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Abstract. The increased availability of biological databases contain-
ing representations of complex objects permits access to vast amounts of
data. In spite of the recent renewed interest in knowledge-discovery tech-
niques (or data mining), there is a dearth of data analysis methods in-
tended to facilitate understanding of the represented objects and related
systems by their most representative features and those relationship de-
rived from these features (i.e., structural data). In this paper we propose
a conceptual clustering methodology termed EMO-CC for Evolution-
ary Multi-Objective Conceptual Clustering that uses multi-objective and
multi-modal optimization techniques based on Evolutionary Algorithms
that uncover representative substructures from structural databases. Be-
sides, EMO-CC provides annotations of the uncovered substructures,
and based on them, applies an unsupervised classification approach to
retrieve new members of previously discovered substructures. We apply
EMO-CC to the Gene Ontology database to recover interesting sub-
structures that describes problems from different points of view and use
them to explain inmuno-inflammatory responses measured in terms of
gene expression profiles derived from the analysis of longitudinal blood
expression profiles of human volunteers treated with intravenous endo-
toxin compared to placebo.

1 Introduction

The increased availability of biological databases containing representations of
complex objects such as microarray time series, regulatory networks or metabolic
pathways permits access to vast amounts of data where these objects may be
found, observed, or developed [1, 2, 3]. In spite of the recent renewed interest
in knowledge-discovery techniques (or data mining), there is a dearth of data
analysis methods intended to facilitate understanding of the represented objects



and related systems by their most representative features and those relationship
derived from these features (i.e., structural data).

Structural data can be viewed as a graph containing nodes representing ob-
jects, which have features linked to other nodes by edges corresponding to their
relationships. Interesting objects in structural data are represented as substruc-
tures, which consists of subgraph partitions of the datasets [4]. Conceptual clus-
tering techniques have been successfully applied to structural data to uncover
objects or concepts that relates objects, by searching through a predefined space
of potential hypothesis (i.e., subgraphs that represent associations of features)
for the hypothesis that best fits the training examples [5]. However, the for-
mulation of the search problem in a graph-based structure would result in the
generation of many substructures with small extent as it is easier to explain or
model match smaller data subsets than those that constitute a significant portion
of the dataset. For this reason, any successful methodology should also consider
additional criteria to extract better defined concepts based on the size of the
substructure being explained, the number of retrieved substructures, and their
diversity [4, 6]. The former are conflicting criteria that can be approached as
an optimization problem. Multi-objective optimization techniques can evaluate
concepts or substructures based on the conflicting criteria, and thus, to retrieve
meaningful substructures from structural databases.

In this paper we propose a conceptual clustering methodology termed EMO-
CC for Evolutionary Multi-Objective Conceptual Clustering that uses multi-
objective and multi-modal optimization techniques. The EMO-CC methodology
uses an efficient search process based on Evolutionary Algorithms [7, 8, 9], which
inspects large data spaces that otherwise would be intractable. Besides, EMO-CC
provides annotations of the uncovered substructures, and based on them, applies
an unsupervised classification approach to retrieve new members of previously
discovered substructures. We apply EMO-CC to the Gene Ontology database
(i.e., the GO Project [3]) to recover interesting substructures containing genes
sharing a common set of terms, which are defined at different levels of specificity
and correspond to different ontologies, producing novel annotations based on
them. Particularly, we use these substructures to explain inmuno-inflammatory
responses measured in terms of gene expression profiles derived from the analy-
sis of longitudinal blood expression profiles of human volunteers treated with
intravenous endotoxin compared to placebo [10].

This work is organized as follows. Section 2 reviews the conceptual clustering
problem. Section 3 describes the EMO-CC methodology. Section 4 shows the
customization and results of applying EMO-CC to the GO database to explain
gene expression profiles from the inflammatory problem. Section 5 introduces
the discussion.

2 Conceptual Clustering

Cluster analysis –or simply clustering– is a data mining technique often used to
identify various groupings or taxonomies in real-world databases [11]. Most ex-



isting methods for clustering are designed for linear feature-value data. However,
sometimes we need to represent structural data that do not only contains de-
scriptions of individual observations in databases, but also relationships among
these observations. Therefore, mining into structural databases entails address-
ing both the uncertainty of which observations should be placed together, and
also which distinct relationships among features best characterize different sets
of observations, having in mind that, a priori, we do not know which feature is
meaningful for a given relationship.

Conceptual clustering, in contrast to most typical clustering techniques [12],
have been successfully applied to structural databases to uncover concepts that
are embedded in subsets of structural data or substructures [4]. While most
machine learning techniques applied directly or indirectly to structural data-
bases exhibit methodological differences, they do share the same framework
even though they employ distinct metrics, heuristics or probability interpre-
tations [13, 4]: (1) Database representation. Structural data can be viewed as a
graph containing nodes representing objects, which have features linked to other
nodes by edges corresponding to their relations. A substructure consists of a
subgraph of structural data [4]; (2) Structure Learning. This process consists of
searching through the space for potential substructures, and either returning the
best one found or an optimal sample of them; (3)Cluster evaluation. The sub-
structure quality is measured by optimizing several criteria, including specificity,
where harboring more features always increases the inferential power; sensitivity,
where a large coverage of the dataset produces good generality; and diversity,
where minimally overlapping between clusters generates more distinct clusters
and descriptions from different angles; (4) Database compression. The database
compression provides simpler representations of the objects in a database; and
(5) Inference. New observations can be predicted from previously learned sub-
structures by using classifiers that optimize their matching based on distance
[14] or probabilistic metrics [5]).

3 An Evolutionary Multi-Objective Conceptual
Clustering Methodology (EMO-CC)

We explicitly propose a method for each of the conceptual clustering steps men-
tioned:

(1) Database representation by using structures as graphs, where nodes cor-
respond to database features and edges to the relationships among these
features.

(2) Structure learning by searching in the feature space to obtain optimal
substructures using an efficient multi-objective evolutionary algorithm, as
well as appropriate objective definitions to guide the search relying on the
NSGA-II algorithm [15]. Basic configuration of this algorithm is explained
below:
Chromosome representation. EMO-CC encodes feasible substructures in the
chromosomes of the algorithm population. Each chromosome is implemented



as a tree, where this representation in GAs is known as Genetic Programming
(GP) [16]. This chromosome representation encodes each node and edge of
the tree with a label, describing the type of feature, and an associated tag
that indicates the value of such feature. The initial population consists of a
set of chromosomes, each one built by choosing a random observation from
the input database and extracting a subtree from its tree representation. The
set of all non-dominated chromosomes of the final population represents a
clustering of the given data.
Genetic operators. EMO-CC applies crossover and mutation operators with
a given probability over the chromosomes composing the population of the
GP. The crossover operator is performed by swapping two random subtrees,
which is a classical choice in GP. The mutation operators used in our GP im-
plementation are also classical and straightforward: (1) Delete a leaf, where
a random leaf of the tree is selected and deleted along with the edge that
connects it to the tree; (2) Change a node, where a random node is selected
and replaced by another node belonging to the set of nodes constrained to
have the same tag; and, (3) Add a leaf, where a random leaf is created and
connected to the tree by a new edge.
Selection. EMO-CC uses a classical binary tournament selection method [17],
which chooses two parent chromosomes and selects the one with the higher
fitness value.
Multi-objective optimization. We consider that good substructures are those
ones that maximize the specificity and sensitivity objectives. On the one
hand, the specificity of a substructure is associated with its size (i.e., the
number of objects and features that compose the substructure), which cor-
responds to the size of the tree represented in the chromosome. On the
other hand, the sensitivity of a substructure is calculated as the number
of instances that occur in the substructure, where an instance occur in a
substructure if its tree representation is a subtree of the substructure tree.
These are opposing objectives since the more specific the substructure, the
less sensitive it becomes to detect new instances.
Non-dominance relationship. We select substructures that satisfy a trade-
off between their specificity and sensitivity by selecting a set of solutions
that are non-dominated, in the sense that there is no other solution that
is superior to them in all objectives (i.e., Pareto optimal front [8, 6]). An-
other objective that is indirectly considered is the substructure diversity,
which consists of maintaining a distributed set of solutions in the Pareto
front. Therefore, to address all of these objectives our approach applies the
non-dominance relationship locally, that is, it identifies all non-dominated
optimal substructures that have no better solution in a neighborhood [8, 6].
We consider that two substructures are in the same neighborhood if they
have at least a 50% of instances occurring in both of them calculated based
on the Jaccard’s coefficient [18].

(3) Clustering evaluation applying the non-dominance relationship between
conflicting criteria in a neighborhood to achieve cohesive, well supported,
and diverse substructures.



(4) Compression of substructures based on an circumstantial query, thus
allowing flexible and adaptive substructures to different contexts.

(5) Inference by using an unsupervised fuzzy k -nearest prototype classifier that
characterizes new instances based on available knowledge. It calculates the
membership of a query observation xq in a set of I previously identified
substructures.

4 Application of the EMO-CC Methodology to the Gene
Ontology Structural Database

Massive microarray experiments provide a wide view of the gene regulation prob-
lem; however, most of the biological knowledge extracted from these experiments
include few relevant genes, some of which are difficult to be identified because
of their low expression levels. Moreover, it is also difficult to distinguish among
expressed genes that behave differentially between treatments, time, patients
and other factors that are always hidden in typical microarray protocols (e.g.,
gender or age). Here we focus on the challenge of explaining these profiles and
re-discover them based on independent biological information.

We therefore apply EMO-CC to discover interesting substructures in the
Gene Ontology database that can explain classes composed of microarray gene
profiles having similar behaviors of their expression over time, treatment, and
patient. The Gene Ontology (GO) network stores one of the most powerful char-
acterization of genes, containing three structured vocabularies (i.e., ontologies)
that describe gene products in terms of their associated biological processes, cel-
lular components and molecular functions in a species-independent manner [3].
The GO terms are organized as hierarchical networks, where each level corre-
sponds to a different specificity definition of such terms (i.e., higher level terms
are more general than lower level terms). Particularly, from the computational
point of view, these networks are organized as structures called directed acyclic
graphs (DAGs), which are one way routed graphs that can be represented as
trees. Therefore, identifying which distinct relationships among features best
characterize different sets of observations does not only have to consider the
process of grouping distinct type of features, but also defining at which level of
specificity they have to be represented.

4.1 EMO-CC Customization for the GO Domain

We used the GO database and compatibilized the terms with descriptions pro-
vided by Affymetrix, where each observation of the database has the following
features: (1) Name: Affymetrix identifier for each gene in HG-U133A v2.0 set
of arrays; (2) Biological process: List of the biological processes where a gene
product is involved (e.g., mitosis or purine metabolism); (3) Molecular function:
List of the biological functions of the gene product (e.g., carbohydrate binding
and ATPase activity), which is indexed by a list of integer GO codes; and (3)
Cellular component: List of the cellular components indicating location of gene
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Fig. 1. An example of a chromosome representing a cluster. (a) The tree representation,
gray boxes represent the most specific GO terms of the concept of the cluster, the level
of each term is shown between parenthesis. (b) The list of genes that correspond to
the cluster. (c) The values corresponding to the sensitivity and specificity objective
functions.

products (e.g., nucleus, telomere, and origin recognition complex), which are
indexed by a list of integer GO codes.

An instance for the GO domain is redefined as the particular subset of values
that constitutes a prefix tree1 of a database observation in contrast to a subtree
as in the general case. Then, an instance occurs in a substructure if a subgraph
of the prefix tree that represent that instance matches with the substructure
tree, where this tree contains tagged nodes with the type of feature (e.g., bio-
logical process), and the corresponding values (e.g., GO:0007165), and the edges
represent relationship between features (i.e., tagged nodes).

Good substructures are those ones that result in a trade-off between sensi-
tivity and specificity. Although, the sensitivity can be calculated based on the
number of instances in a substructure, the specificity of the substructure is not
linearly dependent to its size, as it was previously defined based on the number
of nodes and edges because of the level component included in the GO domain.
Thus, we redefine the specificity as the distance among all most specific nodes
of an instance i and the closest leaf-node in the substructure S:

Specificity(S) =

∑K
i

∑U
u

dist(nodeu,nodei)
level(nodei)

K
(1)

where the distance is calculated as the number of edges between two nodes, the
level of a node is calculated as the length of the shortest path to the root node, U
is the number of leaf-nodes in substructure S, and K is the number of instances
occurring in substructure S. An example of a chormosome representing a cluster
concept is shown in Figure 1.

4.2 Experiments and Analysis of Results

The structural database used for the GO domain is composed of 1770 instances
of genes and their GO associated terms. The population of the evolutionary
1 Tree T ′ is a prefix tree of T if T can be obtained from T ′ by appending zero or more

subtrees to some of the nodes in T ′. Notice that any tree T is a prefix of itself.



algorithm is initialized by 50% of randomly chosen subtrees of the database and
by another 50% of random instances. The parameters of the algorithms used for
this domain are shown in Table 1. The EMO-CC approach was run ten times
with different seeds and the average of these runs is reported.

Table 1. Parameters for the GO domain

Parameter Value

Population Size 200
Number of Objective Evaluations 20000
Crossover probability 0.6
Mutation probability 0.2

4.3 Computational Analysis

We compare EMO-CC with two other methods, APRIORI and SUBDUE, all of
which satisfy in some extent those features shared by machine learning meth-
ods introduced in Section 3. Although APRIORI and SUBDUE are not MO
algorithms, we illustrate the obtained Pareto fronts in Figure 2 to perform fair
comparisons with EMO-CC. In addition, we verify the performance of the former
methods by applying some multi-objective comparison metrics, namely C and
ND [19, 20]. The metric C(X ′, X ′′) measures the dominance relationship between
the set of non-dominated solutions X ′ over other set of non-dominated solutions
X ′′. The value C(X ′, X ′′) = 1 means that all points in X ′′ are dominated by
points in X ′. The opposite, C(X ′, X ′′) = 0, represents the situation where none
of the points in X ′′ are covered by the set X ′. The metric ND(X ′, X ′′) compares
two sets of non-dominated solutions and gives the number of solutions of X ′ not
equal and not dominated by any member of X ′′. The values obtained by the
methods are shown in Table 2,
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Fig. 2. Pareto fronts for the GO domain by using two conflicting objectives: specificity
and sensitivity. (a) Non-dominated solutions reported by the APRIORI method. (b)
Solutions recovered by the SUBDUE method. (c) Substructures recovered by the EMO-
CC methodology, where more than one solution for the same specificity level indicates
that they correspond to different neighborhoods.



The obtained results of applying the former metrics reveal that there is no
solution obtained by EMO-CC that is dominated by APRIORI, and only one so-
lution obtained by SUBDUE dominates solutions belonging to the Pareto front
found by EMO-CC (Table 2(a)), as described by metric C, while there is no
solution of the latter method that dominates any solution from the other two
approaches. Moreover, the EMO-CC method discovers more non-dominated so-
lutions, as evaluated by metric ND (Table 2(b)), than both APRIORI and SUB-
DUE methods. The difference between the values reported by the ND metric
from EMO- CC and those ones from APRIORI and SUBDUE (i.e., 181.89 and
171.80 vs. 1.20 and 1.60 from Table 2(b)) suggests that EMO-CC retrieves al-
most all solutions identified by the other methods and covers a wide set of all of
optimal solutions that can be obtained in the GO domain. This is in contrast to
the few solutions that are identified by the APRIORI and SUBDUE methods,
but remain undetected by the EMO-CC method (i.e., 1.20 and 1.60 in average
from Table 2(b)).

In addition, the EMO-CC method recovers most and more diverse solutions
than those found by the APRIORI and SUBDUE methods. Particularly, our
approach retrieves substructures of the Pareto optimal front containing few in-
stances harboring several features (i.e., cohesive substructures), which were un-
detected by the other methods.

Table 2. Comparative evaluation of the solutions identified by APRIORI, SUBDUE
and EMO-CC for the GO domain by using different metrics

(a) C metric

C(X′, X′′) APRIORI SUBDUE EMO-CC average (stdev)

APRIORI - 0.00000 0.00000 (0 .00000)
SUBDUE 0.00000 - 0.00050 (0 .00160)
EMO-CC average (stdev) 0.00000 (0 .00000) 0.08421 (0 .04438) -

(b) ND metric

ND(X′, X′′) APRIORI SUBDUE EMO-CC average (stdev)

APRIORI - 1 1.20 (0 .42)
SUBDUE 13 - 1.60 (1 .17)
EMO-CC average (stdev) 181.80 (11 .99) 171.80 (11 .62) -

Biological results analysis using gene expression profiles. We consider 24
independent classes containing gene expression profiles derived from the analy-
sis of 48 GeneChips R© HG-U133A v2.0 from Affymetrix Inc., corresponding to
an inflammatory response study performed on human volunteers treated with
intravenous endotoxin compared to placebo [10]. The data has been acquired
from samples taken from human blood to eight patients over time at 0, 2, 4, 6,
9 and 24 hours, where four had been treated with intravenous endotoxin (i.e.,
patients 1 to 4) and four with placebo (i.e., patients 5 to 8). We will use these
gene expression profiles for validating the substructures detected by EMO-CC,
or, in other words, which are explained by these substructures.



Table 3. Clusters derived from the GO information by EMO-CC intersecting signifi-
cantly with class #13 from the gene expression information. Solid lines separate groups
of clusters which GO information is not related, while dashed lines separate clusters
within these groups, as shown in Figure 3.

#Substr. Biological process Molecular function Cellular component

179 GO:0006915 GO:0005887
apoptosis integral to plasma membrane
(level: 6) (level: 4)

536 GO:0007165 GO:0016021
signal transduction integral to membrane

(level: 4) (level: 3)

759 GO:0007165 GO:0005887
signal transduction integral to plasma membrane

(level: 4) (level: 4)

89 GO:0007154 GO:0016021
cell communication integral to membrane

(level: 3) (level: 3)

256 GO:0007154 GO:0016021
cell communication integral to membrane

(level: 3) (level: 3)
GO:0050875

cellular physiological process
(level: 3)

380 GO:0007165 GO:0016021
signal transduction integral to membrane

(level: 4) (level: 3)
GO:0050875

cellular physiological process
(level: 3)

607 GO:0004871 GO:0016021
signal transducer activity integral to membrane

(level: 2) (level: 3)

For example class #13 is described by several substructures (Table 3). Sig-
nificantly, these descriptions are based on different types of descriptions (e.g.,
process and cellular components) that belong to different levels of the GO struc-
ture (e.g., level 6 or level 4). These diverse substructures are optimal in the sense
that belong to the Pareto optimal front (Figure 2) between specific and sensitive
descriptions. The effect of the substructures on the explained class #13 can be
visualized in (Figure 3).

EMO-CC, as a machine learning method (see Section 3 (4)), compresses those
substructures that explain an expression profile from the same point of view to
provide a summarized explanation of this phenomena (Table 3). For example,
substructures #89 and #216 are compressed because they are indistinguishable
for the class corresponding to the expression profile #13, while substructure
#179 describes it from a very different point of view and is preserved as a diverse
solution. This compression is dynamic because substructures are re-grouped in a
context-dependent fashion, where the context corresponds to an explained class
and a different classification can produce a distinct substructure association (e.g.,
substructures #89 and #216 are indistinguishable for class #13, while may be
not the case for other class of microarray or clinical experiments). Notably, this
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Fig. 3. The effects of the explanation of the expression class #13 based on the GO
substructures identified by EMO-CC. The dashed rectangle illustrated the local ap-
plication of the non-dominance relationship within a class, and the summarization of
two indistinguishable substructures for this class. Grey filled graphs correspond to the
compressed substructures of Table 3.

classification is performed based on completely external information provided by
GO database, instead of the levels of expression.

In addition, EMO-CC applies an unsupervised inferential approach (see Sec-
tion 3 (5)) which calculates the membership of a query observation xq in a set
of I previously identified substructures, to classify new instances. Since the ob-
tained substructures are not disjoint, a given observation may belong to more
than one cluster.

The unsupervised inferential mechanism of EMO-CC allows to identify new
genes belonging to a particular expression profile. This is exemplified by the gene
212659_s_at, which was recovered by its proximity to substructure #824 and
shows a similar expression pattern to the genes of class #17 (Figure 4), but was
ignored by the statistical methods used to recover differentially expressed genes
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Fig. 4. Expression of Substructure B #824 where gene product 212659 s at is classi-
fied. The observation classified is highlighted.

[10]. It is noteworthy that this gene was not identified by its similarity with
the centroid of the expression class #17, but from an independent substructure
provided by EMO-CC.

5 Discussion

Unlike typical clustering techniques, conceptual clustering methods have been
successfully applied to structural information in order to reveal hidden concepts
by searching through a predefined space of potential hypothesis. However, the
formulation of the search problem in a biological network would often result in a
conflicting paradigm. On the one hand, generating a large number of substruc-
tures, each containing a very small number of genes that share all considered
features, makes it hard to find commonalities among similarly regulated genes.
On the other hand, generating a small number of groups in which their members
share a limited number of features, would fail to discriminate between members
of a molecular pathway.

In order to tackle these problems, we proposed the EMO-CC methodology
that identifies conceptual clusters and classifies co-regulated genes based on mul-
tiple features that characterizes them, including functional descriptions, molec-
ular processes and cellular components, at different levels of specificity.

EMO-CC allows gene membership to more than one substructure by using a
flexible classifier [14, 21], thus, explicitly treating the substructures as hypothe-
ses, that can be tested and refined [5]. Moreover, these hypotheses can produce
novel annotations among different types of features at multiple specificity levels,
which explain co-regulation phenotypes and can be used to conduct gene-wide
searches.

Also, EMO-CC considers gene expression as one independent feature, thereby
allowing classification of genes even in the absence of its expression. Moreover,
EMO-CC minimizes the number of substructures by using a flexible compression
strategy that groups similar substructures based on their ability to describe
gene profiles derived from different experimental conditions (e.g., microarray
expression, or Chip-on-Chip binding occupancy).



Our proposed methodology is applicable to a wide set of domains, being
easily to customize to particular problem, and may be an appropriate white-
box technique to uncover rear and unknown patterns in structural databases.
Particularly, this guideline can be easily extended to more complex networks
comprising protein-protein or different regulatory interactions [1, 2].
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