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Abstract. In this paper we consider a diffusive Lotka-Volterra system in-

cluding nonlocal terms in the reaction functions. We analyze the main types
of interactions between species: competition, predator-prey and cooperation.

We provide existence and non-existence of positive solutions results. For that,

we employ mainly bifurcation method and a priori bounds.

1. Introduction. Since the paper of Furter and Grinfeld [8] (1989) is admitted
that there is no real justification for assuming that the interactions between species
are local. Hence, they proposed to include non-local terms in space to consider
the interactions between species giving more reasonable and more realistic models,
see also Britton [1] where a population model is proposed including a intraspecific
competition term that depends not simply on the population density at that point
but on the average population density near the point.

In this paper we consider two species inhabiting in Ω, a regular and bounded do-
main in IRN , whose population densities are denoted by u(x) and v(x). Specifically,
we deal with the following system

−∆u = u

(
λ− u−

∫
Ω

a(x)u(x)dx+ b1v + b2

∫
Ω

b(x)v(x)dx

)
in Ω,

−∆v = v

(
µ− v −

∫
Ω

d(x)v(x)dx+ c1u+ c2

∫
Ω

c(x)u(x)dx

)
in Ω,

u = v = 0 on ∂Ω,

(1)

where λ, µ ∈ IR denote the growth rates of the species u and v, respectively, b1 and c1
are the local interaction coefficients, both negative or positive imply a competition or
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symbiosis interaction, respectively, and one of them positive and the other negative
represent a prey-predator interaction.

Observe that in (1) we have included two types of non-local terms. The first one
appears when one species is not present, that is, in the absence of one species, the
other follows a non-local logistic equation of the form −∆w = w

(
γ − w −

∫
Ω

e(x)w(x)dx

)
in Ω,

w = 0 on ∂Ω,

(2)

where γ ∈ IR and the term −
∫

Ω
e(x)w(x)dx represents the intraspecific nonlocal

competition. Hence, in (1) the species take into account two negative crowding
effects caused by the intraspecific competition, one local, −u and −v, and other
nonlocal, −

∫
Ω
a(x)u(x)dx and −

∫
Ω
d(x)v(x)dx, with positive weights a, d ∈ C(Ω),

a, d ≥ 0, a, d 6≡ 0.
The second non-local term is related with the interspecific non-local interactions.

Indeed, b2 and c2 stand for the strength of nonlocal interspecific coefficients, being
the nonlocal terms

∫
Ω
b(x)v(x)dx and

∫
Ω
c(x)u(x)dx with b, c ∈ C(Ω), b, c ≥ 0,

b, c 6≡ 0. Of course, due to the biological interpretation, b2 and c2 have the same
signs than b1 and c1, respectively, that is, b1 · b2 ≥ 0, c1 · c2 ≥ 0 and (b1, b2) 6=
(0, 0) 6= (c1, c2).

When b2 = c2 = 0 and the intraspecific nonlocal competition is not present,
that is a ≡ d ≡ 0, then (1) is the classical Lotka-Volterra system which has been
extensively analyzed, see for instance the monograph [2].

System (1) has been studied in [12] in the competition case (that is bi < 0,
ci < 0, i = 1, 2). In this work, the nonlocal competition term is determined by a
diffusion kernel function to model the movement pattern of the biological species.
This allows to convert the nonlocal problem (1) into an equivalent local system with
three variables.

In [14] a very general reaction-diffusion system depending on the spatial average
is studied. It is shown that for the two-species model, Hopf bifurcation from the
constant equilibrium can occur. A nonlocal cooperative Lotka-Volterra model and a
nonlocal Rosenzweig-MacArthur predator-prey model are used to demonstrate the
bifurcation of spatially non-homogeneous patterns.

In [17] the local terms do not appear and it is assumed that λ = µ. Under some
conditions on the coefficients and in the competition case, the authors obtain the
existence of positive solutions using bifurcation arguments.

Different nonlocal reactions terms appear in [3], [13], [16] and references therein.
In this paper, the main goal is to give existence and non-existence of positive

solution results. Specifically, we are interested in determining coexistence regions,
that is, subsets D ⊂ IR2 such that if (λ, µ) ∈ D then (1) possesses at least a
coexistence state. A coexistence state is a solution (u, v) of (1) such that u(x), v(x) >
0 for all x ∈ Ω. On the contrary, we also provide non-existence regions N ⊂ IR2,
namely if (λ, µ) ∈ N then (1) does not admit positive solutions. Surely, these regions
depend on the type of interactions between the species. To obtain these results, the
nonlocal terms cause difficulties, mainly because classical comparison arguments
do not work in general. To overcome this difficulty we have used the bifurcation
arguments. In order to do it, we study in details the semitrivial solutions, (u, 0)
and (0, v), and then we prove the existence of a continuum of coexistence states
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Figure 1. Coexistence (D) and non-existence (N ) regions of (1)
in the competition case.

emanating from them. Again, the behaviour of this continuum depends strongly on
the interactions of the species.

Now, we state our main results. For that, we need to introduce some notation.
Denote by λ1 the principal eigenvalue of −∆ under homogenous Dirichlet boundary
conditions. Moreover, there exist two continuous functions F,G : [λ1,∞) → IR,
which will be provided later, and that satisfy the following properties:

1. F (λ) is increasing (resp. decreasing) if c1, c2 ≤ 0 (resp. c1, c2 ≥ 0), (c1, c2) 6=
(0, 0) and

lim
λ→+∞

F (λ) = +∞ (resp. −∞).

2. G(µ) is increasing (resp. decreasing) if b1, b2 ≤ 0 (resp. b1, b2 ≥ 0), (b1, b2) 6=
(0, 0) and

lim
µ→+∞

G(µ) = +∞ (resp. −∞).

Our first result is concerning to the competition case. We show a competitive
exclusion principle: fixed the growth rate of a species, the two species can not
coexist if the growth rate of the other species is small or large. Also, we show a
coexistence result (see Figure 1).

Theorem 1.1. (Competition) Assume that bi, ci ≤ 0 with i = 1, 2, (b1, b2) 6=
(0, 0) 6= (c1, c2).

1. (1) does not admit coexistence states if λ ≤ λ1 or µ ≤ λ1.
2. Fix λ > λ1 (resp. µ > λ1), there exists µc(λ) > 0 (resp. λc(µ) > 0) such that

(1) does not admit coexistence states if µ > µc(λ) (resp. λ > λc(µ)).
3. (1) possesses at least a coexistence state if

(µ− F (λ))(λ−G(µ)) > 0.

With respect to the prey-predator case, we have (Figure 2):
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Figure 2. Coexistence (D) and non-existence (N ) regions of (1)
in the predator-prey case.

Theorem 1.2. (Predator-prey) Assume that ci ≤ 0 ≤ bi with i = 1, 2 and
(b1, b2) 6= (0, 0) 6= (c1, c2).

1. (1) does not admit coexistence states if µ ≤ λ1.
2. Fix µ > λ1, there exist λ1p(µ) < 0 < λ2p(µ) such that (1) does not admit

coexistence states if λ < λ1p(µ) or λ > λ2p(µ).
3. (1) possesses at least a coexistence state if

µ > F (λ) and λ > G(µ).

The cooperation case is more envolved. We assume in this case that b1c1 < 1,
that is a weak local cooperation. Now, we can find two different regimes. The first
one assumes that all the cooperation coefficients are small. In the second one, the
nonlocal interspecific cooperation coefficients can be large.

Theorem 1.3. (Symbiosis) Assume bi, ci ≥ 0 for i = 1, 2, (b1, b2) 6= 0 6= (c1, c2).

1. (Weak nonlocal cooperation) Assume

(Hw) (b1 + b2‖b‖1)(c1 + c2‖c‖1) < 1.

(a) (1) does not admit coexistence states if λ ≤ λ1 and µ ≤ λ1.
(b) Fix λ > λ1 (resp. µ > λ1), there exists µws(λ) ∈ IR (resp. λws(µ) ∈ IR)

such that (1) does not admit coexistence states if µ < µws(λ) (resp. λ <
λws(µ)).

(c) (1) possesses at least a coexistence state if

µ > F (λ) and λ > G(µ).

2. (Strong nonlocal cooperation) Assume that b1c1 < 1, b(x), c(x) > 0 for all x ∈
Ω and b2 > Cb1, for some C > 0. There exists a continuous and nonincreasing
function H : IR+ 7→ IR+ such that if

(Hs) c2 > H(b2),

then,
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Figure 3. Coexistence (D) and non-existence (N ) regions of (1)
in the symbiosis case: weak (on left) and strong (on right)

(a) Fix λ ∈ IR (resp. µ ∈ IR), there exists µss(λ) ∈ IR (resp. λss(µ) ∈ IR)
such that (1) does not admit coexistence states if µ > µss(λ) (resp. λ >
λss(µ)).

(b) (1) possesses at least a coexistence state if

µ < F (λ) or λ < G(µ). (3)

Let us compare our results with the classical local Lotka-Volterra model. The
obtained results in the competition, predator-prey and weak cooperation cases are
rather similar to the those in the Lotka-Volterra model, although mainly due to loss
of monotony results, our techniques differ from those used to obtain the results in
the local case. However, the strong cooperation case is completely different to the
local case. Indeed, in the local case when the cooperation is strong (b1c1 > 1) it
is necessary to impose some restrictions in the dimension of the space, specifically,
N < 5, to obtain existence of coexistence states for λ and µ verifying (3), see [6]
and [11]. In this case, when the cooperation is strong in the non-local term (b2 or
c2 large) we obtain existence of coexistence states for λ and µ verifying (3) without
any restriction in the spatial dimension.

An outline of the paper is as follows: In Section 2 we present some results useful
throughout the paper. Section 3 is devoted to nonlocal logistic equation. In Section
4 we give some general bifurcations results. These results are applied in the last
section to prove the main results.

2. Preliminaries. In this section we collect some results which will be used along
the paper.

We start by fixing some notations. Given m ∈ L∞(Ω) we denote by λ1[−∆ +m]
the principal eigenvalue of the problem{

−∆u+m(x)u = λu in Ω,

u = 0 on ∂Ω.
(4)

It is well-known that the map

m ∈ L∞(Ω) 7→ λ1[−∆ +m] ∈ IR is continuous and increasing. (5)

We denote by
λ1 := λ1[−∆]

and ϕ1 its principal positive eigenfunction associated such that ‖ϕ1‖∞ = 1.
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Finally, given g ∈ C(Ω) we denote by

gL := min
x∈Ω

g(x), gM := max
x∈Ω

g(x).

We also need to study the classical local logistic equation{
−∆w = w(γ − w) in Ω,
w = 0 on ∂Ω,

(6)

where γ ∈ R.
In what follows, we summarize some well-known results concerning to (6), see

for instance [2] and [6].

Proposition 1. There exists a classical positive solution of (6) if and only if γ >
λ1. In such case, it is unique and we denote it by ωγ . Moreover:

1. Defining ωλ1 ≡ 0, the map γ ∈ [λ1,+∞) 7→ ωγ ∈ C2
0 (Ω) is continuous and

increasing.
2. It holds that

(γ − λ1)ϕ1 ≤ ωγ ≤ γ in Ω. (7)

3. If w is a positive supersolution of (6), then

(γ − λ1)ϕ1 ≤ ωγ ≤ w in Ω.

4. If w is a positive subsolution of (6), then

w ≤ ωγ ≤ γ in Ω.

3. The nonlocal equation of one species. In this Section, we obtain results for
the nonlocal logistic equation, that is, what happens when one of the species is not
present, specifically of the equation −∆w = w

(
γ − w −

∫
Ω

e(x)w(x)dx

)
in Ω,

w = 0 on ∂Ω,
(8)

where γ ∈ IR and e ∈ C(Ω), e ≥ 0, e 6≡ 0 in Ω.
Before giving the main results, we will study an auxiliary linear non-local prob-

lem.

Lemma 3.1. Let m ∈ L∞(Ω), n ∈ L∞(Ω), such that λ1[−∆ + m] > 0 and n ≥ 0
in Ω. Thus, for each f ∈ L2(Ω), there exists a unique solution u ∈W 2,2(Ω) of −∆u+m(x)u+ n(x)

∫
Ω

e(x)u(x)dx = f(x) in Ω,

u = 0 on ∂Ω.
(9)

Moreover, if f ∈ Lp(Ω), p > 1, then u ∈W 2,p(Ω).

Proof. Since λ1[−∆ + m] > 0, by the characterization of the maximum principle,
there exists a unique positive solution h ∈W 2,∞(Ω) of{

−∆h+m(x)h = e(x) in Ω,
h = 0 on ∂Ω.

(10)
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Similarly, let w ∈W 2,2(Ω) be the unique solution of
−∆w +m(x)w = f(x)−

∫
Ω

f(x)h(x)dx

1 +

∫
Ω

h(x)n(x)dx

n(x) in Ω,

w = 0 on ∂Ω.

(11)

We claim that w is the unique solution of (9). To prove that, it is sufficient to show

∫
Ω

e(x)w(x)dx =

∫
Ω

f(x)h(x)dx

1 +

∫
Ω

h(x)n(x)dx

.

Taking h as test function in (11) yields

∫
Ω

e(x)w(x)dx+

∫
Ω

f(x)h(x)dx

1 +

∫
Ω

h(x)n(x)dx

∫
Ω

n(x)h(x)dx =

∫
Ω

f(x)h(x)dx,

which implies the result.
Analogously, if u is a solution of (9), taking h as test function in (9) shows that

∫
Ω

e(x)u(x)dx =

∫
Ω

f(x)h(x)dx

1 +

∫
Ω

h(x)n(x)dx
.

Then, substituting into (9) we conclude that u is the unique solution of (11).
Furthermore, if f ∈ Lp(Ω), by elliptic regularity, the unique solution of (10)

belongs to W 2,p(Ω).

Along the paper, given a function e ∈ C(Ω), e ≥ 0, e 6≡ 0 in Ω, we denote by

Ae :=

∫
Ω

e(x)ϕ1(x)dx

1 +

∫
Ω

e(x)ϕ1(x)dx

.

Now, we are ready to state and prove the main result with respect to (8).

Theorem 3.2. The nonlocal logistic equation (8) possesses a classical positive so-
lution if, and only if, γ > λ1. Moreover, it is unique if it exists, and it will be
denoted by θγ .

In addition, defining θλ1 ≡ 0, the map γ ∈ [λ1,+∞) 7→ θγ ∈ C2
0 (Ω) is continuous,

derivable and increasing. Furthermore, the following inequalities hold:

1.

θγ ≤ ωγ ≤ γ in Ω.

2.

(γ − λ1)Ae ≤
∫

Ω

e(x)θγ(x)dx ≤ γ ‖e‖1
1 + ‖e‖1

. (12)

3. (
γ

1 + ‖e‖1
− λ1

)
ϕ1 ≤ θγ ≤ γ(1−Ae) + λ1Ae in Ω.
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Proof. It is known the result about existence and uniqueness of positive solution of
(8), see [5].

We will show that the map γ ∈ [λ1,+∞) 7→ θγ is increasing. Fix λ ∈ [λ1,+∞)
and let µ > λ, we claim that

λ−
∫

Ω

e(x)θλ(x)dx < µ−
∫

Ω

e(x)θµ(x)dx. (13)

Suppose the contrary:

λ−
∫

Ω

e(x)θλ(x)dx ≥ µ−
∫

Ω

e(x)θµ(x)dx. (14)

Denoting Rδ := δ−
∫

Ω
e(x)θδ(x)dx, we have that θλ and θµ are solutions of (6) with

γ = Rλ and γ = Rµ, respectively, that is θλ = ωRλ and θµ = ωRµ . Then, by (14),
θλ ≥ θµ, and therefore ∫

Ω

e(x)θλ(x)dx ≥
∫

Ω

e(x)θµ(x)dx.

We get

λ−
∫

Ω

e(x)θλ(x)dx ≤ λ−
∫

Ω

e(x)θµ(x)dx < µ−
∫

Ω

e(x)θµ(x)dx,

which is an absurd.
By (13), we have Rλ < Rµ and by the monotonicity of the solution of (6) we

obtain that θλ ≤ θµ. And, thus, we get the map, λ ∈ [λ1,+∞) 7→ θλ is increasing.
Using this fact, and the uniqueness of positive solution of (6), the continuity follows.

Now, we prove the differentiability of the map λ 7→ θλ ∈ C2
0 (Ω) using the Implicit

Function Theorem. Define the map H : IR× C2
0 (Ω) 7→ C(Ω) given by

H(γ,w) := −∆w − w
(
γ − w −

∫
Ω

e(x)w(x)dx

)
.

It is clear that H(γ, θγ) = 0 and that

DwH(γ, θγ)ξ = −∆ξ − γξ + 2θγξ + ξ

∫
Ω

e(x)θγ(x)dx+ θγ

∫
Ω

e(x)ξ(x)dx.

We denote

L := −∆− γ + 2θγ(x) +

∫
Ω

e(x)θγ(x)dx.

Since m(x) := −γ + 2θγ +
∫

Ω
e(x)θγ(x)dx ∈ L∞(Ω), the principal eigenvalue of

L = −∆ +m(x) is well defined. We claim that

λ1[L] > 0. (15)

Indeed, in view of characterization of maximum principle (see, for instance, [9,
Theorem 7.5.2]), to prove (15), it is sufficient to show that there exists a strict
positive supersolution of the operator L. Indeed, since θγ is a positive solution of
(8), it satisfies

Lθγ = −∆θγ − γθγ + 2θ2
γ + θγ

∫
Ω

e(x)θγ(x)dx = θ2
γ > 0 in Ω,

showing the claim. Therefore, we can apply Lemma 3.1 to conclude that DwH(γ, θγ)
is an isomorphism. This concludes the proof of the differentiability.

Notice that θγ is a subsolution of (6), then by Proposition 1

θγ ≤ ωγ ≤ γ in Ω.
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Now, observe that w = θγ is a solution of the local logistic equation

−∆w = w

(
γ −

∫
Ω

e(x)θγ(x)dx− w
)

in Ω, w = 0 on ∂Ω.

Then, using (7), we deduce that(
γ −

∫
Ω

e(x)θγ(x)dx− λ1

)
ϕ1 ≤ w = θγ ,

whence we conclude the lower inequality of (12).
On the other hand, consider xM ∈ Ω such that θγ ≤ maxx∈Ω θγ(x) = θγ(xM ).

Using that −∆θγ(xM ) ≥ 0, we get that

θγ ≤ θγ(xM ) ≤ γ −
∫

Ω

e(x)θγ(x)dx,

and using the lower inequality of (12), we obtain that

θγ ≤ γ − (γ − λ1)Ae = γ(1−Ae) + λ1Ae.

Finally, observe that

θγ = ωγ−
∫
Ω
eθγ ≤ γ −

∫
Ω

e(x)θγ(x)dx,

multiplying by e and integrating, we get that∫
Ω

e(x)θγ(x)dx ≤ γ ‖e‖1
1 + ‖e‖1

.

Going back to (8) we have that

−∆θγ ≥ θγ
(

γ

1 + ‖e‖1
− θγ

)
,

whence by Proposition 1, it follows that

θγ ≥
(

γ

1 + ‖e‖1
− λ1

)
ϕ1 in Ω.

4. Bifurcation results. In this section, to simplify the notation, we will denote
by θλ := θλ,a and θµ := θµ,d, the unique positive solution of −∆u = u

(
λ− u−

∫
Ω

a(x)u(x)dx

)
in Ω,

u = 0 on ∂Ω,
(16)

and  −∆v = v

(
µ− v −

∫
Ω

d(x)v(x)dx

)
in Ω,

v = 0 on ∂Ω,
(17)

respectively, which exist for λ > λ1 and µ > λ1. Moreover, we adopt the convention
θλ1

= θλ1,a = θλ1,d = 0.
Thus, notice that the semitrivial solutions (u, 0) = (θλ, 0) and (0, v) = (0, θµ) of

(1) are solutions of (16) and (17), respectively.
To carry out our main results in this section, we introduce the functions that

delimit the region of coexistence states, namely, let F,G : [λ1,+∞)→ IR given by
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F (λ) := λ1

[
−∆− c1θλ − c2

∫
Ω

c(x)θλ(x)dx

]
and

G(µ) := λ1

[
−∆− b1θµ − b2

∫
Ω

b(x)θµ(x)dx

]
.

It is evident that
F (λ1) = G(λ1) = λ1.

The next lemma collects some basic properties of these functions under a suitable
assumption about bi and ci (i = 1, 2).

Lemma 4.1. Suppose c1, c2 ≥ 0 (resp. c1, c2 ≤ 0) and (c1, c2) 6= (0, 0). Then,
F (λ) is continuous, decreasing (resp. increasing), and

lim
λ→+∞

F (λ) = −∞ (resp. lim
λ→+∞

F (λ) = +∞). (18)

Analogously, suppose b1, b2 ≥ 0 (resp. b1, b2 ≤ 0) and (b1, b2) 6= (0, 0). Then, G(µ)
is continuous, decreasing (resp. increasing) and

lim
µ→+∞

G(µ) = −∞ (resp. lim
µ→+∞

G(µ) = +∞). (19)

Proof. The continuity and monotonicity follow from the continuity and monotonic-
ity of the map λ ∈ [λ1,+∞) 7→ θλ ∈ L∞(Ω) and (5).

Using Theorem 3.2, we get that

θλ(x) ≥
(

λ

1 + ‖a‖1
− λ1

)
ϕ1(x),

∫
Ω

c(x)θλ(x)dx ≥
(

λ

1 + ‖a‖1
− λ1

)
‖cϕ1‖1.

Assume c1, c2 ≥ 0 and (c1, c2) 6= (0, 0). Then,

F (λ) = λ1

[
−∆− c1θλ − c2

∫
Ω

c(x)θλ(x)dx

]
≤ λ1

[
−∆− c1

(
λ

1 + ‖a‖1
− λ1

)
ϕ1

]
− c2

(
λ

1 + ‖a‖1
− λ1

)
‖cϕ1‖1.

Hence, lim
λ→+∞

F (λ) = −∞.

Nevertheless, when c1, c2 ≤ 0 and (c1, c2) 6= (0, 0), we have that

F (λ) ≥ λ1

[
−∆− c1

(
λ

1 + ‖a‖1
− λ1

)
ϕ1

]
− c2

(
λ

1 + ‖a‖1
− λ1

)
‖cϕ1‖1,

whence we conclude that lim
λ→+∞

F (λ) = +∞.

An analogous reasoning can be used to show the properties of the map G(µ).

Now we will present two bifurcation results. The first one is valid without any
additional conditions on the parameters b1, b2, c1 and c2.

By simplicity, we write X = C1
0 (Ω).

Theorem 4.2.

a) Fix µ > λ1 and regard λ ∈ R as the bifurcation parameter. Then, the point

(λ, u, v) = (G(µ), 0, θµ)

is the unique bifurcation point to coexistence states from the semitrivial state
(λ, 0, θµ). Moreover, the component of coexistence states emanating from this
point, say C+

(λ,0,v) ⊂ R ×X ×X, satisfies one of the following non excluding
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alternatives: either is unbounded or there exists a positive solution (λ∗, θλ∗)

of (16) such that µ = F (λ∗) and (λ∗, θλ∗ , 0) ∈ C+
(λ,0,v).

b) Fix λ > λ1 and regard µ ∈ R as the bifurcation parameter. Then, the point

(µ, u, v) = (F (λ), θλ, 0)

is the unique bifurcation point to coexistence states from the semitrivial state
(µ, θλ, 0). Moreover, the component of coexistence states emanating from this
point, say C+

(µ,u,0) ⊂ R ×X ×X, satisfies one of the following non excluding

alternatives: either is unbounded or there exists a positive solution (µ∗, θµ∗)

of (17) such that λ = G(µ∗) and (µ∗, 0, θµ∗) ∈ C+
(µ,u,0).

Proof. We will prove b). The proof of a) is similar.
Fix λ > λ1. In order to apply unilateral bifurcation theorem’s, we define the

operator F : IR×X ×X → X ×X given by

F(µ, u, v) =

 u− (−∆)−1(u(λ− u−
∫

Ω

a(x)u(x)dx+ b1v + b2

∫
Ω

b(x)v(x)dx)

v − (−∆)−1(v(µ− v −
∫

Ω

d(x)v(x)dx+ c1u+ c2

∫
Ω

c(x)u(x)dx))

 .
(20)

This operator is of class C1 and, since λ > λ1, there exists a unique positive solution
of (16), denoted by θλ, that is F(µ, θλ, 0) = (0, 0). Thus, we define

L(µ) := D(u,v)F(µ, θλ, 0) (21)

=

[
I − (−∆)−1(λ− 2θλ −

∫
Ω
aθλ − θλ

∫
Ω
a·) −(−∆)−1(b1θλ + b2θλ

∫
Ω
b·)

0 I − (−∆)−1(µ+ c1θλ + c2
∫

Ω
cθλ)

]
.

In order to find simple eigenvalues, let us determine the null space (or kernel)
N [L(µ)]. Observe that (ξ, η) ∈ N [L(µ)] if, and only if,


−∆ξ − λξ + 2θλξ + ξ

∫
Ω

aθλ + θλ

∫
Ω

aξ = b1θλη + b2θλ

∫
Ω

bη in Ω,

−∆η − c1θλη − c2η
∫

Ω

cθλ = µη in Ω,

ξ = η = 0 on ∂Ω.

(22)

Thus, if µ = F (λ) the solutions of second equation are given by Cϕ1,µ, where
C ∈ IR and ϕ1,µ denotes the unique positive eigenfunction associated to F (λ) with
‖ϕ1,µ‖∞ = 1. Therefore, substituting η by ϕ1,µ into the first equation of (22), it
becomes apparently that −∆ξ − λξ + 2θλξ + ξ

∫
Ω

aθλ + θλ

∫
Ω

aξ = b1θλϕ1,µ + b2θλ

∫
Ω

bϕ1,µ in Ω,

ξ = 0 on ∂Ω.

(23)
Note that a, θλ, b1θλϕ1,µ+ b2θλ

∫
Ω
bϕ1,µ ∈ L∞(Ω). Moreover, by (15) we know that

λ1[L] > 0, where L = −∆− λ+ 2θλ +
∫

Ω
aθλ. Therefore, we can apply the Lemma

3.1 to conclude that (23) has a unique solution in W 2,p(Ω), p > 1, which will be
denoted by ψµ.

Consequently, if µ = F (λ), the unique solutions of (22) are given by (Cψµ, Cϕ1,µ),
with C ∈ IR, which provides us with N [L(F (λ))] = span[(ψµ, ϕ1,µ)].
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To conclude that 0 is a simple eigenvalue of L(F (λ)), as discussed in [4], it
remains to show that

L′(F (λ))(ψµ, ϕ1,µ) := DµL(F (λ))(ψµ, ϕ1,µ) 6∈ R[D(u,v)F(F (λ), θλ, 0)], (24)

where R[T ] will stand the range of T .
By direct calculation,

L′(F (λ))(ψµ, ϕ1,µ) =

[
0 0
0 −(−∆)−1

] [
ψµ
ϕ1,µ

]
= (0,−(−∆)−1(ϕ1,µ)).

Suppose (0,−(−∆)−1(ϕ1,µ)) ∈ R[D(u,v)F(F (λ), θλ, 0)]. Then, there exists (ξ, η) ∈
X ×X such that D(u,v)F(F (λ), θλ, 0)(ξ, η) = (0,−(−∆)−1(ϕ1,µ)). In particular,

η − (−∆)−1[(F (λ) + c1θλ + c2

∫
Ω

c(x)θλ(x)dx)η] = −(−∆)−1(ϕ1,µ),

that is,  −∆η − F (λ)η − c1θλη − c2η
∫

Ω

c(x)θλ(x)dx = −ϕ1,µ in Ω,

η = 0 on ∂Ω.

Taking ϕ1,µ as test function and using that it is a positive eigenfunction associated
to F (λ) = λ1[−∆− c1θλ − c2

∫
Ω
cθλ] yields

0 =

∫
Ω

∇η · ∇ϕ1,µ −
∫

Ω

(
F (λ)η + c1θλη + c2η

∫
Ω

cθλ

)
ϕ1,µ = −

∫
Ω

ϕ2
1,µ < 0,

which is a contradiction. This establishes that (24) holds.
Thus, we are able to apply Theorem 6.4.3 of [10] (see also [15]) to conclude that

there exists a continuum C of solutions of (1) satisfying the global alternative of
Rabinowitz. Moreover, following the proof of Theorem 7.2.2 of [10], we can conclude
that there exists a subcontinuum, denoted by C+

(µ,u,0), of coexistence states of (1)

such that either:

1. C+
(µ,u,0) is unbounded in IR×X ×X;

2. There exists a positive solution (µ∗, θµ∗) of (17) such that (µ∗, 0, θµ∗) ∈ C+
(µ,u,0)

and

λ = λ1

[
−∆− c1θµ∗ − c2

∫
Ω

cθµ∗

]
= G(µ∗),

that is, the subcontinuum C+
(µ,u,0) connects the two semitrivial curves;

3. There exists another positive solution of (16), e.g., (λ, ψλ), with ψλ 6= θλ such
that

(λ1[−∆− b1ψλ − b2
∫

Ω

bψλ], ψλ, 0) ∈ C+
(µ,u,0);

4. λ = λ1 and (λ1, 0, 0) ∈ C+
(µ,u,0).

Since λ > λ1, the alternative 4. is not true. Moreover, by uniqueness of solution of
(16) (see Theorem 3.2), alternative 3. cannot occur. Consequently, the alternative
1. or 2. is satisfied.

Assuming an additional hypothesis about the sign of the parameters b1, b2, c1, c2,
we have the following bifurcation result:
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Theorem 4.3. a) Assume b1, b2 ≥ 0, (b1, b2) 6= (0, 0). Fix λ < λ1 and regard
µ ∈ R as the bifurcation parameter. Then, the point

(µ, u, v) = (G−1(λ), 0, θµ)

is the unique bifurcation point to coexistence states from the semitrivial state
(µ, 0, θµ). Moreover, the component of coexistence states emanating from this
point, say C+

(µ,0,v) ⊂ R×X ×X, is unbounded.

b) Assume c1, c2 ≥ 0, (c1, c2) 6= (0, 0). Fix µ < λ1 and regard λ ∈ R as the
bifurcation parameter. Then, the point

(λ, u, v) = (F−1(µ), θλ, 0)

is the unique bifurcation point to coexistence states from the semitrivial state
(λ, θλ, 0). Moreover, the component of coexistence states emanating from this
point, say C+

(λ,u,0) ⊂ R×X ×X, is unbounded.

Proof. We will give some ideas the proof of b). The proof of a) is similar.
Fix µ < λ1 and consider the operator F : IR×X ×X → X ×X defined in (20).
Since F (λ) is a decreasing function such that F ((λ1,+∞)) = (−∞, λ1) (see

Lemma 4.1) and µ < λ1, there exists a unique λ = λ(µ) > λ1 such that λ = F−1(µ).
Arguing as in the previous result, we have that F is of class C1, F(λ, θλ, 0) = 0

and L(λ) := D(u,v)F(λ, θλ, 0) is given by (21). Moreover, (ξ, η) ∈ N [L(F−1(µ))] if,
and only if, (ξ, η) satisfies (22). Consequently, as a similar argument of the previous
theorem, we obtain

N [L(F−1(µ))] = span[(ψµ, ϕ1,µ)].

Since the map λ 7→ θλ is differentiable, then λ 7→ L(λ) is too. Let us to prove the
transversality condition, i.e.,

L′(F−1(µ))(ψµ, ϕ1,µ) := DλD(u,v)F(F−1(µ), θλ, 0)(ψµ, ϕ1,µ) 6∈ R[D(u,v)F(F−1(µ), θλ, 0)].

A direct calculation shows

L′(F−1(µ))(ψµ, ϕ1,µ)

=

[
−(−∆)−1(1− 2θ′λ −

∫
Ω
aθ′λ − θ′λ

∫
Ω
a·) −(−∆)−1(b1θ

′
λ + b2θ

′
λ

∫
Ω
b·)

0 −(−∆)−1(c1θ
′
λ + c2

∫
Ω
cθ′λ)

] [
ψµ
ϕ1,µ

]
.

If L′(F−1(µ))(ψµ, ϕ1,µ) ∈ R[D(u,v)F(F−1(µ), θλ, 0)], then there exists (ξ, η) ∈
X × X such that D(u,v)F(F−1(µ), θλ, 0)(ξ, η) = L′(F−1(µ))(ψµ, ϕ1,µ). Conse-
quently, η satisfies −∆η − c1θλη − c2η

∫
Ω

cθλ − µη = −
(
c1θ
′
λ + c2

∫
Ω

cθ′λ

)
ϕ1,µ in Ω,

η = 0 on ∂Ω.

Taking ϕ1,µ as test function and using that it is a positive eigenfunction associated
to µ = F (λ) = λ1[−∆− c1θλ − c2

∫
Ω
cθλ] yields

0 =

∫
Ω

∇η · ∇ϕ1,µ −
(
c1θλη + c2η

∫
Ω

cθλ − F (λ)η

)
ϕ1,µ =

= −
∫

Ω

(
c1θ
′
λ + c2

∫
Ω

cθ′λ

)
ϕ2

1,µ < 0,
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which is a contradiction. This establishes that (24) holds. Finally, arguing as in
the previous theorem, we can conclude that there exists a unbounded continuum
C+

(λ,u,0) emanating from the semitrivial solution (λ, u, 0) at (F−1(µ), θλ, 0).

5. Proofs of the main results.

5.1. Competition. First, we show a priori bounds.

Proposition 2. Assume that bi, ci ≤ 0 with i = 1, 2, (b1, b2) 6= (0, 0) 6= (c1, c2). If
(u, v) is a coexistence state of (1), then:

1.
u ≤ ωλ ≤ λ and v ≤ ωµ ≤ µ in Ω.

2. ∫
Ω

a(x)u(x)dx ≤ λ ‖a‖1
1 + ‖a‖1

and

∫
Ω

d(x)v(x)dx ≤ µ ‖d‖1
1 + ‖d‖1

.

3.
R1(λ, µ)ϕ1 ≤ u and R2(λ, µ)ϕ1 ≤ v in Ω,

where

R1(λ, µ) =
λ

1 + ‖a‖1
+µ(b1+b2‖b‖1)−λ1, R2(λ, µ) =

µ

1 + ‖d‖1
+λ(c1+c2‖c‖1)−λ1.

Proof. Observe that in this case, if u and v are positive solutions of (1), then they
are sub-solutions of (6) with γ = λ and γ = µ, respectively. By Proposition 1 we
obtain the first paragraph.

On the other hand, if uM = maxu = u(xM ) we have that

u(x) ≤ uM ≤ λ+b1v(xM )+b2

∫
Ω

b(x)v(x)dx−
∫

Ω

a(x)u(x)dx ≤ λ−
∫

Ω

a(x)u(x)dx.

Multiplying by a(x) and integrating, we get the second paragraph.
For the third paragraph, using that u ≤ λ and the second paragraph, we have

that

−∆v = v

(
µ− v −

∫
Ω

d(x)v(x)dx+ c1u+ c2

∫
Ω

c(x)u(x)dx

)
≥ v

(
µ

1 + ‖d‖1
+ (c1 + c2‖c‖1)λ− v

)
and then, applying Proposition 1, we get that

v ≥ R2(λ, µ)ϕ1.

This completes the proof.

As an immediate consequence of Propositions 1 and 2 we deduce

Corollary 1. Assume bi, ci ≤ 0 with i = 1, 2, (b1, b2) 6= (0, 0) 6= (c1, c2). If λ ≤ λ1

or µ ≤ λ1, then (1) does not admit coexistence states.

In the following result we prove the competitive exclusion principle.

Proposition 3. Assume that bi, ci ≤ 0 with i = 1, 2, (b1, b2) 6= (0, 0) 6= (c1, c2).
Fix λ > λ1 (resp. µ > λ1), then there exists µc(λ) (resp. λc(µ)) such that (1) does
not admit coexistence states for µ > µc(λ) (resp. λ > λc(µ)).
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Figure 4. Bifurcation diagram (1) in the competition case

Proof. The proof of this result proceeds by contradiction Observe that if u is a
positive solution, then

λ = λ1

[
−∆ + u+

∫
Ω

au− b1v − b2
∫

Ω

bv

]
> λ1

[
−∆− b1v − b2

∫
Ω

bv

]
. (25)

By Proposition 2, we get that

v ≥ R2(λ, µ)ϕ1,

∫
Ω

bv ≥ R2(λ, µ)‖bϕ1‖1,

and then by (25)

λ > λ1[−∆− b1R2(λ, µ)ϕ1]− b2R2(λ, µ)‖bϕ1‖1,
a contradiction for µ large.

We are ready to prove Theorem 1.1 (see Figure 4).

Proof of Theorem 1.1. Fix λ > λ1. Regarding µ as bifurcation parameter, by The-
orem 4.2 from the semitrivial solution (θλ, 0) emanates a continuum C+

(µ,u,0) of

coexistence states of (1) at µ = F (λ) > λ1. Thanks to Corollary 1 and Proposition
3, (1) does not admit coexistence states neither µ ≤ λ1 nor µ > µc(λ). Hence,

ProjIR(C+
(µ,u,0)) ⊂ (λ1, µc(λ)),

where given (µ, u, v) ∈ C+
(µ,u,0) we have denoted ProjIR(µ, u, v) = µ.

On the other hand, thanks to Proposition 2 we have that ‖u‖∞, ‖v‖∞ ≤ C for
all (µ, u, v) ∈ C+

(µ,u,0). By elliptic regularity, we get that

‖u‖X , ‖v‖X ≤ C,
and hence C+

(µ,u,0) is bounded. Hence, by Theorem 4.2 there exists a positive solution

(µ∗, θµ∗) of (17) such that λ = G(µ∗) and (µ∗, 0, θµ∗) ∈ C+
(µ,u,0). Hence, we obtain

that
(F (λ), G−1(λ)) ⊂ ProjIR(C+

(µ,u,0)).

This concludes the proof.
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5.2. Prey-predator.

Proposition 4. Assume that ci ≤ 0 ≤ bi with i = 1, 2 and (b1, b2) 6= (0, 0) 6=
(c1, c2). If (u, v) is a coexistence state of (1), then

R3(λ, µ)ϕ1 ≤ u ≤ λ+ µ(b1 + b2‖b‖1) and v ≤ ωµ ≤ µ,
where

R3(λ, µ) =
1

1 + ‖a‖1
(λ− µ(b1 + b2‖b‖1)‖a‖1)− λ1.

Proof. It is clear that v ≤ µ by the same argument as the above Proposition. Thus

−∆u ≤ u
(
λ− u−

∫
Ω

a(x)u(x)dx+ b1µ+ b2‖b‖1µ
)
≤ u(λ− u+ µ(b1 + b2‖b‖1)).

Then, u is a subsolution of (6). By Proposition 1 we have that

u ≤ λ+ µ(b1 + b2‖b‖1).

Moreover, since bi ≥ 0, if uM = max
x∈Ω

u(x) we conclude that

u(x) ≤ uM ≤ λ−
∫

Ω

a(x)u(x)dx+ µ(b1 + b2‖b‖1),

and then, ∫
Ω

a(x)u(x)dx ≤ ‖a‖1
1 + ‖a‖1

(λ+ µ(b1 + b2‖b‖1)).

Hence,

−∆u ≥ u
(
λ− u−

∫
Ω

a(x)u(x)dx

)
≥ u

(
λ

1 + ‖a‖1
− ‖a‖1

1 + ‖a‖1
(µ(b1 + b2‖b‖1))− u

)
and then

u ≥ R3(λ, µ)ϕ1.

Again, we can conclude that

Corollary 2. Assume that ci ≤ 0 ≤ bi with i = 1, 2 and (b1, b2) 6= (0, 0) 6= (c1, c2).
If λ+ µ(b1 + b2‖b‖1) ≤ 0 or µ ≤ λ1, then (1) does not admit coexistence states.

Now, we show a non-existence result.

Proposition 5. Assume that ci ≤ 0 ≤ bi for i = 1, 2 and (b1, b2) 6= (0, 0) 6= (c1, c2).
Fix µ > λ1, then there exists λp(µ) such that (1) does not admit coexistence states
for λ > λp(µ).

Proof. Suppose that (u, v) is a coexistence state of (1). Using Proposition 4 we get

−∆v = v

(
µ− v −

∫
Ω

d(x)v(x)dx+ c1u+ c2

∫
Ω

cu

)
≤ v(µ+ c1R3(λ, µ)ϕ1 + c2R3(λ, µ)‖ϕ1c‖1).

Therefore, multiplying by ϕ1 and integrating, we get

0 ≤ (µ− λ1 + c2R3(λ, µ)‖ϕ1c‖1)

∫
Ω

vϕ1 + c1R3(λ, µ)

∫
Ω

vϕ2
1,

a contradiction for λ large.
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Figure 5. Bifurcation diagram (1) in the prey-predator case

Proof of Theorem 1.2. Fix µ > λ1 and consider λ as a parameter (see Figure 5).
By Theorem 4.2 from the semitrivial solution (0, θµ) emanates a continuum C+

(λ,0,v)

of coexistence states of (1) at λ = G(µ). Thanks to Corollary 2 and Proposition
5, (1) does not admit positive solution neither λ < λ1p(µ) nor λ > λ2p(µ). On the
other hand, thanks to the a priori bounds of positive solutions, C+

(λ,0,v) is bounded.

Hence, we conclude that

(G(µ), F−1(µ)) ⊂ ProjIR(C+
(λ,0,v)).

The proof is completed.

5.3. Cooperation. We assume that a weak local cooperation occurs, that is b1c1 <
1. We are going to obtain two different regimes of cooperation. In the first one, all
the cooperation coefficients are small.

Proposition 6. (Weak nonlocal cooperation) Assume bi, ci ≥ 0 for i = 1, 2,
(b1, b2) 6= (0, 0) 6= (c1, c2) and

(Hw) (b1 + b2‖b‖1)(c1 + c2‖c‖1) < 1.

Then, if (u, v) is a coexistence state of (1), we have

u ≤ λ+ µ(b1 + b2‖b‖1)

1− (b1 + b2‖b‖1)(c1 + c2‖c‖1)
, v ≤ µ+ λ(c1 + c2‖c‖1)

1− (b1 + b2‖b‖1)(c1 + c2‖c‖1)
.

Proof. Let (u, v) be a coexistence state of (1), then there exists xM ∈ Ω such that
u(xM ) = max

Ω
u(x) := uM . Since −∆u(xM ) ≥ 0, we have that

uM +

∫
Ω

a(x)u(x)dx ≤ λ+ b1v(xM ) + b2

∫
Ω

b(x)v(x)dx

≤ λ+ b1vM + b2

∫
Ω

b(x)v(x)dx ≤ λ+ vM (b1 + b2‖b‖1), (26)
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with vM = max
Ω

v(x). Analogously,

vM +

∫
Ω

d(x)v(x)dx ≤ µ+ c1uM + c2

∫
Ω

c(x)u(x)dx ≤ µ+ uM (c1 + c2‖c‖1). (27)

From these inequalities, one can derive

uM ≤ λ+ vM (b1 + b2‖b‖1), vM ≤ µ+ uM (c1 + c2‖c‖1), (28)

and using (Hw), we obtain the result.

As consequence, we obtain

Corollary 3. Assume that bi, ci ≥ 0 for i = 1, 2 and (b1, b2) 6= (0, 0) 6= (c1, c2) and
(Hw). Fix λ ∈ IR (resp. µ ∈ IR), then there exists µws(λ) (resp. λws(µ)) such that
(1) does not admit coexistence state for µ < µws(λ) (resp. λ < λws(µ)).

In the following result, we obtain a priori bounds even for b2 and/or c2 large. To
be precise, we need to introduce the function

H(x) :=


(aM + C)(dM + C)− c1(b1aMdM + xCbL)

cL(xbL(1− b1c1) + b1C)
x ∈

[
b1dM
bL

, dM+C
c1bL

]
,

c1aM
cL

x > dM+C
c1bL

,

where

C =
1− b1c1
‖ϕ1‖1

.

Since

H

(
dM + C

c1bL

)
=
c1aM
cL

,

H is continuous. Moreover, it is evident that H is decreasing in
[
b1dM
bL

, dM+C
c1bL

]
and

H

(
b1dM
bL

)
=
aM + C

b1cL
.

In Figure 6 we have represented in the (b2, c2)-plane the regiones defined by (Hw)
and (Hs).

Proposition 7. (Strong nonlocal cooperation) Assume bi, ci > 0 with b1c1 < 1,
b(x), c(x) > 0 for x ∈ Ω and

(Hs) b2 > b1dM/bL, c2 > H(b2).

If (u, v) is a coexistence state of (1), we have

‖u‖∞ ≤ C1, ‖v‖∞ ≤ C2.

Moreover, fix λ > λ1 (resp. µ > λ1), there exists µss(λ) (resp. λss(µ)) such that
for µ > µss(λ) (resp. λ > λss(µ)) system (1) does not admit coexistence states.

Proof. We consider the auxiliary problem:
−∆u = u(γ1 − u+ b1v) in Ω,

−∆v = v(γ2 − v + c1u) in Ω,
u = v = 0 on ∂Ω.

(29)

Since b1c1 < 1, there exists a unique positive solution (ûγ1,γ2 , v̂γ1,γ2) of (29) (see
Theorem 5.1 in [7]).
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Figure 6. Regions in the (b2, c2)-plane defined by (Hw) and (Hs).

Now, we intend to find a lower bound of solution of (29). For this we consider,

(u, v) = (ε1ϕ1, ε2ϕ1),

ε1 and ε2 are positive constants such that:{
ε1 − b1ε2 = γ1 − λ1,
ε2 − c1ε1 = γ2 − λ1.

(30)

That is, 
ε1 =

b1(γ2 − λ1) + (γ1 − λ1)

1− b1c1
,

ε2 =
c1(γ1 − λ1) + (γ2 − λ1)

1− b1c1
.

(31)

Observe that, thanks to (30) and ‖ϕ1‖∞ = 1,

−∆u = ε1λ1ϕ1 ≤ ε1ϕ1(γ1 − ε1ϕ1 + b1ε2ϕ1) = u(γ1 − u+ b1v),

−∆v = ε2λ1ϕ1 ≤ ε2ϕ1(γ2 − ε2ϕ1 + c1ε1ϕ1) = v(γ2 − v + c1u).

Then, (u, v) is a subsolution of the problem (29) with ε1, ε2 defined by (30). There-
fore,

ε1ϕ1 ≤ ûγ1,γ2
,

ε2ϕ1 ≤ v̂γ1,γ2
.

(32)
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Now, let (u, v) be a coexistence state of (1), then (u, v) is the solution of (29) with

γ1 = λ−
∫

Ω

a(x)u(x)dx+ b2

∫
Ω

b(x)v(x) dx,

γ2 = µ−
∫

Ω

d(x)v(x) dx+ c2

∫
Ω

c(x)u(x) dx.

By (32) and (31)

λ− λ1 −
∫

Ω

au dx+ b2

∫
Ω

bv dx+ b1

(
µ− λ1 −

∫
Ω

dv dx+ c2

∫
Ω

cu dx

)
1− b1c1

ϕ1 ≤ u

µ− λ1 −
∫

Ω

dv dx+ c2

∫
Ω

cu dx+ c1

(
λ− λ1 −

∫
Ω

au dx+ b2

∫
Ω

bv dx

)
1− b1c1

ϕ1 ≤ v

then, by integrating

A1

∫
Ω

u dx+B1

∫
Ω

v dx ≤ R1

B2

∫
Ω

v dx+A2

∫
Ω

u dx ≤ R2

(33)

with

A1 = c2b1cL − aM − C, B1 = b2bL − b1dM ,
A2 = c2cL − c1aM , B2 = b2c1bL − dM − C,

R1 = λ1 − λ+ b1(λ1 − µ), R2 = λ1 − µ+ c1(λ1 − λ).

First, observe that since b1c1 < 1, we have that

b1 <
dM + C

c1dM
.

1. Assume that b2 ∈ ( b1dMbL , dM+C
c1bL

]. Then, B2 ≤ 0 < B1. We distinguish two
cases:
(a) Assume that c2 ∈ ( c1aMcL , aM+C

b1cL
]. In this case A1 ≤ 0 < A2. Then,

assuming that

D := B1A2 −A1B2 > 0, (34)

we can conclude that∫
Ω

u dx ≤ T1

D
,

∫
Ω

v dx ≤ T2

D
, (35)

where

T1 = R2B1 −B2R1, T2 = R1A2 −R2A1.

Observe that (34) is equivalent to

c2 > H(b2).

(b) Assume that c2 ∈ (aM+C
b1cL

,+∞). In this case, A1, A2 > 0. Then, we can
easily conclude that∫

Ω

u dx ≤ R1

A1
,

∫
Ω

v dx ≤ R1

B1
.

2. Assume that b2 >
dM+C
c1bL

. Then, B1, B2 > 0.
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Figure 7. Bifurcation diagram (1) in the symbiosis case

(a) Assume that c2 ∈ ( c1aMcL , aM+C
b1cL

]. In this case A1 ≤ 0 < A2, and from the
second equation we deduce that∫

Ω

u dx ≤ R2

A2
,

∫
Ω

v dx ≤ R2

B2
.

(b) Assume that c2 > aM+C
b1cL

. In this case A1, A2 > 0, again the result is
deduced easily, in fact∫

Ω

u dx ≤ min

{
R1

A1
,
R2

A2

}
,

∫
Ω

v dx ≤ min

{
R1

B1
,
R2

B2

}
.

Hence, in all the cases, we have obtained that∫
Ω

u ≤ E1,

∫
Ω

v ≤ E2

and as consequence
−∆u ≤ u(λ+ b2bME2 − u+ b1v) in Ω,

−∆v ≤ v(µ+ c2cME1 − v + c1u) in Ω,
u = v = 0 on ∂Ω,

(36)

whence we deduce thanks to b1c1 < 1 that

‖u‖∞ ≤ C1, ‖v‖∞ ≤ C2.

With respect to the non-existence result, observe that, fixed λ ∈ IR, R1 < 0,
R2 < 0, T1 < 0 and T2 < 0 for µ large. This concludes the proof.

Proof of Theorem 1.3. a) Assume that bi, ci ≥ 0 for i = 1, 2, (b1, b2) 6= (0, 0) 6=
(c1, c2) and (Hw).

Fix µ > λ1 (see Figure 7 a)). By Theorem 4.2 from the semitrivial solution
(0, θµ) emanates a continuum C+

(λ,0,v) of coexistence states of (1) at λ = G(µ).

Since F (λ) < λ1 for λ > λ1, it is not possible the existence of λ∗ > λ1 such
that µ = F (λ∗). Hence by Theorem 4.2, C is unbounded. By Proposition 6, any
coexistence state (u, v) ∈ C+

(λ,0,v) is bounded when λ belongs to a bounded subset

of IR, and then we can conclude that

(G(µ),+∞) ⊂ ProjIR(C+
(λ,0,v)).
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In a similar way, we can show that for λ > λ1 fixed we get

(F (λ),+∞) ⊂ ProjIR(C+
(µ,u,0)).

b) Assume now that (Hs).
Fix µ < λ1 (see Figure 7 b)). Then, by Theorem 4.3 from the semitrivial solution

(θλ, 0) bifurcates at λ = F−1(µ) an unbounded continuum C+
(λ,u,0) of coexistence

states of (1). Thanks to Proposition 7, we have a priori bounds of the solutions and
non-existence of coexistence states for λ large, we conclude

(−∞, F−1(µ)) ⊂ ProjIR(C+
(λ,u,0)).

In a similar way, for λ < λ1 we show that

(−∞, G−1(λ)) ⊂ ProjIR(C+
(µ,0,v)).
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