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a b s t r a c t 

Background: Lung cancer has the highest mortality rate in the world, twice as high as the second highest. 

On the other hand, pathologists are overworked and this is detrimental to the time spent on each patient, 

diagnostic turnaround time, and their success rate. 

Objective: In this work, we design, implement, and evaluate a diagnostic aid system for non-small cell 

lung cancer detection, using Deep Learning techniques. 

Methods: The classifier developed is based on Artificial Intelligence techniques, obtaining an automatic 

classification result between healthy, adenocarcinoma and squamous cell carcinoma, given an histopatho- 

logical image from lung tissue. Moreover, a report module based on Explainable Deep Learning techniques 

is included and gives the pathologist information about the image’s areas used to classify the sample and 

the confidence of belonging to each class. 

Results: The results show a system accuracy between 97.11 and 99.69%, depending on the number of 

classes classified, and a value of the area under ROC curve between 99.77 and 99.94%. 

Conclusions: The classification results obtain a substantial improvement according to previous works. 

Thanks to the given report, the time spent by the pathologist and the diagnostic turnaround time can be 

reduced. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

In 2020, according to the World Health Organization (WHO), 

ung cancer was the second with the highest number of new cases 

orldwide (2.21 million cases), only surpassed by breast cancer 

2.26 million cases). However, in that same year, it was the most 

ethal cancer worldwide (1.80 million deaths) and, in the second 

lace, colon and rectal cancer with half the deaths [1] . 

Although society’s control and awareness campaigns help in the 

arly detection of cancer, the most common and efficient way to 

erify the presence of a cancerous tumor is by tissue biopsy. For 

his goal, pathological anatomy professionals perform histopatho- 
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ogical studies on tissue samples amplified under the microscope, 

o verify the existence or not of cancer cells in the sample. 

The reports carried out by the pathologist, according to the Na- 

ional Cancer Institute (United States), are issued within 10 days 

fter the biopsy [2] . This situation causes a problematic delay in 

he cancer diagnosis. Of special interest for this research team is 

he Spain country where, according to the latest report from the 

inistry of Health, Consumption and Social Welfare of 2019, in 

he country there were 1367 specialists in pathological anatomy; 

owever, according to the Spanish Society of Medical Oncology, 

pproximately 1.5 million active cases of cancer are estimated in 

pain. This implies that, on average, a pathologist can dedicate 

round 1 h and a half per year for each patient [3] . 

Because of that, it is useful to use diagnostic aid tools in this 

ype of analysis to reduce pathologists’ interventions, reducing the 

ime needed to spend on each patient and freeing the pathologist 
under the CC BY-NC-ND license 

https://doi.org/10.1016/j.cmpb.2022.107108
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2022.107108&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mjdominguez@us.es
https://doi.org/10.1016/j.cmpb.2022.107108
http://creativecommons.org/licenses/by-nc-nd/4.0/


J. Civit-Masot, A. Bañuls-Beaterio, M. Domínguez-Morales et al. Computer Methods and Programs in Biomedicine 226 (2022) 107108 

f

p

e

c

b

i

p

i

n

p

b

r

p

t

t

y

d

h

s  

e

o

a

g

t

a

a

d

a

m

f

c

a

s

d

h

f

t

I

w

i

a

t

c

t

s

c

b

fi

M

m

w

i

a

a

s

a

c

fi

p

a

c

d

b

g

o

s

fi  

r

w

i

l

2

t

p

m

i

b

p

2

n

i

i

a

t

n

(

t

n

h

a

v

o

m

c

t

S

d

t

c

h

s

7

rom analyzing multiple easy-to-diagnose samples. In this way, a 

reliminary report could be provided to the pathologist with the 

vidence detected, and the pathologist could carry out pertinent 

hecks to validate or refute the preliminary diagnosis. This would 

e useful if the system provided a report in much less time than 

s required for manual analysis. Not surprisingly, there are multi- 

le research works where diagnostic aid systems are designed and 

mplemented for medical image analysis. 

At this point, the application of Artificial Intelligence (AI) tech- 

iques is of great importance to designing classifier systems ca- 

able of extracting characteristics from images and differentiating 

etween those that show some type of disease and those that rep- 

esent a healthy patient [4] . 

The application of this type of technique in medical imaging 

rovides three main benefits: 

• Mass case filtering: easily diagnosable cases may have a quick 

analysis, reducing the time spent by the specialist. 
• Specialists’ workload reduction: as a consequence of the above, 

the specialist can spend more time on severe and/or difficult 

to diagnose cases. As a secondary implication, false negatives 

could be reduced. 
• Diagnosis time reduction: as a consequence of the previous 

benefits, both the specialist and the patient could know the di- 

agnosis in advance and, therefore, the action plan in case of de- 

tection of the disease could be streamlined. 

AI fields specialized in developing classifiers to help in diagnos- 

ic tasks are Machine Learning (ML) and Deep Learning (DL). These 

echniques have been applied in multiple research works in recent 

ears, obtaining very positive results with a higher rate of correct 

iagnoses than 80% [5–7] ; even reaching, in multiple cases, values 

igher than 95% accuracy [8–10] . 

According to previous statistical studies in cancer diagnosis 

uch as the one carried out by Mark Priebe and Markin [11] , gen-

rally in medical imaging guided diagnosis, the mean percentage 

f discrepancies in the diagnosis reports is 12%; So, any diagnosis- 

ided system that exceeds 88% success, in theory, would have a 

reater success rate than the pathologist. However, the main objec- 

ive of these systems is not to replace the pathologist, but to serve 

s an aid tool to reduce their workload, always taking into account 

 final intervention by the pathologist to validate the results. 

However, very few automatic diagnostic systems developed to 

ate achieve a 100% accuracy. Still, such systems are tested with 

 subset of samples from the dataset itself used to train it; this 

eans that it may be mistaken in future classifications if samples 

rom other medical centers are introduced, or if they have been 

aptured with other digitizing devices (among other possible vari- 

bles involved) [12] . 

These circumstances are added to the fact that, when a DL 

ystem is trained, the weights of the neural network connections 

o not provide information understandable by the user that helps 

im/her to know the objective criteria used by the system to per- 

orm the classification. For this reason, these systems are referred 

o be as “black boxes” [13] . 

Due to this, in recent years the use of Explainable Artificial 

ntelligent (xAI) technologies has taken on enormous importance, 

hich, through various and varied subsequent analyzes, provide 

nformation about the objective classification criteria used in the 

utomatic system [14,15] . This objective information obtained after 

hese analyzes is of great importance, not only to detect possible 

lassification errors, but also to understand the decisions made in 

he correct classifications. That is why this type of analysis is es- 

ential in diagnostic aid systems [16,17] . 

This research group has extensive experience in the field of Ma- 

hine and Deep Learning applied to e-Health. This experience can 

e appreciated, for example, in the physiological signal processing 
2 
eld [18] , biomechanical gait studies [19] , fall detectors [20,21] , etc. 

oreover, in addition to this, this group provides experience in the 

edical imaging processing field using convolutional neural net- 

orks (CNN), developing multiple aid systems for cancer and other 

llnesses diagnosis [22–27] . 

Therefore, in accordance with what was previously presented 

nd the demonstrated experience of this group, in this work a di- 

gnosis aid system for non-small cell lung cancer diagnosis is de- 

igned, implemented, and tested using histopathological images. In 

ddition to explaining the procedure and the results obtained, a 

omparison will be made with previous work in the area. And, 

nally, to provide information to the healthcare professional, Ex- 

lainable Deep Learning (xDL) techniques will be used to study the 

reas of histopathologycal images in which the classifier has fo- 

used to carry out the decisions; in this way, not only the possible 

iagnosis but also the areas of images in which the classifier has 

een fixed to obtain the diagnosis can be provided to the patholo- 

ist. 

The rest of the manuscript is structured as follows: The meth- 

ds used to develop and test the diagnosis aid system are pre- 

ented in Section 2 . The results obtained after testing the classi- 

er are detailed in Section 3 . Finally, in Section 4 , the discussion

egarding the results obtained is included, as well as a comparison 

ith previous works and the final report provided is discussed too, 

ncluding the final conclusions of this work and future research 

ines. 

. Methods 

To carry out the previously exposed study, this section presents 

he dataset used to train and test the classification system, the pre- 

rocessing stage for the input data, the designed classifiers, the 

etrics used to evaluate them and the postprocessing stage apply- 

ng xAI techniques to extract more information from the classifier 

ehavior. 

Fig. 1 shows the general processing scheme of the system pro- 

osed in this work. 

.1. Dataset 

To develop a robust and reliable system, a dataset with a good 

umber of histopathological images was sought. The dataset used 

s the so-called LC250 0 0 [28] . It contains lung and colon tissue 

mages, but this work has focused only on the lung cancer im- 

ges contained in the dataset. Those images represent zoomed sec- 

ions of biopsied tissue observed under a microscope. All malig- 

ant tumour cases in this dataset are non-small cell lung cancer 

NSCLC). It is important to mention that the samples taken for 

his dataset are previously treated with himnunistochemistry tech- 

iques to enhance the features that distinguish cancer cells from 

ealthy cells. This is a fundamental difference to other datasets, 

nd is now an essential practice in automatic sample analysis de- 

ices. 

NSCLC represents 85% of all lung cancers and includes all types 

f epithelial lung cancer except small cell lung cancer (SCLC). The 

ost common types of NSCLC are squamous cell carcinoma, large 

ell carcinoma, and adenocarcinoma. NSCLC is usually a less sensi- 

ive type of cancer to chemotherapy and radiotherapy compared to 

CLC. It is therefore imperative to develop a reliable and rapid early 

etection mechanism. Among the subtypes of NSCLC listed above, 

he dataset includes two of them: adenocarcinoma and squamous 

ell carcinoma. 

Therefore, this dataset contains 15,0 0 0 lung images: 50 0 0 from 

ealthy tissue, 50 0 0 contains adenocarcinoma, and 50 0 0 contains 

quamous cell carcinoma. All images have a resolution of 768 x 

68 pixels in jpeg format. The distribution of images for each 
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Fig. 1. Full system scheme. 

Fig. 2. Images example from dataset LC250 0 0. (left) Healthy tissue; (middle) Adenocarcinoma; (right) Squamous Cell Carcinoma. 

Table 1 

Number of images of each class and distribution between 

train (80%) and test (20%). 

Class Train Test Total 

Healthy 4000 1000 5000 

Adenocarcinoma 4000 1000 5000 

Squamous-cell carcinoma 4000 1000 5000 

TOTAL 12000 3000 15000 
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agged class and the subsets’ size used to train and test the classi- 

ers are detailed in Table 1 . 

Carcinoma is a type of cancer that starts in cells that cover the 

utside or inside of an organ (epithelial). On the other hand, ade- 

ocarcinoma originates in glandular tissue and is made up of cells 

hat are capable of secreting substances into the body, and may be 

 differentiating parameter to squamous cell carcinomas. 

Looking at some selected images from the dataset, some differ- 

ntiating parameters can be detected between the classes (not in 

ll of them). See Fig. 2 . 

In the benign tissue ( Fig. 2 -left), lung parenchyma tissue (alve- 

lar septa made up of fibrous connective tissue) can be seen. In 

ddition, blood vessels and flat cells are present. Regarding ade- 

ocarcinoma, it is usually located in areas where cells would nor- 

ally secrete substances such as mucus. This presence of mucus is 

erhaps the most noticeable feature to the naked eye, distinguish- 

ble by the white areas in the image (see Fig. 2 -middle). Finally, 
3

quamous cell carcinoma would be formed by flat cells lining the 

nside of the airways (see Fig. 2 -right). 

.2. Preprocessing stage 

In the preprocessing stage, images are adapted to the classifier’s 

nput by size and colour adaptation, to reduce the computational 

equirements (reducing the time spent in the classification) and fa- 

ilitate the feature extraction process (increasing the system accu- 

acy). The full preprocessing stage is shown in Fig. 3 . 

Firstly, the original resolution of the images (768x768 pixels) is 

ompressed to a lower resolution (180x180 pixels) to reduce the 

omputational complexity of the classifier. After that, the colours 

f the images are then normalised to a floating range between 0 

nd 1 (originally, the images have an integer value range of 0 to 

55). 

At this point, the preprocessing of the dataset takes two differ- 

nt paths to study the impact of colour on the classifier: in the 

rst path, we proceed with the colour images, while in the second 

ath, we work with the greyscale images. 

In the colour image path, a final processing is carried out to 

hange the colour map from RGB to YUV to separate the luminos- 

ty from the colour components. And, in the greyscale image path, 

 histogram equalisation process is performed. 

Finally, before entering the classifier, the images of the dataset 

re grouped in batches of size 32. 
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Fig. 3. Preprocessing chain. 
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Fig. 4. Convolutional Neural Network architecture. 
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.3. Classifiers 

In this work, three classifiers are implemented: the first one for 

he color image path and 3-class classification, the second one for 

he greyscale image path and the 3-class classification, and the last 

ne for the image path with a 2-class classification (cancer or not 

ancer). The results provided by the colour and greyscale dataset 

re studied because the immunhistochemistry techniques enhance 

he colour of the samples; and it is also the purpose of this study 

o compare the difference that the inclusion of these techniques 

akes to the classification results. 

Both 3-class classifiers use the same custom convolutional neu- 

al network (CNN) model, which consists of three convolution lay- 

rs with a maxpolling clustering layer after each. Thus, each pair 

f layers (convolution + maxpooling) achieves a compression of 

he input image dimension by grouping each subset of pixels into 

 single one containing the maximum value of all of them. This 

rocess helps to avoid overfitting of the classifier and reduces the 

omputational load. 

Resolution compression achieved by each layer pair is: 

• First pair: from 180x180 to 89x89 pixels. 
• Second pair: from 89x89 to 43x43 pixels. 
• Third pair: from 43x43 to 20x20 pixels. 

After the last Maxpooling layer, a flattening of the input is per- 

ormed, which means eliminating all dimensions except one to 

erform a final Multi-Layer Perceptron (MLP) classic layer. There- 

ore, next, a fully connected layer is placed with 128 neurons that 

re activated by a relu activation function, extracting the most rel- 

vant features from the flattened image. 

At the end, a final dense layer is included as the output layer 

ith a number of neurons equal to the number of classified 

lasses; this is three output neurons (benign tissue, adenocarci- 
4 
oma and squamous carcinoma) with numerical references 0, 1 

nd 2, respectively. 

So, summarizing the CNN structure used, each layer is detailed 

ext: 

• Input layer: bi-dimensional convolutional layer that receives a 

RGB 180x180 pixels image and applies a 3x3 convolution ma- 

trix, eliminating the image borders. 
• 1st hidden layer: bi-dimensional maxpooling layer that reduce 

the input layer to half rows and columns, keeping the maxi- 

mum value of each 2x2 square. 
• 2nd hidden layer: bi-dimensional convolutional layer that 

works in the same way that the first one but, for this case, it 

receives 89x89 pixels images. 
• 3rd hidden layer: bi-dimensional maxpooling layer that works 

in the same way that the previous one. 
• 4th hidden layer: bi-dimensional convolutional layer that works 

in the same way that the previous ones but, for this case, it 

receives 43x43 pixels images. 
• 5th hidden layer: bi-dimensional maxpooling layer that works 

in the same way that the previous ones. 
• 6th hidden layer: flatten operation that transform the bi- 

dimensional information in an unique row that contains the in- 

formation of all the pixels. 
• 7th hidden layer: dense layer that contains 128 simple neurons 

and receives 12,800 connections from the previous layer. 
• Output layer: dense layer that contains 3 simple neurons (for 

the three classification classes of the system) and receives the 

connections from the previous 128-neuron layer. 

A global network schema for the 3-class classifiers can be found 

n Fig. 4 . Finally, the 2-class classifier uses a similar network model, 

nly changing the last layer (2 output cells instead of 3). 

.4. Evaluation metrics 

To evaluate the effectiveness of the classification systems, it is 

ommon to use different and well-known metrics: accuracy (most- 

sed metric), sensitivity (also known as recall), specificity, preci- 

ion and F1 score [29] . 
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Table 2 

Values used for the different hyperpa- 

rameters of the developed classifier. 

Hyperparameter Values evaluated 

Learning Rate 1e-4, 1e-3, 1e-2 

Batch Size 16, 24, 32 

Training Epochs 5, 10, 50, 200 

m

c

l

t

c

a

s

A

S

P

S

F

t

[

v

F

U

i

h

f

2

c

l

c

e

m

n

a

t

a

L

w

w

p

2

D

p

t

H

d

a

w

t

t

o

a

b

a

b

i

f

G

[

p

(

t

u

v

t

l

r

C

r

t

s

i

v

a

a

h

d

t

To apply them, the classification results obtained for each class 

ust be tagged individually as ”True Positive” (TP: belonging to a 

lass and classified as the same class), ”True Negative” (TN: be- 

onging to another class and classified as that class), ”False Posi- 

ive” (FP: belonging to another class and classified to the evaluated 

lass) or ”False Negative” (FN: belonging to the class and classified 

s other class). According to them, the high-level metrics are pre- 

ented in the next equations: 

ccuracy = 

∑ 

c 

T P c + T N c 

T P c + F P c + T N c + F N c 
, c ∈ classes (1) 

peci f icity = 

∑ 

c 

T N c 

T N c + F P c 
, c ∈ classes (2) 

 recision = 

∑ 

c 

T P c 

T P c + F P c 
, c ∈ classes (3) 

ensit i v it y = 

∑ 

c 

T P c 

T P c + F N c 
, c ∈ classes (4) 

 1 score = 2 ∗ precision ∗ sensit i v it y 
precision + sensit i v it y 

. (5) 

About those metrics: 

• Accuracy: all samples classified correctly compared to all sam- 

ples (see Eq. (1) ). 
• Specificity: proportion of “true negative” values in all cases that 

do not belong to this class (see Eq. (2) ). 
• Precision: proportion of “true positive” values in all cases that 

have been classified as it (see Eq. (3) ). 
• Sensitivity (or Recall): proportion of “true positive” values in all 

cases that belong to this class (see Eq. (4) ). 
• F1 score : It considers both the precision and the sensitivity (re- 

call) of the test to compute the score. It is the harmonic mean 

of both parameters (see Eq. (5) ). 

There are other commonly used metrics, but not all works use 

hem. However, the ROC curve (Receiver Operating Characteristic) 

30] is of particular interest in diagnostic systems, because it is the 

isual representation of the True Positives Rate (TPR) versus the 

alse Positives Rate (FPR) as the discrimination threshold is varied. 

sually, when using the ROC curve, the area under the curve (AUC) 

s used as a value of the system’s goodness-of-fit. 

Finally, it is important to take into account the values of the 

yperparameters used in the evaluation of the classifier developed 

or this work. These are described in Table 2 . 

.5. Classifier comparison 

Many works have been performed in the last years regarding 

lassification systems for lung cancer detection, as it is the most 

ethal type of cancer. 

Among all of them, three types can be distinguished: those that 

lassify between benign and malignant tumours; those that differ- 

ntiate the type of cancer once it is known to be a malignant tu- 

our; and those that detect whether it is a cancerous tumour or 

ot, and indicate the type of cancer if it is. 
5

In this work, once the classifier has been developed and evalu- 

ted, a comparison is made with previous work. For this purpose, 

he main searching platforms have been used (IEEExplore, Scopus, 

nd Google Scholar), using the keywords Lung Cancer and Deep 

earning . However, to make a realistic comparison, the founded 

orks have been filtered using the next criteria: 

• It must classify between benign or malignant tumours (with or 

without cancer type differentiation). 
• They must use histopathological images. Other works use X-Ray 

lung imaging, but these will not be taken into account to make 

a comparison with this work. 
• They must implement a classifier based on the application of 

Artificial Intelligence (AI) techniques. 
• They must present the results using metrics similar to those 

used to evaluate this work (global accuracy and/or AUC) 
• They must be published from 2015 onwards. 

With these restrictions, the number of works to be compared 

ith this classifier is reduced to 12. The results and a detailed ex- 

lanation of the comparison are presented in the Results section. 

.6. Postprocessing stage 

As mentioned in the introduction section, systems trained using 

L techniques are, in short, black boxes that receive an input sam- 

le and provide an output resulting from the internal transforma- 

ions of the network and the coefficients generated after training. 

owever, these coefficients do not follow a path that can be easily 

educed and/or understood. 

This fact is compounded by the sensitivity of this type of di- 

gnostic aid systems, which usually work with data from patients 

ith potentially very aggressive diseases. It is therefore essential 

hat the health professional has the possibility of accessing the jus- 

ifications that have led the classifier to give a certain answer. 

To this end, various tools and/or mechanisms have been devel- 

ped in recent years for use in systems based on CNNs, and which 

llow various aspects related to the network’s decision-making to 

e appreciated. Looking at the compilation of updated tools and 

lgorithms carried out by [31] , the most common mechanisms can 

e observed depending on the field of application and the use that 

s to be made of them. 

Among all of them, due to the extent of application, the in- 

ormation provided, and the possibilities it offers, the use of the 

rad-CAM algorithm for CNN-based systems is very widespread 

32] , ranking among the visual utilities of xAI based on back- 

ropagation. Moreover, it can be adapted to classification problems 

as is the case in this work), visual question answering, and cap- 

ioning. 

The Gradient-weighted Class Activation Mapping (Grad-CAM) 

ses the gradients of any target concept, flowing into the final con- 

olutional layer, to produce a coarse localization map highlighting 

he important regions in the image for predicting the concept. Un- 

ike previous approaches, Grad-CAM is applicable to a wide va- 

iety of CNN model families: CNNs with fully connected layers, 

NNs with structured outputs, CNNs with multimodal input, or 

einforcement learning, and needs no architectural changes or re- 

raining. This algorithm is combined with existing fine-grained vi- 

ualizations to create a high-resolution class-discriminative visual- 

zation and apply it to image classification, image captioning, and 

isual question answering (VQA) models. An example of using this 

lgorithm can be observed in Fig. 5 . 

Therefore, after the classification carried out by the diagnostic 

id system developed in this work, the information provided to the 

ealthcare professional is completed with an explanation of the 

ecision taken based on the use of the Grad-CAM algorithm on 

he image evaluated. In this way, the healthcare professional can 
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Fig. 5. Grad-CAM algorithm output example: class-discriminative regions of class 

’Cat’. Images taken from Selvaraju et al. [32] . 
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Table 3 

Results obtained for the testing subset after training the colour CNN for the 

3-class classification during 5 epochs. 

Class Accuracy Precision Sensitivity F1 score 

BNG 0 . 996 ± 0 . 020 0 . 994 ± 0 . 021 0 . 994 ± 0 . 019 0 . 994 ± 0 . 021 

ADE 0 . 912 ± 0 . 034 0 . 807 ± 0 . 033 0 . 981 ± 0 . 032 0 . 886 ± 0 . 038 

SCC 0 . 917 ± 0 . 023 0 . 982 ± 0 . 025 0 . 759 ± 0 . 023 0 . 857 ± 0 . 025 

Table 4 

Results obtained for the testing subset after training the colour CNN for the 

3-class classification during 10 epochs. 

Class Accuracy Precision Sensitivity F1 score 

BNG 0 . 998 ± 0 . 018 0 . 998 ± 0 . 019 0 . 997 ± 0 . 018 0 . 998 ± 0 . 019 

ADE 0 . 944 ± 0 . 022 0 . 974 ± 0 . 021 0 . 862 ± 0 . 021 0 . 915 ± 0 . 024 

SCC 0 . 948 ± 0 . 022 0 . 871 ± 0 . 026 0 . 978 ± 0 . 024 0 . 922 ± 0 . 027 

Table 5 

Results obtained for the testing subset after training the colour CNN for the 

3-class classification during 50 epochs. 

Class Accuracy Precision Sensitivity F1 score 

BNG 0 . 999 ± 0 . 009 1 . 0 ± 0 . 010 0 . 997 ± 0 . 010 0 . 999 ± 0 . 013 

ADE 0 . 971 ± 0 . 015 0 . 954 ± 0 . 012 0 . 963 ± 0 . 013 0 . 958 ± 0 . 015 

SCC 0 . 972 ± 0 . 012 0 . 961 ± 0 . 011 0 . 954 ± 0 . 011 0 . 957 ± 0 . 015 

Table 6 

Results obtained for the testing subset after training the colour CNN for the 

3-class classification during 200 epochs. 

Class Accuracy Precision Sensitivity F1 score 

BNG 0 . 996 ± 0 . 018 0 . 997 ± 0 . 018 0 . 997 ± 0 . 019 0 . 994 ± 0 . 019 

ADE 0 . 957 ± 0 . 027 0 . 939 ± 0 . 022 0 . 939 ± 0 . 025 0 . 938 ± 0 . 023 

SCC 0 . 961 ± 0 . 025 0 . 938 ± 0 . 023 0 . 943 ± 0 . 024 0 . 941 ± 0 . 024 
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bserve the regions of the analysed image that have been decisive 

or the classification; this avoids having to analyse the entire image 

o verify the results. 

In addition to the GradCAM mechanism (classified as a back- 

ropagation mechanism), there are other mechanisms widely used 

n this field. Another type of mechanisms are those based on per- 

urbations , which provoke changes in the input and observe the 

ariation of the output. In this order, we find the mechanism pro- 

osed by [33] , called “Occlusion Sensitivity”. In this work, in addi- 

ion to the application of GradCAM, the Occlusion Sensitivity mech- 

nism is also applied to evaluate the robustness of the classifier to 

nput perturbations. 

In the Results section, Grad-CAM and Occlusion Sensitivity are 

pplied to the testing dataset images to demonstrate the correct 

ancer detection and the robustness of the classifier. 

. Results 

This section presents the results in a progressive manner, fol- 

owing the same order detailed in the previous section. First, the 

raining and validation results of the classifiers developed in this 

ork (both for two and three classes) will be detailed. Next, a 

omparison will be made with previous work on lung cancer de- 

ection using anatomic pathology images. Finally, some results of 

he application of the Grad-CAM algorithm over the classifier de- 

eloped to complete the diagnostic aid system will be shown. 

.1. 3-Class classifier 

Implementation and training is carried out in Google Colab with 

he Tensorflow library. The learning rate is set to 0.001 and the loss 

unction used is Categorical Cross-Entropy (common in multiclass 

lassification problems). The classified classes are for the 3-class 

ystem: Benign (BNG), Adenocarcinoma (ADE), and Squamous Cell 

arcinoma (SCC). 

With 80% of the initial dataset, 5, 10, 50, and 200 epochs are 

rained and a GPU is used to accelerate the training (reducing the 

verage time from 3.8 seconds on average per epoch with CPU to 

.044 seconds on average per epoch with GPU, obtaining an accel- 

ration of more than 90). 

To obtain more accurate results, the systems have been tested 

sing Bootstrap Sampling [34] , dividing each dataset initially into 

en subsets. After that, eight of them are used for training and two 

or testing, changing this distribution after each evaluation pro- 

ess. Therefore, each training and testing processes (for 5, 10, 50, 

nd 200 epochs) were repeated 90 times (variations without rep- 

tition of 10 subsets taken 2 by 2; applying V m,n = m × (m − 1) ×
m − 2) . . . (m − n + 1) , where m = 10 and n = 2). The results pre-

ented in each subsection are therefore the result of the arithmetic 

ean of the 90 tests performed for each case, including the stan- 

ard deviation obtained. 
6

.1.1. Colour CNN 

In the first case, using the colour CNN with 3 classes and 5 

pochs, an overall accuracy of 91.25% was obtained. The metrics 

esults are detailed in Table 3 . The confusion matrix obtained is 

hown in Fig. 6 -top-left. 

In the second case, using the colour CNN with 3 classes and 10 

pochs, an overall accuracy of 94.43% was obtained. The metrics 

esults are detailed in Table 4 . The confusion matrix obtained is 

hown in Fig. 6 -top-right. 

In the third case, using the colour CNN with 3 classes and 50 

pochs, an overall accuracy of 97.11% was obtained. The metrics 

esults are detailed in Table 5 . The confusion matrix obtained is 

hown in Fig. 6 -bottom-left. 

Finally, for the colour CNN model, using 3 classes and 200 

pochs, an overall accuracy of 95.75% was obtained. The metrics 

esults are detailed in Table 6 . The confusion matrix obtained is 

hown in Fig. 6 -bottom-right. 

.1.2. Greyscale CNN 

The same process is repeated with the greyscale classifier, eval- 

ating 5, 10, 50, and 200 epoch training. 

In the first case, using the greyscale CNN with 3 classes and 

 epochs, an overall accuracy of 91.46% was obtained. The metrics 

esults are detailed in Table 3 , and the confusion matrix obtained 

s shown in Fig. 7 -top-left. 

In the second case, using the greyscale CNN with 3 classes and 

0 epochs, an overall accuracy of 92.73% was obtained. The metrics 

esults are detailed in Table 8 , and the confusion matrix obtained 

s shown in Fig. 7 -top-right. 

In the third case, using the greyscale CNN with 3 classes and 

0 epochs, an overall accuracy of 94.01% was obtained (the best 

ccuracy of all cases in greyscale CNN). The metrics results are de- 



J. Civit-Masot, A. Bañuls-Beaterio, M. Domínguez-Morales et al. Computer Methods and Programs in Biomedicine 226 (2022) 107108 

Fig. 6. Confusion Matrixes for the colour CNN with 3 classes: (a) 5 epoch training, (b) 10 epoch training, (c) 50 epoch training, (d) 200 epoch training. 

Table 7 

Results obtained for the testing subset after training the greyscale CNN for the 

3-class classification during 5 epochs. 

Class Accuracy Precision Sensitivity F1 score 

BNG 0 . 971 ± 0 . 023 0 . 981 ± 0 . 022 0 . 997 ± 0 . 020 0 . 954 ± 0 . 024 

ADE 0 . 915 ± 0 . 038 0 . 891 ± 0 . 035 0 . 929 ± 0 . 039 0 . 875 ± 0 . 039 

SCC 0 . 942 ± 0 . 041 0 . 878 ± 0 . 040 0 . 957 ± 0 . 036 0 . 916 ± 0 . 040 

Table 8 

Results obtained for the testing subset after training the greyscale CNN for the 

3-class classification during 10 epochs. 

Class Accuracy Precision Sensitivity F1 score 

BNG 0 . 982 ± 0 . 021 0 . 979 ± 0 . 021 0 . 967 ± 0 . 019 0 . 973 ± 0 . 022 

ADE 0 . 928 ± 0 . 032 0 . 897 ± 0 . 033 0 . 896 ± 0 . 030 0 . 896 ± 0 . 035 

SCC 0 . 943 ± 0 . 031 0 . 908 ± 0 . 029 0 . 920 ± 0 . 030 0 . 914 ± 0 . 031 

t

F

e

Table 9 

Results obtained for the testing subset after training the greyscale CNN for the 

3-class classification during 50 epochs. 

Class Accuracy Precision Sensitivity F1 score 

BNG 0 . 984 ± 0 . 018 0 . 973 ± 0 . 017 0 . 978 ± 0 . 017 0 . 976 ± 0 . 020 

ADE 0 . 942 ± 0 . 024 0 . 913 ± 0 . 025 0 . 920 ± 0 . 022 0 . 916 ± 0 . 025 

SCC 0 . 953 ± 0 . 021 0 . 935 ± 0 . 019 0 . 923 ± 0 . 020 0 . 929 ± 0 . 022 

Table 10 

Results obtained for the testing subset after training the greyscale CNN for the 

3-class classification during 200 epochs. 

Class Accuracy Precision Sensitivity F1 score 

BNG 0 . 975 ± 0 . 022 0 . 963 ± 0 . 021 0 . 962 ± 0 . 020 0 . 962 ± 0 . 023 

ADE 0 . 929 ± 0 . 030 0 . 890 ± 0 . 031 0 . 908 ± 0 . 033 0 . 899 ± 0 . 034 

SCC 0 . 948 ± 0 . 028 0 . 930 ± 0 . 030 0 . 911 ± 0 . 032 0 . 921 ± 0 . 032 

r

i

d  

l

ailed in Table 9 , and the confusion matrix obtained is shown in 

ig. 7 -bottom-left. 

Finally, for the greyscale CNN model, using 3 classes and 200 

pochs, an overall accuracy of 92.69% was obtained. The metrics 
7 
esults are detailed in Table 10 , and the confusion matrix obtained 

s shown in Fig. 7 -bottom-right. 

The full comparison between the colour and greyscale CNNs is 

etailed in Table 11 , and the best results for each metric are high-

ighted in blue. 
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Fig. 7. Confusion Matrixes for the greyscale CNN with 3 classes: (a) 5 epoch training, (b) 10 epoch training, (c) 50 epoch training, (d) 200 epoch training. 

Table 11 

Comparison between the Colour CNN and the Greyscale CNN results for the 3-class classification. 

Colour CNN Greyscale CNN 

Class Metric 5-epoch 10-epoch 50-epoch 200-epoch 5-epoch 10-epoch 50-epoch 200-epoch 

BGN Accuracy 0 . 998 ± 0 . 020 0 . 998 ± 0 . 018 0 . 999 ± 0 . 009 0 . 996 ± 0 . 018 0 . 971 ± 0 . 023 0 . 982 ± 0 . 021 0 . 984 ± 0 . 018 0 . 975 ± 0 . 022 

Precision 0 . 994 ± 0 . 021 0 . 998 ± 0 . 019 1 . 0 ± 0 . 010 0 . 997 ± 0 . 018 0 . 981 ± 0 . 022 0 . 979 ± 0 . 021 0 . 973 ± 0 . 017 0 . 963 ± 0 . 021 

Sensitivity 0 . 994 ± 0 . 019 0 . 997 ± 0 . 018 0 . 997 ± 0 . 010 0 . 997 ± 0 . 019 0 . 997 ± 0 . 020 0 . 967 ± 0 . 019 0 . 978 ± 0 . 017 0 . 962 ± 0 . 020 

F1 score 0 . 994 ± 0 . 021 0 . 998 ± 0 . 019 0 . 999 ± 0 . 013 0 . 994 ± 0 . 019 0 . 954 ± 0 . 024 0 . 973 ± 0 . 022 0 . 976 ± 0 . 020 0 . 962 ± 0 . 023 

ADE Accuracy 0 . 912 ± 0 . 034 0 . 944 ± 0 . 022 0 . 971 ± 0 . 015 0 . 957 ± 0 . 027 0 . 915 ± 0 . 038 0 . 928 ± 0 . 032 0 . 942 ± 0 . 024 0 . 929 ± 0 . 030 

Precision 0 . 807 ± 0 . 033 0 . 974 ± 0 . 021 0 . 954 ± 0 . 012 0 . 939 ± 0 . 022 0 . 891 ± 0 . 035 0 . 897 ± 0 . 033 0 . 913 ± 0 . 025 0 . 890 ± 0 . 031 

Sensitivity 0 . 981 ± 0 . 032 0 . 862 ± 0 . 021 0 . 963 ± 0 . 013 0 . 939 ± 0 . 025 0 . 929 ± 0 . 039 0 . 896 ± 0 . 030 0 . 920 ± 0 . 022 0 . 908 ± 0 . 033 

F1 score 0 . 886 ± 0 . 038 0 . 915 ± 0 . 024 0 . 958 ± 0 . 015 0 . 938 ± 0 . 023 0 . 875 ± 0 . 039 0 . 896 ± 0 . 035 0 . 916 ± 0 . 025 0 . 899 ± 0 . 034 

SCC Accuracy 0 . 917 ± 0 . 023 0 . 948 ± 0 . 022 0 . 972 ± 0 . 012 0 . 961 ± 0 . 025 0 . 942 ± 0 . 041 0 . 943 ± 0 . 031 0 . 953 ± 0 . 021 0 . 948 ± 0 . 028 

Precision 0 . 982 ± 0 . 025 0 . 871 ± 0 . 026 0 . 961 ± 0 . 011 0 . 938 ± 0 . 023 0 . 878 ± 0 . 040 0 . 908 ± 0 . 029 0 . 935 ± 0 . 019 0 . 930 ± 0 . 030 

Sensitivity 0 . 759 ± 0 . 023 0 . 978 ± 0 . 024 0 . 954 ± 0 . 011 0 . 943 ± 0 . 024 0 . 957 ± 0 . 036 0 . 920 ± 0 . 030 0 . 923 ± 0 . 020 0 . 911 ± 0 . 032 

F1 score 0 . 857 ± 0 . 025 0 . 922 ± 0 . 027 0 . 957 ± 0 . 015 0 . 941 ± 0 . 024 0 . 916 ± 0 . 040 0 . 914 ± 0 . 031 0 . 929 ± 0 . 022 0 . 921 ± 0 . 032 

Global Accuracy 91.25% 94.43% 97.11% 95.75% 91.46% 92.73% 94.01% 92.69% 

Cancer FN ∗ 0.30% 0.12% 0% 0.42% 3.34% 1.58% 1.04% 1.83% 

∗Cancer FN: False Negatives from any of the cancer classes (ADE or SCC), classified as benign tissue. These cases are of special interest as they are the ones that can 

potentially cause the most problems in the long term (most dangerous). 

8
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Table 12 

Results obtained for the testing subset after training the colour CNN for the 

2-class classification during 5 epochs. 

Class Accuracy Precision Sensitivity F1 score 

BNG 0 . 994 ± 0 . 040 0 . 993 ± 0 . 039 0 . 993 ± 0 . 014 0 . 993 ± 0 . 028 

MLG 0 . 994 ± 0 . 015 0 . 994 ± 0 . 015 0 . 994 ± 0 . 040 0 . 994 ± 0 . 028 

Table 13 

Results obtained for the testing subset after training the colour CNN for the 

2-class classification during 10 epochs. 

Class Accuracy Precision Sensitivity F1 score 

BNG 0 . 997 ± 0 . 011 0 . 993 ± 0 . 024 1 ± 0 . 005 0 . 997 ± 0 . 014 

MLG 0 . 997 ± 0 . 003 1 ± 0 . 005 0 . 994 ± 0 . 025 0 . 997 ± 0 . 014 

Table 14 

Results obtained for the testing subset after training the colour CNN for the 

2-class classification during 50 epochs. 

Class Accuracy Precision Sensitivity F1 score 

BNG 0 . 997 ± 0 . 008 0 . 996 ± 0 . 009 0 . 997 ± 0 . 005 0 . 997 ± 0 . 007 

MLG 0 . 997 ± 0 . 004 0 . 997 ± 0 . 005 0 . 996 ± 0 . 008 0 . 997 ± 0 . 006 

Table 15 

Results obtained for the testing subset after training the colour CNN for the 

2-class classification during 200 epochs. 

Class Accuracy Precision Sensitivity F1 score 

BNG 0 . 993 ± 0 . 026 0 . 995 ± 0 . 030 0 . 991 ± 0 . 027 0 . 993 ± 0 . 028 

MLG 0 . 993 ± 0 . 026 0 . 991 ± 0 . 025 0 . 995 ± 0 . 028 0 . 993 ± 0 . 027 
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.2. 2-class classifier 

Following the same procedure and structure than the 3-class 

lassifier subsection, this implementation and training are carried 

ut in Google Colab with the Tensorflow library. The learning rate 

s set to 0.001 and the loss function used is Categorical Cross- 

ntropy. In this case, there are only 2 classified classes: Benign 

BNG) and Malignant (MLG). For that purpose, several GPU train- 

ngs with 5, 10, 50, and 200 epochs are performed and the systems 

re tested using Bootstrap Sampling (explained deeply in the pre- 

ious subsection). As demonstrated above, the implementation of 

he color CNN shows slightly better results in classification accu- 

acy and significantly better results in standard deviation (higher 

recision). Therefore, in this case, the 2-class classifier is only im- 

lemented and tested for a Colour CNN. 

In the first case, using the colour CNN with 2 classes and 5 

pochs, an overall accuracy of 99.38% was obtained. The metrics 

esults are detailed in Table 12 , and the confusion matrix obtained 

s shown in Fig. 8 -top-left. 

In the second case, using the colour CNN with 2 classes and 10 

pochs, an overall accuracy of 99.69% was obtained. The metrics 

esults are detailed in Table 13 , and the confusion matrix obtained 

s shown in Fig. 8 -top-right. 

In the third case, using the colour CNN with 2 classes and 50 

pochs, an overall accuracy of 99.69% was obtained. The metrics 

esults are detailed in Table 14 , and the confusion matrix obtained 

s shown in Fig. 8 -bottom-left. 

Finally, for the colour CNN model, using 2 classes and 200 

pochs, an overall accuracy of 99.31% was obtained. The metrics 

esults are detailed in Table 15 , and the confusion matrix obtained 

s shown in Fig. 8 -bottom-right. 

The summary of the 2-class Colour CNN classifier is shown in 

able 16 . In this work, both types of systems have been developed 

n order to compare the processing performed in previous works, 

s many of them only distinguish benign from malignant. 
9 
At this point, the results of all classifiers developed in this work 

ave been presented. A table summarizing the best cases of every 

ystem presented is included (see Table 17 ). The ROC curve and 

he AUC (area under curve) regarding the 3-class colour CNN with 

0-epoch training can be observed in Fig. 9 . As the AUC is a met-

ic defined for 2-class classifiers, it is widespread to use pseudo- 

OC curves for multiclass systems, where a ROC curve is repre- 

ented for each single class (using multiple 2-class classifiers, one 

er each class, where the class itself is compared with the rest of 

he classes). Thus, in the figure three ROC curves are represented, 

nd the AUC results show values higher than 97.77% for all the 

lasses. 

And, finally, the ROC curve and the AUC regarding the 2-class 

olour CNN with 50-epoch training can be observed in Fig. 10 . In 

his case, the AUC is 99.75%. 

. Discussion 

The previous results will be discussed in detail following the 

ame order as the results were presented. With this discussion, 

he work developed will be compared with previous works. Finally, 

he final report provided to the pathologists is presented and dis- 

ussed. 

.1. 3-class colour classifier 

With a 5-epoch training there is a significant drop in the pre- 

ision of the ADE class (80.7%) as 19% of the samples were erro- 

eously classified as squamous cell carcinoma; this fact also caused 

 drop in the sensitivity of the SCC class. Increasing the epochs to 

0, there is an improvement in the precision and sensitivity met- 

ics (because of the increase of ADE class accuracy); moreover, the 

ases that are classified as BNG but belong to ADE or CCE (false 

ositive cases of BNG, that are the most dangerous cases) are de- 

reased to half the previous cases. 

If we continue increasing the epochs to 50, accuracy is im- 

roved and it is the first time that all metrics obtain results above 

5%. Moreover, the most dangerous cases (cancer classified as BNG) 

re zero, obtaining a precision value of 1. The substantial increase 

n accuracy is due to a better distinction between ADE and SCC. 

And, finally, with 200 epochs, the system seems to achieve an 

symptote, since the metrics worsen slightly in all aspects. The re- 

ults are not bad at all, improving the overall accuracy compared 

o the 10-epoch training, but the 50-epoch training obtains better 

esults. 

As can be observed, the best results are obtained with the 50- 

poch training, with an standard deviation around 1-1.5%. It is im- 

ortant to mention that, in addition to this improvement, there are 

o false positive cases of benign tissue (the precision value is 1), 

nd those are the most dangerous cases for the diagnose. However, 

 0.12% of the cases obtained in the 10-epoch training means 6 

ases from 50 0 0 samples, which is a much lower percentage than 

he average for pathologists. Moreover, the results of the 10-epoch 

raining reflect a higher standard deviation (around 2-2.7%), so it 

s a less reliable system. Thus, the selected system is the one ob- 

ained after the 50-epoch training: it has the best accuracy, the 

est standard deviation, and zero false positive cases of benign tis- 

ue. 

.2. 3-class greyscale classifier 

With a 5-epoch training, precision metrics of ADE and SCC 

lasses are low (less than 90%) because of the several mistakes 

roduced between those two classes; and, moreover, in this case 

here are too many false negatives in cancer cases (around 6% of 

denocarcinoma cases are classified as benign tissue), so it is very 



J. Civit-Masot, A. Bañuls-Beaterio, M. Domínguez-Morales et al. Computer Methods and Programs in Biomedicine 226 (2022) 107108 

Fig. 8. Confusion Matrixes for the colour CNN with 2 classes: (a) 5 epoch training, (b) 10 epoch training, (c) 50 epoch training, (d) 200 epoch training. 

Table 16 

Summary of the Colour CNN for the 2-class classifier. 

Class Metric 5-epoch 10-epoch 50-epoch 200-epoch 

BGN Accuracy 0 . 994 ± 0 . 040 0 . 997 ± 0 . 011 0 . 997 ± 0 . 008 0 . 993 ± 0 . 026 

Precision 0 . 993 ± 0 . 039 0 . 993 ± 0 . 02 0 . 996 ± 0 . 009 0 . 995 ± 0 . 030 

Sensitivity 0 . 993 ± 0 . 014 1 ± 0 . 005 0 . 997 ± 0 . 005 0 . 991 ± 0 . 027 

F1 score 0 . 993 ± 0 . 028 0 . 997 ± 0 . 014 0 . 997 ± 0 . 007 0 . 993 ± 0 . 028 

MLG Accuracy 0 . 994 ± 0 . 015 0 . 997 ± 0 . 003 0 . 997 ± 0 . 004 0 . 993 ± 0 . 026 

Precision 0 . 994 ± 0 . 015 1 ± 0 . 005 0 . 997 ± 0 . 005 0 . 991 ± 0 . 025 

Sensitivity 0 . 994 ± 0 . 040 0 . 994 ± 0 . 025 0 . 996 ± 0 . 008 0 . 995 ± 0 . 028 

F1 score 0 . 994 ± 0 . 028 0 . 997 ± 0 . 014 0 . 997 ± 0 . 006 0 . 993 ± 0 . 027 

Global Accuracy 99.38% 99.69% 99.69% 99.31% 

Cancer FN ∗ 0.60% 0% 0.25% 0.51% 

∗Cancer FN: False Negatives from MLG class classified as benign tissue. 
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angerous. Increasing the training epochs to 10, precision metric is 

mproved slightly in ADE and SCC classes, although it decreases in 

NG class; although, the most important improvement is the re- 

uction of false negatives in cancer (around 3% of adenocarcinoma 

amples are classified as benign tissue, half of the obtained with 

he 5-epoch training). 
10 
If we continue increasing the epochs to 50, the precision metric 

nd F1 score are over 90% for all the classes, and the false negative 

ases for cancer are reduced too (only 2% of the adenocarcinoma 

ases are classified as benign tissue). And, finally, for the 200- 

poch training, there is a worsening of the results, with a slight 

ecrease of all parameters (indeed, false negatives for cancer in- 
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Table 17 

Classifiers summary. 

Classifier Epochs Accuracy STD Cancer FN 

3-class Colour CNN 50 0.9711 0.9-1.5% 0% 

3-class Greyscale CNN 50 0.9402 1.7-2.5% 1.04% 

2-class Colour CNN 50 0.9969 0.4-0.9% 0.25% 

Fig. 9. ROC Curve and AUC for multi-class data giving the 3-class Colour CNN after 

50-epoch training. 
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rease to a 3.27% of the adenocarcinoma samples and a 0.25% of 

he squamous cell carcinoma cases). 

As can be observed, the best results are obtained with the 50- 

poch training. However, the false negative cases for cancer are 

uch higher than the one obtained with the colour CNN (2.10% 

ompared to 0.36%, a difference of nearly 6 times). Comparing the 

verall accuracy, the greyscale path (with its best training) obtains 
Fig. 10. ROC Curve and AUC giving the 2-cla

11 
4.01%, and the colour path obtains 96.49%. The difference is not 

oo high, compared to the reduction in computational load due 

o working with a single color component; but the substantial in- 

rease in the false negative cases for cancer is of great concern, so 

t is preferred to use the colour CNN. Moreover, these diagnostic 

id systems do not need to run in a hard real-time environment, so 

 small delay (seconds) does not affect the result; and it is impor- 

ant to take into account too that the results of the greyscale CNN 

eflect a higher standard deviation (between 2 and 2.7%) compared 

o the colour CNN (between 0.9 and 1.5%), so the colour one seems 

ore reliable. 

It can be observed that the best options are Color CNN with 

0-epoch training and with 50-epoch training. The best global ac- 

uracy is obtained with 50 epochs (97.11%), and the best ”Cancer 

N” metric is obtained for the 50 epochs training too (0%). More- 

ver, the 10-epoch option shows more variability in the standard 

eviation compared to the 50-epoch option: between 1.8 and 2.7% 

or 10 epochs, and between 0.9 and 1.5% for 50 epochs (about half). 

herefore, the best option for the 3-class classified among those 

tudied is the Colour CNN with 50-epoch training. 

Accuracy metric evolution during the increasing of the training 

pochs (with its standard deviation) for Colour CNN is represented 

n Fig. 11 for BNG class, in Fig. 12 for ADE class, and in Fig. 13 for

CC class. As can be observed, the cases of ADE and SCC classes 

re very clear, as the best absolute results and the minor standard 

eviation are obtained for the 50-epoch training. However, for BGN 

lass, the results obtained for 10 and 50 epochs are the same, with 

he main difference that the minor standard deviation is obtained 

ith 50 epochs. 

.3. 2-class classifier 

With a 5-epoch training, the absolute values of the metrics an- 

lyzed are acceptable, but there are two issues than may be taken 

nto account: the false negative cases for cancer are the worst 

mong all trainings performed (0.6%), and also the standard de- 
ss Colour CNN after 50-epoch training. 
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Fig. 11. Accuracy evolution (absolute value and standard deviation) for class BNG 

of Colour CNN. 

Fig. 12. Accuracy evolution (absolute value and standard deviation) for class ADE 

of Colour CNN. 

Fig. 13. Accuracy evolution (absolute value and standard deviation) for class SCC of 

Colour CNN. 
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iation is too high (between 1.4 and 4.0%); these values cause the 

ystem not to be adequate to solve the problem detailed in this 

ork. Increasing the training epochs to 10, an important goal is 

chieved: there is no false negative case of cancer among the test- 

ng dataset, so the most dangerous cases are avoided; although the 

tandard deviation of some metrics is not as good as desired, with 

ome cases over 2%. 
12 
If we continue increasing the epochs to 50, the best accuracy 

esult is achieved (the same as the one obtained with the 10-epoch 

raining), but there is an increase of false negative cases for cancer 

0.25%). However, the standard deviation has been significantly re- 

uced in this case, to values between 0.4 and 0.9% (less than half 

f what was obtained in the previous case). And, finally, for the 

00-epoch training, not only the accuracy is reduced: precision and 

ensitivity decreased too, provoking an increase in the false nega- 

ives of both classes. 

As can be observed, the best accuracy results are obtained with 

he 10-epoch and 50-epoch trainings. In the 50-epoch training, the 

alse positive cases of benign tissue are not zero (as happened with 

he 10-epoch training). However, the standard deviation obtained 

or the 50-epoch training is half of the presented after the 10- 

poch training (0.4-0.9% versus 0.3-2.4%). Thus, the 50-epoch train- 

ng is the most reliable option. 

As could be observed with the 3-class systems, the class with 

he best accuracy results is that of benign tissue, since most of the 

ailures were caused by distinguishing the type of cancer. In the 

-class case, by not having to make such a distinction, the results 

enefit. 

In terms of use as a diagnostic aid, 3-class systems provide 

ore information to the pathologist and allow him/her to tailor 

reatment to the type of cancer. In addition, if cancer is detected 

n a 2-class system, the pathologist would have to perform a sec- 

nd test to distinguish the type, which would not benefit him as 

uch as it should. However, 2-class systems allow mass screening 

ainly for benign tissue cases. 

.4. Works comparison 

Following the guidelines indicated in the methods section, a 

eep search of lung cancer detection systems using histopatho- 

ogical images has been done. It is important to note that, within 

he range of years used for the search (2015 to 2021), the pub- 

icly available works that meet all the requirements indicated pre- 

iously are concentrated in recent years (2018 to 2021). There are 

ome works related to lung cancer detection in the first years, but 

ost of them use different image types, classifiers, and/or metrics 

o evaluate. In that case, it would be difficult to compare this work 

ith them. Moreover, the works with the best classification results 

re found in the last years. 

Therefore, taking into account the restrictions provided and the 

bove explanation, twelve works have been selected: four pub- 

ished in 2018, four published in 2019, three published in 2020, 

nd one published in 2021. 

The summary of the selected work with its main attributes and 

esults are shown in Table 18 . In this table, it can be seen that the

elected papers use convolutional neural networks in their classi- 

er (some even include other types of additional classifiers). How- 

ver, the main differences are centered on the classes detected by 

ach classifier. As, in this work, two different classifiers are de- 

eloped and evaluated (2-class classifier and 3-class classifier), the 

omparison will be divided in two parts: on the one hand, works 

ith 2-class classifiers will be compared; and, on the other hand, 

orks that classify more than 2 classes will be compared. 

In addition to the characteristics of the classifiers, it is impor- 

ant to look at the datasets used by previous works in order to 

nderstand the choice made in our work. Briefly, our work uses 

 dataset of lung histological images, and only three of these pre- 

ious works also use histological images (most of them use com- 

uter tomography images). Therefore, for our case, we could use 

he datasets from these three works only; however, these datasets 

re not publicly available and that is the reason why we had to 

ork with the dataset described above. Even so, the differences 

an be seen in Table 19 . 
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Table 19 

Dataset comparison with previous works. 

Work Dataset Publicly available Image type 

Li et al. [35] Own No Histology 

Wang et al. [36] NLST Yes CT 

Coudray et al. [37] TCGA Yes CT 

Wang et al. [38] Own and TCGA No/Yes CT 

Bilaloglu et al. [39] TCGA Yes CT 

Noorbakhsh et al. [40] TCGA Yes CT 

Sha et al. [41] Own No Histology 

Wang et al. [42] Own and TCGA No/Yes CT 

Kanavati et al. [43] TCGA Yes CT 

Yu et al. [44] TCGA Yes CT 

Kriegsmann et al. [45] Own No Histology 

Guo et al. [46] Own No CT 

This Work LC25000 Yes Histology 
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13 
In Table 19 , it can be observed that most of the works use im-

ges from the TCGA (The Cancer Genome Atlas Program) dataset. 

his dataset consists of more than 18 GigaBytes of chest computed 

omography (CT) images. Additionally, one of these works [36] uses 

he NLST (National Lung Screening Trial) dataset, which has fewer 

mages, but also CT images. Another point to take into account 

s that those studies that use histopathological images work with 

heir own dataset. That is why, this work used the publicly avail- 

ble dataset LC250 0 0. 

.4.1. Works with a 2-class classifier 

Works included in this category are: Wang et al. [ 36 , 38 ], Noor-

akhsh et al. [40] , Sha et al. [41] , Kanavati et al. [43] and Yu et al.

44] . 

Most of these works present a classifier that distinguishes be- 

ween benign and malign tissue. However, there are two special 

ases that need to be evaluated: 

• In the work [41] , two classifiers are developed. One of them 

classifies benign and malign tissue, and this one is included in 

the comparison. However, the other one distinguishes between 

adenocarcinoma (ADE) and squamous cell carcinoma (SCC); so, 

this last classifier cannot be compared as it does not detect be- 

nign tissue (like ours). 
• In the work [44] , two classifiers are developed too. Both of 

them classify between benign tissue and one specific type of 

cancer: the first one distinguishes benign from adenocarci- 

noma; and the second one distinguishes benign from squa- 

mous cell carcinoma. Both cases are more beneficial because 

they only include a specific type of cancer and, theoretically, 

it should be easier to find common features that distinguish 

cancer from benign tissue. For this case, we will compare our 

system with the system that provides better results among the 

two classifiers developed in this specific work. Although this is 

a detrimental comparison for our work, we will later observe 

that we obtain better results. 

Therefore, a comparison summary for the 2-class classifiers is 

resented in Table 20 . The two metrics included in this table are 

he most used among the compared works: accuracy (ACC) and the 

rea under ROC curve (AUC). 

It can be observed that not every work analyzed uses both met- 

ics to evaluate the system. The most used metric in the last years 

s AUC, although the works published in 2018 only present the ac- 

uracy. As we obtained both values for each classifier, we can com- 

are our work with all of them. 

Taking into account the previous works that use the accuracy 

etric, the most high result is achieved by [38] with a 97.1%. In 

ur case, we achieve a 99.69% accuracy with a custom CNN classi- 

er that has a computational complexity lower than the CNN used 

y [38] (VGG16). While VGG16 structure includes five maxpooling 
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Table 20 

Comparison of 2-class classifier works using 

the most common metrics: accuracy (ACC) 

and area under curve (AUC). 

Work ACC AUC 

[36] 89.8% 

[38] 97.1% 

[40] 91% 98% 

[41] 80% 

[43] 98.5% 

[44] 98.5% 

This Work (2021) 99.69% 99.75% 

Fig. 14. System’s final report given to the healthcare professional. 
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Table 21 

Comparison more than 3 classes classifiers using accuracy (ACC) 

and area under curve for each class. 

Work ACC A BNG A ADE A SCC 

[35] 91.19% 

[37] 91.9% 97.7% 

[39] 99.85% 93.31% 93.24% 

[42] 82% 85.6% 

This Work (2021) 97.11% 99.94% 97.77% 97.92% 

 

g

t

c

A

c

w

s

t

m

e

t

r

t

t

M

a

w

a

s

a

(

t

i

i

o

s

s

c

t

tages (each one preceded by two or three convolutional layers) 

nd three dense layers, our custom CNN includes three maxpooling 

tages (preceded only by one convolutional layer) and two dense 

ayers. 

Finally, observing the previous works that use the AUC metric, 

he most high result is achieved by [43] and [44] with a 98.5%. In

ur case, we achieve a 99.75%. As happened in the previous case, 

he CNN used in our work is less complex that the CNN used in

hose two works: [43] uses EfficientNet model (more than 15 con- 

olutional layers); and [44] uses several models (the least complex 

s AlexNet with four convolutional layers, three maxpooling layers 

nd three dense layers; but this is not the model than obtains the 

est results). 

Summarizing, our 2-class lung cancer classifier based on a cus- 

om CNN model achieves the best results among all the works 

ublished in recent years regarding lung cancer detection on 

istopathologycal images with convolutional neural networks. 

.4.2. Works with classifiers for more than 2 classes 

Regarding the works that classify more than 2 classes, we can 

istinguish the next ones: Li et al. [35] , Coudray et al. [37] , Bi-

aloglu et al. [39] , Wang et al. [42] , Kriegsmann et al. [45] , and Guo

t al. [46] . There are some cases that need to be analyzed in detail:
14 
• In the works Kriegsmann et al. [45] and Guo et al. [46] , the de-

veloped classifiers distinguish between three classes: adenocar- 

cinoma, squamous cell carcinoma, and small-cell lung cancer. 

Thus, these two works aim to classify the lung cancer type in 

a previously detected malignant tissue, without distinguishing 

a benign from a malign sample. As our work includes benign 

samples, we aim to distinguish benign from malign tissue and, 

in the same classifier, the type of cancer detected (among non- 

small cell types). Therefore, the goal of these two systems is 

different than ours; so it is the complexity of the classifier de- 

veloped. That is why these two works will not be taken into 

account in this specific comparison. However, looking at the 

results, both systems obtain worse classification results than 

ours: [45] obtains 89% accuracy (versus 97.11% obtained by our 

system); and [46] obtains a 74.7% accuracy and an AUC of 84% 

(versus 97.77–99.94% obtained by our system). 
• The classifiers of the works [35] and [42] include small-cell 

lung cancer class (SCLC), classifying between four classes (one 

more than our system). Thus, although both are included in this 

specific comparison, this fact must be taken into account (as we 

suppose that, if they do not include the fourth class, the results 

can be slightly improved). 

Therefore, a comparison summary for the classifiers than distin- 

uish between three or four classes is presented in Table 21 . The 

wo metrics included in this table are the most used among the 

ompared works: accuracy (ACC) and the AUC for each class (A BNG , 

 ADE , A SCC ). 

As happened in the 2-class comparison, not all the works in- 

luded present every metric analyzed in this work. Except for the 

ork Wang et al. [42] , which includes the accuracy, the others 

how only the AUC. Moreover, it is not common to include a mul- 

iclass analysis for the ROC curve (as detailed in this work), and 

any of them only present one AUC value (as it is not specified in 

ach work, we assume that it is the AUC global value). The case of 

he work presented by Coudray et al. [37] is particular, as the AUC 

esults are presented only for cancer classes (not for the benign- 

issue class). 

The only work that includes the accuracy metric is [42] , ob- 

aining a result of 82%; while our work obtains a 97.11% (+15%). 

oreover, this work also analyzes the global AUC value, obtaining 

 result of 85.6%; while the multiclass ROC curves evaluated in our 

ork obtain values from 97.77% to 99.94% (depending on the class 

nalyzed). 

Regarding the case of the work presented by [35] , the only re- 

ult given is the global AUC value. In this case, the work obtains 

 result of 91.19%, less than the worst class results in our work 

97.77%). However, it is important to remember that this work and 

he previous one are the one that use a 4-class classifier (includ- 

ng both the SCLC class, that is not used in our work). This fact 

s important to be mentioned because, although we are comparing 

urselves with the results indicated in their work (and our system 

ignificantly outperforms them), we do not know whether their re- 

ults would improve if they did not use this fourth class. In our 

ase, the reason for not using this class in our classifier is because 

he dataset used does not include it; but in future works we in- 
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Fig. 15. Some reports obtained from SCC images: (a,b) correct classified cases with high confidence; (c,d) wrongly classified cases with lower confidence. 

15 
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Table 22 

Classifier complexity regarding the number of layers used in 

the CNN. In the case of works that use more than one model, 

the less-complex one is indicated. 

Work Model N CL N ML N DL 

[35] AlexNet 5 3 3 

[37] InceptionV3 40 + 10 + 3 

[39] InceptionV3 40 + 10 + 3 

[42] VGG16 13 5 3 

This Work (2021) Custom 3 3 2 
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end to use other datasets that include it to be able to compare 

urselves with all works under equal conditions. 

And, finally, the other remaining works [37,39] present AUC val- 

es for each class (with the exception detailed previously for the 

ork [37] ), obtaining a maximum value of 99.85% for BNG class 

our work obtains a 99.94%), 93.31% for ADE class (our work ob- 

ains a 97.77%), and a 97.7% for SCC class (our work obtains a 

7.92%). Thus, our classifier obtains the best results in all cases and 

lasses evaluated. 

However, as some results are very close, a summary of the com- 

lexity of each classifier is included in Table 22 . In this table, three

ew columns are included: the number of convolution layers (N CL ), 

he number of maxpooling layers (N ML , and the number of dense 

ayers (N DL ) used by each classifier. 

As can be seen in Table 22 , the works whose results are closer

o ours use a much more complex network model (InceptionV3) 

han the others. In fact, the number of convolutional layers (those 

hat require more computational workload) is more than 10 times 

igher than those used in our work. According to these informa- 

ion, the high results of these two works seem to be related with 

he increased complexity of the network; whereas, in our case, a 

ustom lightweight network has been combined with a more spe- 

ific preprocessing of the images. 

At this point, it is important to remember that the dataset used 

n this work has been compiled after applying immunohistochem- 

stry techniques to the samples, which enhances the colours of 

he most remarkable features of the images. Even so, if we look 

t the results of the greyscale training (where the previous treat- 

ents would no longer have an effect), the results are still very 

igh (with a decrease of less than 3%, reaching accuracy values of 

ver 94% in general, and between 94 and 98.5% for each individ- 

al class). Under these circumstances, using the results obtained 

y the greyscale CNN, the only work that would achieve better re- 

ults would be the one developed by [39] . However, the computa- 

ional requirements of that classifier are more than 10 times those 

eeded in our work. 

Nevertheless, immunohistochemistry techniques are continu- 

usly applied and, as the aim of these systems is to improve their 

ccuracy, it is essential to work with a dataset already treated 

ith these techniques. Moreover, these results also demonstrate 

he enormous usefulness of all these feature enhancement tech- 

iques. 

To conclude the comparison section, we can summarize that 

ur system obtains significantly better results than those obtained 

n previous works for 2-class classifiers. While, in the case of the 

-class classifier, the results are still better but closer; but, even 

o, it seems that the complexity of the network model plays an 

mportant role in those results. 

Finally, the application of xAI techniques to the developed clas- 

ifier are detailed in the next two subsections. First, GradCAM 

echanism is detailed; and, secondly, Occlusion Sensitivity is de- 

cribed. 
16
.5. GradCAM results 

The above results and comparison show that the system devel- 

ped in this work obtains better classification results than the pre- 

ious work and requires less computational load. 

However, for the report provided to the pathologist, this work 

rovides additional information about the confidence (in percent- 

ge value) of the results provided, and a heat map specifying those 

spects or areas of the image that have been taken into account for 

he classification. 

In this final report for the health professional is of utmost im- 

ortance as it will be thoroughly checked to assess the reliability 

f the result and to consider whether a reevaluation of the sample 

s necessary. Thus, the final report of the classification system is 

hown in Fig. 14 . 

As can be seen, the implemented Explainable Deep Learning al- 

orithm (custom Grad-CAM) extracts the resulting information af- 

er the last convolution (numerical weight matrix) and converts 

t to a heat map. This map shows the areas on which the classi- 

er has focused to obtain the verdict. This heat map is overlapped 

ith the original image so that the health professional can appre- 

iate the areas that determine the verdict. In addition, the numer- 

cal result of the classifier is extracted from the last layer of the 

ystem before applying the softmax process (activation of the class 

ith the highest value and inhibition of the remaining ones); in 

his way, a percentage of reliability of the result can be provided. 

As a final report, as shown in Fig. 14 , the original image with

he overlapped heat map, the classification obtained, and the per- 

entage of reliability of this classification are provided. Based on 

hese parameters, the healthcare professional can make the final 

erdict, which could be to validate these results or to proceed with 

 more thorough study of the sample. 

It is important to note that the original image has a resolu- 

ion of 180x180 pixels, while the heat map has a resolution of 

1x41 pixels (the result of the last convolution layer before max- 

ooling). Because of this, the heat map image must be overscaled 

efore overlapping it to the original. This causes that, due to the 

ecimals obtained during this process of resolution increase, some 

arts of the heat map do not fit perfectly with the original; how- 

ver, when observing them, it is clear which parts of the image it 

efers to. 

Reporting results for the training dataset will be shown below. 

everal cases will be shown for each class, with special emphasis 

n cases with low percentage reliability and classifier system con- 

usions. 

.5.1. SCC cases reports 

The accuracy of this class is high (97.2%), although its sensitivity 

s lower (95.4%). This means that there are some cases that are not 

lassified correctly (4.63% of the cases are classified as adenocarci- 

oma, but no cases are classified as benign tissue). The vast ma- 

ority of the cases classified correctly give confidence percentages 

etween 90 and 100%, and the cases with confidence lower than 

0% have a high probability of being wrongly classified. Thus, in 

his case, some samples with high result confidence are evaluated 

o check what the system focuses on to make the classification; 

nd after that, two of the most unfavourable cases (classification 

ailures) are evaluated. 

In Fig. 15 , four example cases are shown. Cases a and b rep-

esent two correct classifications with a high confidence value. As 

an be observed, for case a there is 0% probability of belonging to 

he other classes; and, for case b , there is only a 4.5% probability

f belonging to adenocarcinoma class. On the other hand, for more 

han 4% of the cases, the classifier fails, and cases c and d represent

wo of those cases: in both of them, the classifier misses and con- 

uses the samples with adenocarcinoma. Even so, the percentage of 
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Fig. 16. Some reports obtained from ADE images: (a,b) correct classified cases with high confidence; (c,d) wrongly classified cases with lower confidence. 

17 
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Fig. 17. Some reports obtained from BNG images: (a,b) correct classified cases with high confidence; (c,d) wrongly classified cases with lower confidence. 

18 
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Fig. 18. Occlusion Sensitivity heat map obtained for BNG class. 
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onfidence shows a significant drop, which may be an indication to 

e taken into account by the health professional. And, moreover, it 

an be observed that the probability of belonging to the squamous 

ell carcinoma class is around 21% for case c and 46% for case d . 

Looking at the heat maps, it can be interpreted that the classi- 

er has used the concentration of dark cells as a differentiating el- 

ment of this class. While in the first two cases they are clearly ob- 

erved, in the last two cases there are parts of the samples where 

ucosal and/or connective tissue are present (white parts); so, this 

lement causes the classifier to fail because it is a differentiator 

rom the other classes (in the other classes, the presence of con- 

ective tissue and/or mucus is more present). 

.5.2. ADE cases reports 

The accuracy of this class is the lowest (97.1%), although it is 

 high result. Regarding the other parameters, this class presents 

 low value of precision (95.4%); this means that several samples 

rom other classes are classified as it (false positives). Moreover, 

he sensitivity has a value of 96.8%, so there are some samples 

rom this class classified as other class (false negatives). These two 

vents occur between SCC and ADE classes, as both represent can- 

er tissue and, in some cases, both are interchanged. It is important 

o mention that, among the three classes, the correctly classified 
19 
amples for this class give the lowest confidence values (between 

0 and 100%). In contrast, misclassified cases show lower confi- 

ence levels than cases detected in the other classes (being easier 

o differentiate). Thus, following the same progression as the previ- 

us class, some samples with high result confidence are evaluated 

o check what the system focuses on to make the classification; 

nd after that, two unfavourable cases (classification failures) are 

valuated. 

In Fig. 16 , four example cases are shown. Cases a and b repre-

ent two correct classifications with a high confidence value: for 

ase a there is 0% probability of belonging to the other classes 

100% confidence classification); and, for case b , there is a 15.30% 

robability of belonging to squamous cell carcinoma class. On the 

ther hand, cases c and d represent two of the classification fail- 

res: in both of them, the classifier misses and confuses the sam- 

les with squamous cell carcinoma. But, for this class, the percent- 

ge of confidence is very low, which makes it easier to detect them 

y the health professional. And, moreover, it can be observed that 

he probability of belonging to the adenocarcinoma class is around 

8% for case c and 30% for case d . 

Looking at the heat maps, it can be interpreted that the clas- 

ifier has used the mucosal and/or connective tissue as a differ- 

ntiating element of this class. While in the first two cases it is 
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Fig. 19. Occlusion Sensitivity heat map obtained for ADE class. 
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learly observed, in the last two cases there are parts of the sam- 

les where mucosal and/or connective tissue appears in a low con- 

entration, and several dark cells are present; so, this fact causes 

he classifier to fail because it confuses the dark cells concentra- 

ion with the squamous cell carcinoma differenciator. 

.5.3. BNG cases reports 

This last class has the highest accuracy in the system (close to 

00%), so it is difficult to find cases where the report’s confidence 

ercentage is not close to 100%. Even so, some cases with high re- 

ult confidence are evaluated to check what the system focuses on 

o make the classification; and after that, the most unfavourable 

ases (the only two cases in which the classification of this class 

ails) are evaluated. 

In Fig. 17 , four example cases are shown. Cases a and b rep-

esent two correct classifications with a high confidence value. As 

an be observed, there is 0% probability of belonging to the other 

lasses. In fact, the classifier is correct in the vast majority of cases 

ith a confidence level of 100% (this is the situation in more than 

7% of the cases). For the remaining 3%, the classifier is also cor- 

ect in almost all cases (although indicating confidence percentages 

etween 99 and 100%). And, for only two specific cases (shown in 

ig. 17 as cases c and d ), the classifier misses and confuses the 
20
amples with adenocarcinoma. Even so, the percentage of confi- 

ence shows a significant drop, which may be an indication to be 

aken into account by the health professional. And, moreover, it 

an be observed that the probability of belonging to the benign 

issue class is around 20–22%. 

Looking at the heat maps, it can be interpreted that the classi- 

er has used the appearance of pink cells as a differentiating el- 

ment of this class. While in the first two cases they are clearly 

bserved, in the last two cases pink cells appear in a low percent- 

ge and are mixed with darker cells. Because of that, in two cases, 

his low concentration of pink cells and mucosal/connective tissue 

akes the classifier to wrongly tag those two samples as adeno- 

arcinoma. 

After analysing the customised reports provided by the Explain- 

ble Deep Learning system, it can be seen that the classification 

arried out is correct in most of the cases, and the reports pro- 

ided are very useful for the healthcare professional. In the case 

hat the system does not match, the pathologist will be able to 

etect it due to the low confidence percentage of the report and, 

hanks to this, analyse those samples more closely. Moreover, if we 

ook at the additional information in the reports where the classi- 

er fails, there is always a significant percentage of belonging to 

nother class (and it is indeed that class that is correct). Therefore, 
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Fig. 20. Occlusion Sensitivity heat map obtained for SCC class. 
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he pathologist can analyse the doubtful cases and look at the sec- 

nd option provided in the report (class with the second highest 

onfidence). 

.6. Occlusion sensitivity results 

In this subsection, the second xAI technique is applied in or- 

er to evaluate the robustness of the system. Unlike GradCAM, this 

ime modifications will be made to the input images. 

So, as detailed before, by eliminating some parts of the input 

nformation (images), the accuracy reduction occasioned by these 

odifications can be evaluated and, because of that, the system’s 

obustness can be evaluated. 

For this case, several tests are carried out with the test subset, 

liminating 32x32 pixel areas from each image and observing the 

esult obtained in each case. As the images are 768x768 pixels in 

esolution, 24x24 combinations are obtained (576 combinations in 

otal). 

The results are shown as the average of the variation in the ac- 

uracy of the classifier after the elimination of each 32x32 pixel 

ector from all the images for each class independently. In order to 

ake it easier to observe, it is represented visually by a heat map 

nd class by class. Results are analysed class by class. 
21 
.7. BNG class 

A maximum reduction of 9.17% is obtained in the classifica- 

ion accuracy of this class, and an average reduction of 1.73%. 

ig. 18 represents numerically in each box the percentage reduc- 

ion of the accuracy of this class when eliminating that 32x32 pix- 

ls box from all the images of the class; in the same way, 

he colour represents the most critical areas to eliminate. It can 

e observed that the areas close to the edges do not cause 

ny problems, and it is in the lower central area where most 

f the information used by the system to classify this class is 

oncentrated. 

.8. ADE class 

A maximum reduction of 7.83% is obtained in the classification 

ccuracy of this class, and an average reduction of 0.54%, being a 

ore robust class than the previous one in terms of perturbations. 

n Fig. 19 the information is represented numerically and visually 

or each box. It can be seen that the areas near the edges still do

ot cause any type of problem and, on this occasion, it is in the 

ower right corner where most of the information used by the sys- 

em to classify this class is concentrated. 
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.9. SCC class 

A maximum reduction of 7.83% is obtained in the classifica- 

ion accuracy of this class, and an average reduction of 2.13%, be- 

ng the least robust class of the three in terms of perturbations. 

ig. 20 represents numerically and visually the information for 

ach box. It can be observed that the areas close to the edges still

o not cause any type of problem and, on this occasion, something 

imilar to the first class occurs and the information is distributed 

ery homogeneously throughout the central area of the image. 

The previous results demonstrate the robustness of the system 

o perturbations, with an average reduction in accuracy between 

.54 and 2.13% for perturbations affecting 32x32 pixel squares. 

To conclude this work, we are able to state that several possi- 

ilities for the implementation of a diagnosis aid system for lung 

ancer detection with histopathological images are analysed, using 

lassifiers based on convolutional neural networks (CNN). Among 

he possibilities and combinations designed and evaluated, the 

olour image classifier with differentiation between three classes 

benign tissue, adenocarcinoma, and squamous cell carcinoma) is 

he one selected for providing more information (three classes) 

nd having a very high accuracy rate (97.11%), as well as an area 

nder the ROC curve (AUC) value higher than 97.7% for all classes. 

Next, this work has been compared with previous works re- 

ated to the same topic and developed in recent years, and focused 

n using classifiers based on CNNs with histopathological images 

oo. The comparison indicates that our system obtains the best re- 

ults in both accuracy and AUC. In addition, it is shown that the 

omputational workload of the developed classifier in this work is 

ignificantly lower than other works in which similar results are 

chieved. All this has been detailed in a reasoned manner. 

Ultimately, a reporting module is added to the classifier for the 

ealthcare professional, extracting the information from the last 

onvolutional layer to generate a heat map that, overlapped to the 

riginal image, clearly shows the highlighted areas of the image 

n which the classifier has focused to perform the classification. In 

he same way, and based on the final numerical results of the sys- 

em, the confidence percentage of belonging to each of the three 

lasses is extracted. All this information is provided as a final re- 

ort so that, with this information, the pathologist can make the 

ecision to accept the classification or carry out a test personally. 

ased on this module, various reports are shown for each of the 

lasses, with special emphasis on analysing the most unfavourable 

ases. 

Summarizing, the system designed, developed, and evaluated 

n this work represents a significant improvement both in classi- 

cation results and in the information provided to the specialist 

ith respect to the previous work with which it has been com- 

ared. In the same way, the inclusion of explainable artificial intel- 

igence (xAI) or explainable deep learning (xDL) techniques applied 

o the healthcare field proves to be necessary in diagnostic aid sys- 

ems because, although these classification systems normally fail 

ess than a healthcare professional, they are not infallible; and it is 

trictly necessary in cases of serious diseases (as in this case) that 

he pathologist has at his disposal all the information and justifica- 

ions available to make the decision that best benefits the patient. 

oreover, these techniques help to analyze the robustness of the 

lassifier. 
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