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Abstract Genetic and genomic approaches have been used successfully to assign
genes to distinct regulatory networks, but the uncertainty concerning the connec-
tions between genes, the ambiguity inherent to the biological processes, and the
impossibility of experimentally determining the underlying biological properties
only allow a rough prediction of the dynamics of genes. Here we describe the GE-
NIE methodology that formulates alternative models of genetic regulatory networks
based on the available literature and transcription factor binding site evidence. It
also provides a framework for the analysis of these models optimized by genetic
algorithms, inferring their optimal parameters, simulating their behavior, evaluat-
ing them by integrating robustness, realness and flexibility criteria, and contrasting
the predictions to experimentally results obtained by Gene Fluorescence Protein
analysis. The application of this method to the regulatory network of the bacterium
Salmonella enterica uncovered new mechanisms that enable the inter-connection of
the PhoP/PhoQ and the PmrA/PmrB two component systems. The predictions were
experimentally verified to establish that both transcriptional and post-transcriptional
mechanisms are employed to connect these two systems.

1 Introduction

One of the biggest challenges of the post genomic era is determining when, where
and for how long genes are turned on or off [1]. Gene expression is determined
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by protein-protein interactions among regulatory proteins and with RNA poly-
merase(s), and protein-DNA interactions of these transacting factors with cis-acting
DNA sequences in the promoters of regulated genes [2]. These interactions define
complex genetic networks and the qualitative agreement between model and ex-
periment in a series of studies depends both on the design of the network topology,
which most of the times includes uncertain connections between genes, as well as on
the dynamic behavior of the network, which is affected by the ambiguity inherent to
the biological processes (e.g., monomer or dimmer binding of promoters, enzymes
having kinase and/or phosphatase activities, etc.) and the mathematical models used
to represent them. Moreover, the number of genes considered in the networks is
usually large compared to the number of the available measurements (e.g., time-
point expression), thus, more than one possible model may be consistent with the
subjacent data. Finally, the data always contains a substantial amount of noise [3,4]
which in addition to previous problems, makes it difficult to deduce the implications
of the underlying logic of genetic networks through experimental techniques alone.

We propose a methodology termed GENIE, for Gene Expression Networks
Iterative Explorer, which embraces the uncertainty inherent to the biological prob-
lem and the imprecision of their underlined mathematical models by using an itera-
tive approach. First, GENIE proposes a network topology based on DNA sequence
analysis of transcription factor interactions, which, together with previous knowl-
edge from the literature, constitute the raw material for the architecture design. Sec-
ond, it transform the hypothesis provided by the network topology, by means of
its possible chemical reactions and physical constraints, into a system of nonlinear
ordinary differential equations [5]. Rather than advocating a single and definitive
model of the genetic network, we describe a variety of optimal models learned by
random walk [6] and improved by genetic algorithm techniques. Third, the network
non-linear models are evaluated by testing their ability to reproduce the biological
behavior observed in vivo. Fourth, the successful models are tested by considering
different emergent properties, such as flexibility to reproduce all possible functional
patterns, and robustness to changes in parameters and initial conditions.

We apply GENIE to uncover regulatory networks in the bacteria Salmonella en-
terica serovar Typhimurium by focusing on cross-link between the PhoP/PhoQ and
PmrA/PmrB two-component systems, which govern virulence and the adaptation
to low Mg2+ and high Fe3+ environments, respectively [7], and verified our pre-
dictions by measuring time-dependent gene expression using Gene Fluorescence
Protein (GFP) techniques.

2 Problem: Computational and Biological Challenges

Modeling genetic networks: The scientific community has put a considerable
amount of effort into designing approaches to model genetic networks [8]. Most
of the models define species as nodes, and interaction between them as links of a
graph. They differ in the values assigned to the nodes (i.e. initial concentration) and



links (i.e. the value of the interaction between the species), generating alternative
models. Indeed, the interactions between elements can be considered as static or
dynamic, and the entire model can be studied in a stochastic or deterministic context
(e.g. Boolean, discrete or continues) [9].

The usage of continuous values to determine the level of gene expression and
relationships among them results the most expressive model, because it allows cap-
turing biological properties that can be experimentally observed. Ordinary Differen-
tial Equations (ODE’s) are good approximation to continues models: ODE’s capture
the system by equations that calculate the difference of concentration of species (i.e.
RNA, proteins) along the time. Statical ODE’s [10] model the systems when they
reach their steady state (i.e. the system has reached an equilibrium in which the
difference of concentrations of species in function of time is equal to zero).

In contrast, dynamic models [5] do not necessarily consider this equilibrium, en-
abling the observation of the gene expression behavior over time. This important
characteristic allows the temporal simulation of the system, results critical when
studying biological systems, in which is possible to experimentally observe the dy-
namics for different sets of stimuli. An interesting concept of dynamic ODE’s mod-
els is that the actual values of the parameters are not a priori estimated. Instead,
the model can be evaluated by employing different sets of parameters to test if it
follows certain macroscopic patterns previously known. As a result, the quality of
the obtained network is not only determined by the chosen model, but also by the
design of the inference method (i.e. learning strategy) that estimates the parameters
of the network.

Two-component systems: In prokaryotes organisms, the “two-component sys-
tems” are small networks that control an important amount of cellular functions,
constituting the main mechanism of signal transduction that allows the bacteria to
modify its cellular behavior in response to environmental stimuli. These systems
include a sensor protein that responds to specific signals and phosphorylates its
cognate regulators. The response regulators are mostly transcription factors pro-
teins (TF) that once they become phosphorylated, bind the DNA, and then, activate
or repress their target genes. Although there are between 30 to 60 different two-
component systems identified in bacterial genomes, they are not completely under-
stood and some of them can be also preserved in eukaryotic genomes [11].

The PhoP/PhoQ two-component system constitutes a master regulator in
Salmonella enterica, regulating the transcription of more than 2% of the genes
in response of a low extra cellular Mg2+. Another two component system present in
this bacteria is the PmrA/PmrB system, which is related to the polymyxin B antibi-
otic inducted resistance; resistance to cell death mediated by Fe3+ among others.
The target genes regulated by this system independently respond to two signals:
high level of extra cellular Fe3+, sensed by the PmrB protein; and low levels of
Mg2+, sensed by the PhoQ protein. This cross-talk between both two-component
systems is mediated by the pmrd gene, which resulting protein PmrD can bind the
PmrA protein probably in a posttranscriptional or posttranslational fashion. Curi-
ously, pmrD harbors a PmrA binding site that results in a negative feedback that
closes the regulatory loop. Although, this system has been widely studied [11], the
exact mechanisms that defines the system dynamics is still unknown (see Fig. 1).
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Fig. 1 The PhoP/PhoQ-PmrA/PmrB functional scheme in Salmonella enterica serovar
Typhimurium. The PhoQ protein senses low Mg2+ and the PmrB protein high Fe3+concentrations
from the environment and both proteins phosphorylate their cognate response regulators PhoP and
PmrA, respectively. Although each of these proteins control the expressions of their target genes
in response to their own signal, an alternative cross-talk suggest that some genes regulated by the
PmrA protein can be regulated by PhoP in low Mg2+ conditions via the PmrD protein. Indeed, a
transcriptional negative feedback has been detected in the pmrD gene

3 Discovering Genetic Networks Using GENIE

GENIE is devoted to infer genetic regulatory networks. It consists of three main
phases (see Fig. 2): (1) discovery of the components of the studied system, where we
analyze the literature, databases and experimental evidence of cis-features (e.g., TF
binding sites) to formulate alternative architectures for a genetic network and encode
these models as continuous ODE’s; (2) identification of the desired system, where
we learn the parameters of the network, simulate its dynamics, and evaluate the
performance of different models both by probabilistic measures and correlation with
experimental results; and (3) sensitivity analysis of the system parameters, where
we evaluate the robustness of the learned system and extract emergent properties
from the evaluated architectures that may uncover biological significance (e.g., gene
expression diversity).

3.1 System Components

GENIE discovers genetic regulatory networks by formulating hypothetical archi-
tectures, representing them as continuous models encoded as biochemical reactions
that encode the dynamics of the system under different constrains.

In spite of the fact that continuous model require a proper parameter configura-
tion, they offer the advantage that the parameterized components on which they are
constructed can model a complete set of analogous gene dynamic (i.e. expression



LEARN PUTATIVE 
CONNECTIONS IN ALTERNATIVE

ARCHITECTURES

Cis-sequence analysis + literature
+ databases + expert knowledge

MAP CONNECTIONS
 TO REACTIONS 

From Cis-features
to continuous models

LEARN ALTERNATIVE MODELS
BASE ON CONSTRAINS:

PARAMETERS AND SPECIES

Search & Optimization
Methods

EVALUATE MODELS Probabilistic measurements

CONSTRAINS SATISFIED ?

ANALYZE MODEL SENSITIVITY 
Scan Parameter Range

Predict diverse dynamics
by scanning parameters

VALIDATE RESULTS
Correlation to experimental

results

SY
ST

EM
 C

O
M

PO
N

EN
TS

SY
ST

EM
 ID

EN
TI

FI
C

A
TI

O
N

SE
N

SI
TI

V
IT

Y 
A

N
A

LY
SI

S
O

F 
PA

RA
M

ET
ER

S

Fig. 2 Flowchart of the GENIE methodology. Each phase is decomposed into different task that
are implemented in the methodology

intensity and rise time or order), thus these models can be customized to predict
gene expression of a complete cluster of genes.

Network architecture: Transcriptional regulation evidence can be found in se-
quences (Cis-sequence analysis methods). We employ machine learning techniques
[11] that analyze genome sequences and databases [12] to uncover initial hypoth-
esis about architectures. Moreover, regulation evidence can be reinforced by mi-
croarrays experiments, however, the constraints in such analyses hitherto allow a
relatively crude classification of gene expression patterns into a limited number of
classes (e.g., up- and down-regulated genes).

Developing incremental mode: our methodology incrementally formulates net-
work architectures to find the minimal one, according to the number of species
and interactions, that exhibits the experimentally observed properties. It starts with
a model that reflects the recovered information and postulates the most general



possible hypothesis for the unknown interactions. We express the rules that de-
termine the behavior of genetic regulatory networks by decomposing the network
into an aggregation of functional modules (e.g. negative/positive gene autoregula-
tion, gene direct regulation, (des)phosphorylation of a protein) [2], which in turn are
translated into a system of ODE’s [5].

Mapping sequence-based circuits into continuous models: GENIE relays on
Ingeneue software [5] which provides the Cash Karp method to integrate ODE’s
(see [5] for a comparative analysis of Cash Karp, SEBE, SEAPC, and Adams-
Bashforth-Moulton alternatives applied to biological problems such ours).

Network constrains: The optimization of genetic networks has to consider at
least two kind of constraints: Input/output constrains, where input signals activate
the system and produce a desired output gene expression; and temporal constrains,
which impose that the genes have to be ON and OFF at certain times with a specific
order. [13].

3.2 System Identification

3.2.1 Learning Network Parameters and Species

GENIE employs both random walk and genetic algorithms (GA) strategies to search
and optimize for parameters that identify the system. The random walk (RW) ap-
proach is a formalization of the intuitive idea of taking successive steps, each in a
random direction (Meir et al report in [5] that RW approach obtains better estima-
tion than linear optimization methods). GA provide a learning method motivated
by an analogy to biological evolution [14]: it iteratively updates a pool of hypoth-
esis, called population, to identify the best one. On each iteration, all members of
the population (represented as chromosomes) are evaluated according to the fitness
function. A new population is then generated by applying genetic operators (i.e.
crossover and mutation) to the most fit individuals.

Chromosome representation: we encode the parameters of the ODE’s as a vector
of real numbers. Fitness function: It considers the value of every specie for each con-
strain at simulated time = 300 seconds (see section 3.2.2). Selection: we employ bit
tournament to select the population that breed the new generation. Crossover: new
individuals are generating by applying both two-point crossover and arithmetical
crossover operators. Mutation: we employ the classical uniform mutation. Elitism:
we retain the 3 solutions with best score in the elite set.

3.2.2 Evaluating Networks using Probability Measurements

We determine the capability of network architectures and their related parameters to
reproduce the behavior of the living organism by applying a score function which
evaluates the predicted concentration of distinguished species (equation (1))
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where i represents each specie; xt represents the threshold for each specie; and αmax
is the worst possible value (i.e. 0.5). The functions Ton and To f f calculate a scalar
value based on the half-maximal-activity threshold, according to the constrains (i.e.
activated/repressed). A score value close to 0 indicates a high similitude with the
constrained (we consider that a solution represents the expected pattern if its score
is below 0.3).

Moreover, based on this score, we can compute the frequency of feasible
solutions, and estimate the corresponding probability of randomly finding a con-
figuration for a genetic network that fulfill the constrains (equation (2)). A high
probability of finding configurations that reproduce the expected pattern can indi-
cate that the functionality is more related to the network architecture itself than to
the parameters:

pn = f p = 10
log f

n (2)

where p is the probability of randomly choosing a feasible solution (i.e. a config-
uration that allows the architecture to reproduce the expected patterns); f is the
frequency of feasible configurations; and n is the number of parameters.

3.3 Sensitivity Analysis of Parameters

Different approaches have been proposed to evaluate the quality of the genetic
regulatory network models (e.g. robustness; and flexibility) [15]. However these
approaches partially evaluate the fidelity of model while representing a biological
system. In this work, we propose a global quality measure based on: Realism, the
model should be able to reproduce the experimentally observed behavior, relatively
independent of its parameters; Robustness, network architectures should preserve
the functional characteristic of the system when one or more parameters are per-
turbed. The models should tolerate variations without lost of realism of the link
parameters (relations between species), because of the biological property of net-
work resistance to subtle mutations of the participating genes; and node parameters
(concentrations), because of the intrinsic noise of molecular systems. Finally, the
flexibility criteria evaluates the capability of networks to simultaneously reproduce
distinct patterns of behavior (i.e. constrains) of the system under study.

We evaluate the Robustness of a network architecture by randomly choosing a
feasible solution and observe its behavior when we independently sample each pa-
rameter value, within a biological significant range, and fix the original configura-
tion values for the other parameters (scanning). Thus, we determine a feasible solu-
tion range for the parameters, indicating possible alternatives to adapt the network
to reflect the behavior of other genes.



Differential gene expression can be obtained from two distinct sources. A variety
of network motifs integrated in the network architecture produce distinct expression
in the target genes including the single-input (PhoP→ mgtA), the chained (PhoP→
pmrD→ pmrA→ pbgP) and the multi-component motif (PhoP→ pmrD→ pmrA
→ pmrD). Indeed, even within a particular network motif we can obtain differential
expression in distinct target genes (e.g., PhoP→mgtA; PhoP→ mgtC) by scanning
the range of feasible solutions. Thus, allowing making predictions about diversity
of unseen gene expression.

Furthermore, our methodology helps the evaluation of the biological significance
of the results, by comparing the predictions to experimentally obtained results. We
measure the promoter activity and growth kinetics for GFP reporter strains with
high-temporal resolution [11]; smooth the activity signal by a polynomial fit (sixth
order), and then we calculate the Pearson’s coefficient to estimate the correlation of
the experimental results and the values predicted by the model.

4 Application of GENIE to the PhoP/PhoQ-Pmra/PmrB
Two-component System Cross-talk

Learning Phop/PhoQ-PmrA/PmrB putative architecture: We considered the
crosslink of these two systems by a “forward” connection, from PhoP/PhoQ two
component system to the PmrA/PmrB system and a “backward” connection in the
opposite direction. Binding sites evidence (see Supplemental information Fig. 1 for
the analysis of the TF evidence) and CHIP experiments show that PmrA represses
the expression of prmD gene (i.e. “backward” connection). Given the fact that there
is no binding site evidence of regulation of pmrA gene by the product of the pmrD
gene we assume the “forward” connection of the systems is post-trancriptional (i.e..
PmrD protects the PmrA phosphatated form from the phosphating activity of PmrB)
(see Fig. 3 for the final refined network architecture; and Supplemental information
Fig. 2 for the initial reduced model).

Reactions and input concentrations of species: We translate architectures into
a system of ODE’s, by employing the Ingeneue library, which allows simulating
the dynamic behavior of the network architecture (see Supplemental information
Table 1 for the list of equations that model the final refined model).

The Fe3+ and Mg2+ concentration correspond to the “input” of the PhoP/PhoQ-
PmrA/PmrB two component systems, while the values of mgta, pbgP and pmrD
correspond to the “output” of the system. High values for the mgta and pbgP indi-
cate the activation of the PhoP/PhoQ and PmrA/PmrB system respectively. A high
value of pmrD shows the activation of the “forward” connection between the two
systems, and a low one the activation of the “backward” connection. (see Supple-
mental information Table 2 for a list of expected patterns of behavior).

Learning parameters: We test the inference method by executing our GA using
different configurations (i.e. population size, number of generations) and observe
that both the population size and the maximum number of executions independently
improve the quality of the results (see Table 1).
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Fig. 3 Final refined model. The species interact as follows: 1/2- Low/High Mg2+ level favors
the PHOP-ACT(ivated)/PHOP state in equilibrium. 3/4- High/Low Fe3+ level favors PMRB-
ACT(ivated)/PMRB state in equilibrium. 5/6- phop phoq is translated into PHOQ/PHOP proteins.
7/8- pmra pmrb is translated into PMRB/PMRA proteins. 9- PHOP is phosphorilated (PHOP-P)
by PHOQ-ACT kinase activity. 10.1- PHOP-P is desphosphorilated to PHOP by PHOQ phos-
phatase activity. 10.2- PHOP is phosphorilated to PHOP-P by PHOQ kinase activity. 11- PMRA
is phosphorilated to PMRA-P by PMRB-ACT kinase activity. 12.1- PMRA-P is desphosphorilated
to PMRA by PMRB phosphatase activity. 12.2- PMRA is phosphorilated to PMRA-P by PMRB
kinase activity. 13/14- PHOP-P/PMRA-P is spontaneous desphosphorilated to PHOP/PMRA.
15- PHOP-P activates the pmrD transcription. 16- pmrD is translated into PMRD. 17- PMRD
binds PMRA-P (constituting PMRD PMRA-P) which activates pbgP and represses pmrD genes,
but it is not affected by the phosphatase activity of PMRB-ACT. 18- PMRA-P PMRD unbinds into
PMRD and PMRA-P. 19/20- PMRA-P/ PMRA-P PMRD activates the transcription of pbgP gene.
21/22- PHOP-P activates the transcription of mgta/phoP phoQ. 23- PMRA-P activates the tran-
scription of pmrA pmrB. 24/25- PMRA-P PMRD/PMRA-P represses the transcription of pmrD.
26- PMRA-P PMRD activates the transcription of pmrA pmrB

Table 1 Evaluation of the performance of the GA

Population size Nbr. Generations Evaluations Best score Best solution generation

50 100 5,000 0.1914 20
200 100 20,000 0.0522 9
50 250 12,500 0.0473 22

Table 2 Performance comparison (Random walk vs. GA)

Population size Evaluations Best score

Random Walk 100,000 >0.25
GA 1,100/12,500∗ 0.0473
∗ The GA obtained the best score after 1,100 evaluations. Heuris-
tics like stall time can decrease the number of evaluations by
indicating possible algorithm’s stop condition.



Moreover, we compare the solutions obtained by the GA to the solutions ob-
tained by the random walk approach, obtaining a score difference above 0,20 (see
Table 2) [6].

Evaluating models: we initially propose a reduced model (see Supplemental in-
formation Fig. 2) designed as a test bed for our methodology: for sake of simplicity
it lacks of the “forward connection” between the PhoP/PhoQ and PmrA/PmrB sys-
tems. We formalize this lack of realism by not specifying the expression of pbgp
gene in a low Mg2+ and Fe3+ environment concentrations. The good probability
measure obtained by this initial model (p = 0.8341) in a flexible configuration gives
us a solid foundation to evolve it towards the final refined model (see Fig. 3), which
reflect the “forward” connection. Along the process, we adapt the constrains to ex-
pect the expression of pbgp in the above conditions and relaxed the expression of
pmrD in a low Mg2+ and Fe3+ environment concentrations (pmrD can be either ac-
tivated by PhoP or repressed by PmrA). This final refined architecture that is more
complex than the initial, thus requiring more parameters, actually obtains slightly
better probability measure (p = 0.8354).

Furthermore, we measure the promoter activity and growth kinetics for GFP
reporter strains with high-temporal resolution [11] forour distinguished genes
phoP,mgta andpmrD, smooth the activity signal and then calculate the correlation
to the predictions of the model. Pearson’s coefficient indicates a correlation of
0.997 for pmrD gene; 0.983 for the mgta gene; and 0.991 for the pbgp gene, which
reflects a highly correlated behavior between our predictions and the experimentally
obtained values (see Fig. 4)

Sensitivity of the model: Our analysis of the sensitivity of the final refined net-
work architecture for the PhoP/PhoQ-PrmA/PrmB system shows a tolerance of dif-
ferent magnitude order for distinct set of parameters. (see Supplemental information
Fig. 3 for a detail description). Indeed, the final network architecture behaves ac-
cording to the expected pattern when parameters (e.g nu phop mgta) take the entire
biological meaningful range. Moreover, the architecture has only 3 parameters (i.e.
a 4.5% of the 66 parameters) that can accept less than 25% of their entire range,
what shows the robustness quality of our final refined network. (see Supplemental
information Table 3 and Fig. 4)

Predicting by scanning ranges of feasible solutions: we hypothesize about the
different kinetic behavior that genes co-regulated by PhoP might exhibit by scanning
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the parameters related to the mgtA specie (i.e. the distinguished specie that repre-
sents Phop regulated genes) in the previously learnt range of values. We observe
that the simulation of the model can produce different patterns of rise time and level
of expression, what is desirable for the operon of a master regulator like PhoP (see
Fig. 5a and supplemental information Table 4 for the obtained results).

Validating results: we perform GFP experiments to evaluate the rise time and
level of expression of PhoP regulated genes (see Fig. 5b), and calculate the correla-
tion (c) between these experimentally obtained results to the patterns already pre-
dicted (See supplemental information Table 5 for a detail correlation results). Our
analysis shows that pattern 12 predicts the dynamics of genes with early rise time
and high level of transcription (i.e. phop−−c = 0.913, pmrD−−c = 0.981, and
mgtA−−c = 0.975); pattern 13 correlates to genes with a late rise time and low level
of expression (i.e. pagC−−c = 0.917 and mgtC−−c = 0.919); and finally that pat-
tern 8 predicts genes with an intermediate kinetic behavior (i.e. rstA−−c = 0.946,
mig−14−−c = 0.922, pcgL−−c = 0.932)

5 Concluding remarks

The experiments and simulations for the genetic regulatory network PhoP/PhoQ-
PmrA/PmrB allowed us to extract several conclusions about the method shown
in this work and the network under study: (1) GENIE predicts interactions that
explain experimentally observed behaviors, the final refined architecture let predict
the in vivo observed interaction between the two-component systems PhoP/PhoQ
and PmrA/PmrB; (2) PmrA/PmrB and PhoP/PhoQ constitute a robust and flexi-
ble genetic network, our final refined model satisfies all of the constrains and only
4.5% of its parameters are limited to accept values that cover 25% of their biologi-
cal meaningful range; (3) GA approach is adequate for inferring regulatory genetic



networks, the heuristic produces a better proportion of feasible solutions and bet-
ter numerically evaluated results (i.e. scores) for the predictions which are highly
correlated to experimental values.

Finally, we would like to remark that the decisions regards the architecture en-
hancement (i.e. adding or not new elements) are based on the definition of condi-
tions (i.e. realness, robustness and flexibility) to be fulfilled by the models, all of
them satisfied by our final refined model for the PhoP/PhoQ-PmrA/PmrB genetic
regulatory network. Our approach to model regulatory genetic networks provides a
framework to explore genetic regulatory networks, including biochemical elements
(i.e. different equations to model the reactions), biological (i.e. constrains imposed
to the networks), and computational (i.e. simulations and a learning strategy that
tackles the high dimensional search space).

Tables and supplemental figures are available online at http://gps-tools2.wustl.
edu/NICSO2007/Appendix NICSO2007.pdf
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