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res the use of different seismicity indicators as inputs for artificial neural networks. The combination of 
ors that have already been successfully used in different seismic zones by the application of feature 
ques is proposed. These techniques evaluate every input and propose the best combination of them in 
ation gain. Once these sets have been obtained, artificial neural networks are applied to four Chilean zones 
ic country in the world) and to two zones of the Iberian Peninsula (a moderate seismicity area). To make 
to other models possible, the prediction problem has been turned into one of classification, thus allowing 
of other machine learning classifiers. Comparisons with original sets of inputs and different classifiers are 
ort the degree of success achieved. Statistical tests have also been applied to confirm that the results are 

erent than those of other classifiers. The main novelty of this work stems from the use of feature selection 
proving earthquake prediction methods. So, the infor-mation gain of different seismic indicators has been 

 ranked or null contribution seismic indicators have been removed, optimizing the method. The optimized 
od proposed has a high performance. Finally, four Chilean zones and two zones of the Iberian Peninsula 
c-terized by means of an information gain analysis obtained from different seismic indicators. The results 
hodology proposed as the best features in terms of information gain are the same for both regions.
1. Introduction

The prediction of natural disasters has always been a challeng-
ing task for the human being. Currently, the prediction of tsunamis
[38], volcanic eruptions [19], thunderstorms [5], hurricanes [52] or
typhoons [46] has been addressed from many different points of
view. Nevertheless, the prediction of earthquakes stands out due
to the devastating effect they may cause in human activity, as thor-
oughly discussed by Panakkat and Adeli in 2008 [36] and, later in
2012, by Tiampo and Shcherbakov [47].

Despite the efforts made there is no system apparently capable
of simultaneously fulfilling all the requirements demanded by the
Seismological Society of America [3] to make an accurate predic-
tion: to predict when, where, how big and how probable is an
earthquake to occur.
This work is focused on the application of artificial neural net-
works (ANN) to improve earthquake prediction. In particular,
based on three previous works [30,35,40], it aims to obtain an opti-
mal set of seismicity indicators as ANN’s inputs. These three works
successfully applied completely different sets of inputs at Chile, the
Iberian Peninsula and southern California, respectively, three re-
gions with different geophysical properties. Moreover, Chile and
southern California are two of the areas with larger seismic activity
in the world, whereas the Iberian Peninsula is considered a moder-
ate activity area.

However, none of them provided an analysis on the correlation
exhibited between the inputs and the output. It is reasonable to
think that not all the features have the same predictive ability
and, even, that some of them could have decreased the prediction
quality. And this is precisely the main goal of this work: to apply
feature selection techniques to obtain a better set of features as
ANN’s inputs. It is expected, then, that the selection of the features
with higher correlation will lead to more accurate predictions. In
this sense, it is the first time that feature selection techniques have
been applied for earthquake prediction.
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Feature selection (or variable selection or feature reduction)
emerges as a crucial step to build robust models, especially when
too many variables form the set of input features. Although many
complex approaches have been proposed during the last decade
[6,17,42], the analysis of the information gain that every seismicity
indicator (or feature) presents is carried out to discover which ones
show larger correlation with the output.

The Chilean zones described in [39] and studied in [40] – Talca,
Santiago, Valparaíso and Pichilemu – have been subjected to anal-
ysis in order to assess the performance of such proposal. Also, the
two most seismic areas of the Iberian Peninsula – the Alborán Sea
and the Western Azores-Gibraltar fault –, described in [31], have
been analyzed and compared with the Chilean zones.

More specifically, the features proposed in [35] have been used,
for the first time, as inputs for both Chile and the Iberian Peninsula.
Then, a set containing all the features proposed in [35,30,40] has
been created for the six areas. Results reported after the applica-
tion of feature selection show that the optimal set of features is
the same for Chile and the Iberian Peninsula. Moreover, the use
of this new set generates better results, for all the metrics studied,
than those of sets in [35,30,40] individually applied. This fact con-
firms the need of assessing the adequacy of the seismicity indica-
tors and suggests that several patterns can be found for active
seismic areas regardless the physical properties of the area under
study. Additionally, this work provides the reader with a ranking
of all the features analyzed in terms of information gain, revealing
that some of them have null contribution.

The remainder of the work is structured as follows. Section 2
explores the works related with the application of ANN to earth-
quake prediction. Section 3 describes the methodology used, as
well as the mathematical fundamentals underlying the approach.
Sections 4 and 5 presents the results stemmed from the application
of the ANN to Chile and the Iberian Peninsula, respectively. In this
section a comparative analysis with other well-known classifiers is
also provided. A statistical analysis has been carried out in Section 6
to verify that the results obtained by means of the new methodol-
ogy are statistically different to all others. A discussion on the fea-
tures selected is presented in Section 7. Finally, the conclusions
drawn are summarized in Section 8.
2. Related works

This section is to provide the reader with a general overview of
the latest published works related with earthquake prediction and
all those that used ANN’s.

Firstly, it should be noticed that earthquake forecasting has
come in recent years to be synonymous with probabilistic state-
ments about seismicity distributions, whereas predictions empha-
size individual earthquakes. In this sense, the use of artificial
intelligence techniques has recently emerged as a powerful tool
for earthquake prediction. For instance, the use of a method called
Pattern Informatics that identifies correlated regions of seismicity
in recorded data that precede the main shock, was introduced in
[32], as well as its extended version for 3D zones [48]. Also, the
use of quantitative association rules and decision trees was applied
to predict shocks in the Iberian Peninsula [28]. The prediction of
medium-large earthquakes by means of the K-means algorithm
was presented in [31], where the authors discovered some patterns
preceding medium-large earthquakes. Also, hidden Markov models
were applied to predict earthquakes in California [14] or cellular
automata simulations in Turkey and Western Canada [21].

However, the application of ANN’s for earthquake prediction
highlights among other techniques, since it was first proposed for
evaluating the seismicity of Azores in 2006 [4]. The author used
techniques developed for forecasting another chaotic time series:
the financial markets. A neural network with three basic inputs:
time, intensity and location was used. Two earthquakes were cor-
rectly predicted using major groups of 1� longitude with a range of
±5–6 months. The author pointed out the necessity to integrate
physical precursors in order to narrow the predicting window. Pan-
akkat and Adeli [35] proposed three different ANN’s to predict
earthquakes magnitude for southern California and San Francisco
bay. Especially remarkable is the novel set of seismicity indicators
they used. This method yielded good results for earthquakes of
magnitude between 6.0 and 7.5. Later, the same authors, predicted
earthquake time and location in southern California, using a recur-
rent neural network [37]. To achieve such a task, they computed
eight seismicity indicators of earthquakes taking into consider-
ation the latitude and the longitude of the epicentral location as
well as the time of occurrence of the following earthquake. An-
other kind of ANN, a probabilistic neural network was evaluated
in [1] and also applied to southern California. The main novelty
was the use of this kind of neural network for classification pur-
poses, in particular, using the earthquake magnitude as a target la-
bel to classify. This model was accurate for magnitudes between
4.5 and 6.0, complementing the range of magnitude prediction of
the method proposed in [35]. Recently, Zamani et al. [51] have
studied the spatial–temporal variations in seismicity parameters
before the Qeshm earthquake in South Iran. For that purpose, they
used artificial neural networks and adaptive neural fuzzy inference
system. The authors, also, point out the necessity to choose more
appropriate seismicity parameters.

The seismicity of four zones of Chile, one of the countries with
higher seismic activity, was explored by means of neural tech-
niques in [40]. The authors proposed a particular architecture
and used a novel set of inputs, mainly based on the variations of
the b-value of the Gutenberg-Richter law, Bath’s law and Omori-
Utsu’s law. Especially remarkable is the small spatial and temporal
uncertainty their ANN’s presented (cells varying from 0.5� � 0.5� to
1� � 1� and 5 days, respectively).

ANN’s have also been applied to predict earthquake’s magni-
tude in Greece [26]. In this work, the authors only used the magni-
tude of the previous earthquakes as inputs and obtained a high
accuracy rate for medium earthquakes. However, the rate consid-
erably decreased when major seismic events were considered.

The suitability of applying ANN’s to the northern Red Sea area
has also been analyzed in [2]. This time, the authors proposed a
number of different architectures varying the number of hidden
layers, the transfer functions and the number of nodes. Then, they
compared their performance to several Box–Jenkins models [8].

Another hazardous area, India, has been subjected to study by
means of ANN’s [9]. After evaluating several architectures, the
authors concluded that the best one must include two hidden lay-
ers and the sigmoid transfer function. Also the tectonic regions of
Northeast India have been explored [44]. The authors retrieved
earthquake data from NOAA and USGS catalogues and proposed
two non-linear forecasting models. Both approaches are stable
and suggest the existence of certain seasonality in earthquake
occurrence in this area.

The East Anatolian fault system is known for causing many
earthquakes. A multi-layer Levenberg–Marquardt ANN was ap-
plied to predict earthquakes in that area in [25]. The main novelty
of this work lied on the use of variations of radon as ANN’s inputs.
Also in Turkey, an earthquake early warning system was developed
in [7]. To achieve this goal, an ANN making use of the information
provided by a seismic sensor network, that records ground mo-
tions, was proposed by the authors.

The unsupervised ANN’s version – Kohonen’s self-organized
maps [23] – was applied to study the concentration and the trend
of aftershocks occurred after the Sichuan (China) earthquake in
2008 [27]. The longitude, the latitude and the magnitude of the



Table 1
Summary of the set of features evaluated, including formulas and description.

Feature Notation Description

f 1
1

x1 bi � bi�4

f 1
2

x2 bi�4 � bi�8

f 1
3

x3 bi�8 � bi�12

f 1
4

x4 bi�12 � bi�16

f 1
5

x5 bi�16 � bi�20

f 1
6

x6 OU’s law

f 1
7

x7 Dynamic GR’s law

f 2
1

T Elapsed time

f 2
2

Mmean Mean magnitude

f 2
3

dE1/2 Square root of seismic energy

f 2
4

b Slope of magnitude-log plot

f 2
5

a a-value from GR’s law

f 2
6

DM Magnitude deficit

f 2
7

l Mean time

f 2
8

r Coefficient of variation

f 2
9

g Mean square deviation
aftershocks occurring within the next two days after the main
shock were predicted.

Finally, a general-purpose methodology, based on ANN, was
introduced in [22] to calculate the probability of earthquake’s in-
ter-arrival time for a particular zone, given a magnitude interval
or a magnitude greater than a preset threshold. To show its effi-
ciency, the authors validated their methodology on a wide variety
of datasets.

Note that despite the great effort done by the scientific commu-
nity to develop effective methods to predict earthquakes, no suc-
cessful method has yet been found. The main weakness of the
methods is related with the lack of features analysis. Thus, works
such as [1,2,26,35,40] applied a set of inputs intuitively selected
but no correlation with the output in test sets was studied or
shown. Furthermore, the spatial uncertainty is typically too large
to produce accurate predictions for particular areas. In particular,
[7,9,37] present such shortcoming. Temporal uncertainty is not
usually considered in statistical-based methods [14,21,32,48], i.e.
it is highly probable that, in active zones, an earthquake occurs
within one year.

For all the aforementioned, it becomes essential to develop
methods able to make predictions with an optimal set of inputs,
for a reduced area and for a short-time prediction horizon. That
is exactly what it is proposed in this work: analysis of several fea-
tures proposed by some works, predictions for reduced areas of a
maximum of 1� � 1�, and a temporal horizon of five to seven days.
3. Methodology

This section describes the tasks accomplished to improve the
prediction strategies followed in [40,30,35]. Fig. 1 illustrates the
full process. Every task is described below:

1. First of all, it is worth noting that a prediction problem has been
turned into a binary classification one. To perform such a task,
the labels assigned to every event or earthquake have informa-
tion about the future. That is, every sample has been labeled
with an 1 if an earthquake with a magnitude larger than a pre-
set threshold is occurring within the next days; and with a 0 if
not. The horizon of prediction has been set to five days for Chile
(as in [40]) and to seven days for the Iberian Peninsula (as dis-
cussed in [30]). The triggering thresholds are those that ensure
balanced training sets as proposed in [30,40].

2. Analysis of the quality of the features used in [40,30,35]. The
information gain has been measured for each set of features
separately. Table 1 lists the features considered in this work,
Set of 
inputs #1

Feature
selec�on

ANN

Set of 
inputs #2

Training 
sets

New set

NB, KNN, 
SVM

Fig. 1. Steps involved in
where bi are the ith Gutenberg-Richter’s b-values calculated as
in Eq. (9) from [40], OU stands for Omori-Utsu and GR for
Gutenberg-Richter.

3. Selection of the best features, in terms of information gain (see
Section 3.1), to be used as ANN’s inputs. That is, given the sets
F1 ¼ f 1

1 ; f
1
2 ; . . . ; f 1

7

� �
– corresponding to the features proposed

in [40,30] – and F2 ¼ f 2
1 ; f

2
2 ; . . . ; f 2

9

� �
– corresponding to the fea-

tures proposed in [35] –, every feature is evaluated and ranked
according to their information gain. To have a more detailed
description of the features, please refer to such papers. Then,
the new set of features, F0, with the seven features with higher
gain of information is formed. That is, F 0 ¼ f 01; f

0
2; . . . ; f 07

� �
where

every f 0i can belong to either F1 or F2, and all these seven features
exhibit higher information gain than the discarded nine ones
(#(F1 [ F2) = 16). Note that F0 is composed of seven features as
the ANN architecture applied in both [40,30] is going to be used.

4. Evaluation of the new set of features by means of a wide variety
of quality parameters (see Section 3.2), typically used for
assessing classifiers performance.

5. Application of tests to show the statistical relevance of the
results achieved (see Section 3.3). That is, to show that the
results obtained with the new set of features outperform former
sets, not only on average but also by means of statistical tests.
Additionally, the analysis of others classifiers’ performance is
also provided to confirm that the ANN proposed is the one that
fits better in this particular problem.
MODEL

Test
sets

Predic�ons

Comparisons

Predic�ons
Other

models

Sta�s�cal tests

the methodology.



Finally, it is important to remark that a prediction is made every
time that an earthquake of magnitude larger than 3.0 occurs. In
[40,30] it was shown that the cutoff magnitude for the earth-
quakes’ database of Chile and the Iberian Peninsula is 3.0. Ought
to the seismic activity of the areas under study, a prediction is
made almost daily.
3.1. Feature selection based on information gain

The open source Weka software [34] has been used to measure
the information gain associated with each feature with respect to
the class. This is a widely used standard feature selection method
that does not take into account feature interaction. This is the first
time that it has been applied for earthquake prediction. Informa-
tion gain has shown its usefulness in many fields such as image
processing [13,43], text categorization [53], spam filtering [49] or
brain-computer interface classification [24,45].

The information gain of a given feature f, regarding the class
attribute C, is the reduction in uncertainty about the value of C,
when the value of f is known, I(C; f). The uncertainty about the va-
lue of C is measured by means of the entropy, denoted by H(C). The
uncertainty about the value of C, when f is known, is given by the
conditional entropy of C given f, H(Cjf). In other words:

IðC; f Þ ¼ HðCÞ � HðCjf Þ ð1Þ

where the entropy of C, for discrete variables is defined as:

HðCÞ ¼ �
Xk

i¼1

PðciÞlog2ðPðciÞÞ ð2Þ

assuming that C can take values in {c1, . . ., ck}, and P(ci) is the prob-
ability that C = ci.

Then, the conditional entropy of C given f, assuming that f can
take values in {f1, . . ., fm} is defined as:

HðCjf Þ ¼ HðCÞ ¼ �
Xm

j¼1

PðfjÞHðCjfjÞ ð3Þ

where P(fj) is the probability that f = fj.
If the input feature f is continuous then, in order to compute its

information gain with the class attribute C, all possible binary attri-
butes, fh, are considered that arise from f when a cutoff threshold h
is chosen on f. h may take values from all the range of f. In this case,
the information gain formula is reduced to:

IðC; f Þ ¼ argmaxfh IðC; fhÞ ð4Þ

In this particular context, Weka has to deal with continuous fea-
tures, as all ANN’s inputs are real values. To calculate the informa-
tion gain associated with every feature Weka performs a previous
discretization of all the variables, turning the continuous problem
into a discrete one, which is typically easier to solve.
3.2. Quality parameters

To assess the performance of the ANN’s designed, several
parameters have been used. In particular:

1. True positives (TP). The number of times that an upcoming
earthquake was properly predicted.

2. True negatives (TN). The number of times that neither the ANN
triggered an alarm nor an earthquake occurred.

3. False positives (FP). The number of times that the ANN errone-
ously predicted the occurrence of an earthquake.

4. False negatives (FN). The number of times that the ANN did not
trigger an alarm but an earthquake did occur.
The combination of these parameters leads to the calculation of:

P0 ¼
TN

TN þ FN
ð5Þ

P1 ¼
TP

TP þ FP
ð6Þ

where P0 denotes the well-known negative predictive value, and P1

the well-known positive predictive value.
Additionally, two more parameters that correspond to common

statistical measures of supervised classifiers performance have
been used to evaluate the performance of the ANN’s. These two
parameters, sensitivity or rate of actual positives correctly identi-
fied as such (denoted by Sn) and specificity or rate of actual nega-
tives correctly identified (denoted by Sp), are defined as:

Sn ¼
TP

TP þ FN
ð7Þ

Sp ¼
TN

TN þ FP
ð8Þ
3.3. Statistical tests

A statistical analysis is proposed to evaluate the significance of
the new approach, following the non-parametric procedures dis-
cussed in García et al. [16].

When several classifiers need to be compared two different kind
of tests can be applied, depending on the previous statistical
knowledge of the data. Thus, when data are normally distributed
and variances among populations are equal (homogeneity), it is
usual to apply the ANOVA (ANalysis Of VAriance) test [12,41]. It
can also be used when the number of hypothesis is small enough
(typically less than 50), regardless data distribution.

However, the non-parametric version of ANOVA, the Friedman
test [15], is used when any assumption about data can be made.
This test is precisely the selected method to be applied in this
work, since a priori no previous knowledge is known from data.
This test is has been selected for this work since no previous
knowledge from data is known a priori. This method would still
be valid even if data followed a normal distribution. Indeed, it is
a generalization of ANOVA suitable for any kind of data
distributions.

For these reasons, the Friedman test has been selected in this
work. The steps are now detailed. Given a matrix n � k of data
{xij}, where n is the number of rows (experiments) and k the num-
ber of columns (the algorithms to be tested), the ranks within each
row is calculated. In case of tied values, the average of the ranks
that would have been assigned without ties is assigned to each tied
value. The data are replaced with a new matrix {rij} (also with n � k
elements), where each element rij is the rank of xij within row i.
Afterwards, the following values need to be found:

�r�j ¼
1
n

Xn

i¼1

rij ð9Þ

�r ¼ 1
nk

Xn

i¼1

Xk

j¼1

rij ð10Þ

SSt ¼ n
Xk

j¼1

ð�r�j � �rÞ2 ð11Þ

SSe ¼
1

nðk� 1Þ
Xn

i¼1

Xk

j¼1

ð�rij � �rÞ2 ð12Þ

Once (11) and (12) have been calculated, the result of the statistical
test is given by Q = SSt/SSe. Last, when n or k are big enough (typi-
cally n > 10 or k > 5), which is the situation occurred in this work,



Table 2
Average information gain for every feature in
[40] for Talca.

Average merit Feature

0.277 ± 0.030 x7

0.017 ± 0.052 x6

0.010 ± 0.030 x1

0.009 ± 0.028 x3

0 ± 0 x2

0 ± 0 x4

0 ± 0 x5

Table 3
Average information gain for every feature in
[35] for Talca.

Average merit Feature

0.203 ± 0.019 T
0.177 ± 0.019 l
0.160 ± 0.018 Mmean

0.084 ± 0.055 r
0.009 ± 0.027 g

0 ± 0 dE1/2

0 ± 0 DM
0 ± 0 a
0 ± 0 b

Table 4
ANN performance for Talca with the new set of seismicity indicators.

Parameter ANN [40] ANN [35] New ANN

TP 3 2 7
TN 23 22 30
FP 14 15 7
FN 5 7 1

Sensitivity (%) 37.50 22.22 87.50
Specificity (%) 62.16 59.46 81.08
P0 (%) 82.14 75.86 96.77
P1 (%) 17.65 11.76 50.00
Mean (%) 49.86 42.33 78.84
Q’s probability distribution can be approximated by that of a v2 dis-
tribution. In such case, the p-value is given by P v2

k�1 P Q
� �

.
Finally, once that it has been verified that p has a significant va-

lue, a post hoc analysis is carried out in order to find differences be-
tween couples of algorithms. There are many strategies than can be
followed, however, in this work, the Holm and Hochberg tests are
applied to follow the methodology described in [29]. Let H1, . . ., Hm

be a family of hypotheses and P1, . . ., Pm their associated p-values.
First, the p-values are sorted P(1), . . ., P(m), denoting their associated
hypotheses as H(1), . . ., H(m). Given a level of significance a, let be k
the minimal index such that:

PðkÞ P
a

m� 1þ k
ð13Þ

The procedure then rejects H(1), . . ., H(k�1) and does not reject
H(k), . . ., H(m). Note that k could be equal to 1. In this case, any
hypothesis would be rejected. Also, there could not be any k satis-
fying (13); in that case, all hypotheses are directly rejected. Finally,
the method is satisfactory if it ensures that P(k P i) < a.

4. Case study #1: Chile

This section introduces the results of applying the methodology
proposed to four main Chilean regions. In particular, the regions
with cells varying from 0.5� � 0.5� to 1� � 1� around the cities of
Talca, Santiago, Pichilemu and Valparaíso have been considered.
These sets can be downloaded from the National Service of Seis-
mology of the University of Chile upon request [33].

In order to make easier comparisons, for the four zones, the
training and test sets chosen are those analyzed in [40]. Addition-
ally, a comparison with Naive Bayes (NB) [18], K-nearest neighbors
(KNN) [11] and support-vector machines (SVM) [10] has been cal-
culated to show that ANN’s have better performance than any
other classifier. The default configuration provided by Weka 3.6
[34] has been used in all cases for the setup of NB, KNN and SVM.

4.1. Talca

For this zone, a training set comprising earthquakes occurred
from June 19th 2003 to March 21st 2010 has been used. Analo-
gously, the test set was composed of the earthquakes occurred
from March 24th 2010 to January 4th 2011.

Tables 2 and 3 represent the information gain calculated for
every seismicity indicator used in both Reyes et al. [40] and Panak-
kat and Adeli [35] works, respectively. In particular, the column
Average merit is the average information gain and its standard devi-
ation obtained from the calculation of the information gain in a 10-
fold cross-validation process. It can be observed that there are
three features with null contribution in Table 2 and four in Table 3.
Therefore, the inclusion of such features in the original prediction
may have influenced negatively the final results.

The next step consists in selecting the best features or, in other
words, those that presented greater information gain. The number
of features is limited to seven, to fulfill the architectural constraints
presented in [40], as this particular architecture of ANN is desired
to be used. Therefore, the new set of input parameters is:

InputsTalca ¼ fx7; T;l;Mmean;r; x6; x1g ð14Þ

Given this new set of seismicity indicators, the ANN’s were applied
again yielding the results summarized in Table 4. It can be con-
cluded that the new set of inputs led to significantly better results.

Finally, to check the adequacy of using ANN, different classifiers
have been applied using as input parameters those in [40], those in
[35], and the new set selected before. This information can be
found in Table 5. Note that NB stands for Naive Bayes, KNN for
K-Nearest Neighbors and SVM for Support-Vector Machine.
Two conclusions can be drawn from the analysis of Tables 4 and
5. First, the use of the new set has led to a general improvement
comparing the results obtained in [40,35], that is, none of the ele-
ven configurations outperformed on average the results obtained
by the ANN when the new set of inputs was used. Second, the com-
parison between the four classifiers presented shows that the ANN
clearly presents the best results. However, for the SVM, all input
sets generated the same results, showing the inability of this clas-
sifier to deal with this kind of data.

4.2. Santiago

For this zone, the training set contains the earthquakes occurred
from May 13th 2003 to June 2nd 2004. The test set was composed
of the earthquakes occurred from June 23rd 2004 to January 16th
2006.

Tables 6 and 7 represent the information gain calculated for
every seismicity indicator described in [40,35], respectively. Again,
the column Average merit stands for the average information gain
and its standard deviation obtained by means of a 10-fold cross-
validation process in the training set. Two features with null con-
tribution are reported in Table 6 and seven in Table 7; therefore,
it is also desirable to conduct an analysis to obtain a better set of
features.



Table 5
Several classifiers performance with new set of inputs in Talca.

Parameter NB [40] NB [35] New NB

TP 0 1 3
TN 35 23 23
FP 2 14 14
FN 8 7 5

Sensitivity (%) 0.00 12.50 37.50
Specificity (%) 94.59 62.16 62.16
P0 (%) 81.40 76.67 82.14
P1 (%) 0.00 6.67 17.65
Mean (%) 44.00 39.50 49.86

Parameter KNN [40] KNN [35] New KNN

TP 0 3 3
TN 37 26 24
FP 0 11 13
FN 8 5 5

Sensitivity (%) 0.00 37.50 37.50
Specificity (%) 100.00 70.27 64.86
P0 (%) 82.22 83.87 82.76
P1 (%) 0.00 21.43 18.75
Mean (%) 45.56 53.27 50.97

Parameter SVM [40] SVM [35] New SVM

TP 0 0 0
TN 37 37 37
FP 0 0 0
FN 8 8 8

Sensitivity (%) 0.00 0.00 0.00
Specificity (%) 100.00 100.00 100.00
P0 (%) 82.22 82.22 82.22
P1 (%) 0.00 0.00 0.00
Mean (%) 45.56 45.56 45.56

Table 7
Average information gain for every feature in
[35] for Santiago.

Average merit Feature

0.113 ± 0.016 T
0.029 ± 0.061 r

0 ± 0 Mmean

0 ± 0 dE1/2

0 ± 0 l
0 ± 0 b
0 ± 0 DM
0 ± 0 g
0 ± 0 a
Again, the next step is to select the seven features that pre-
sented greater information gain. In this case, the new set of seis-
micity indicators to be used as ANN’s inputs is:

InputsSantiago ¼ fT;r; x1; x3; x5; x4; x2g ð15Þ

The ANN was applied with these new inputs yielding the results
summarized in Table 8. It can be observed that the new set of seis-
micity parameters obtained better results (71.89% versus 65.68%
and 53.33% accuracy).

Finally, to check the adequacy of using ANN, different classifiers
have been applied using as input parameters those in [40], those in
[35], and the combined set selected above. This information can be
found in Table 9.

The followings conclusions can be drawn from the observation
of Table 9. First, none of the eleven configurations outperformed on
average the results obtained by the ANN when the new set of in-
puts was used. For SVM, all input sets generated the same results,
showing the inability of SVM to deal with this kind of data. For NB,
Table 6
Average information gain for every feature in
[40] for Santiago.

Average merit Feature

0.012 ± 0.002 x1

0.009 ± 0.001 x3

0.009 ± 0.001 x5

0.009 ± 0.002 x4

0.003 ± 0.002 x2

0 ± 0 x7

0 ± 0 x6
the new results were similar to those obtained by the parameters
in [40] and significantly better than those of [35]. Only in the appli-
cation of KNN the new set obtained worse results than those from
[40] (62.40% versus 58.78%).

4.3. Valparaíso

For this zone, a training set comprising earthquakes occurred
from January 31st 2006 to December 19th 2008 has been used.
Analogously, the test set was composed of the earthquakes oc-
curred from December 20th 2008 to February 10th 2011.

Tables 10 and 11 represent the information gain and its stan-
dard deviation (column Average merit) that every seismicity indica-
tor exhibited in [40,35], respectively, when a 10-fold cross-
validation process was applied to the training sets. As for Talca
and Santiago, several features had null contribution: five for the
set in [40] and four for the set of [35]. Again, it becomes necessary
to assess the quality of the features in order to obtain a better set of
them.

Then, the features with greater information gain are selected. As
commented before, the number of features is limited to seven to
serve as input of the ANN presented in [40]. The new set of inputs
is:

InputsValp: ¼ fT; x7;l;r; x6; dE1=2
;Mmeang ð16Þ

Given this new set of seismicity indicators, the ANN are again ap-
plied generating the results reported in Table 12. The same conclu-
sion is reached: the new set of inputs obtained significantly better
results.

Finally, to assess the ANN performance, different classifiers
have been applied using as input parameters those in [40], those
in [35], and the new set defined in Eq. (16). This information is
summarized in Table 13.

Again, there was no classifier with the set of seismicity indica-
tors outperforming the new set applied to the ANN. The compari-
son between classifiers shows that the new sets proposed also
performs better results, on average, than the results obtained with
the sets proposed in [40,35], except for SVM.
Table 8
ANN performance for Santiago with the new set of seismicity indicators.

Parameter ANN [40] ANN [35] New ANN

TP 5 2 5
TN 101 99 105
FP 7 9 3
FN 9 12 9

Sensitivity (%) 35.71 14.29 35.71
Specificity (%) 93.52 91.67 97.22
P0 (%) 91.82 89.19 92.11
P1 (%) 41.67 18.18 62.50
Mean (%) 65.68 53.33 71.89



Table 9
Several classifiers performance with new set of inputs in Santiago.

Parameter NB [40] NB [35] New NB

TP 4 6 6
TN 98 76 86
FP 10 32 22
FN 10 8 8

Sensitivity (%) 28.57 42.86 42.86
Specificity (%) 90.74 70.37 79.63
P0 (%) 90.74 90.48 91.49
P1 (%) 28.57 15.79 21.43
Mean (%) 59.66 54.87 58.85

Parameter KNN [40] KNN [35] New KNN

TP 6 0 0
TN 93 82 101
FP 15 26 7
FN 8 11 11

Sensitivity (%) 42.86 21.43 21.43
Specificity (%) 86.11 75.93 93.52
P0 (%) 92.08 88.17 90.18
P1 (%) 28.57 10.34 30.00
Mean (%) 62.40 48.97 58.78

Parameter SVM [40] SVM [35] New SVM

TP 0 0 0
TN 108 108 108
FP 14 14 14
FN 0 0 0

Sensitivity (%) 0.00 0.00 0.00
Specificity (%) 88.52 88.52 88.52
P0 (%) 100 100 100
P1 (%) 0.00 0.00 0.00
Mean (%) 47.13 47.13 47.13

Table 10
Average information gain for every feature in
[40] for Valparaíso.

Average merit Feature

0.244 ± 0.202 x7

0.175 ± 0.016 x6

0 ± 0 x1

0 ± 0 x2

0 ± 0 x3

0 ± 0 x4

0 ± 0 x5

Table 11
Average information gain for every feature in
[35] for Valparaíso.

Average merit Feature

0.270 ± 0.025 T
0.193 ± 0.017 l
0.188 ± 0.022 r
0.045 ± 0.055 dE1/2

0.009 ± 0.028 Mmean

0 ± 0 g
0 ± 0 DM
0 ± 0 a
0 ± 0 b

Table 12
ANN performance for Valparaíso with the new set of seismicity indicators.

Parameter ANN [40] ANN [35] New ANN

TP 20 34 29
TN 59 47 60
FP 3 15 2
FN 24 10 15

Sensitivity (%) 45.45 77.27 65.91
Specificity (%) 95.16 75.81 96.77
P0 (%) 71.08 82.46 80.00
P1 (%) 86.96 69.39 93.55
Mean (%) 74.66 76.23 84.06

Table 13
Several classifiers performance with the new set of inputs in Valparaíso.

Parameter NB [40] NB [35] New NB

TP 18 21 19
TN 58 53 61
FP 4 9 1
FN 26 23 25

Sensitivity (%) 40.91 47.73 43.18
Specificity (%) 93.55 85.48 98.39
P0 (%) 69.05 69.74 70.93
P1 (%) 81.82 70.00 95.00
Mean (%) 71.33 68.24 76.87

Parameter KNN [40] KNN [35] New KNN

TP 30 21 33
TN 52 46 53
FP 10 16 9
FN 14 23 11

Sensitivity (%) 68.18 47.73 75.00
Specificity (%) 83.87 74.19 86.48
P0 (%) 78.79 66.67 82.81
P1 (%) 75.00 56.76 78.57
Mean (%) 76.46 61.34 80.47

Parameter SVM [40] SVM [35] New SVM

TP 35 12 38
TN 46 57 31
FP 16 5 31
FN 9 32 6

Sensitivity (%) 79.55 27.27 86.36
Specificity (%) 74.19 91.94 50.00
P0 (%) 83.64 64.04 83.78
P1 (%) 68.63 70.59 55.07
4.4. Pichilemu

For this zone, a training set comprising earthquakes occurred
from August 10th 2005 to March 31st 2010 has been used. Analo-
gously, the test set was composed of the earthquakes occurred
from April 1st 2010 to October 8th 2011.
Tables 14 and 15 report the average information gain and its
associated standard deviation calculated for every seismicity indi-
cator introduced in [40,35], respectively. This time there were no
features with null average information gain in Table 14 but four
features had null contribution in Table 15. Again, the necessity to
conduct an analysis to obtain a better set of features is highlighted.

The next step is to select the best features or, in other words,
those that presented greater information gain. The number of fea-
tures is limited to seven, to use the ANN in [40]. Therefore, the new
set of input parameters is:

InputsPichilemu ¼ fx7; x6;Mmean; dE1=2
;r; x4; x5g ð17Þ

Given this new set of seismicity indicators, the ANN’s are applied
yielding the results summarized in Table 16. Similarly to the other
three zones, the new set of inputs generated significantly better
results.

Finally, to evaluate the performance of using ANN’s, different
classifiers have been applied using as input parameters those in
Mean (%) 76.50 63.46 68.80



Table 14
Average information gain for every feature in [40] for
Pichilemu.

Average merit Feature

0.512 ± 0.104 x7

0.499 ± 0.086 x6

0.113 ± 0.012 x4

0.103 ± 0.010 x5

0.101 ± 0.009 x3

0.010 ± 0.030 x2

0.010 ± 0.031 x1

Table 15
Average information gain for every feature in [35] for
Pichilemu.

Average merit Feature

0.415 ± 0.026 Mmean

0.298 ± 0.027 dE1/2

0.152 ± 0.037 r
0.102 ± 0.038 l
0.100 ± 0.076 T

0 ± 0 g
0 ± 0 DM
0 ± 0 a
0 ± 0 b

Table 17
Several classifiers performance with new set of inputs in Pichilemu.

Parameter NB [40] NB [35] New NB

TP 12 3 3
TN 91 93 90
FP 2 0 3
FN 17 26 26

Sensitivity (%) 41.38 10.34 10.34
Specificity (%) 97.85 100 96.77
P0 (%) 84.26 78.15 77.59
P1 (%) 85.71 100 50.00
Mean (%) 77.30 72.12 58.68

Parameter KNN [40] KNN [35] New KNN

TP 20 13 21
TN 38 60 62
FP 55 30 28
FN 9 16 8

Sensitivity (%) 68.97 44.83 72.41
Specificity (%) 40.86 66.67 68.89
P0 (%) 80.85 78.95 88.57
P1 (%) 26.67 30.23 42.86
Mean (%) 54.34 55.17 68.18

Parameter SVM [40] SVM [35] New SVM

TP 0 14 13
TN 93 82 87
FP 0 11 6
FN 29 15 16

Sensitivity (%) 0.00 48.28 44.83
Specificity (%) 100 88.17 93.55
P0 (%) 76.23 84.54 84.47
P1 (%) 0.00 56.00 68.42
Mean (%) 44.06 69.25 72.82
[40], those in [35], and the new set above selected. This informa-
tion is reported in Table 17.

From the observation of Tables 16 and 17 two conclusions can
be drawn. In concordance with Talca, Santiago and Pichilemu, the
best results have been obtained with the new set of seismicity indi-
cators using the ANN as classifier. Second, the use of such a set led
to a general improvement in all methods, except for NB, where
only the use of the indicators proposed in [40,35] reached better
results on average.
5. Case study #2: Iberian Peninsula

This section presents the results of applying the methodology
proposed to the two most seismic zones of the Iberian Peninsula
(the Alborán Sea and West Azores-Gibraltar Fault), with cells
around 1� � 1�. Although rough data can be downloaded from
[20], they have been preprocessed with the help of the Spanish’s
National Geographical Institute.

For both zones, to make easier comparisons, the training and
test sets chosen are those analyzed in [30]. Additionally, a compar-
ison with Naive Bayes (NB) [18], M5P [50] and support-vector ma-
chines (SVM) [10] has been performed to show that the proposed
ANN’s have better performance than any other classifier. The de-
Table 16
ANN performance for Pichilemu with the new set of seismicity indicators.

Parameter ANN [40] ANN [35] New ANN

TP 13 14 21
TN 91 76 88
FP 2 17 5
FN 16 15 8

Sensitivity (%) 44.83 48.28 72.41
Specificity (%) 97.85 81.72 94.62
P0 (%) 85.05 83.52 91.67
P1 (%) 86.67 45.16 80.77
Mean (%) 78.60 64.67 84.87
fault configuration provided by Weka 3.6 [34] has been used for
the setup of NB, M5P, and SVM.
5.1. The Alborán Sea

For this area, the training set was composed of 122 linearly
independent vectors occurred from December 5th 2004 to May
7th 2005. Analogously, the test set included 79 vectors generated
from May 7th 2005 to August 10th 2005. A thorough discussion
on the election of both sets can be found in [30].

Tables 18 and 19 report the average information gain and its
associated standard deviation calculated for every seismicity indi-
cator used in [30,35], respectively. Again, four features in Table 18
and four more in Table 19 had null contribution, which supports
the necessity of selecting a better set of features.

Once the information gain has been obtained for all the fea-
tures, the seven best ones are selected to be used as inputs of the
ANN’s architecture introduced in [30]. This new set of inputs is:

InputsAlb:Sea ¼ fx6; x7;Mmean; T;r;g;dE1=2g ð18Þ

Then, the ANN is applied with the new inputs and the results
are summarized in Table 20. Note that as noticed in the four Chil-
ean zones analyzed in the previous section, the new inputs signif-
icantly improved the results obtained by using separately the
inputs proposed in [30,35].

Different classifiers have been applied to assess their perfor-
mance with the new set of seismicity indicators. The results are in-
cluded in Table 21.

Similarly to the Chile’s zones, the ANN with the new set of seis-
micity indicators reported the best results. Also, except for NB, the
new use of the inputs described in [30,35] generated better results



Table 18
Average information gain for every feature in
[30] for the Alborán Sea.

Average merit Feature

0.237 ± 0.050 x6

0.217 ± 0.042 x7

0.009 ± 0.027 x3

0 ± 0 x1

0 ± 0 x2

0 ± 0 x4

0 ± 0 x5

Table 19
Average information gain for every feature in
[35] for the Alborán Sea.

Average merit Feature

0.133 ± 0.021 Mmean

0.103 ± 0.010 T
0.094 ± 0.006 r
0.060 ± 0.049 g
0.012 ± 0.035 dE1/2

0 ± 0 l
0 ± 0 DM
0 ± 0 a
0 ± 0 b

Table 21
Several classifiers performance with new set of inputs in the Alborán Sea.

Parameter NB [30] NB [35] New NB

TP 35 33 34
TN 7 5 4
FP 32 34 35
FN 5 7 6

Sensitivity (%) 87.50 82.50 85.00
Specificity (%) 17.95 12.82 10.26
P0 (%) 58.33 41.67 40.00
P1 (%) 52.24 49.25 49.28
Mean (%) 54.01 46.56 46.13

Parameter M5P [30] M5P [35] New M5P

TP 2 38 11
TN 27 0 8
FP 12 39 23
FN 38 2 3

Sensitivity (%) 5.00 95.00 78.57
Specificity (%) 69.23 0.00 25.81
P0 (%) 41.54 0.00 72.73
P1 (%) 14.29 49.35 32.35
Mean (%) 32.51 36.09 52.36

Parameter SVM [30] SVM [35] New SVM

TP 8 39 40
TN 17 0 0
FP 21 39 39
FN 32 1 0

Sensitivity (%) 20.00 97.50 100
Specificity (%) 44.74 0.00 0.00
P0 (%) 34.69 0.00 0.00
P1 (%) 27.59 50.00 50.63
Mean (%) 31.75 36.88 37.66

Table 22
Average information gain for every feature in
[30] for West Azores-Gibraltar Fault.

Average merit Feature

0.232 ± 0.020 x7

0.140 ± 0.018 x6

0 ± 0 x1

0 ± 0 x2

0 ± 0 x3

0 ± 0 x4

0 ± 0 x5

Table 23
Average information gain for every feature in
[35] for West Azores-Gibraltar Fault.

Average merit Feature

0.203 ± 0.019 T
0.177 ± 0.019 l
0.160 ± 0.018 Mmean

0.084 ± 0.055 r
in terms of mean accuracy. This confirms the need of a study a pri-
ori of the information used as ANN’s inputs.

5.2. Western Azores-Gibraltar Fault

For this area, the training set contained 122 linearly indepen-
dent vectors occurred from July 28th 2003 to June 5th 2005. Anal-
ogously, the test set included 79 vectors generated June 8th 2005
to June 26th 2006. Again, the discussion on the election of both sets
is described in [30].

The average information gain and its standard deviation calcu-
lated for all the indicators in [30,35] is reported in Tables 22 and
23, respectively. This time there were no features with null average
information gain in Table 14 but four features had null contribu-
tion in Table 15. Again, it is confirmed the necessity to conduct
an analysis to obtain a better set of features.

The best seven features to be used as inputs of the ANN’s archi-
tecture introduced in [30] are then selected. The new set is:

InputsW:Azores�Gib:F: ¼ fx7; T;l;Mmean; x6;r;gg ð19Þ

Then, the ANN is applied with such inputs and the results are
summarized in Table 24. Note that as observed in all the previous
zones, the use of the new set obtained better results than those of
[30,35].

The next step is to apply different classifiers to compare their
performance when using the new set of inputs. The results are
listed in Table 25.
Table 20
ANN performance for the Alborán Sea with the new set of seismicity indicators.

Parameter ANN [30] ANN [35] New ANN

TP 10 34 21
TN 34 6 34
FP 5 33 6
FN 30 6 19

Sensitivity (%) 25.00 85.00 52.50
Specificity (%) 87.18 15.38 85.00
P0 (%) 53.13 50.00 64.15
P1 (%) 66.67 50.75 77.78
Mean (%) 57.99 50.28 69.86

0.009 ± 0.027 g
0 ± 0 dE1/2

0 ± 0 DM
0 ± 0 a
0 ± 0 b
From the observation of Table 25 several relevant conclusions
can be drawn. First of all, the new set of parameters led to better
results in all the evaluated classifiers. Secondly, the ANN remains
as the classifier with the best performance. When the inputs pro-
posed in [30] were used for M5P, the classifier was unable to pre-
dict any earthquake (69 TN’s and 10 FP’s means that all the
predicted labels were 0). On the contrary, the use of the inputs in



[35] generated completely opposed results, since it was unable to
discard any zero-level event (69 FP’s and 10 TP’s means that all
the predicted labels were 1). However, the combination of the best
inputs generated competitive results, even better than those of NB
or SVM.

6. Statistical tests

This section is to show that the classifiers applied to the four
Chilean and the two Iberian Peninsula zones have significant statis-
tically different results. As described in Section 3.3, Friedman’s test
is going to be used, declaring a level of significance of p < 0.05.

6.1. Chilean data

First, the matrix rij is constructed, with a size (n � k) = (4, 12),
where n = 4 represents the four zones under analysis and k = 12
the twelve different classifiers applied. Each element in the matrix
Table 24
ANN performance for Western Azores-Gibraltar Fault with the new set of seismicity
indicators.

Parameter ANN [30] ANN [35] New ANN

TP 5 5 8
TN 64 52 63
FP 5 17 6
FN 5 5 2

Sensitivity (%) 50.00 50.00 80.00
Specificity (%) 92.75 75.36 91.30
P0 (%) 92.75 91.23 96.92
P1 (%) 50.00 22.73 57.14
Mean (%) 71.38 59.83 81.34

Table 25
Several classifiers performance with new set of inputs in Western Azores-Gibraltar
Fault.

Parameter NB [30] NB [35] New NB

TP 4 10 4
TN 51 0 53
FP 18 69 16
FN 6 0 6

Sensitivity (%) 40.00 100 40.00
Specificity (%) 73.91 0.00 76.81
P0 (%) 89.47 0.00 89.83
P1 (%) 18.18 12.66 20.00
Mean (%) 55.39 28.16 56.66

Parameter M5P [30] M5P [35] New M5P

TP 10 0 5
TN 0 69 48
FP 69 0 21
FN 0 10 5

Sensitivity (%) 100 0.00 50.00
Specificity (%) 0.00 100 69.57
P0 (%) 0.00 87.34 90.57
P1 (%) 12.66 0.00 19.23
Mean (%) 28.16 46.84 57.34

Parameter SVM [30] SVM [35] New SVM

TP 5 6 5
TN 22 36 47
FP 47 33 22
FN 5 4 5

Sensitivity (%) 50.00 60.00 50.00
Specificity (%) 31.88 52.17 68.12
P0 (%) 81.48 90.00 90.38
P1 (%) 9.62 15.38 18.52
Mean (%) 43.25 54.39 56.75
are the performance’s mean values retrieved from Tables 12, 13,
16, 17. For legibility reasons, Table 26 summarizes the transpose
matrix, r0ij.

Next step is to calculate the rankings matrix as shown in
Table 27.

From the analysis of Table 27 two conclusions can clearly be
drawn. First, the use of the new set of inputs improved, on average,
all classifiers (ANN, NB, KNN and SVM) and, second, the ANN ob-
tained better results than any other classifier (as wanted to be
proved). However, this fact does not reject the null hypothesis
yet. But the application of Friedman’s test led to
p ¼ P v2

k�1 P Q
� �

¼ 0:0432, which satisfies the initial assumption
p < 0.05, thus concluding that p reached a significant value and,
now, rejecting the null hypothesis.

Since the p-value is less than 0.05, a post hoc analysis has been
carried out in order to prove that the results obtained by the ANN
with the new set of inputs are statistically different (and therefore
better) than those obtained by the ANN’s with the initial set of in-
puts. The Holm-Hochberg test has been applied to compare sepa-
rately the ANN with the new set of inputs and the ANN’s with
the inputs proposed in [40,35], respectively. Table 28 shows the
p-values obtained by the ANN in [40] and by the ANN in [35] for
a level of significance a = 0.05. The test concludes that the new
set of inputs generates better results since the test rejects all
hypotheses.
Table 26
Input values for the Friedman’s test (transpose matrix) for Chile.

Classifier Talca Santiago Valparaíso Pichilemu

ANN [40] 0.4986 0.7860 0.6568 0.7466
ANN [35] 0.4233 0.6467 0.5333 0.7623
New ANN 0.7884 0.8487 0.7189 0.8406

NB [40] 0.4400 0.7730 0.5966 0.7133
NB [35] 0.3950 0.7212 0.5487 0.6824
New NB 0.4986 0.5868 0.5885 0.7687

KNN [40] 0.4556 0.5434 0.6240 0.7646
KNN [35] 0.5327 0.5517 0.4897 0.6134
New KNN 0.5097 0.6818 0.5878 0.8047

SVM [40] 0.4556 0.4406 0.4713 0.7650
SVM [35] 0.4556 0.6925 0.4713 0.6346
New SVM 0.4556 0.7282 0.4713 0.6880

Table 27
Average rankings of the classifiers applied
to Chile.

Classifier Ranking

ANN [40] 2.88
ANN [35] 7.25
New ANN 1.00

NB [40] 5.25
NB [35] 7.25
New NB 4.38

KNN [40] 4.38
KNN [35] 5.63
New KNN 3.50

SVM [40] 7.63
SVM [35] 7.88
New SVM 6.88

Table 28
Holm-Hochberg test using the ANN with the new set of inputs as control algorithm
for Chile.

i Classifier z p-value a/i

2 ANN [35] 4.56 5.01 � 10�6 0.025
1 ANN [40] 3.65 2.61 � 10�4 0.050



Table 29
Input values for the Friedman’s test (transpose matrix) for the Iberian Peninsula.

Classifier Alborán Sea W. Azores-Gibraltar Fault

ANN [30] 0.5799 0.7138
ANN [35] 0.5028 0.5983
New ANN 0.6986 0.8134

NB [30] 0.5401 0.5539
NB [35] 0.4656 0.2816
New NB 0.4613 0.5666

M5P [30] 0.3251 0.2816
M5P [35] 0.3609 0.4684
New M5P 0.5236 0.5734

SVM [30] 0.3175 0.4325
SVM [35] 0.3688 0.5439
New SVM 0.3766 0.5675

Table 30
Average rankings of the classifiers applied
to the Iberian Peninsula.

Classifier Ranking

ANN [30] 2.0
ANN [35] 4.0
New ANN 1.0

NB [30] 5.0
NB [35] 8.5
New NB 6.5

KNN [30] 11.0
KNN [35] 9.5
New KNN 4.0

SVM [30] 11.0
SVM [35] 8.5
New SVM 6.5

Table 31
Holm-Hochberg test using the ANN with the new set of inputs as control algorithm.

i Classifier z p-value a/i

2 ANN [30] 5.63 2.72 � 10�6 0.025
1 ANN [35] 3.98 5.03 � 10�5 0.050
6.2. Iberian Peninsula data

First, the matrix rij is constructed, with a size (n � k) = (2, 12),
where n = 2 represents the two zones analyzed and k = 12 the
Table 32
Summary of information gain for all the different datasets studied. Ranks for features in C

Feature Talca Santiago Valparaíso Pichilemu

x1 0.010 0.012 0.000 0.010
x2 0.000 0.003 0.000 0.010
x3 0.009 0.009 0.000 0.101
x4 0.000 0.009 0.000 0.113
x5 0.000 0.009 0.000 0.103
x6 0.017 0.000 0.175 0.499
x7 0.277 0.000 0.244 0.512

T 0.203 0.113 0.270 0.100
l 0.177 0.000 0.193 0.102
Mmean 0.160 0.000 0.009 0.415
r 0.084 0.029 0.188 0.152
dE1/2 0.000 0.000 0.045 0.298
DM 0.000 0.000 0.000 0.000
g 0.009 0.000 0.000 0.060
b 0.000 0.000 0.000 0.000
a 0.000 0.000 0.000 0.000
twelve different classifiers applied. Each element in the matrix
are the performance’s mean values retrieved from Tables 20, 21,
24 and 25. For legibility reasons, Table 29 summarizes the trans-
pose matrix, r0ij.

The rankings matrix is shown in Table 30.
From the analysis of Table 30 two conclusions can clearly be

drawn. First, the use of the new set of inputs improved, on average,
all classifiers (ANN, NB, M5P and SVM) and, second, the ANN ob-
tained better results than any other classifier, which was the initial
hypothesis. Nonetheless, this fact is not enough to reject the null
hypothesis. But the application of Friedman’s test led to
p ¼ P v2

k�1 P Q
� �

¼ 0:0209, which satisfies the initial assumption
p < 0.05, thus concluding that p reached a significant value. There-
fore, the null hypothesis is rejected as wanted to be proved.

Again, the p-value is less than 0.05 and a post hoc analysis has
been performed to prove that the ANN with the new set of inputs
generated results statistically different (and therefore better) than
those obtained by the ANN’s with the original set of inputs. The
Holm-Hochberg test has been applied to compare separately the
ANN with the new set of inputs and the ANN’s with the inputs pro-
posed in [30,35], respectively. Table 31 shows the p-values ob-
tained by the ANN in [30] and by the ANN in [35] for a level of
significance a = 0.05. The test concludes that the new set of inputs
generates better results since the test rejects all hypotheses.

7. Discussion on the use of features

Previous sections have provided a large amount of data and ta-
bles. This section is to summarize all the information quantita-
tively presented, so that, general conclusions can be easily drawn.

Table 32 lists the information gain for the six zones analyzed. It
can be observed that the inputs that have the highest information
gain are {x6, x7, T, Mmean, l, r, dE1/2}, as they present the highest
sum of information gain. The interpretation of the inclusion of
these particular features in the new set of seismicity indicators is
discussed now.

1. The information provided by the dynamic Gutenberg-Richter’s
law (information included in x7) as well as that of Omori-Utsu’s
law (information codified in variable x6) are the most valuable
indicators to predict short-term earthquakes, as shown in
Table 32, where they obtained the two best positions.

2. The knowledge of the average time elapsed between earth-
quakes as well as its mean value and associated standard devi-
ation (features T, l, and r, respectively) also seems to be crucial
for an accurate prediction process.
hile and the Iberian Peninsula (IP) are separately shown.

Alborán Sea Azores Sum Rank (Chile) Rank (IP)

0.000 0.000 0.032 12 10
0.000 0.000 0.013 13 10
0.009 0.000 0.128 8 8
0.000 0.000 0.122 9 10
0.000 0.000 0.112 10 10
0.237 0.140 1.068 2 2
0.217 0.232 1.482 1 1

0.103 0.203 0.992 3 3
0.000 0.177 0.649 5 6
0.133 0.160 0.850 4 4
0.094 0.084 0.631 6 5
0.012 0.000 0.355 7 7
0.000 0.000 0.000 14 10
0.000 0.009 0.078 11 8
0.000 0.000 0.000 14 10
0.000 0.000 0.000 14 9



3. The mean magnitude of the last earthquakes occurred, Mmean,
has to be also considered to improve the accuracy of any predic-
tion system.

4. The rate of release of square root of energy completes the seven
most significative features.

Note that this information was intuitively used in [31], where
the authors discovered precursory patterns in the Iberian Penin-
sula by using only x7, T and Mmean (first, third and fourth best fea-
tures, respectively). Equally remarkable is the fact that from the
seven best features, five of them were used in [35] and the remain-
ing two but most significant ones were used in [40]. This confirms
that both set of inputs had, at least, a significative number of
meaningful features. However, some of them had null contribution
and could have decreased the accuracy of the classifiers (x1, x2, x4,
x5 for the Iberian Peninsula; DM, b, a for both Chile and the Iberian
Peninsula).

Finally, it is worth noting that the seven best features in terms
of information gain for predicting earthquakes in Chile were also
the seven best ones for the Iberian Peninsula, with great difference
with the remaining nine seismicity parameters analyzed. It is
known that Chile and the Iberian Peninsula have different geo-
physical properties and it is reasonable to think that the selection
of this new set of features could be a good starting point to make
predictions in other areas of the world.

8. Conclusions

An optimized set of seismicity parameters for earthquake pre-
diction has been obtained in this work. To enhance prediction,
the analysis of how different seismicity indicators influence the
model generation has been conducted. In particular, a feature
selection, based on the information gain provided by each indicator
individually, has been done in order to ensure that the ANN’s in-
puts are those with maximum correlation with the output. This
strategy has been evaluated on four Chilean areas and on two areas
of the Iberian Peninsula, all of them with different geophysical
properties to show the generality of the proposed method. A com-
parison with other well-known techniques has been provided. It is
remarkable that the same set of inputs was obtained for Chile and
the Iberian Peninsula. This may involve that similar patterns could
be found for different seismic areas. Then, the authors propose this
combination of seismicity indicators as initial choice for conduct-
ing further research in other coteries. The statistical analysis car-
ried out shows that the results are not only better in terms of
the quality parameters assessed but also present different statisti-
cal distributions. From the statistical tests conducted, it can be con-
cluded that the new approach outperformed every algorithm to
which it was compared. In short, the use of the new set of seismic-
ity parameters as ANN’s inputs generated the best results in all
evaluated cases.
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