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Abstract. This paper applies a methodology for damage detection in beams proposed by the authors.
The methodology is based on a continuous wavelet analysis of the difference of mode shapes between a
damaged state and a reference state.  The wavelet  transform is used to detect changes in the mode
shapes induced by damage. The wavelet coefficients for each mode are added up and normalized to
unity in order to obtain a clear and precise damage assessment. A curve fitting approach reduces the
effect of experimental noise in the mode shapes. When only a small number of measuring points are
available, a cubic spline interpolation technique provides additional “virtual” measuring points. The
interpolation technique may also be used when measuring points are not equally spaced.  It also serves
as a softening technique of the mode shapes when applied, and no curve fitting approach is used in that
case. An antisymmetric extension at both ends of the mode shapes is used to avoid the edge effect in
the wavelet transform. 

The paper presents the results obtained for steel beams with an induced crack. Several sizes and
locations of the crack have been considered. The paper addresses several issues affecting the accuracy
of the proposed methodology, such as the number of measuring points and the effect of the extension,
curve fitting and interpolation techniques.

Introduction

Wavelet transform appears at the last century like a promising tool in order to treat non-stationary
signals [1]. Applications of wavelet  transform are diverse: it  has been used in biology, metallurgy,
finances, internet traffic description, compression and denoise of signals, etc. It is considered that the
pioneering application of wavelet transform to detect damage in structures was published in 1994 [2].
Since then, a large number of papers have been devoted to this topic. Wavelet can be applied to time
domain as well as space domain functions. Both types of functions have been employed in order to
locate defects in different types of structures. 

Since wavelet transform is able to detect changes in a signal, it can be used to detect changes in the
response of a structure induced by damage. Static deflection and mode shapes of the structure can be
used as input space domain signals for wavelet analysis. There are interesting works devoted to the use
static deflection to detect damage through wavelet transform [3, 4, 5]. On the other hand, mode shapes
analysis has also provided successful results when applied to beams made of aluminium [6], wood [7],
composite [8] or pexiglass [9]. 

Differences of modes shapes have been also used to locate damage in a efficient ad reliable way [10,
11]. Radziensky et al. [12] proposed a hybrid damage detection method for beams, in which wavelet
coefficients are combined with other dynamic properties of the structure. They used changes in natural
frequencies  and  modal  curvatures  to  define  a  damage  probability  function  to  weight  the  wavelet
coefficients. The weighting was developed along the beam for each mode shape. In some cases, results
for each mode shape were added up.
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In this paper, another hybrid damage detection methodology is proposed. It combines changes in
natural frequencies with wavelet analysis to enhance the sensibility of wavelet analysis to detect local
singularities in the input signal (mode shapes) induced by damage. Preliminary steps of the method
consist of processing the input signals in order to reduce effect of experimental noise (curve fitting) and
the  edge  effect  (antisymmetric  extension).  In  addition,  a  cubic  spline  interpolation  technique  is
performed if the number of measuring points is small or they are not equally spaced. After mode shapes
have  been  processed,  a  Continuous  Wavelet  Transform (CWT)  of  the  difference  of  mode  shapes
between the damaged and the undamaged structure is performed. The resulting coefficients of the CWT
for each mode are added up, but they are weighted according to the change in natural frequencies.
Finally, the weighted addition of the coefficients is normalized to unity at each scale for a more clear
and efficient damage detection.

Continuous Wavelet Transform. Definitions and properties

The Continuous Wavelet Transform (CWT) of a function f(x) can be defined as:

   (1)

Where   indicates  the  complex conjugate  of  the  wavelet  function,  although it  is  not  always
complex. The wavelet function is modified by translation and dilation through translation parameter u
and scale parameter  s respectively.  The wavelet  transform  CWTf (u, s) indicates how similar is the
original  function f(x) to  the wavelet  function at  a  specific  location  (given by  u)  and for  a  certain
frequency or pseudofrequency (given by scale s). The CWT of a numerical (discrete) signal is defined
numerically by a set of wavelet coefficients for every location of  the original discrete signal and for as
many scales as requested. The CWT gives redundant information about the original signal, but it gives
more clear information for detecting singularities such as those induced by damage in mode shapes.
The Discrete Wavelet Transform avoids redundant information so it is a more efficient algorithm for
signal encoding [13], but CWT is more commonly used for damage detection, especially when it is
based on space defined signals. 

Wavelet functions must fulfill  several mathematical requirements in order to be used in wavelet
analysis. These mathematical issues are out of the scope of this paper and can be reviewed elsewhere
[14].  However,  it  must  be pointed out  that  the main feature of a wavelet  function  is  being an
oscillatory function with zero average and finite length (compact support),

  (2)  

Another important feature of the wavelet function is the number of vanishing moments. If a wavelet
function has N vanishing moments, then:

 for  k=0....N-1 (3)  

For any polynomial of smaller order than the number of vanishing moments, the wavelet transform
gives null values. Therefore, the number of vanishing moments indicates how sensitive is the wavelet
to low order signals, and it can be chosen so as to take only into account the components of the signal
above certain order value.

In this paper, the well-known Daubechies [15] wavelet family with 2 vanishing moments has been
used. For the beams analysed in this paper, a higher number of vanishing moments proved to be less
sensitive to damage. That may suggest that the effect of damage induces a change of order 2 in mode



shapes that should not be neglected. A number of 2 vanishing moments indicates that the wavelet is
sensitive to the second derivatives of the mode shapes, and therefore to modal curvatures. Thus, the
wavelet analysis will give information about changes in modal curvatures, which are well known as a
sensitive damage detection parameter.

Damage detection methodology

This section describes the proposed hybrid damage detection methodology in beams. The first step
is  to  obtain  modal  parameters  from the  structure.  Once  mode  shapes  are  available,  they  must  be
numerically processed in order to make them useful input signals for wavelet analysis.

The first numerical treatment consists of an antisymetric extension of the mode shapes in order to
avoid the so called edge effect of wavelet transform. This is an undesirable phenomenon related to the
mathematical definition of the wavelet definition. Wavelet transform is defined as an infinite integral
transform  whereas  the  input  signal  has  finite  length.  Thus,  wavelet  transform  shows  a  singular
behaviour at both ends of the input signal. This leads to high peaks in the wavelet coefficients which
may mask the damage effect. By extending the original signal, the edge effect is moved to the ends of
the extended signal,  and the original  length  is  not  affected  by this  phenomenon.  The antisymetric
extension provides a good continuity at both ends of the original signal to avoid singularities in those
areas.

The second numerical treatment deals with reduction of experimental noise effect in mode shapes.
For this goal, a curve fitting approach is proposed. This softening technique is implemented by using
'mslowess' built-in function of MatLab software [16]. It consists of a weighted quadratic least squares
approach  performed  at  every  location  of  the  original  mode  shape  considering  a  span  of  ten
neighbouring points centered at that location.  

When only a small number of measuring points is available, an interpolation process is included to
obtain new “virtual” measuring points to the input signal of the wavelet analysis, since it requires a
significant number of components as an input to obtain meaningful results. For this purpose, a cubic
spline interpolation technique is introduced [6, 9, 12]. If the original measuring points are not equally
spaced, the interpolation process can also be used to obtain equally spaced “virtual” measuring points,
which is a requirement for the input signal of wavelet transform. For instance, it can be useful if there
are noisy measuring points that must be disregarded. Moreover, the interpolation process smoothes the
mode shape by itself,  so the previously described smoothing technique through curve fitting is not
necessary when interpolation is applied.

Once the extended and smoothed mode shapes have been obtained, the wavelet analysis is applied. 
Firstly, the extended difference of mode shapes (Φdiff,ext ) is computed from the difference between

the smoothed extended damaged (Φs,ext,d  ) and undamaged (Φs,ext,u ) mode shapes.

    (4)

A CWT of each extended mode shape difference is done to give information about changes in mode
shapes. The CWT for the ith mode shape can be written as:

(5)

At this point, only the CWT coefficients that corresponds to the original signal, and therefore to the
real structure, are considered.  The coefficients corresponding to the antisymmetric extension of the
signal at both ends are disregarded.

In order to simplify the analysis of the CWT for each mode shape and to draw an overall result for



damage detection, the absolute values of CWT coefficients of each mode shape are added up to obtain
a global wavelet parameter for damage detection CWTsum. This global parameter may also reduce the
effect of noise that is present in a specific mode shape, whereas it will always accumulate the effect of
damage for all mode shapes.

In addition, the coefficients for each mode shape are weighted according to its corresponding change
in natural frequencies. It is assumed that those modes that exhibit a higher frequency change are more
sensitive to damage and therefore changes in those mode shapes are more significant,  whereas the
mode shapes that do not change their natural frequencies are almost disregarded. The weighted addition
of the coefficients can be written as:

   (6)

where  and  stand for the experimentally identified natural frequencies of mode shape i for
the undamaged and the damaged state respectively. Finally, this paper proposes a normalization of the
coefficients for each scale so maximum value is unity for every scale (CWTNORM(u,s)). It is expected
that the perturbation in the mode shape induced by damage leads to high values (around unity) for all
scales, since damage is supposed to produce higher wavelet coefficients for higher scales at damage
location whereas noise is likely to produce local peaks at certain scales and not to produce such a trend
[5, 9].

         (7)

Experimental test

Five  steel  I-beams  have  been  tested  to  apply  the  proposed methodology.  The  beams  of  length
L=1280 mm, height h=100 mm, width b=50 mm, web thickness hw=4.5 mm, flange thickness hf=6.8
mm and mass per unit length m=8.1 kg/m have been damaged by a saw cut.  The cuts are 1 mm width
approximately. Table 1 describes the different damage scenarios. 

Table 1: Damage scenarios.
Scenario 0 1 2 3 4

Cutting location
Undamaged

0.5L 0.5L 0.25L 0.25L

Cup depth 30 mm 20 mm 30 mm 20 mm 

The experimental program involved dynamic characterization of the specimens by modal analysis.
An impact force was applied at one end of the beams by an instrumented impact hammer, and the
response was measured at  65 points distributed along the beam every d=20mm using piezoelectric
accelerometers. The beams were hung in two soft springs at both ends with ks=145.8 N/m stiffness,
approaching a free-free boundary condition (Fig. 1). Eleven accelerometers were distributed in seven
experimental set ups to eventually obtain 65 measuring points. The reference signal for the set ups was
the applied impact force. For each set-up, several impacts were performed in order to eventually obtain
average values and reduce the experimental noise effect. Impact response was acquired in 30 seconds
per channel per set-up. The data were sampled to 16384 Hz.

The  wavelet  based  damage  detection  methodology  has  been  applied  using  only  the  first  three
vertical  bending mode shapes of the beams.   presents the three natural  frequencies that have been
identified for each damage scenario (first values) with the Modal Assurance Criteria values (MAC)



obtained between each damaged mode and the corresponding undamaged one, respectively. 

(a) (b)

11 accelerometers

Fig. 1  (a) Experimental configuration and (b) test set-up in the laboratory.

Table  2: Experimental natural frequencies (Hz) for each damage scenario / MAC values for each
mode compared to the reference state.
Mode\Scenario 0 1 2 3 4

1 415.65 300.96 / 0.99258 362.28 / 0.99795 364.75 / 0.96874 397.27 / 0.99413

2 1032.7 1027.35 / 0.99874 1030.15 / 0.99829 822.99 / 0.89465 932.71 / 0.96742

3 1786.75 1473.96 / 0.93651 1634.17 / 0.98433 1557.21 / 0.84222 1663.19 / 0.95711

Natural frequencies and MAC values decrease as the damage is more severe. Nevertheless, MAC
values  are  always close  to  one,  indicating  that  mode shapes  are  similar  to  those  obtained for  the
undamaged state. 

Results

Fig. 2 shows the results obtained when applying the proposed methodology to the tested beams. It
also shows the influence of the numerical treatments of mode shapes in the results. They show the
normalized coefficients along the beam (horizontal axis of each figure) for different scales (vertical
axis of each figure). Results for scenarios 1 to 4 are shown in rows of figures 1 to 4 respectively in fig.
2. Figs. 2.a shows the results if no extension and no softening technique is applied to mode shapes.
Figs. 2.b show the results when applying the antisymmetric extension. Figs. 2.c show the results when
applying also the softening technique. Finally, figs. 2.d shows the results when considering only 13 out
of the original 65 measuring points. 

Figs. 2 (a) shows that when no extension is applied, the edge effect produces high peaks at the ends
of the beam which mask any other information along the beam. Figs. 2(b) show that the extension of
the  mode  shapes  makes  disappear  the  edge effect.  Thus,  the  proposed  antisymmetric  extension  is
reliable and efficient for the proposed goal. However, experimental noise is still present in the mode
shapes and no clear damage location is obtained. High values are obtained at 0.5L for damage scenarios
1 and 2 and at 0.25L for scenarios 3 and 4, but some noisy and confusing values are present in the
results. Finally, when the softening technique is applied (Figs. 2 (c)) damage detection and location is
clear for all the scenarios. No presence of experimental noise or edge effect is observed in the results,
so existence and location of damage is clear. It can be observed that highest values are obtained at
damage location for all the scales.



  (a1)      (b1)            (c1)   (d1)

  (a2)      (b2)            (c2)   (d2)

(a3)      (b3)            (c3)   (d3)

(a4)      (b4)            (c4)   (d4)
Fig. 2 Resulting wavelet coefficients for damage scenario 1 (row 1), damaged scenario 2 (row

2), damaged scenario 3 (row 3) and damaged scenario 4 (row 4). (a1:a4) without any numerical process
of mode shapes, (b1:b4) with extension, (c1:c4) with extension and softening technique (d1:d4) with 13
measuring points and interpolation. 

Figs. 2(d) show that when only 13 measuring points are considered and the interpolation technique
is employed, the results are almost as clear as with 65 measuring points. This number of measuring
points (13) is  considered as a threshold value by the authors for this  application,  after  trying with
different values.

If no normalization of wavelet coefficients is applied, then singular behavior of wavelet coefficients
at damage location is more significant with higher scales, reaching the highest values for the highest
scale  [17].  The higher  the  values,  the  more  clear  is  the  damage  effect.  Indeed,  higher  values  are
obtained as damage is more severe. Fig. 3 shows the maximum values of wavelet coefficients obtained
for all the damage scenarios considered for 13 to 23 uniformly distributed sensors. The trend for all
figures indicates that damage is more clearly detected as the number of measuring points increase.
However, there are some fluctuations that can be explained by the location of sensors.

When one sensor is located exactly at the damage position, a higher maximum value of wavelet
coefficients is obtained. When damage is located at L/2, a sensor is located at that position when the



number of uniformly distributed sensors is odd, and values for odd number of sensors is higher than
those obtained for even numbers (Fig. 3(a) and 3(b)). 

When damage is located at L/4, a sensor i is located at that position if , being i  an
integer number (ith position of sensor) and n the total number of sensors. For the range of number of
measuring points considered in Fig. 3, this condition takes place for  n=13, n=17 and n=21. It an be
observed in Figs. 3(c) and 3(d) that local maximum of values of wavelet coefficients are obtained for
those numbers (there is only an exception for a local maximun for 18 points in Fig. 3(c))

(a)     (b)

(c)     (d)
Fig. 3 Relation between initial number of measuring points and the maximum wavelet coefficients

amplitude for scenarios 1(a), 2(b), 3(c) and 4(d)

Conclusions

The paper presents a combined modal-wavelet analysis for crack location in steel. The method is
based on the wavelet  analysis  of  the difference  of  mode shape vectors  between a damaged and a
reference state. The absolute wavelet coefficients values for each mode are added up creating a global
damage  index.  For  the  addition,  the  coefficients  are  weighted  according  to  the  change  in  natural
frequencies between the damaged and the reference state. Finally, coefficients are normalized for each
scale so more information can be obtained from the analysis of every scale in just one picture and
damage location is more clear and precise. 

The proposed treatments  for  avoiding the  wavelet  edge effect  and the  experimental  noise have
proven to be effective. The suggested methodology is simple and easy to use and it is sensitive to crack
depths of 20% of the height of the beam when using only 13 measuring points and 3 experimentally
identified mode shapes. Future research will explore the sensitivity of the methodology with different
crack depths, measuring points and number of modes.

Regarding sensor distribution and location, the paper also proves that more clear results are obtained
if a sensor is located at damage location.
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