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ABSTRACT
BACKGROUND: Sex differences in incidence and/or presentation of schizophrenia (SCZ), major depressive
disorder (MDD), and bipolar disorder (BIP) are pervasive. Previous evidence for shared genetic risk and sex
differences in brain abnormalities across disorders suggest possible shared sex-dependent genetic risk.
METHODS: We conducted the largest to date genome-wide genotype-by-sex (G3S) interaction of risk for these
disorders using 85,735 cases (33,403 SCZ, 19,924 BIP, and 32,408 MDD) and 109,946 controls from the PGC
(Psychiatric Genomics Consortium) and iPSYCH.
RESULTS: Across disorders, genome-wide significant single nucleotide polymorphism–by-sex interaction was detected
for a locus encompassing NKAIN2 (rs117780815, p = 3.2 3 1028), which interacts with sodium/potassium-transporting
ATPase (adenosine triphosphatase) enzymes, implicating neuronal excitability. Three additional loci showed evidence (p
, 13 1026) for cross-disorder G3S interaction (rs7302529, p = 1.63 1027; rs73033497, p = 8.83 1027; rs7914279, p =
6.43 1027), implicating various functions. Gene-based analyses identified G3S interaction across disorders (p = 8.97 3

1027) with transcriptional inhibitor SLTM. Most significant in SCZ was a MOCOS gene locus (rs11665282, p = 1.5 3
1027), implicating vascular endothelial cells. Secondary analysis of the PGC-SCZ dataset detected an interaction
(rs13265509, p = 1.1 3 1027) in a locus containing IDO2, a kynurenine pathway enzyme with immunoregulatory
functions implicated in SCZ, BIP, and MDD. Pathway enrichment analysis detected significant G3S interaction of
genes regulating vascular endothelial growth factor receptor signaling in MDD (false discovery rate-corrected p , .05).
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CONCLUSIONS: In the largest genome-wide G3S analysis of mood and psychotic disorders to date, there was
substantial genetic overlap between the sexes. However, significant sex-dependent effects were enriched for
genes related to neuronal development and immune and vascular functions across and within SCZ, BIP, and MDD
at the variant, gene, and pathway levels.

https://doi.org/10.1016/j.biopsych.2021.02.972
Sex differences are pervasive in psychiatric disorders,
including major depressive disorder (MDD), schizophrenia
(SCZ), and bipolar disorder (BIP). There is a significantly higher
risk for MDD in women (1) and SCZ in men (2). Prevalence of
BIP is approximately similar, but age of onset, course, and
prognosis vary considerably by sex (3,4), as they do in SCZ
and MDD (5–7). In addition, certain brain regions share struc-
tural and functional abnormalities and dysregulated physiology
across disorders that are sex dependent (8,9).

The majority of twin studies have not detected sex differ-
ences in heritability of these disorders (10) or differences in
twin intrapair correlations between same-sex and opposite-
sex dizygotic pairs (11,12). However, specific disease risk
variants may not be the same in both sexes (i.e., sex-specific
effects), or variants may have different effect sizes in each
sex (i.e., sex-dependent effects). Sex-dependent modification
of allelic effects on the autosomes and X chromosome may
contribute to sex differences in disease prevalence, similar to
other complex human traits (e.g., blood pressure, waist-to-hip
ratio) (13,14). Apart from sex-specific variants, incidence dif-
ferences may result from a female or male protective effect,
whereby one sex may require a higher burden of genetic lia-
bility to cross the threshold to disease manifestation. This
suggests quantitative risk differences (i.e., sex dependence), a
notion supported by an early observation that female SCZ
cases were more likely to come from multiplex families (15).

Regarding SCZ, there is a long history of examining sex
differences in familial/genetic transmission (16), given differ-
ences in incidence, brain abnormalities, and course (17,18).
Recently, large genetic cohorts of SCZ and autoimmune dis-
orders identified greater effects of complement component 4
(C4) alleles in men with SCZ than in women with SCZ (19,20).
Compared with SCZ, sex differences in incidence of MDD are
greater, with a 2:1 female predominance, and there is some
evidence for stronger sex differences in recurrent MDD (rMDD)
compared with single-episode MDD, although it is inconsistent
(7,21–23). With increased interest in examining the genetics of
sex differences in psychiatric disorders and related pheno-
types (24–32), transcriptomics studies are beginning to provide
insights into mechanisms underlying sex differences in risk.
Notably, .10% of autosomal genes exhibit sexually dimorphic
gene expression in the brain, predominantly genes related to
synaptic transmission, dopamine receptor signaling, and im-
mune response (33), suggesting potential mechanisms medi-
ating sex differences in psychiatric disorders.

To test for sex differences in genetic risk, it is essential to
have adequate power to test for interaction effects (34). Given
sample size limitations, genome-wide association studies
(GWASs) of psychiatric disorders have typically not examined
genotype-by-sex (G3S) interactions. Here, we capitalized on a
Biological Ps
unique opportunity to utilize cohorts from the PGC (Psychiatric
Genomics Consortium) and iPSYCH consortia (n = 195,681) to
assess interactions between sex and genetic risk of MDD,
SCZ, and BIP within and across disorders.

METHODS AND MATERIALS

Participants

The PGC dataset (35–37) included 43 SCZ (30,608 patients and
38,441 control subjects), 28 BIP (18,958 patients and 29,996
control subjects), and 26 MDD (15,970 patients and 24,984
control subjects) cohorts (Table S1 in Supplement 2). The
iPSYCH cohort in Denmark (38) included 2795 patients with
SCZ and 2436 control subjects, 966 patients with BIP and 551
control subjects, and 16,438 patients with MDD and 13,538
control subjects (Table S2 in Supplement 2). Primary analyses
used the PGC and iPSYCH datasets. Secondary PGC-only
analyses (see Supplement 1) were performed to facilitate
comparison with other PGC studies and ensure that different
diagnostic criteria in PGC and iPSYCH (DSM-IV and ICD-10,
respectively) were not affecting results. All cohorts were of a
European ancestry, except three East Asian SCZ cohorts.

Quality Controls and Analytics

Quality control and imputation to the 1000 Genomes Phase 3
reference panel were performed using PGC’s Rapid Imputation
for COnsortias PIpeLIne (39) and previously described filtering
thresholds (35–37). An overview of subsequent quality control
and analytic steps is provided in Figure S1 in Supplement 1.
Identity-by-descent filtering is described in Supplemental
Methods in Supplement 1. At a minor allele frequency of
0.05, this study had 83%–99% (within-disorder) and 88%
(cross-disorder) power to detect interaction effects at an odds
ratio of$1.2 and$1.1, respectively (Table S3 in Supplement 2;
Figure S2 in Supplement 1).

Sex-stratified GWAS summary statistics were obtained by
logistic regression of men and women separately within each
cohort using PLINK (40), followed by standard error–weighted
meta-analysis across cohorts using METAL (41). Summary
statistics were entered into linkage disequilibrium score
regression (42,43) to estimate autosomal sex-specific single
nucleotide polymorphism (SNP)-based heritability (h2SNP) for
each disorder (Figure 1) and bivariate genetic correlations (rg)
within and across disorders.

PLINK (40) was used to perform a genome-wide G3S
interaction analysis in each cohort, followed by standard error–
weighted meta-analysis of G3S interactions using METAL (41).
G3S interaction analyses were performed using linear
regression with main effects for SNPs and sex and SNP-by-
sex interaction terms, and using additive models for SNPs
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Figure 1. Linkage disequilibrium score regression estimates of sex-
specific SNP-based (A) heritability, h2 (6SE), and (B) genetic correlations,
rg (SE). This graph shows h2 and rg estimates for minor allele frequency .

0.01. (A) Heritability estimates were substantially different between the
sexes for SCZ (pFDR = .019) and MDD (pFDR = .005), but not for BIP (pFDR =
.381). (B) SNP-based genetic correlations (rg) between males and females
within each disorder ranged between 0.86 and 1 and were significantly
different from 1 for SCZ (pFDR = .039) and BIP (pFDR = .039), but not for MDD
(pFDR = .397). No significant differences were found in the cross-disorder
genetic correlations between males and females, with the exception of rg
between BIP and MDD (rgF = .42; rgM = .04; pFDR = .044). BIP, bipolar dis-
order; F, female; FDR, false discovery rate; M, male; MDD, major depressive
disorder; SCZ, schizophrenia; SE, standard error; SNP, single nucleotide
polymorphism.
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(controlling for 10 ancestry principal components). Secondary
regression models included additional controls using 10 SNP-
by-principal component and 10 sex-by-principal component
interaction terms (44). Adding too many covariates can
destabilize the effect estimates, leading to increased dropout
of SNPs due to estimation problems, especially in smaller
cohorts; thus, the first model is our primary model. Secondary
analytic model p values are included in brackets.

G3S interactions with X-linked SNPs were tested using two
models. Model A assumed complete and uniform X inactiva-
tion in women and similar effect size between the sexes by
assigning 0, 1, or 2 copies of an allele to women and 0 or 2
copies to men. Because these assumptions often do not hold,
model B assigned 0 or 1 copy to men.

An omnibus test with 3 degrees of freedom (45) was per-
formed by summing c2 values for individual disorder G3S
interaction meta-analyses to identify SNPs with opposing G3S
effects across disorders (see Supplemental Methods in
Supplement 1).

Linkage disequilibrium–independent SNPs (r2 , .1) with
suggestive or genome-wide significant G3S interactions (p ,

131026) were used as index SNPs for fine-mapping to obtain
likely causal SNPs using FINEMAP (46) and CAVIAR (47) (see
Supplemental Methods in Supplement 1). Regions for fine-
mapping were defined as all SNPs in linkage disequilibrium
(r2 . .6) with the index SNP.

SCZ and cross-disorder analyses of autosomes and X
chromosome were conducted with and without inclusion of
East Asian cohorts to evaluate population effects. Findings
were not significantly different, and therefore, all subsequent
analyses utilized only European ancestry cohorts (see
Supplemental Methods in Supplement 1).

Gene-based analyses were conducted using MAGMA (48)
(significant p = 2.6 3 1026) (see Supplemental Methods in
Supplement 1). Gene set enrichment tests (48) determined
whether (near-)significant SNPs (p , 1 3 1024) clustered into
particular biological pathways characterizing functional simi-
larity of genes implicated by G3S interactions. Hypothesis-
free analyses were performed for 10,353 gene sets from the
Molecular Signatures Database. Data-driven enrichment ana-
lyses were performed for nine gene sets/pathways implicated
in previous studies (49,50).

Gene expression and expression quantitative trait locus
(eQTL) data from several publicly available resources were
evaluated to validate and interpret SNPs with G3S interaction
p values , 1 3 1026 (see Supplemental Methods in
Supplement 1).

Finally, G3S interaction results were compared with previ-
ously reported sex-dependent or sex-specific effects on psy-
chiatric risk (p , 5 3 1028) (see Supplemental Methods in
Supplement 1 and Supplemental Tables in Supplement 2).
RESULTS

Sex-Stratified GWAS

Sex-stratified GWAS analyses were performed to identify sex
differences in heritability and genetic overlap between disor-
ders, providing a reference point for interaction analyses.
Manhattan plots (Figure S3 in Supplement 1) and scatter plots
104 Biological Psychiatry January 1, 2022; 91:102–117 www.sobp.org
(Figure S4 in Supplement 1) showed considerable sex differ-
ences in the associations identified. Autosomal sex-specific
SNP-based heritability (h2SNP) for each disorder and bivariate
genetic correlations (rg) within and across disorders were then
estimated. Within each disorder, the h2SNP for men and women
(Figure 1A) was significantly greater than 0 (mean 0.19; all p ,

.001) (Table S4 in Supplement 2), indicating adequate power to
detect broader polygenic signals. Estimates of h2SNP increased
/journal
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minimally across a range of minor allele frequency cutoffs
(minor allele frequency . 1%, 2%, 5%), indicating that rarer
variants contributed little (Table S4 in Supplement 2). Herita-
bility estimates were substantially different between the sexes
for SCZ (false discovery rate-corrected p [pFDR] = .019; h2M .

h2F ) and MDD (pFDR = .005; h2F . h2M), but not for BIP (pFDR =
.381) (Table S4 in Supplement 2). Although correlations
between male and female GWAS p values were low
(Figure S4 in Supplement 1), SNP-based genetic correlations
(rg) between men and women within disorders ranged between
0.86 and 1 and were significantly different from 1 for SCZ
(pFDR = .039) and BIP (pFDR = .039), but not for MDD (pFDR =
.397) (Figure 1B; Table S5A in Supplement 2). In addition, we
observed no significant differences in cross-disorder genetic
correlations by sex, except rg between BIP and MDD (rgF = .42;
rgM = .04; pFDR = .044) (Figure 1B; Table S5B in Supplement 2).
However, within-sex analyses showed that women with SCZ
and those with BIP were more highly genetically correlated
than women with SCZ and those with MDD; women with MDD
correlated similarly to both women with SCZ and those with
BIP. In contrast, men with SCZ correlated similarly with men
with BIP and those with MDD, but no genetic correlation was
observed between men with MDD and those with BIP. Find-
ings suggest that there may be different within-sex genetic
differences that need further understanding and demonstrate
the complexity of investigating sex differences in genetics.
Genome-wide SNP-by-Sex Interactions

To adequately test for sex effects, it is necessary to conduct
SNP-by-sex interaction analyses. Quantile-quantile plots indi-
cated no systematic inflation of test statistics (Figure S5 in
Supplement 1). Genomic control lambda (lGC) revealed no
significant evidence of population stratification in the meta-
analysis of the cross-disorder European ancestry (lGC =
0.9828), cross-disorder European1East Asian (lGC = 0.9838),
SCZ European ancestry (lGC = 0.9991), SCZ European1East
Asian (lGC = 1.002), BIP (lGC = 0.9879), or MDD (lGC = 0.9833)
cohorts.

Analyses within disorders did not detect genome-wide
significant interactions for SCZ, BIP, or MDD; however, sug-
gestive evidence (p , 1 3 1026) was obtained for several loci
(Table 1; Table S8 in Supplement 2). Overall, there was little
overlap between the strongest interactions for each disorder
(Figure S6 in Supplement 1). The most significant results were
obtained for SCZ for a locus in the 50 untranslated region of the
MOCOS gene (rs11665282: p = 1.48 3 1027 [secondary model
pext = 2.53 3 1025]) (Figures S6–S8 in Supplement 1) and an
intergenic locus near the noncoding RNA gene LINC02181
(rs12445424: p = 3.52 3 1027 [pext = 2.28 3 1024])
(Figures S6–S8 in Supplement 1). The top G3S interaction
locus for BIP was located on chromosome 9 near the TUSC1
gene (rs12341335: p = 2.29 3 1027 [pext = 7.91 3 1027])
(Figures S6–S8 in Supplement 1). Suggestive evidence for
G3S effects in MDD risk was detected for chromosome 1 lo-
cus in and around SPAG17 (rs9428240: p = 1.643 1027 [pext =
3.313 1027]), which remained in rMDD (p = 1.403 1027 [pext =
1.05 3 1027]), and chromosome 17 locus spanning multiple
genes including ZNF385C (rs147515485: p = 4.61 3 1027
Biological Ps
[pext = 4.76 3 1026]) (Figures S6–S8 in Supplement 1). Post
hoc analysis of rMDD did not reveal additional loci at p , 1 3

1026. Secondary analyses of the PGC-SCZ cohort identified a
noteworthy locus in an intergenic region between the IDO2 and
C8orf4 genes (rs13265509: p = 1.09 3 1027 [pext = 1.23 3

1026]) (Table S15A in Supplement 2). Meta-analysis of G3S
interactions across cohorts from all three disorders (in contrast
to omnibus tests) revealed suggestive evidence for three
additional intergenic loci (p , 1 3 1026) (Table 1; Table S6F–I
in Supplement 2).

Omnibus tests of autosomal SNP G3S effects across dis-
orders revealed a significant locus inNKAIN2 (rs117780815; p =
3.23 1028 [pext = 4.673 1027]) (Figure 2) driven by BIP and SCZ
(Table 2; Table S7 in Supplement 2). The effect was in opposite
directions, with the minor allele increasing risk in women with
BIP and decreasing risk in men with BIP, and vice versa in men
and women with SCZ (see Table 1; Table S6A–E in Supplement
2) (disorder-specific sex-stratified effects). The second stron-
gest omnibus signal was for the AMIGO1/GPR61 gene locus
(rs12141273; p = 4.163 1027 [pext = 1.953 1026]), common to
BIP andMDD, although in opposite directions. Of note, omnibus
tests of the PGC dataset detected a second strong signal in the
IDO2/C8orf4 gene locus (rs13270586; p = 1.55 3 1027 [pext =
4.62 3 1027]), common to BIP and SCZ in opposite directions
(Table S16 in Supplement 2). Overall, all results from the sec-
ondary analytic model supported the primary model.

SNP-by-sex interactions of X chromosome SNPs using
model A or B detected only modest effects within/across
disorders (lowest p = 6.89 3 1026) (Table S8A, B in
Supplement 2), similar regardless of model (Figure S8 in
Supplement 1). Omnibus tests of X chromosome SNPs
detected no significant interactions (lowest p = 1.67 3 1025)
(Table S9 in Supplement 2).

Fine-Mapping of SNP-by-Sex Interactions

Loci displaying evidence for G3S interactions (index SNP p ,

1 3 1026) (Tables 1 and 2; Tables S6–S9 in Supplement 2) un-
derwent fine-mapping to identify those SNPs most likely to be
causal. Sixteen loci had a mean of 75 (668) SNPs. In approxi-
mately 50% of the loci, the index SNP was among the three
most credible SNPs, and .70% of clumps had a simple model
(# three causal variants). We summarize the posterior proba-
bilities of all SNPs in fine-mapping loci (Table 3; Table S10 in
Supplement 2) and highlight SNPs with likely causal effects in
our disorders. Together, CAVIAR and FINEMAP indicated that
genome-wide significant SNP rs117780815, with posterior
probability.0 .90 (FINEMAP), was themost likely causal variant
in the NKAIN2 locus (see Table 3).

Gene- and Pathway-Based Analyses

To capture all potential risk-conferring variations and derive
aggregate, gene-level p values, we conducted gene-based
tests. Gene-based tests within/across disorders detected
near-significant G3S interaction of the SLTM gene within SCZ
(p = 4.22 3 1026 [pext = 7.28 3 1026]) (Figure S10A in
Supplement 1) and genome-wide significant cross-disorder
interaction (omnibus p = 8.97 3 1027 [pext = 6.64 3 1027])
(Figure S10G, H in Supplement 1). No other results
ychiatry January 1, 2022; 91:102–117 www.sobp.org/journal 105
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Table 1. Single-Disorder and Cross-Disorder Autosomal SNP-by-Sex Interaction Results

SNP CHR BP A1/A2 Freq1/MAF Compartment

Gene
(Distance
in kb)

Cases, n (%
Female)

Controls, n
(% Female)

BetaG3S

(SE) pG3S (pext)
BetaF
(SE) pF

BetaM
(SE) pM zFM pFM

SCZ (European Only)

rs11665282 18 33767479 A/G 0.69/0.31 UTR5 MOCOS 21,581
(35.18%)

24,250
(48.62%)

20.156
(0.030)

1.48 3 1027

(2.53 3 1025)
20.081
(0.023)

3.98 3 1024 0.072
(0.019)

2.16 3 1024 25.09 3.50 3 1027

rs12445424 16 87063374 A/G 0.26/0.26 Intergenic LINC02188
(291.9);

LINC02181
(280.2)

29,467
(36.04%)

34,519
(48.33%)

0.140
(0.028)

3.52 3 1027

(2.28 3 1024)
0.097
(0.021)

5.80 3 1026 20.050
(0.018)

4.67 3 1023 5.30 1.19 3 1027

SCZ (European1East Asian)

rs11665282 18 33767479 A/G 0.69/0.31 UTR5 MOCOS 22,060
(35.39%)

24,674
(48.26%)

20.149
(0.03)

3.74 3 1027

(4.46 3 1025)
20.077
(0.023)

6.74 3 1024 0.070
(0.019)

2.53 3 1024 24.96 6.89 3 1027

BIP

rs12341335 9 25649145 T/C 0.90/0.10 Intergenic TUSC1 (27.2) 7730
(57.72%)

13,635
(51.28%)

0.373
(0.072)

2.29 3 1027

(7.91 3 1027)
0.176
(0.048)

2.59 3 1024 20.201
(0.054)

2.11 3 1024 5.20 2.03 3 1027

rs17651437 2 106055684 T/C 0.52/0.48 Upstream FHL2 16,365
(60.18%)

28,140
(50.75%)

0.155
(0.031)

3.72 3 1027

(1.04 3 1025)
0.079
(0.020)

9.97 3 1025 20.069
(0.023)

3.08 3 1023 4.79 1.63 3 1026

MDD

rs9428240 1 118831676 T/C 0.59/0.41 Intergenic SPAG17
(103.8)

14,232
(68.63%)

21,846
(50.63%)

20.181
(0.035)

1.64 3 1027

(3.31 3 1027)
20.087
(0.022)

6.41 3 1025 0.094
(0.028)

8.41 3 1024 25.08 3.70 3 1027

rs147515485 17 40182099 T/C 0.02/0.02 Intronic ZNF385C 31,149
(61.17%)

35,385
(50.89%)

20.472
(0.094)

4.61 3 1027

(4.76 3 1026)
20.190
(0.060)

1.55 3 1023 0.303
(0.074)

4.39 3 1025 25.17 2.39 3 1027

Recurrent MDD

rs61138090 1 118832069 D/I2 0.59/0.41 Intergenic SPAG17
(104.2)

7685
(70.59%)

15,976
(51.71%)

20.240
(0.046)

1.40 3 1027

(2)
20.109
(0.028)

1.03 3 1024 0.142
(0.038)

2.08 3 1024 25.28 1.30 3 1027

Cross-Disorder SCZ-BIP-MDD (European Only)

rs7302529 12 77321581 T/C 0.26/0.26 Intergenic CSRP2 (48.8);
E2F7 (93.4)

34,638
(51.36%)

34,696
(50.15%)

0.145
(0.028)

1.60 3 1027

(5.35 3 1027)
0.087
(0.019)

5.09 3 1026 20.051
(0.020)

1.15 3 1022 4.98 6.51 3 1027

rs73033497 7 2910659 A/T 0.86/0.14 Intergenic GNA12 (26.7);
CARD11 (35.0)

14,916
(49.21%)

17,547
(47.81%)

0.246
(0.050)

8.82 3 1027

(2.24 3 1026)
0.116
(0.036)

1.09 3 1023 20.128
(0.035)

2.69 3 1024 4.89 1.03 3 1026

Cross-Disorder SCZ-BIP-MDD (European1East Asian)

rs7914279 10 122161890 T/G 0.89/0.11 Intergenic MIR4682 (44.3);
PLPP4 (54.6)

78,640
(49.95%)

71,790
(49.70%)

0.146
(0.029)

6.39 3 1027

(4.78 3 1026)
0.064
(0.020)

1.86 3 1023 20.077
(0.021)

2.27 3 1024 4.82 1.43 3 1026

rs73033497 7 2910659 A/T 0.86/0.14 Intergenic GNA12 (26.7);
CARD11 (35.0)

14,916
(49.21%)

17,547
(47.81%)

0.246
(0.050)

8.82 3 1027

(2.24 3 1026)
0.116
(0.036)

1.09 3 1023 20.128
(0.035)

2.69 3 1024 4.89 1.03 3 1026

rs7302529 12 77321581 T/C 0.25/0.25 Intergenic CSRP2 (48.8);
E2F7 (93.4)

35,114
(50.69%)

36,707
(50.72%)

0.133
(0.027)

9.37 3 1027

(2.69 3 1026)
0.082
(0.019)

1.35 3 1025 20.044
(0.020)

2.37 3 1022 4.64 3.51 3 1026

Cross-Disorder SCZ-BIP-Recurrent MDD (European Only)

rs73033497 7 2910659 A/T 0.86/0.14 Intergenic GNA12 (26.7);
CARD11 (35.0)

13,497
(47.22%)

14,619
(48.26%)

0.267
(0.054)

6.22 3 1027

(2.22 3 1026)
0.142
(0.039)

2.55 3 1024 20.129
(0.037)

4.89 3 1024 5.05 4.37 3 1027
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approached significance (Table S11 in Supplement 2;
Figure S10B–F in Supplement 1).

To identify the functional significance of sex-dependent
loci, pathway-based analyses were conducted. Gene set
enrichment tests showed that within MDD, G3S SNPs were
significantly enriched in genes regulating vascular endothelial
growth factor (VEGF) receptor signaling (pFDR = 3.90 3 1024

[pFDRext = 2.70 3 1022]) (Table S12C in Supplement 2). SNPs
showing G3S interactions within SCZ or BIP were not
significantly enriched for any Molecular Signatures Database
pathway (Table S12A, B in Supplement 2). Across disorders,
the “wang_barretts_esophagus_and_esophagus_cancer_dn”
pathway showed enrichment (pFDR = .035 [pFDRext = .065])
(Table S12F in Supplement 2).

Brain Expression Analysis

To further validate the identified sex-dependent variants
functionally, brain expression data were examined for genes
located adjacent to or encompassing SNPs with evidence for
G3S interactions (p , 1 3 1026). Most of these genes were
expressed in multiple brain regions (Figure S11–S13 in
Supplement 1), particularly prefrontal, anterior cingulate, pi-
tuitary, and hypothalamus (Figure S14 in Supplement 1) from
prenatal development (C8orf4 [= TCIM], CRSP2, GNA12,
MOCOS, SPAG17), through puberty (IDO2) (Figure S12 in
Supplement 1), and through adulthood (Figures S12 and S13
in Supplement 1). Genes were expressed in various brain cell
types (Figure S15 in Supplement 1), with high relative
expression of NKAIN2 and GNA12 in oligodendrocytes, and
CSRP2, C8orf4, and MOCOS in endothelial cells
(Supplemental Results in Supplement 1 report other genes).

eQTL Overlap With G3S Loci

Examination of eQTL data for SNPs with evidence for G3S
interactions (p , 1 3 1026) (Tables S6 and S7 in Supplement
2) found that the highly significant SCZ MOCOS SNP
(rs11665282) was a cis-eQTL in several brain regions
(Table S6A in Supplement 2) associated with transcriptional
elongation and chromatin remodeling in the ELP2 gene in the
cerebellum and dorsolateral prefrontal cortex. The most sig-
nificant cross-disorder SNP (rs7302529) was an eQTL for
CSRP2 (Table S6F in Supplement 2), although the top
omnibus cross-disorder SNP (rs117780815) in NKAIN2 was
not an eQTL. Finally, genome-wide SNP rs12141273, inter-
genic between AMIGO1 and GPR61, is a cis-eQTL for
AMIGO1 in nonbrain tissues and is associated with expression
of glutathione-S-transferase genes GSTM1 and GSTM5 and
microtubule regulator gene PSRC1, in the dorsolateral pre-
frontal cortex (Table S7 in Supplement 2).

Overall, consistency of our significant G3S effects with
previous GWAS of sex differences in MDD, BIP, and SCZ is
described in Supplemental Results in Supplement 1 and
Table S14 in Supplement 2.

DISCUSSION

Sex differences in incidence, symptomatology, brain abnor-
malities, and physiology in SCZ, BIP, and MDD are pervasive
(1–7). Previous work demonstrated the impact of gonadal
hormones on some of these phenotypic differences. Here, we
chiatry January 1, 2022; 91:102–117 www.sobp.org/journal 107
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Figure 2. Cross-disorder Manhattan plot of SNP-
by-sex interaction p values (A) and LocusZoom
plot for the NKAIN2 gene locus exhibiting a signifi-
cant SNP-by-sex interaction effect on cross-disorder
risk (B). This graph shows the genome-wide signifi-
cant result from the cross-disorder omnibus test in
ASSET (primary model). Negative log10-transformed
p values for each variant (each dot) (y-axis) are
plotted by chromosomal position (x-axis). The red
and blue lines represent the thresholds for genome-
wide significant association (p = 5 3 1028) and
suggestive association (p = 1 3 1026), respectively.
The strongest genotype-by-sex interaction was
found for SNP rs117780815 on chromosome 6 (p =
3.2 3 1028) driven by bipolar disorder and schizo-
phrenia. The effect was in opposite directions, with
the minor allele increasing risk in women with bipolar
disorder and decreasing risk in men with bipolar
disorder, and vice versa in men and women with
schizophrenia (Table 2; Table S7 in Supplement 2). r2

indicates the linkage disequilibrium level. chr, chro-
mosome; SNP, single nucleotide polymorphism.

Sex-Dependent Genetic Architecture
Biological
Psychiatry
hypothesized that sex differences may be due in part to ge-
netic variation, either sex specific or sex dependent, and that
risk variants may be shared among the disorders.

Heritability estimates were significantly different between
the sexes for SCZ and MDD, but not for BIP, partly reflecting
significant sex differences in incidence for SCZ and MDD, but
not for BIP. Male-female SNP-based genetic correlations
ranged between 0.86 (BIP) and 1 (MDD), significantly ,1 for
SCZ and BIP but not for MDD, with by-sex cross-disorder
correlation differences suggesting further complexity. Thus,
although the majority of common variant genetic effects were
shared between the sexes, there were sex-specific and sex-
dependent effects on risks, with modest effect sizes (27).

Significant sex effects, primarily sex-stratified associations,
were reported previously in GWASs (25–32,35), implicating
neurodevelopmental mechanisms and immune pathways
(26–28,30). However, sex-stratified analyses are only equiva-
lent to G3S interaction tests when there are no interactions
between covariates and sex, and the trait variances are
equivalent in the two sexes. Because this is unlikely, G3S
interaction tests are ultimately necessary to identify significant
108 Biological Psychiatry January 1, 2022; 91:102–117 www.sobp.org
sex differences, and sex-stratified analyses may fail to detect
or spuriously report differences.

G3S interaction findings in our study implicate neuronal
excitability and inhibitory regulation of brain development and
functioning and immune and vascular pathways. Omnibus
tests across disorders detected genome-wide significant evi-
dence for G3S emanating from the NKAIN2 gene, expressed
in the brain, implicating potassium sodium ATPases (adeno-
sine triphosphatases) regulating neuron membrane potential,
transmembrane fluxes of Ca21 and excitatory neurotransmit-
ters, and central nervous system differentiation (51). NKAIN2
has previously been associated with cognitive ability (52) and
SCZ risk (53,54). The second most significant omnibus G3S
result was an SNP adjacent to AMIGO1, which regulates ac-
tivity of the Kv2.1 voltage-dependent potassium channel (55),
again important for regulating neuronal excitability in the brain
(56). Other support for G3S interaction was obtained from
gene-based analyses across disorders that detected a
genome-wide significant G3S interaction with the SLTM gene,
a general inhibitor of transcription highly expressed in the
cerebellum and putamen, among others. Taken together, these
/journal
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Table 2. Cross-Disorder Omnibus Tests of SNP-by-Sex Interactions

SNP CHR BP A1/A2 MAF Compartment

Gene
(Distance
in kb) p (pext) Pheno.1 Pheno.2 p.1 p.2 OR.1 (CI) OR.2 (CI) Meta p

Meta
OR (CI)

SCZ-BIP-MDD (European Only)

rs117780815 6 124326227 T/A 0.036 Intronic NKAIN2 3.19 3 1028

(4.67 3 1027)
BIP SCZ 1.34 3 1027 1.12 3 1022 2.0 (1.52–2.51) 0.79 (0.65–0.95) 8.10 3 1022 1.12

(1.11–1.13)

rs12141273 1 110079143 A/G 0.067 Intergenic AMIGO1
(26.8);

GPR61 (3.3)

4.16 3 1027

(1.95 3 1026)
BIP MDD 1.60 3 1024 1.40 3 1024 1.3 (1.14–1.50) 0.81 (0.73–0.90) 2.03 3 1021 0.96

(0.95–0.96)

rs431414 15 59147800 T/C 0.181 UTR3 MINDY2 4.60 3 1027

(4.36 3 1027)
SCZ BIP 1.62 3 1027 1.53 3 1021 1.2 (1.14–1.34) 0.91 (0.80–1.04) 1.67 3 1022 1.07

(1.07–1.07)

SCZ-BIP-MDD (European1East Asian)

rs117780815 6 124326227 T/A 0.036 Intronic NKAIN2 2.84 3 1028

(5.90 3 1027)
BIP SCZ 1.34 3 1027 9.89 3 1023 2.0 (1.52–2.51) 0.79 (0.65–0.94) 9.46 3 1022 1.11

(1.10–1.12)

rs12141273 1 110079143 A/G 0.067 Intergenic AMIGO1
(26.8);

GPR61 (3.3)

4.16 3 1027

(1.95 3 1026)
BIP MDD 1.60 3 1024 1.40 3 1024 1.3 (1.14–1.50) 0.81 (0.73–0.90) 2.03 3 1021 0.96

(0.95–0.96)

rs35477914 15 59197669 T/A 0.193 Intronic SLTM 8.54 3 1027

(1.73 3 1026)
BIP;
MDD

SCZ 1.30 3 1022 3.60 3 1026 1.1 (1.01–1.14) 0.86 (0.80–0.92) 4.84 3 1021 0.99
(0.98–0.99)

SCZ-BIP-Recurrent MDD (European Only)

rs117780815 6 124326227 T/A 0.036 Intronic NKAIN2 3.17 3 1028

(1.69 3 1027)
BIP SCZ 1.33 3 1027 1.12 3 1022 2.0 (1.52–2.51) 0.79 (0.65–0.95) 1.58 3 1021 1.10

(1.09–1.11)

rs431414 15 59147800 T/C 0.182 UTR3 MINDY2 4.58 3 1027

(4.34 3 1027)
SCZ BIP 1.62 3 1027 1.53 3 1021 1.2 (1.14–1.34) 0.91 (0.80–1.04) 7.27 3 1023 1.08

(1.08–1.09)

SCZ-BIP-Recurrent MDD (European1East Asian)

rs117780815 6 124326227 T/A 0.036 Intronic NKAIN2 2.82 3 1028

(2.14 3 1027)
BIP SCZ 1.33 3 1027 9.88 3 1023 2.0 (1.52–2.51) 0.79 (0.65–0.94) 1.81 3 1021 1.10

(1.09–1.11)

Omnibus tests were carried out using ASSET, incorporating the within-disorder meta-analysis summary statistics from METAL. Listed are SNPs with cross-disorder interaction p values ,
13 10-6. Loci were clumped using “plink –bfile 1kgp_ref_file –clump asset_output –clump-p1 1e-4 –clump-p2 1e-4 –clump-r2 0.6 –clump-kb 3000.” Extended results (p, 13 1024), including
eQTL data for the variants highlighted in this table, and including secondary extended model statistics, are available in Table S7 in Supplement 2.

A1, allele 1 (reference allele); A2, allele 2; BIP, bipolar disorder; BP, base pair position; CHR, chromosome; CI, confidence interval; eQTL, expression quantitative trait locus; MAF, minor
allele frequency; MDD, major depressive disorder; meta OR, basic meta-analysis odds ratio; meta p, basic meta-analysis p value; OR.1, phenotype(s) 1 odds ratio; OR.2, phenotype(s) 2 odds
ratio; p, omnibus p value in combined PGC1iPSYCH datasets (p value for secondary extended model, pext, in parentheses); p.1, phenotype(s) 1 p value; p.2, phenotype(s) 2 p value; PGC,
Psychiatric Genomics Consortium; Pheno.1, phenotype(s) associated in direction 1; Pheno.2, phenotype(s) associated in direction 2; SCZ, schizophrenia; SNP, single nucleotide
polymorphism (variant rs ID); UTR, untranslated region.
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Table 3. Credible SNP Results for Genome-wide Significant NKAIN2 Locus

Index SNP SNP
FINEMAP: PP
causal (PPext)

CAVIAR: PP
causal (PPext) Compartment Gene CHR BP A1/A2 MAF Beta SE z

rs117780815 rs117780815 1 (1) 0.83 (0.88) Intronic NKAIN2 6 124326227 T/A 0.04 0.670 0.127 5.27

rs117780815 rs4574657 1 (1) 5.9 3 1023

(7.2 3 1023)
Intronic NKAIN2 6 124319710 A/G 0.04 0.283 0.089 3.17

rs117780815 rs4895382 1 (1) 8.0 3 1022

(7.8 3 1023)
Intronic NKAIN2 6 124312658 G/A 0.02 0.736 0.171 4.29

rs117780815 rs73557075 1 (1) 1.4 3 1022

(5.6 3 1023)
Intronic NKAIN2 6 124313730 A/G 0.04 0.195 0.114 1.71

rs117780815 rs7748718 6.7 3 1022

(3.5 3 1022)
8.8 3 1023

(1.6 3 1022)
Intronic NKAIN2 6 124317132 C/A 0.05 0.358 0.108 3.33

rs117780815 rs7754419 2.9 3 1022

(5.4 3 1021)
6.1 3 1022

(1.6 3 1021)
Intronic NKAIN2 6 124318348 G/A 0.04 0.541 0.118 4.58

rs117780815 rs7761506 3.7 3 1022

(4.8 3 1025)
6.8 3 1023

(7.2 3 1023)
Intronic NKAIN2 6 124314413 G/A 0.02 0.493 0.159 3.09

CAVIAR and FINEMAP results for the genome-wide significant locus observed in the omnibus test of schizophrenia, bipolar disorder, and major
depressive disorder (European ancestry). There were four SNPs, including genome-wide significant NKAIN2 SNP rs117780815, with posterior
probability higher than 0.90. These SNPs are the most likely variants to have a causal effect on mood and psychotic disorders from that locus.

A1, allele 1 (reference allele); A2, allele 2; BP, base pair position; CHR, chromosome; MAF, minor allele frequency; PP(ext), posterior probability
(extended secondary model); SE, standard error; SNP, single nucleotide polymorphism (index SNP indicates genome-wide significant SNP in locus,
and SNP refers to all SNPs in locus).

Sex-Dependent Genetic Architecture
Biological
Psychiatry
findings suggest a sex-dependent genetic contribution to the
balance between excitatory and inhibitory regulation of
neuronal development and functioning, a hypothesis worthy of
further functional omics investigations.

In fact, the strongest locus identified in G3S analyses for
SCZ (PGC-only; rs13270586) was near C8orf4 (aka TCIM),
which functions as a positive regulator of the Wnt/ß-catenin
signaling pathway, implicated previously in SCZ, BIP, and
MDD (57–60), with a central role in fundamental neuronal
processes, including synaptogenesis, axon guidance, and
dendrite development (61). Interestingly, recent transcriptomic
work identified female-biased genes enriched for expression in
Cajal-Retzius cells that play a major role in neural migration,
whereas male-biased genes were enriched for neural progen-
itor cells (62). This is consistent with our earlier work in mice
with impaired GABAB (gamma-aminobutyric acid B) receptor
signaling and demonstrating sex differences in developmental
migration of neurons containing estrogen receptor ER-a into
the hypothalamus paraventricular nucleus that affected
depressive-like behaviors, particularly in females (63).

Several genes that implicated neuronal excitability and im-
mune functions had opposite effects on disorder risk by sex.
The NKAIN2 SNP G3S effect was opposite in SCZ and BIP,
with the minor allele increasing risk in women with SCZ and
decreasing risk in men with SCZ, and opposite effects on risk
in men and women with BIP. Similarly, the AMIGO1/GPR61
G3S effect was opposite in BIP and MDD, with the minor allele
having stronger effects in women with BIP and weaker effect in
women with MDD versus men with MDD.

Immune pathway dysregulation, shared across disorders,
also demonstrated some evidence of opposite genetic effects
by sex. The strongest G3S interaction for SCZ was in a locus
between IDO2 and C8orf4 (rs13270586, p = 1.55 3 1027), with
opposite risk effects by sex. IDO2 is involved in catabolism of
tryptophan in the kynurenine pathway. An end metabolite of
the kynurenine pathway, kynurenic acid, is elevated in the
cerebrospinal fluid (64,65) and postmortem brains (66,67) in
110 Biological Psychiatry January 1, 2022; 91:102–117 www.sobp.org
SCZ and BIP, while reduced plasma levels were associated
with depressive symptoms (64). Given recent evidence impli-
cating the kynurenine pathway as a link between brain immune
activation and disorder risk (68,69) and sex differences in im-
mune mechanisms (70), it is plausible that IDO2 has different
effects on SCZ risk in men and women through differential
kynurenic acid expression between the sexes. This is consis-
tent with recent findings implicating the complement system
(C4) as a source of sexual dimorphisms in vulnerability to SCZ
and autoimmune disorders (20). Furthermore, among the
strongest results for MDD was a locus spanning ZNF385C,
associated with transcriptional regulation (71) and immune-
related phenotypes via transcriptional enhancers (72,73).

Our sex-biased genes implicating immune mechanisms at
the population level complement recent transcriptomic work in
healthy brain development (74), population work in SCZ (19),
and MDD (75). Sex-by-diagnosis interactions were seen in the
rearrangement of brain transcriptional patterns in MDD (75), an
effect also seen in stressed mice (76). In MDD, cell type–specific
analyses revealed that men with MDD exhibited transcriptional
increases, and women with MDD exhibited transcriptional
decreases in oligodendrocyte- and microglia-related genes (75).

Consistent with this, animal studies demonstrated sex dif-
ferences in microglia density and morphology in key brain re-
gions beginning in prenatal development (e.g., hypothalamic
preoptic area, hippocampus, amygdala). In males in utero,
there is heightened activation of preoptic area microglia that
may result in a priming effect leading to sex-dependent
vulnerability for disorders such as SCZ (77). In contrast, while
males appear to have a prolonged period of enhanced immune
sensitivity in utero in preclinical studies, the period of immune
sensitivity for females is shifted toward the end of prenatal
development continuing into early postnatal life in rodents (77),
a critical period analogous to human sexual brain differentia-
tion (second and third trimesters). This suggests that timing is
critical in identifying G3S effects, which may have opposing
effects at different developmental periods, a fact that must be
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considered in transcription studies of brain regions across the
life span. In fact, sex differences in the expression of IDO2
were identified as also critical during puberty, with postpuberty
being the emergence of sex differences in MDD and SCZ.

Other mechanisms that might account for opposing sex
interaction effects include balancing selection due to antago-
nistic pleiotropic effects (78), which could play a role in main-
taining common susceptibility alleles in the population.
Opposing effects suggest the potential presence of a “genetic
switch” for progression to either one of the diseases, in addi-
tion to shared genetic risk factors. Results in autism (79) and
SCZ (80) support the idea that these disorders may be oppo-
site extremes of a single gradient of mental disorders or due to
diametric gene-dosage deviations caused by disrupted
genomic imprinting (79) or copy number variants. Opposing
effects were most likely to be significant because they gener-
ally have the largest effect sizes and thus greatest statistical
power to detect. The majority of common SNPs likely have
disease risk interaction effect sizes of odds ratio ,1.1.
Nevertheless, findings suggest that overall sex-specific and
sex-dependent genetic correlations may obscure a more
complex set of genetic relationships at the level of specific loci,
brain regions, and pathways (81) and that timing of mecha-
nisms implicated in sex effects is critical.

Our findings also identified genes associated with vascular
development, interesting in light of the comorbidity of cardio-
vascular disease with MDD (higher in women) (82) and SCZ.
Results demonstrated that genes involved in regulation of
VEGF signaling were enriched among G3S loci for MDD. Sex
differences were reported in VEGF levels (83), and brain
expression of VEGF has been associated with cognitive aging
and Alzheimer’s disease (84,85). Furthermore, the strongest
G3S interaction was detected for SCZ in a locus in the
MOCOS gene most highly expressed in endothelial cells lining
blood vessels. Interestingly, our previous work on sex differ-
ences in neuronal migration due to impaired GABAB receptor
signaling (63) was also significantly associated with sex differ-
ences in hypothalamic neurovascular development, being more
severe in females and associated with depression-related be-
haviors (86). In fact, a recent meta-analysis of 22 available gene
expression microarrays across multiple organs and tissues cited
areas of the brain (i.e., anterior cingulate cortex, implicated in
MDD, SCZ, and BIP) with the most substantial sex differences in
gene expression, followed by the heart (87).

Finally, G3S effects had implications for cognitive func-
tions, which is not surprising, given the brain regions impli-
cated by some of the significant loci in this study. For example,
ZNF385C in MDD may play a role in cognition because its
paralogs ZNF385B and ZNF385D have been associated with
intelligence (88), general cognition, mathematical ability, and
educational attainment (89). It is possible that genes associ-
ated with cognitive abnormalities may be shared across dis-
orders, given that the two strongest G3S interaction loci for
BIP located near TUSC1 and FHL2 have been associated with
educational attainment, other cognitive phenotypes, and
depression (89,90).

Although it seems intuitive that genes located on sex
chromosomes would be involved in sex differences in disease
risk, our analyses did not detect evidence for significant G3S
interactions involving X chromosome SNPs. Lack of
Biological Ps
significance could be due to insensitive X chromosome
modeling by sex, thus necessitating more refined models
allowing for variability in X inactivation patterns and incorpo-
ration of the Y chromosome to clarify the role of sex chro-
mosomes in disease risk. Recent data suggest tissue-specific
patterns of X inactivation (91). Nevertheless, our results of
G3S interactions for autosomal genes are consistent with
transcriptomics data demonstrating sexually dimorphic
expression in the brain of a substantial proportion of auto-
somal genes related to fundamental neural functions
(33,61,74,92) and data enriched for tissue-related diseases
(33). These findings underscore the utility of studies such as
ours, with statistical power to test for interaction effects and
highlight genes worthy of deeper mechanistic investigations
using transcriptomics and proteomics research and animal
models.

A limitation of this study is the relatively low sex-stratified
SNP heritability, in particular for men with MDD (mean h2SNP =
0.2). Nevertheless, all heritability estimates were greater than
zero with very good precision (i.e., small standard errors),
indicating the ability of this study to detect common variant
effects. Genetic correlations between the sexes were high and
only differed significantly for SCZ and BIP. In the latest PGC-
SCZ GWAS (93), the cross-sex rg did not significantly differ
from zero, which may be due in part to an increased SCZ
sample size and different meta-analysis composition. While
genetic correlations between the sexes within-disorder were
high, most striking were the differences in genetic correlations
by disorder by sex. High genetic correlations were observed
between MDD (both sexes) and women with BIP (0.42, 0.48),
but much weaker with MDD (both sexes) and men with BIP
(0.13, 0.04). Although some have argued that this may reflect
study recruitment bias or misclassification (94), this is less
likely for our study, given varying sample sizes across disor-
ders (due to differing prevalence) and no genetic correlations
by sex among SCZ subjects compared with high correlations
among MDD and BIP subjects. Misclassification of cases is
always a possibility, although clinical diagnoses were based on
extensive DSM-IV or ICD-10 interviews, limiting the likelihood
of this. Furthermore, if there were bias, it would require similar
and substantial bias across multiple international institutions.

The lack of detailed clinical data prevented examination of
important questions related to symptom type, severity, age of
onset, and cognitive deficits. These limitations emphasize the
need for larger, deeply phenotyped datasets to fully charac-
terize sex differences in genetic and clinical characteristics of
these disorders, as highlighted recently in (27). Furthermore,
alternative explanations for sex differences in incidence, pre-
sentation, and course include genotype-by-environment in-
teractions, e.g., implicating gonadal hormone regulation of
genes, which we know from clinical and animal studies are sex
dependent. Finally, additional replication samples would
significantly strengthen these findings.
Conclusions

In the largest genome-wide G3S analysis of mood and psy-
chotic disorders to date, we found substantial genetic overlap
between men and women for SCZ, BIP, and MDD. However,
we also found several loci with significant G3S interaction
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effects across and within disorder—NKAIN2 at the variant
level, SLTM at the gene level, and VEGF at pathway level.
Functional genomics suggests that all genes were expressed
in at least one brain region at some period across the life span,
with most genes expressed in multiple brain regions associ-
ated with mood/anxiety and cognition.

Our results demonstrate that the risk for SCZ, MDD, and BIP
is affected by interactions of genotype with sex, beyond the
impact of gonadal steroid hormones. Though specific mech-
anisms remain unknown, our study underscores the impor-
tance of designing large-scale genetic studies that have the
statistical power to test for interactions with sex. Dissecting the
impact of sex, genes, and pathophysiology will identify po-
tential targets for sex-dependent or sex-specific therapeutic
interventions.
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