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Abstract- One of the biggest challenges in genomics is the
elucidation of the design principles controlling gene expression.
Current approaches examine promoter sequences for particular
features, such as the presence of binding sites for a
transcriptional regulator, and identify recurrent relationships
among these features termed network motifs. To define the
expression dynamics of a group of genes, the strength of the
connections in a network must be specified, and these are
determined by the cis-promoter features participating in the
regulation. Approaches that homogenize features among
promoters (e.g., relying on consensuses to describe the various
promoter features) and even across species hamper the discovery
of the key differences that distinguish promoters that are co-
regulated by the same transcriptional regulator. Thus, we have
developed a an approach based on fuzzy logic expressions to
analyze proteobacterial genomes for promoter features that is
specifically designed to account for the variability in sequence,
location and topology intrinsic to differential gene expression.
We applied our method to characterize network motifs
controlled by the PhoP/PhoQ regulatory system of Escherichia
coli and Salmonella enterica serovar Typhimurium. We identify
key features that enable the PhoP protein to produce distinct
kinetic patterns in target genes, which could not have been
uncovered just by inspecting network motifs.

1. INTRODUCTION

Whole genome sequences and genome-wide gene expression
patterns (usually in the form of microarray data) provide the
raw material for the characterization and understanding of
transcription regulatory networks. These networks can be
represented as directed graphs in which a node stands for a
gene (or an operon in the case of bacteria) and an edge
symbolizes a direct transcriptional interaction. Recurrent
patterns of interactions, termed network motifs, occur far
more often than in randomized networks, forming elementary
building blocks that carry out key functions. This is a
convenient representation of the topology of a set of
regulatory Boolean (i.e. ON-OFF) networks, in which each
gene is either fully expressed or not expressed at all, or that it
has a binding site for a transcriptional regulator or lacks such
a site. However, this approach has serious limitations because
most genes are not expressed in a simple Boolean fashion.
Indeed, genes that are co-regulated by the same transcription
factor are often differently expressed with characteristic
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expression levels and kinetics. Therefore, a deeper
understanding of regulatory networks demands the
identification of the key features used by a transcriptional
regulator to differentially control genes that display distinct
behaviors despite belonging to networks with identical motifs.

The identification of the promoter features that determine
the distinct expression behavior of co-regulated genes is a
challenging task because: first, there are difficulties in
discerning the sequence elements relevant to differential
expression patterns (e.g., the binding sites for transcriptional
regulators and RNA polymerase) from a background of
variable DNA sequences that do not play a direct role in gene
regulation. Second, the sequences recognized by a
transcription factor may differ from promoter to promoter
within and between genomes and may be located at various
distances from other cis-acting features in different promoters
[1]. Third, similar expression patterns can be generated from
different or a mixture of multiple underlying features, thus,
making it more difficult to discern the causes of analogous
regulatory effects.

In this study, we present a method specifically aimed at
handling the variability in sequence, location and topology
that characterize gene transcription. Instead of using an
overall consensus model for a feature, where important
differences are often concealed because of intrinsic averaging
operations between promoters and even across species (see
Appendix), we decompose a feature into a family of models
or building blocks. This approach maximizes the sensitivity
of detecting those instances that weakly resemble a consensus
(e.g., binding site sequences) without decreasing the
specificity. In addition, features are considered using fuzzy
assignments, which allow us to encode how well a particular
sequence matches each of the multiple models for a given
promoter feature. Individual features are then linked into
more informative composite fuzzy expressions that can be
used to explain the kinetic expression behavior of genes. We
applied our method to analyze promoters controlled by the
PhoP/PhoQ regulatory system of Escherichia coli and
Salmonella enterica serovar Typhimurium. This system
responds to the same inducing signal (i.e. low Mg2+) in both
species [1, 2]. Moreover, the E. coli phoP gene could
complement a Salmonella phoP mutant [3]. The DNA-
binding PhoP protein appears to recognize a tandem repeat
sequence separated by 5 bp [1, 2], consistent with being a
dimer. The PhoP/PhoQ system is an excellent test case
because it controls the expression of a large number of genes,
amounting to ca. 3°0 of the genes in the case of Salmonella.
Furthermore, the PhoP/PhoQ regulon has been shown to
employ a variety of network motifs including the single-input
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module (Fig. IA), the multi-input module (Fig. IB), the bi-fan
(Fig. IC), the chained (Fig. ID), and also the feedforward
loop [1, 4]. Our analysis uncovered the salient features that
distinguish genes co-regulated by PhoP belonging to similar
networks. Gene transcription measurements provided
experimental support for the investigated predictions.

II. RESULTS

We investigated five types of cis-acting promoter features by
extracting the maximal amount of useful information from
datasets and then creating models that describe promoter
regulatory regions. This entailed applying three key strategies
(Appendix Fig. SI): first, we conducted an initial survey of
the data provided from different available sources, capturing
and distinguishing between broad and easily discernable
patterns. We then used these patterns as models to re-visit the
data with greater sensitivity and specificity, which allowed the
detection of those instances where a binding site sequence

resembles the consensus only weakly or where the distances
between the transcription factor and the RNA polymerase are

unusual. Second, we utilized fuzzy clustering methods [5, 6]
to encode how a promoter matches each of the multiple
models for a given promoter feature, which avoided having to
make premature categorical assignments, thus producing an

initial classification of the promoters into multiple subsets.
Finally, we applied fuzzy logic to link basic features into
more informative composite models that explain the distinct
expression behavior of genes belonging to similar networks
(Appendix Fig. SI and S2). Additional features are described
in the Appendix.

A. Transcription factor binding site submotifs

Many genes are controlled by a single-input network motif
where the affinity of a transcription factor for its promoter
sequences is a major determinant of gene expression (Fig.
2A). Thus, co-regulated genes displaying distinct expression
patterns are likely to differ in the binding site for such a

transcription factor. Methods that look for matching to a

consensus sequence have been successfully used to identify
promoters controlled by particular transcription factors.
However, the strict cutoffs used by such methods increase
specificity but decrease sensitivity, which makes it difficult to
detect binding sites with weak resemblance to a consensus

sequence [7].
To circumvent the limitation of consensus methods [8], we

decomposed the binding site motif of a transcription factor
into several submotifs and then combined the submotifs into a

multi-classifier (see Methods), which increased the sensitivity
to weak sites without losing specificity. In the case of PhoP,
we identified four submotifs (Appendix Fig. S3), and used
them to search both strands of the intergenic regions of the E.
coli and Salmonella genomes (Appendix Fig. S2). This
allowed the recovery of promoters, such as that corresponding
to the E. coli hdeA gene or the Salmonella pmrD, that had not
been detected by the single consensus position weight matrix
model [7] despite being footprinted by the PhoP protein [1, 4].

B PhoP RcsB 0D PhoP

pmrD

PhoP PmrA pmrA

PmrD yrbL pbgP

Fig. 1. The PhoP/PhoQ system employs a variety of network motifs to
regulate gene transcription. (a) In the single-input module, PhoP as a single
transcription factor regulates a set of genes (i.e. mgtA, phoP and pmrD). (b)
In the multi-input module, two or more transcription factors (e.g., PhoP and
RcsB) regulate a target gene (i.e. ugd). (c) In the bi-fan module, a set of genes
(i.e. pmrD and yrbL) are each regulated by a combination of transcription
factors (i.e. PhoP and PmrA). (d) In the chained motif, genes are regulated in
an ordered cascade.

To test the notion that PhoP binding to promoters with
different PhoP box submotifs is a determinant promoter
activity, we compared the gene expression patterns of wild-
type Salmonella harboring plasmids with a transcriptional
fusion between a promoterless gfp gene to different PhoP-
activated promoters. Faster GFP expression kinetics were

observed when transcription was driven by the phoP
promoter, which has the M2 submotif, than when it was

driven by the pmrD promoter, which has the MI submotif,
(Fig. 2B-C). Thus, the binding site for a transcriptional
regulator is a key determinant in gene expression.
Performance. To evaluate the ability of the resulting models
to describe PhoP-regulated promoters, we extended the
dataset by including 772 promoters (RegulonDB V3.1
database [ 1]) that are regulated by transcription factors other
than PhoP (see "Search known transcription factor motifs" in
gps-tools.wustl.edu), by selecting the promoter region
corresponding to the respective transcription factor binding
site ± 10 bp. We considered the compiled list of PhoP
regulated genes as true positive examples (Appendix Table
SI) and the binding sites of other transcriptional regulators as

true negative examples to evaluate the performance of the
submotif feature. We used a leave-one-out crossvalidation
process (Crossvalind, Matlab r2006a), which is appropriate
for reduced datasets, as a procedure to estimate the variance
error on the training set (correct test estimation of 9400 vs.
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75% between submotifs and single position weight matrices,
respectively). Then, each matrix threshold has been
optimized for classification purposes by using the correlation
coefficient measurement (see below) based on the extended
dataset (Appendix Table S2). (See the complete evaluation of
genomes in gps-tools.wustl.edu). We found that the PhoP-
binding site model increases its sensitivity from 66% to 91%
when submotifs are used instead of a single consensus, while
its specificity went from 98% to 97% (correlation coefficient
73% vs. 87%).

We also obtained substantial improvements for other
transcription factors from RegulonDB. For example, by
considering the CRP regulator, we used 130 promoters
regulated by this protein in RegulonDB as the true positive
values and 642 regulated by other proteins than CRP as
negative examples. We found that the sensitivity of the CRP
model for binding sites increases from 29% to 50%, by using
submotifs instead of a single consensus, while the specificity
remains the same at 98% (correlation coefficient 39% vs.
62%). Overall, by considering transcription factors with more
than ten reported binding sequences in the RegulonDB data
base (including CRP, Lrp, FIS, IHF, FNR, ArcA, NarL, GlpR,
PurR, OmpR, TyrR, AraC, Fur, CytR, FruR,Hns, ArgR,
DnaA, PhoB, and LexA), we could increase the sensitivity in
an average of 35%, while retain almost the same sensitivity
than a single position weight matrix (average correlation
coefficient 87%).

B. Transcriptionfactor binding site orientation

Functional binding sites for a transcription factor may be
present in either orientation relative to the RNA polymerase
binding site. This is due to the possibility of DNA looping
and to the flexibility of the alpha subunit of the bacterial RNA
polymerase in its interactions with transcriptional regulators
[9]. Analysis of PhoP-regulated promoters revealed that the
PhoP box could be found with the same probability in either
orientation in the intergenic regions of the E. coli and
Salmonella genomes (Appendix Fig. S7). For example, the E.
coli ompT and yhiW promoters and the Salmonella mig-14,
pipD, pagC and pagK promoters harbor putative PhoP
binding sites in the opposite relative orientation to that
described for the prototypical PhoP-activated mgtA promoter
[1] (Appendix Fig. S2). Yet other promoters (i.e. those of the
ybjX, slyB, yeaF genes in E. coli and the virK, ybjX, and mgtC
genes in Salmonella) contain sequences resembling the PhoP
box in both orientations. The demonstration that PhoP does
bind to the mgtC, mig-14 and pagC promoters [1], which
harbor the PhoP binding site in the opposite orientation as in
the mgtA promoter, validates our predictions and argues
against alternative network designs where these promoters
would be regulated by PhoP only indirectly [10].

To assess the contribution of PhoP box orientation to
gene expression, we determined the fluorescence of wild-type
Salmonella harboring plasmids with a transcriptional fusion
between a promoterless gfp gene to PhoP-regulated promoters
that differed in the orientation of the PhoP box. Promoters
with the PhoP box in the direct orientation, such as those

corresponding to the yobG and slyB genes, were transcribed
earlier and faster than the pagK andpagC promoters in which
the PhoP box is in the opposite relative orientation (Fig. 3A-
C). This is in spite of the fact that yobG and pagK promoters
are equally divergent from the PhoP binding site consensus
(60% and 66% of the consensus information content
(Appendix Fig. S3), respectively). Furthermore, promoters
sharing the same PhoP binding site submotif but arranged in
different orientations (e.g. the ugd and mig-14 promoters)
produced distinct rise times and expression levels (data not
shown).

Fig. 2. The PhoP protein achieves differential expression using the single-
input network motif by controlling genes that differ in their binding site
submotifs. (a) PhoP regulates several promoters (i.e. phoP and pmrD) using a
single-input network motif. (b) The PhoP protein recognizes a binding site
motif consisting of a hexameric direct repeat separated by 5 bp, but
distinguishes between different submotifs with different specificities. We
identified four of these classes (M1- M4; Appendix Fig. S3), and tested the
influence of this cis-feature in the phoP and pmrD Salmonella promoters
corresponding to class M2 and M1, respectively. (c) Transcriptional activity of
wild-type Salmonella harboring plasmids with a transcriptional fusion
between a promoterless gfp gene and the Salmonella phoP (red color) or
pmrD (blue color) promoters. The activity of each promoter is proportional to
the number of GFP molecules produced per unit time per cell
[dGj(t)/dti ODj(t)], where Gi(t) is GFP fluorescence from wild-type
Salmonella strain 14028s culture and conditions described in Methods, and
ODj(t) is the optical density. The activity signal was smoothed by a
polynomial fit (sixth order). Faster and earlier GFP expression was observed
when transcription was driven by the phoP promoter, which has the M2
submotif, than by the pmrD promoter, which has the M1 submotif.

C. RNA polymerase site

The distance of a transcription factor binding site to the RNA
polymerase binding site(s) and the class of sigma 70 promoter
are critical determinants of gene expression [9]. These classes



correspond to the different types of contacts that can be
established between a transcription factor and RNA
polymerase. We identified seven patterns among PhoP-
regulated promoters of E. coli and Salmonella (Appendix Fig.
S2) that combine promoter class and distance between the
PhoP box and the RNA polymerase site (Appendix Fig. S5).
These patterns may correspond to different kinetic behaviors
within a network motif [9]. For example, the ugtL and pagC
promoters share the orientation of the PhoP box but differ in
the distance of the PhoP box to the RNA polymerase binding
site (Fig. S4A-B). This may account for the different dynamic
behavior of these promoters when tested in a wild-type strain
harboring plasmids with promoter fusions to the promoterless
gfp gene (Fig. S4C). In addition, some PhoP-regulated
promoters (e.g. the hemL and phoP promoters of E. coli)
contain several putative RNA polymerase binding sites
located at different positions and belonging to different
classes, suggesting that such promoters may be regulated by
additional signals and/or transcription factors [2].
Performance. The RNA polymerase site feature was
evaluated using 721 RNA polymerase sites from RegulonDB
as positive examples and 7210 random sequences as negative
examples. We obtained an 82% sensitivity and 9500
specificity for detecting RNA polymerase sites. These values
provide an overall performance measurement (see below) of
92% corresponding to a false discovery rate <0.001 and a
correlation coefficient of 82%. In addition, we selected 34
examples of RNA polymerase sites reported to be of class II,
which all differ from the typical class I promoter by exhibiting
a degenerate -35 sequence motif [2, 9], and obtained 7400
sensitivity and 9500 specificity.

D. Binding sitesfor other transcriptionfactors.

Certain promoters harbor binding sites for more than one
transcription factor. This could be because transcription
requires the concerted action of such proteins, or because the
promoter is independently activated by individual
transcription factors, each responding to a distinct signal. We
analyzed the intergenic regions of the E. coli and Salmonella
genomes for the presence of binding sites for 54 transcription
factors [11]. We then investigated the co-occurrence of 24
sites with the binding site of the PhoP protein in an effort to
uncover different types of network motifs involving PhoP-
regulated promoters. For example, the Salmonella pmrD, ugd
and yrbL promoters and the E. coli yrbL promoter harbor
PhoP- and PmrA-binding sites, consistent with the
experimentally-verified regulation by both the PhoP and
PmrA proteins that can be described by the bi-fan network
motif [1, 12] (Fig. 4A). In addition, the relative position of
transcription factor binding sites (Appendix Fig. S6D) can
play a critical role because the PmrA-box in the Salmonella
pmrD and yrbL promoters is located closer to the PhoP-box
(-38 bp and -24 bp, respectively) than in the udg promoter
(-65 bp), which could account for the different expression
patterns exhibited by their respective genes (Fig. 4B-C). By
analyzing both the binding site quality and the location of

identifying co-regulated promoters. By considering the
presence of binding sites for multiple transcription factors, it
is possible to generate hypotheses about potential network
motifs. This notion was experimentally verified [1], validating
our prediction.

III. MATERIALS AND METHODS

Our method consists of three phases (Appendix Fig. SI): first,
encoding the available information into preliminary model-
based features, which includes identifying cis-features from
DNA sequences and information from available databases;
performing initial modeling of each individual feature,
allowing the process of multiple occurrences of a feature and
using relaxed thresholds and permitting missing values. A
model-based feature is generated by the identification of a

feature in a subset of observations (F) in the dataset, based on

measuring the degree of match (Q) between an observation
and a model, or a family of models (M={ Ma }), at some

degree (a) defined in a unit-interval scale (i.e., fuzzy values,
Q(F, MAa)) [13-15]. Second, grouping the results into

subsets, thus, decomposing the preliminary models into a

family of models or building blocks by using fuzzy clustering.
Third, combining the same or different types of features by
using fuzzy logic expressions and describing new promoters
using the resulting models.

A. Dataset

We initially used the intergenic regions of E. coli and
Salmonella operons from -800 to +50 because >500 are larger
than 800 bp in bacterial genomes (as described in the
RegulonDB database or generously provided by H. Salgado);
however, predictions have been performed in whole coding
and non coding regions (see gps-tools.wustl.edu). The
promoter and transcription factor information was taken from
RegulonDB database. We compiled from the literature and
our own lab information (Appendix Table SI) genes whose
expression (using microarrays) differed statistically between
wild-type and phoP E. coli strains experiencing inducing
conditions for the PhoP/PhoQ regulatory system [1], as well
as a list of genes known/assumed to be PhoP regulated
(Appendix Table S2). However, this information did not
explicitly indicate whether these genes were regulated directly
or indirectly by the PhoP protein. The learned features were

used to make genome-wide predictions in the E. coli and
Salmonella genomes.

B. Binding site submotifs and orientation

(1) We built an initial model for the PhoP binding site by
learning a position weight matrix (E-value < lOE-12) based
on the upstream sequences of genes corresponding to the
training set of the E. coli and Salmonella genomes (Appendix
Table S1). (2) We searched the intergenic regions of the
genes in both orientations, using low thresholds
corresponding to two standard deviations below the mean

transcription factor binding sites, we increase the chances of score obtained with the initial model [16]. Multiple PhoP



binding site candidates were allowed in a given promoter
operator region. (3) After transforming nucleotides into
dummy variables, we grouped sequences matching the PhoP
position weight matrix using the fuzzy C-means clustering
method with the Xie-Beni validity index (see below) to
estimate the number of clusters [5].

Fig. 3. Expression of PhoP-regulated promoters that differ in the orientation
of the PhoP-binding site. (a) PhoP regulates a set of promoters including
those of the Salmonella yobG, slyB, pagK and pagC genes using a single-
input network motif. (b) We established that when Salmonella experiences
low Mg2+, the PhoP protein binds to both the archetypal directly oriented
yobG and slyB promoters as well as the oppositely oriented pagK and pagC
promoters using chromatin immunoprecipitation (ChIP) in vivo. (c)
Transcriptional activity of wild-type Salmonella harboring plasmids with a

transcriptional fusion between a promoterless gfp gene and the Salmonella
yobG (red color) or slyB (green color) promoters reveals a much earlier an

higher levels of activity than the isogenic strains with fusions to the pagK
(blue color) and pagC (cyan color) promoters. Promoter activity was

determined as described in the legend to Fig. 2. Thus, the orientation of the
binding site for a transcriptional regulator contributes to the kinetic behavior
as well as the maximum expression levels achieved by the promoters.

(4) We built models for these clusters using position weight
matrices (E-value < 1OE-22) and searched the E. coli and
Salmonella genomes to characterize each gene according to its
similarity to each model as a fuzzy partition (Appendix Fig.
S2 and S2).

C. RNA polymerase sites

(1) We gathered sigma 70 class I and class II promoters [11]
from the RegulonDB database. Then, we built models of the
RNA polymerase site using a neuro-fuzzy method (see HPAM
in gps-tools.wustl.edu [17]), and used the resulting models to
perform genome-wide descriptions of the intergenic regions
of the E. coli and Salmonella genomes with a false discovery

rate <0.001 (see Promoter search in gps-tools.wustl.edu). (2)
We used an intelligent parser to differentiate class I and class
II promoters that evaluate the quality of the -35 motif [9],
based on fuzzy logic and genetic algorithms techniques (see
MOSS in gps-tools.wustl.edu [18]). (3) To characterize the
distance relationship between transcription factors binding
sites and RNA polymerase binding sites, we built models of
such distances from the examples reported in the RegulonDB
database. (3.1) We modeled activated and repressed
promoters (see below Activated or repressed feature). (3.2)
We re-built histograms for each group of distances (i.e.
activated and repressed), distinguishing three overlapping
distributions for each of them (Appendix Fig. S5). (3.3) We
built models for distances by fitting their distributions into
models based on fuzzy membership functions, which were
termed close, medium and remote distances for each set of
activated and repressed genes. Finally, to characterize the
distance relationship between the PhoP box and putative RNA
polymerase binding site, we connected (2) and (3) by using
fuzzy logic-based operations (see below).

This process allowed us to retrieve the most
representative RNA polymerase binding site candidates for
each promoter region relative to the PhoP binding site (e.g.,
best class II RNA polymerase site, which is located close to
the PhoP box in an activated promoter), which were arrayed
and constituted the value of the RNA polymerase site feature
in Appendix Fig. S2.

D. Binding sitesfor other transcription factors

We developed models for different transcription factor
binding sites from the RegulonDB database as follows: (1)
We built position weight matrices for each transcription factor
using the Consensus/Patser program, choosing the best final
matrix for motif lengths between 14-30 bps if the
corresponding length had not been previously specified (see
"Consensus matrices" in gps-tools.wustl.edu). We accounted
for the motif symmetry (e.g., asymmetric, direct, inverted
[11]) if available (see "Search known transcription factor
motifs" in gps-tools.wustl.edu). (2) We searched the
intergenic regions of the E. coli and Salmonella genomes with
these models, using the overall performance measure (see
below) and additional 772 promoters from the RegulonDB
database [ 1] to establish a threshold (average E-value < 1 OE-
10) for each matrix [19] (see "Threshold consensus" in gps-
tools.wustl.edu). (3) We accounted for the distances between
distinct transcription factor binding sites occurring in the same
promoter region (e.g., the distance between the CRP and FIS
sites in the proP promoter) in promoters reported in
RegulonDB database and built a histogram with the obtained
results (Appendix Fig. S6D). (4) We fitted the histogram
using a fuzzy membership function (see below) and used this
model as a fuzzy cluster to characterize the distances between
a putative PhoP box and another putative transcription factor
binding site detected in the same region. (5) Finally, we
connected (2) and (4) by using fuzzy logic-based operations
as described above to characterize PhoP regulated candidates
promoters.



t'Ig. 4. Expression O 1hnoF-regulaltct promoters mat use tne hi-tan network
motif. (a) The Salmonella pmrD, and ugd promoters harbor experimentally
verified PhoP- and PmrA-binding sites that can be described by the bi-fan
network motif. (b) The distance between the PhoP and PmrA boxes in the
Salmonella pmrD and ugd promoters are different (-38 bp and -65 bp,
respectively). (c) Transcriptional activity of wild-type Salmonella harboring
plasmids with a transcriptional fusion between a promoterless gfp gene and
the Salmonella pmrD and ugd promoters. Promoter activity was determined
as described in the legend to Fig. 2. The two promoters confer different
expression and kinetic patterns.

E. Fuzzy logic expressions

Propositional calculus logic expressions can be extended by
incorporating predicates having fuzzy variables, which are

manipulated using various theorems/axioms and methods.
This approach, which has been widely used in several fields
including decision-making, artificial intelligence and
electrical engineering for many years, was applied to model
related features that describe different regulatory objects.
Thus, given a dataset X = {x1 ,...,xnJ, the feature that

characterizes it can be best described as a set

F1(X)={d,/ x,...,ddn/Xn} where {d1,...,dln}E {0,1} in

classical set theory and [0,1] in fuzzy set theory. These fuzzy
values represent the degree of matching between an

observation of the dataset and a fuzzy set. The degree of
matching is defined in the unit interval and can be obtained
from evaluating the membership function of the
corresponding fuzzy set (see below). Then, given

F2(X)= {d21/x1,...,d2n /xjn and the Minimum as an
intersection operator, we define the expression:

Fr(X) AND F2(X) = F nr F2= MIN(F[, F2)
{MIN(dl,I d2l) / XI I... I MIN(dlnn d2n) 1 Xn }

Fuzzy logic-based operations, such as T-norms/conorms,
include operators like MINIMUM, PRODUCT, or
MAXIMUM, which are used as basic logic operators, such as
AND or OR, or their set equivalents INTERSECTION or
UNION [5]. We used in this work the Minimum and
Maximum as T- and Tconorms, respectively.

F. Fuzzy membershipfunctions
They can be viewed as approximation of data distributions,
where the degree of matching in the [0,1] scale is calculated
using triangular functions. These functions were learned from
the projection of the histograms onto the variable domains
(Fig. S4) by simple regression and minimum squared
methods [20].

G. Performance Measurement

We use a correlation coefficient implementation to establish
best local thresholds for transcription factor binding site
motifs. That is, from a range of possible thresholds applied
over a particular motif, we choose the one that maximizes this
coefficient defined as:

CC =
(TP xTN) -(FP xFN)

/(TP + FP) x (TN + FN) x (TP + FN) x (TN + FP)

where specificity = TN/(TN + FP) and sensitivity = TP/(TP +
FN); P= positive, N=negative, T = true and F=false [19].
We constrained the sensitivity of the selected threshold to be
above the 60%. The false positive rate for binding site
analysis was calculated by detecting binding sites from other
transcription factors different from the one being evaluated
(RegulonDB database).

IV. CONCLUSIONS

We demonstrated that a transcription factor can mediate
differential expression of genes that are described even by the
same network motif. This is because of the functional
significance of variability in sequence, location and topology
that exists among promoters that are co-regulated by a given
transcription factor. We developed a flexible computational
framework to encode and to combine these promoter features,
which allows matching of cis-observations to multiple models
for a given promoter feature. This enables the description of
regulatory elements from different angles and the generation
of composite models that can be used to explain the different
kinetic behavior of co-regulated genes.

Finally, unlike regulators such as the Lacd and MelR [1]
proteins of E. coli that govern expression of single promoters,
many transcriptional regulators control multiple promoters
that express products required in different amounts or for
different extents of time. This is clearly the case for the



regulatory protein PhoP, which controls transcription of a
large numbers of genes, that can be described by a variety of
network motifs (Fig. 1). Our finding argues that
understanding a cell's behavior in terms of differential
expression of genes controlled by a transcription factor
requires a detailed analysis of a promoter's regulatory
features. As a single nucleotide difference in the binding site
for a transcription factor can dictate the requirement for co-
activator proteins [21], we feel that by considering multiple
models (as opposed to the relying on consensuses) it will be
possible to uncover subtle differences between regulatory
targets and to capture the salient properties of co-regulated
promoters.

APPENDIX

Additional

online at
IEEE. pdf.

text, methods, tables and figures are available

gps-tools2.wustl.edu/IEEE-FUZZY07/Appendix_
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