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Abstract. A critical challenge of the postgenomic era is to understand how 
genes are differentially regulated in and between genetic networks.  The fact 
that such co-regulated genes may be differentially regulated suggests that subtle 
differences in the shared cis-acting regulatory elements are likely significant, 
however it is unknown which of these features increase or reduce expression of 
genes.  In principle, this expression can be measured by microarray experi-
ments, though they incorporate systematic errors, and moreover produce a lim-
ited classification (e.g. up/down regulated genes).  In this work, we present an 
unsupervised machine learning method to tackle the complexities governing 
gene expression, which considers gene expression data as one feature among 
many.  It analyzes features concurrently, recognizes dynamic relations and gen-
erates profiles, which are groups of promoters sharing common features.  The 
method makes use of multiobjective techniques to evaluate the performance of 
profiles, and has a multimodal approach to produce alternative descriptions of 
same expression target.  We apply this method to probe the regulatory networks 
governed by the PhoP/PhoQ two-component system in the enteric bacteria Es-
cherichia coli and Salmonella enterica.  Our analysis uncovered profiles that 
were experimentally validated, suggesting correlations between promoter regu-
latory features and gene expression kinetics measured by green fluorescent pro-
tein (GFP) assays. 

1   Introduction 

Genetic and genomic approaches have been successfully used to assign genes to dis-
tinct regulatory networks.  However, little is known about the differential expression 
of genes within a regulon.  At its simplest, genes within a regulon are controlled by a 
common transcriptional regulator in response to the same inducing signal.  Moreover 
it is suggested that subtle differences in the shared cis-acting regulatory elements are 
probably significant in the genes expression.  However, it is not known which of these 
features, independently or collectively, can set expression patterns apart.  Indeed, 
similar expression patterns can be generated from different or a mixture of multiple 
underlying features, thus, making it more difficult to discern the causes of analogous 
regulatory effects.  
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The material required for analyzing the promoter features governing bacterial gene 
expression is widely available.  It consists of genome sequences, transcription data, 
and biological databases containing examples of preciously explored cases.  In princi-
ple, genes could be differentiated by incorporating into the analysis quantitative and 
kinetic measurements of gene expression [1] and/or considering the participation of 
other transcription factors [2-4].  However, there are constraints in such analyses due 
to systematic errors in microarray experiments, the extra work required to obtain ki-
netic data and the missing information about additional signals impacting on gene 
expression.  These constraints hitherto allow a relatively crude classification of gene 
expression patterns into a limited number of classes (e.g., up- and down-regulated 
genes [5, 6]), thus concealing distinctions among expression features, such as those 
that characterize the temporal order of genes or their levels of intensity  

Here we describe an unsupervised machine learning method that discriminates 
among co-regulated promoters by simultaneously considering both cis-acting regula-
tory features and gene expression.  By virtue of being an unsupervised method, it is 
neither constrained by a dependent variable [2, 7], such as expression data, which 
would restrict the classification to the dual expression classes reported by microarray 
experiments; nor it requires pre-existing kinetic data.  Our method treats each of the 
promoter features with equal weight, because it is not known beforehand which fea-
tures are important.  Thus, it explores all of the possible aggregations of features; and 
applies multiobjective and multimodal techniques [8, 9] to identify alternative optimal 
solutions that describe  target sets of genes from different perspectives. 

We applied our methodology to the investigation of genes regulated by the PhoP 
protein of Escherichia coli and Salmonella enterica serovar Typhimurium.  We re-
covered several profiles that were experimentally validated [10] to establish that PhoP 
uses different configurations of promoter to regulate genes.  We finally correlated 
these groups with more accurate independent experiments that measure gene expres-
sion over time by using GFP assays. 

2   Methods 

The purpose of this method is to identify all of the possible substructures, here termed 
profiles (i.e., groups of promoters sharing a common set of features), that characterize 
sets of genes.  These common attributes can ultimately clarify the key cis-features that 
produce distinct kinetic patterns, shedding light in the transcriptional mechanisms that 
the cell employs to differentially regulate genes belonging to a regulon. 

The identification of the promoter features that determine the distinct expression 
behavior of co-regulated genes is a challenging task because (i) the difficulty in ascer-
taining the role of the differences in the shared cis-acting regulatory elements of co-
regulated promoters; (ii) detailed kinetic data that would help the classification of 
expression patterns is not always available, or it is available for a limited subset of 
genes; and (iii) the limited extent of genes regulated by a transcriptional factor. To 
circumvent these constrains, our method explores all of the possible cis-feature ag-
gregations, looking for those that better characterize different subset of genes; uses an 
unsupervised approach, where pre-existing classes are not required; and allows a 
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fuzzy incorporation of promoters to refined hypothesis which enables a same instance 
to support more than one hypothesis. 

Our method represents, learns and infers from structural data by following four 
main phases:  (1) Database conformation;  (2) Profile learning;  (3) Profile evalua-
tion  (4) Evaluation of external classes. 

2.1   Database Conformation 

Biological Model. Multiple independent and interrelated attributes of promoters, 
naturally encoded into diverse data types, should be considered to perform an inte-
grated analysis of promoter regulatory features.  We focus on four types of features 
for describing our set of co-regulated promoters [2, 3, 10, 11]: “submotifs”, fix-length 
DNA motifs  from transcriptional regulator binding sites, represented by position 
weight matrices [12] (Fig 1.a). We used these matrices to prototype DNA sequences, 
where its elements are the weights used to score a test sequence to measure how close 
that sequence word matches the pattern described by the matrix; “orientation”, which 
characterizes the binding boxes as either in direct or opposite orientation relative to 
the open reading frame; “RNA pol sites”, represents the RNA polymerase: their loca-
tion in the chromosome is studied as a distribution and encoded into fuzzy sets (close, 
medium, and remote). It also models the class of sigma 70 promoter [13]: class I pro-
moters bind to upstream locations (Fig 1.b). By contrast class II promoters bind to 
sites that overlap the promoter region. [14](Fig 1.c); and “expression”, which consid-
ers gene expression from multiple experiments represented as vector patterns. See 
[15] for a detail description of the learning process of these features.
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Fig. 1. Different cis-features participating in the regulation scheme.  a) PhoP binding box 
modeled as position weight matrices shown as logos: The characters representing the sequence 
are stacked on top of each other for each position in the aligned sequences. The height of each 
letter is made proportional to its frequency..  b-c)Two transcription factors had binded to a 
DNA strain and recruited RNA polymerase (Class I/II respectively). A PhoP box might be lo-
cated in the same strain as the polymerase (b) or in the opposite direction (c).   

Representation Model.  We use fuzzy sets as a common framework to represent the 
domain independent features. We cluster promoters considering each feature inde-
pendently by using fuzzy C-means clustering (FCM) method and a validity index [16] 
to estimate the number of clusters, as an unsupervised discretization of the features 

[9, 17].  For example, we obtained three clusters for the “expression” feature ( 1
1E : 

strong evidence of upregulation;  1
2E : mild evidence of upregulation; and 1

3E : evi-

dence of downregulation).  As a result of this process, we obtain initial prototypes of 
profiles, and are able to account for the variability of the data by treating these 
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features as fuzzy (i.e., not precisely defined) instead of categorical entities. Thus, our 
database is conformed by the membership of each promoter to each of the cluster of 
every feature. 

2.2   Profile Learning 

Our method uses a conceptual clustering approach to incrementally find significant 
characterization of promoters (profiles) while exploring the features space [18-20]. 
Initial profiles are aggregated to create compound higher level profiles (i.e. offspring 
profiles) by using the fuzzy intersection1.  In a hierarchical process, the number of 
features shared by a profile is increased, resulting in a lattice of profiles.  Level n pro-
files are built by aggregating level n-1 profiles (Fig. 2).  This is because the method 
re-discretizes the original features: 

n

k jk

n

k fkjkfj xV
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/ (1) 

where jkμ is the membership of the promoter k to cluster j; and kfx is the original raw 

data for feature f.  This allows to the prototypes of the profiles to be dynamically 
adapted to the promoters recovered by it.  In account of these new prototypes, the 
membership of the entire database of promoters is re-evaluated: 
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where fjw is the “bandwith” of the fuzzy set fjV  [16].  This allows re-assignations of 

observations between sibling profiles [21], which is especially useful to gain support 
to hypothesis in problems, such as ours, that have a reduced number of samples.  

2.3   Profile Evaluation 

We applied multiobjective and multimodal techniques to evaluate the performance of 
the profiles [8, 9, 22], considering the conflicting criteria of the extent of the profile, 
and the quality of matching among its members and the corresponding features. 

The extent of the profile is calculated by using the hypergeometric distribution that 
gives the probability of intersection (PI) of an offspring profile and its parents:  
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where iV is an alpha-cut of the offspring profile, of size h; jV is an alpha-cut of the un-

ion of its parents, of size n; p is the number of promoters of the intersection; and g is 
the number of candidates.  The PI is an adaptive measure that is sensitive to small sets 
of examples, while it retains specificity with large datasets [23]. 

1 Fuzzy logic-based operations, such as T-norm/T-conorm, include operators which are used as 
basic logic operators, such as AND or OR, [16]. In this work we used the MINIMUN and 
MAXIMUM as T-norm and T-conorm, respectively. 
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Fig. 2.  Schematic view of the method. The method navigates through the feature-space lattice 
generating and evaluating profiles. Hierarchically, profiles of one level are combined to gener-
ate the profiles of the following one. Observations can migrate from parental to offspring clus-
ters (i.e., hierarchical clustering), and among sibling clusters (i.e., optimization clustering). 

The quality of matching between promoters and features of a profile (i.e., similar-

ity of intersection (SI)) is calculated using the equation (4), where αU is an alpha-cut 

of the profile i and αn  is its number of elements. 

( ) { }αμμμ αα
α

>=−= ∑ ∈ ikikUk iki UfnVSI :1)( (4)

The tradeoff between the opposing objectives (i.e., PI and SI) is estimated by se-
lecting a set of solutions that are non-dominated, in the sense that there is no other so-
lution that is superior to them in all objectives (i.e., Pareto optimal frontier) [8, 9]. 
The dominance relationship in a minimization problem is defined by: 

)()()()( bOajObOaOiiifba jjii <∃≤∀≺ (5)

where the iO and jO are either PI or SI.  This approach is less biased than weighting 

the objectives  because it identifies the profiles lying in the Pareto optimal frontier 
[8, 9], which is the collection of local multiobjective optima in the sense that its 
members are not worse than (i.e. dominated by) the other profiles in any of the objec-
tives being considered. 

Another objective indirectly considered is the profile diversity, which consists of 
maintaining a distributed set of solutions in the Pareto frontier, and thus, identifying 
clusters that describe objects from alternative regulatory scenarios.  Therefore, our 
approach applies the non-dominance relationship locally, that is, it identifies all non-
dominated optimal profiles that have no better solution in the local neighborhood 
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[8, 9].  We evaluate niches by applying equation (3) to every pair of solution and es-
tablish a small threshold value as boundaries of neighborhoods. 

2.4   Evaluation of External Classes  

This proposed unsupervised method, in contrast to supervised approaches, does not 
need the specification of output classes. Consequently, the discovered profiles can be 
used for independently explain external classes as a process often termed labeling [7] 

Instead of choosing a single profile to characterize an external target set, the 
method selects all of the profiles that are correlated enough to the query set.  To find 
its classes of equivalence it applies equation (3) to the target set and the entire collec-
tion of profiles previously produced.  In this way, the method can recover all of the al-
ternative profiles that match the external class, including the most specific and general 
solutions.  

3   Results 

We investigated the utility of our approach by exploring the regulatory targets of the 
PhoP protein in E. coli and S. enterica, which is at the top of a highly connected net-
work that controls transcription of dozens of genes mediating virulence and the adap-
tation to low Mg2+ environments [24].  As little is known about the mechanism by 
which cis-regulatory features govern gene expression, we searched through the space 
of all potential hypotheses; evaluated them, by considering both their extent and simi-
larity of the recovered promoters; and obtained alternative descriptions for target set 
of genes.  Moreover, to tackle constrains of the crude classification obtained by mi-
croarray experiments -which would not have allowed finding detail topologies of 
promoters- in an unsupervised approach we modeled gene expression as one feature 
among many. 

We demonstrated that our method makes predictions at two levels: it detects new 
candidate promoter for a regulatory protein; and it indicates alternative possible con-
figurations by which genes previously identified as controlled by a regulator are 
differentially expressed. We recovered several optimally evaluated profiles, thus, re-
vealing distinct putative profiles that can describe the PhoP regulation process: 

One profile ( 4
2

4
3

4
2

4
1 PMEO : PI=1.57E-4, SI=0.002) corresponds to canonical PhoP-

regulted promoters  (e.g., those of the phoP, mgtA, rstA, slyB, yobG, ybjX, ompX, 
PagP, pdgL, pipD, and pmrD  genes) characterized by a class II RNA polymerase 
sites situated close to the PhoP boxes, high expression patterns and a typical PhoP box 
submotif in a direct orientation.  Notably, this profile recovers promoters previously 
not known to be directly regulated by PhoP.  The method was also able to describe 
this target by using other profiles, being the most general ones composed of only two 
features (Fig 3.a) 

Another profile ( 4
1

4
2

4
1

4
3 POME :PI=3.53E-4, SI=0.032) includes promoters (e.g., 

those of the mgtC, mig-14, pagC, pagK, and virK genes of Salmonella) that share 
PhoP boxes in the opposite orientation of the canonical PhoP-regulated promoters, as 
well as class I RNA polymerase sites situated at medium distances from the PhoP 
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boxes.  As expected, the method was able to identify this target set by more general 
hypothesis that aggregates again only two features (Fig 3.b). 

Finally, another profile ( 3
4

3
2

3
2 POE : PI=6.48E-06, SI=0.070), which is slightly dif-

ferent from the former, includes promoters (e.g., those of the ompT gene of E. coli 
and the pipD, ugtL and ybjX genes of Salmonella) is defined by a PhoP binding site in 
the opposite orientation, the RNA polymerase of the canonical PhoP regulated pro-
moters and a mild evidence of upregulation.  The method was also able to character-
ize this target by a specific Phop box submotif and the same type of RNA polymerase. 

The above profiles differ in the number of features because our method uses a mul-
tivariate environment, where feature selection is locally performed for each profile, as 
not every feature is relevant for all profiles.  The predictions made by our method 
were experimentally validated [10] to establish that the PhoP protein uses multiple 
mechanisms to control gene transcription. 

Furthermore, as these profiles can be used to effectively explain the different ki-
netic behavior of co-regulated genes, we measured the promoter activity and growth 
kinetics for GFP reporter strains with high-temporal resolution (Fig. 4); and obtained 
independent target sets by clustering them by using FCM.  We found that the cluster 
that recovers those promoters that expressed earlier rise times and higher levels of 
transcription (e.g. mgtA, ompX, pagP, phoP, pmrD, rstA, slyB, ybjX, yobG) is corre-

lated to profile 4
2

4
3

4
2

4
1 PMEO  (p-value < 0.03) (Fig. 3.a).  Another target set includes 

those promoters that expressed the latest rise time and lowest levels of transcription 
(e.g. mgtC, mig-14, pagC, pagK, pipD, ugtL, virK, pagD); and it is correlated to pro-

file 4
1

4
2

4
1

4
3 POME  (p-value < 0.013) (Fig. 3.b).  The cluster which contains the promot-

ers that showed intermediate values (e.g., those of the ompT gene of E. coli and the 

pipD, ugtL and ybjX genes of Salmonella) is correlated to profile 3
4

3
2

3
2 POE  (p-value < 

0.025)  
This detailed analysis of the gene expression behavior would not be possible to be 

obtained by applying a supervised machine learning approach because of the lack of 
kinetic data for some promoters.  

4   Discussion 

We showed that our method can make precise mechanistic predictions even with in-
complete input dataset and high levels of uncertainty; making use of several charac-
teristics that contribute to its power: (i) it considers crude gene expression as one 
feature among many (unsupervised approach), thereby allowing classification of pro-
moters even in its absence; (ii) it has a multimodal nature that allows alternative de-
scriptions of a system by providing several adequate solutions [9] that characterize a 
target set of genes; (iii) it allows promoters to be members of more than one profile 
by using fuzzy clustering thus explicitly treating the profiles as hypotheses, which are 
tested and refined during the analysis; and (iv) it is particularly useful for knowledge 
discovery in environments with reduced datasets and high levels of uncertainty.  
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Fig. 3. Chart of Correlated Profiles. Targets are display at the center of each chart, sur-
rounded by the profiles that hit them. Optimal profiles are situated closer to the targets. For 
each profile it is displayed the features that characterizes it, the promoters that recovers (bold-
face belonging to the target, and italic not belonging to it) and the correlation to the target set. 
E stands for “Expression”, P for “RNA Pol. Sites”, O for “Orientation” and “M” for “Submo-
tif”; subscripts denote the cluster and superscripts the re-discretized level.   
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Fig. 4. Rise time and levels of transcription. Transcriptional activity of wild-type Salmonella 
harboring plasmids with a transcriptional fusion between a promoterless gfp gene and the Salmo-
nella promoters. The activity of each promoter is proportional to the number of GFP molecules 
produced per unit time per cell [dGi(t)/dt]/ODi(t)], where Gi(t) is GFP fluorescence from wild-type 
Salmonella strain 14028s, and ODi(t) is the optical density.  The activity signal was smoothed by a 
polynomial fit (sixth order).  Details about genetic experiments can be found in 
http://www.pnas.org/ and about GFP assays available under requirements to the authors. 
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The predictions made by our method were experimentally validated [10] to estab-
lish that the PhoP protein uses multiple mechanisms to control gene transcription, and 
is a central element in a highly connected network.  These profiles can be used to ef-
fectively explain the different kinetic behavior of co-regulated genes. 
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