. The distribution

can be improved substituting the counter with another LFSR.

 For a 128x128 frame with maximum gray level of 255, an

8-bit LFSR (LFSR-8) is used for selecting 255 slices of

128x128 slots, and another 14-bit LFSR (LFSR-14) selects the

position inside the slice. The image is scanned only once. For

each pixel a 14-bit number is generated by the LFSR-14,

which is used to select a slot in a slice. Then, the LFSR-8 is

called as many times as the intensity level of the pixel

indicates, that is used for selecting the slices to place the

events. Figure 2 (bottom) shows the LFSR structure used.

 This method has the same behavior than the previous one

from the point of view of threads division, but for cache

access, it is expected to obtain better results since the frame

vector is divided into slices.

D. The Random-Hardware method

 The two previous LFSR-based methods are very attractive

for a hardware implementation because of the simplicity and

efficiency of the LFSR methods. However, in both cases the

complete frame vector has to be generated and stored before

starting the transmission. This method uses an LFSR of as

many bits as necessary to generate NxMxK numbers, as before.

For example, if N=M=128 and K=256, then 22-bits are

needed. The 22-bit LFSR is called 222 times, providing random

numbers. For each number, a pixel is selected in the image

using the log2(N)+log2(M) less significant bits of the pseudo-

random number. With the log2(K) other bits, the algorithm

decides if the event has to be sent or not. If the log2(K) more

significant bits represent a number larger than the value of the

pixel, then an event is sent with the log2(N)+log2(M) less

significant bits of the pseudorandom number as the address. In

the other case, the pseudorandom number is ignored and a

pause equivalent to one event is generated. Consequently, the

algorithm generates the pseudorandom numbers, and decides

whether or not the resulting event is sent in real time.

Therefore, no period is needed.

 From the point of view of threads extraction and the cache

optimization, the frame vector is accessed sequentially, which

is a benefit for the cache hierarchy. But, as the method

requires calling a random function that always depends on

itself, the method cannot be divided in threads.

E. The Exhaustive method

 This algorithm also divides the address event sequence into

K slices of NxM positions for a frame of NxM pixels with a

maximum gray level of K. For each slice (k), an event of pixel

(i,j) is sent on time t if the following condition is asserted:

KPKPk jiji ≥+⋅ ,, mod)(and

tjMikMN =+⋅−+−⋅⋅)1()1(

where Pi,j is the intensity value of the pixel (i,j).

The Exhaustive method tries to improve the Random-Square

one by distributing the events of each pixel in equidistant

slices.

 In this method, the frame vector is accessed slice by slice.

Since each slice is longer than L1 cache, the method is not

oriented to extract benefits from them. In contrast, division on

several threads could be possible if the frame vector accessing

sequences support it.

III. PERFORMANCE HARDWARE COUNTERS OF INTEL CPUS

In [19] these AER software methods were evaluated in

several CPUs regarding the execution time. The Intel Core 2

Quad offered the best results. In that study the software

methods were evaluated with two compilation techniques:

OpenMP and particular compilation techniques for the target

CPU using Visual Studio optimizations. An important

optimization not taken into account in that study was to allow

the compiler to use SSEx SIMD instructions, which is not

allowed when using Microsoft compiler, but it is allowed

when using the Intel Compiler.

OpenMP is an API that supports multi-platform shared

memory multiprocessing programming. It consists of a set of

compiler directives, library routines, and environment

variables that influence run-time behavior. OpenMP has many

cons that may make multiprocessing programming difficult.

Some of them are:

- Possible data placement problems.

- No specific thread order.

- Shared-data synchronization.

As we could see in section IV, OpemMP provides worse

results in the previous tests [19], that are caused by one of the

cons listed before, more specifically the last one (shared-data

synchronization). In all AER generation methods, results are

saved in a shared spike vector, so every thread has to write in

the same vector as the others, and consequently it causes high

latency between threads.

Cache block problems are caused by the internal hardware

consistency of the L1-cache. Intel allows L1-caches to have

duplicated information. This coherence mechanism prevents

the system from modifying the same data by two different

cores, which have different caches (Core 2 Quad). This

mechanism also causes many cache failures during the writing

result process. For example, when a core modifies a specific

data in its L1 cache and a second core tries to modify the same

data in its own L1, system prevents it from modifying the

data, so the core has to reallocate the cache block again into its

L1.

In order to test OpenMP programming, dynamic task

allocation has been used, that allows the compiler to do an

automatic thread distribution; but it can be seen later in section

IV that results have not been good enough. Another possibility

is to use “static” OpenMP programming, which consists of a

static task distribution done by the programmer; however, this

option has proven to be worse when every thread has to access

the same data for writing.

Figure 3 shows the execution time results for the Core 2

Quad using OpenMP or Visual Studio particular techniques

obtained in that previous study. These graphs demonstrated

that execution time was improved using OpenMP for some

methods, like Exhaustive and Random Hardware. But, at the

same time, other method decreased the performance with

OpenMP techniques, like Uniform. Furthermore, other

methods were almost invariant in performance respect to the

use of OpenMP, like Random and Random Square. In that

study we did not focus in the reasons of this behavior.

Why these methods did not improve themselves with those

optimization techniques is a question that we want to solve in

the present work. The answer for this question will allow

knowing which modifications or improvements can be done to

the different methods in order to reduce the execution time. To

do this we have studied deeply the reasons of these

performance differences by focusing in other internal

parameters of performance related to the internal architecture

of modern processors, as cache memories (both L1 and L2)

and branches miss-predictions.

Figure 3. Execution time of Synthetic AER generation methods for Intel

Core 2 Quad with OpenMP compilation techniques and with

Visual Studio optimization techniques for Core 2 Quad.

TABLE I: PROCESSOR ARCHITECTURE FEATURES

Processor Micro-architecture L1 and L2 Cache

Pentium

Core 2

Quad,

2,4GHz

Core Q6600, MMX,

SSE, SSE2, SSE3,

SSSE3, EM64T, Four

Cores, one

Thread/core. 65nm

L1 Instruc: 4x32KB, 8-way,

64B/line

L1 Data: 4x32KB, 4-way, 64B/line

L2: 4MB, 16-way, 64B/line

In this section we focus the study in evaluating internal

hardware counters of Intel CPUs that are able to measure

several interesting parameters, like structural hazards,

penalties in accessing cache memories or hazards due to miss

predictions of branches target buffers (BTB) for retirement

stages of pipelined instructions. In this work we evaluate the

software methods described in the previous section in the Core

2 Quad processor to study why execution time performance

study had this behavior. Results are presented in section IV.

We have selected for this study the most powerful processor

used in [19], the Intel Core 2 Quad. Table 1 lists the processor

features. It is based on the high-performance and power-

efficient Intel Core micro-architecture [11].

Intel Core microarchitecture introduces several features that

enable high performance and power-efficient performance for

single-threaded as well as multithreaded workloads:

• Intel® Wide Dynamic Execution enables each processor

core to fetch, dispatch, execute with high bandwidths and

retire up to four instructions per cycle. Some features of the

architecture are: fourteen-stage pipeline, three arithmetic

logical units, four decoders to decode up to four instructions

per cycle, macro-fusion and micro-fusion to improve front-end

throughput, peak issue rate of dispatching up to six µops per

cycle, peak retirement bandwidth of up to four µops per cycle,

advanced branch prediction and stack pointer tracker to

improve efficiency of executing function/procedure entries

and exits.

• Intel® Advanced Smart Cache delivers higher

bandwidth from the second level cache to the core, optimal

performance and flexibility for single-threaded and multi-

threaded applications. Features include: optimized for

multicore and single-threaded execution environments, 256 bit

internal data path to improve bandwidth from L2 to first-level

data cache, unified, shared second-level cache of 4 Mbyte, 16

ways (or 2 MByte, 8 ways).

In a multiple-processor system (multi-core system), the

following ordering rules apply when writing into cache [16]:

• Individual processors (cores) use the same ordering rules as

in a single-processor system. These rules say that all writing

operations must be done in the same order than the issue of

those operations. Therefore, when store instructions are

executed under dynamic scheduling, results to be written are

obtained in an out-of-order way, and these results can be

delayed in their stores to memory due to this strong-order

rule.

• Writings by a single processor (a core) are observed in the

same order by all processors. For example, when a core has

to write a cache line in the next level of the memory

hierarchy, it must wait for stores operations being executed

by other cores. Furthermore, if a sequence of data is shared

by two (or more) cores, each one has the same data

replicated in its own L1 cache. If one of them has to modify

part of this shared cache line, the rest of the cores found their

shared cache lines as invalid or obsolete and they must ask

for cache line again. And this action is delayed by the

completion of the modification of the cache line of the first

core and its actualization in the memory hierarchy.

• Writings from the individual processors on the system bus

are globally observed and are NOT ordered with respect to

each other. Therefore, when two processors modify cache

lines in strong-order and there is no collision between them,

it is not possible to ensure the order of the writing operations

of cache lines in L2 or memory.

• Intel® Smart Memory Access prefetches data from

memory in response to data access patterns and reduces cache-

miss exposure of out-of-order execution. Features include:

hardware prefetchers to reduce effective latency of second-

level cache misses, memory disambiguation to improve

efficiency of speculative execution engine.

• Intel® Advanced Digital Media Boost improves most

128-bit SIMD instructions with single-cycle throughput and

floating-point operations. Features include: single-cycle

throughput of most 128-bit SIMD instructions (except 128-bit

shuffle, pack, unpack operations), up to eight floating-point

operations per cycle, three issue ports available for

dispatching SIMD instructions for execution.

This processor enhances hardware support for

multithreading by providing four processor cores in each

physical processor package. The multicore topology of Intel

Core 2 Duo provides two logical processors in a physical

package. Each logical processor has a separate execution core

(including first-level cache) and a smart second-level cache.

The second-level cache is shared between two logical

processors and optimized to reduce bus traffic when the same

copy of cached data is used by two logical processors. The full

capacity of the second-level cache can be used by one logical

processor if the other logical processor is inactive.

The Intel Core 2 Quad processor consists of two replicas of

the dual-core modules. Therefore, each core has its own L1

cache and each two cores are sharing a L2 cache. So if there

are two L2 caches, an additional penalty appears due to the

possibility of sharing data between L2 caches. For example, if

a thread is being executed in one core and is using a big array

of data (as it happens with our methods), several L2 cache

lines are being written. If another core is working with the

same data, but this core is on the other core 2 Duo part, a

cache line is allocated in the other L2 cache with the same

data. If one of them writes a result, the other will lose the

availability of its L2 line and will produce new penalties in

order to reallocate the L2 line. This problem reflects the

synchronization problem between threads in a multi-core

processor, but with additional penalties due to multiple and

different cache memories.

If our AER synthetic methods were divisible in totally

parallel threads, synchronizations would not be needed and

therefore, these cache penalties would not appear, improving

execution times.

In order to analyze the penalties of these problems during

the execution of the Frame-to-AER methods we have used

VTune. VTune [17] is an Intel application that is able to

measure the performance of a set of parameters of Intel

processors by using internal hardware counters. Intel

processors have only two internal counters for measuring

performance parameters during an execution, but these

counters can be configured for analyzing different parameters

for each execution. VTune allows preparing a project for

performance analysis in which several executions of the

application under study are launched configuring in a different

way the internal counters for several parameters

measurements.

We have selected several parameters related to the new

features of the microarchitecture. These are [16]:

- L2_LINES_IN.SELF.ANY (L2 cache misses): This event

counts the number of cache lines allocated in the L2 cache.

Cache lines are allocated in the L2 cache as a result of

requests from the L1 data and instruction caches and the L2

hardware prefetchers to cache lines that are missing in the

L2 cache. This event has been configured to count

occurrences for all cores.

Those methods that cannot be divided into threads without

synchronization that are working in different parts of the

array used to store the generated events will increase this

parameter.

- STORE_BLOCK.ORDER (L1 data cache and DTLB

stall events): Intel processors maintain an in-order writing

of results in cache. Therefore, although instructions are

executed following an out-of-order architecture (dynamic

scheduling), results are re-ordered before their writing

operations to cache or registers. This mechanism is

supported by the Re-Order-Buffer for solving miss-

predictions in branches or interruptions. When results are

written in cache by one core, this core writes in order, but

without any synchronization respect to the in-order writing

operation of the other cores. It is possible that a store

executed in one core implies to write a cache line into L2

cache. Since L2 cache is share by two cores, if the second

core needs to store another line into L2, it has to wait. This

event counts the total duration, in number of cycles, which

stores are waiting for a preceding stored cache line to be

observed by other cores. This situation happens as a result

of the strong store ordering behavior. The stall may occur

and be noticeable if there are many cases when a store

either misses the L1 data cache or hits a cache line in the

Shared state. If the store requires a bus transaction to read

the cache line then the stall ends when snoop response for

the bus transaction arrives. In general, when increasing the

number of threads working with the same part of the

memory, this parameter should increase.

- L1D_CACHE_LOCK.MESI (L1 data cacheable locked

reads): This event counts the number of locked data reads

from cacheable memory. In the Intel Core 2 Quad, two

cores share L2 cache. If these two cores are working with

the same L2 cache line, each of them has a copy on their

own L1 caches. Therefore, if a core modifies its L1 line, the

other core corresponding L1 line must be invalidated. This

is the functionality of the MESI protocol (ref). When this

occurs and the second core needs to access its shared L1

line, it needs to reload the L1 line from the L2, but it is

probable that L2 line has not been updated by first core L1,

so the penalty is increased. These situations appear more

frequently when threads of the same process are sharing

memory, increasing the synchronization between threads,

which occurs to the AER methods.

- L1D_CACHE_LOCK_DURATION (Duration of L1

data cacheable locked operation): This event counts the

number of cycles during which any cache line is locked by

any locking instruction. Locking happens at retirement and

therefore the event does not occur for instructions that are

speculatively executed. Locking duration is shorter than

locked instruction execution duration.

- RESOURCE_STALLS.BR_MISS_CLEAR (Cycles

stalled due to branch miss-prediction): This event counts

the number of cycles after a branch miss-prediction is

detected at execution until the branch and all older micro-

ops retire. During this time new micro-ops cannot enter the

out-of-order pipeline.

IV. PERFORMANCE STUDY

In order to analyze the events explained in the previous

section we have prepared an executable file for each AER

method and for each input image to be converted to a

sequence of AER events. The test images set (TIS) selected

are shown in figure 4. All the images have been constructed

randomly, with a Gaussian histogram and for producing

different bandwidth of events in the AER bus (from 10% to

90% and 95, 97, 99%)

Figure 4. TIS generated randomly to have Gaussian histogram. Resulting

images (10% load upper left, 90% load lower right).

Figure 5 shows graphically the results obtained when

monitoring the events presented in the previous section using

the internal hardware counters of the Core 2 Quad processor.

These results have been obtained with VTune for all the AER

methods and all the AER charges using different executable

files for each case.

For several methods, the more events are produced in the

AER bus, the greater the number of L2 lines required (see

L2_LINES_IN.SELF.ANY graph). These methods are

Random, Random OMP, Uniform OMP and Exhaustive OMP.

OMP means that OpenMP compilation techniques have been

used. These OMP methods require around 24 threads that

require an increment of synchronization points between threads

when producing AER events. This synchronization point

increment implies a data replication between both L2 caches

and the four L1 caches, because several threads are accessing

same parts of the frame period.

The number of blocks produced when accessing L2 for

storing results is higher for Random and Random OMP

methods. This means that for these methods, no matter the

number of threads, collisions in cache are produced for

different cores more frequently than for the other methods.

This effect is due to the fact of sharing not only the frame

vector, but also the rand function used in software. This

function must share a global variable because in other case it

cannot be ensured the property of LFSR in producing all the

positions randomly without repetition.

Figure 5. Intel Core 2 Quad internal events performance values for

executions of Frame-to-AER methods for TIS images.

L1D_CACHE_LOCK.MESI measures the number of L1

lines invalidated by another core when lines are shared

between several cores. This situation is also more accentuated

Random methods due to rand function sharing.

Duration of L1D locks does not show significant differences

between methods.

Branches miss-prediction occurs more frequently for Random

methods due to the difficulty in predicting the behavior of a

random sequence. But this miss-predictions are also higher for

OMP methods compared to not OMP ones. This is normal

taking into account the difference in the number of threads,

each of them requiring different BTB entries (Branch Tarjet

Buffer).

V. RANDOM QUADRANT METHOD

Trying to solve the problems found in previous sections

thanks to the low level analysis developed using internal

hardware performance counters, we have found that Random

and Random Square methods did not reach real-time

capabilities because of the rand function sharing requirements.

This bad behavior of Random methods can be fixed by

eliminating the exclusive and sequential property of rand

function for generating all the events. One possibility could be

to divide the image in four quadrants and use four different and

adapted rand functions for generating the sequence of events

for each quadrant and then join all of them.

We propose to modify the random method by dividing the

input image in as many parts as threads to be executed. Each

thread will generate the events for its corresponding part of the

image using an adapted rand function. Thanks to the

parallelism offered by multi-core processors, a join function is

implemented at the same time that the cores are generating

their corresponding events.

We have compiled this new version of the Random method

that we call Random Quadrant, using Intel Compiler instead of

Microsoft Visual Studio in order to allow the use of SSEx

instructions, which are oriented to SIMD (single instruction

multiple data) capabilities. This will improve the performance.

Figure 6 shows execution times for this new Random

Quadrant method in the same Intel Core 2 Quad processor than

previous work. This new method is proposed to substitute the

use of Random or Random Square methods when they are

required in software. This execution time remains almost

constant because the L2 blocks have been reduced.

Figure 6. Intel Core 2 Quad execution times for previous work Random

method and new Random Quadrant method for TIS images.

VI. CONCLUSION

An execution time study was presented in a previous work

for analyzing the real-time capabilities of the Frame-to-AER

methods. In that study it was concluded that Random and

Random Square methods were not appropriate for real-time

applications in the Intel Core 2 Quad processor.

In present work we have analyzed deeply the behavior of

these methods regarding the architecture of the Intel Core 2

Quad, like L1 and L2 cache and branches miss-predictions.

We have found the reasons why the Random and Random

Square methods did not reached real-time capabilities. They

share L2 lines and L1 lines between cores that are accessed by

a rand function, also shared, and this implies high penalties

due to synchronization between threads.

In order to solve this problem we have proposed an

alternative method: the Random Quadrant, which uses as

many rand functions as cores the processor has. Execution

time for the new method is presented. This demonstrates the

efficiency of the new method for Poisson like distribution and

real-time requirements for software applications.

REFERENCES

[1] Drubach, Daniel. The Brain Explained. New Jersey: Prentice-Hall,

2000.

[2] G. M. Shepherd, The Synaptic Organization of the Brain, Oxford

University Press, 3rd Edition, 1990.

[3] J. Lee, “A Simple Speckle Smoothing Algorithm for Synthetic Aperture

Radar Images,” IEEE Trans. Systems, Man and Cybernetics, vol. SMC-

13, pp. 85-89, 1983.

[4] T. Crimmins, “Geometric Filter for Speckle Reduction,” Applied Optics,

vol. 24, pp. 1438-1443, 1985.

[5] M. Sivilotti, “Wiring Considerations in analog VLSI Systems with

Application to Field-Programmable Networks”, Ph.D. Thesis, California

Institute of Technology, Pasadena CA, 1991.

[6] Kwabena A. Boahen. “Communicating Neuronal Ensembles between

Neuromorphic Chips”. Neuromorphic Systems. Kluwer Academic

Publishers, Boston 1998.

[7] Misha Mahowald. “VLSI Analogs of Neuronal Visual Processing: A

Synthesis of Form and Function”. Ph.D. Thesis. California Institute of

Technology Pasadena, California 1992.

[8] A. Linares-Barranco, G. Jimenez-Moreno, A. Civit-Ballcels, and B.

Linares-Barranco. “On Algorithmic Rate-Coded AER Generation”.

IEEE Transaction on Neural Networks. May-2006.

[9] R. Paz, F. Gomez-Rodriguez, M. A. Rodriguez, A. Linares-Barranco, G.

Jimenez, A. Civit. Test Infrastructure for Address-Event-Representation

Communications. IWANN 2005. LNCS 3512. pp 518-526. Springer

Verlag.

[10] A. Linares-Barranco, R. Paz-Vicente, F. Gómez-Rodríguez, A. Jiménez,

M. Rivas, G. Jiménez, A. Civit. On the AER Convolution Processors for

FPGA. ISCAS 2010. Paris, France.

[11] Ben Cope et al. “Implementation of 2D Convolution on FPGA, GPU

and CPU”. Imperial College Report.

[12] B. Cope, et al. “Have GPUs made FPGAs redundant in the field of

video processing?”.FPT 2005.

[13] C. Farabet, C. Poulet, J. Y. Han, Y. LeCun. “CNP:: An FPGA-based

Processor for Convolutional Networks”. International Conference on

Field Programmable Logic and Applications, 2009. FPL 2009.

[14] N. Farriga, F. Mamalet, S. Roux, F. Yang, M. Paindavoine. “Design of a

Real-Time Face Detection Parallel Architecture Using High-Level

Synthesis”. Hindawi Publishing Corporation. EURASIP Journal on

Embedded Systems. Vol. 2008, id 938256, doi:10.1155/2008/938256

[15] Intel® 64 and IA-32 Architectures Optimization Reference Manual.

Order Number: 248966-017. December 2008. http://www.intel.com

[16] Intel Architecture Software Developer’s Manual. Volume 3: System

Programming. 1999. http://www.intel.com

[17] James Reinders. VTune™ Performance Analyzer Essentials.

Measurement and Tuning Techniques for Software Developers. Intel

Press. 2005.

[18] Linear Feedback Shift Register V2.0. Xilinx Inc. October 4, 2001.

http://www.xilinx.com/ipcenter.

[19] M. Domínguez-Morales, P. Iñigo-Blasco, A. Linares-Barranco, G.

Jimenez, A. Civit-Balcells, J.L. Sevillano. Performance study of

synthetic AER generation on CPUs for Real-Time Video based on

Spikes. SPECTS 2009. Istambul, Turkey. 2009.

[20] Barbara Chapman, Gabriele Jost and Ruud van der Pas. Using OpenMP.

Portable Shared Memory Parallel Programming. The MIT press.

October 2007. ISBN-10: 0-262-53302-2

