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a b s t r a c t

Nowadays, governments and electricity companies are making efforts to increase the integration of
renewable energy sources into grids and microgrids, thus reducing the carbon footprint and increasing
social welfare. Therefore, one of the purposes of the microgrid is to distribute and exploit more zero
emission sources. In this work, a Stochastic Unit Commitment of a hybrid and isolated microgrid is
developed. The microgrid supplies power to satisfy the demand response by managing a photovoltaic
plant, a wind turbine, a microturbine, a diesel generator and a battery storage system. The optimization
problem aims to reduce the operating cost of the microgrid and is divided into three stages. In the first
stage, the uncertainties of the wind and photovoltaic powers are modeled through Markov processes,
and the demand power is predicted using an ARMA model. In the second stage, the stochastic unit
commitment is solved by considering the system constraints, the renewable power production, and
the predicted demand. In the last stage, the real-time operation of the microgrid is modeled, and
the error in the demand forecast is calculated. At this point, the second optimization problem is
solved to decide which generators must supply the demand variation to minimize the total cost. The
results indicate that the stochastic models accurately simulate the production of renewable energy,
which strongly influences the total cost paid by the microgrid. Wind production has a daily impact
on total cost, whereas photovoltaic production has a smoother impact, shown in terms of general
trend. A comparison study is also considered to emphasize the importance of correctly modeling the
uncertainties of renewable power production in this context.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

1.1. Motivation

In recent years, there has been growing awareness among
he world population of the need to demand that public ad-
inistrations develop more sustainable economic development
odels for their countries (Pye et al., 2019). This requirement

s justified by the growing demand for energy for domestic use
nd economic activities related to commerce, industry, and trans-
ort (Nejat et al., 2015), leading to an increase in greenhouse
as emissions and the depletion of fossil fuels (Gerbaulet et al.,
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2019). As a consequence of these policies, electricity systems are
making a transition from a centralized grid, composed of large
and controllable power plants, transporting electricity over long
distances and downstream, where the end user only consumes
energy, to a decentralized grid based on the increased pene-
tration of Distributed Energy Resources (DER), which integrates
renewable energy sources (RES), electrical energy storage systems
(EESS) and flexible demand side management (demand response,
DR) (Kakran and Chanana, 2018), with the end user becoming an
active element in the system (prosumer) (Rehman et al., 2019;
REScoop.eu, 2020).

In this transition to a decarbonized energy model, microgrids
play a key role, as they provide social, environmental, and eco-
nomic benefits (Choudhury, 2022). They represent a local and
sustainable energy supply that manages to integrate RESs such
as photovoltaic (PV) and wind turbines (WT), controllable backup
power sources such as diesel generators (DE) and microturbines
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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Acronyms

ARMA Autoregressive Moving Average
BESS Battery Energy Storage System
DE Diesel Generator
DER Distributed Energy Resource
DR Demand Response
DSO Distribution System Operator
ED Economic Dispatch
EESS Electrical Energy Storage Systems
EMS Energy Management System
MT Microturbine
NN Neural Network
PV Photovoltaic Unit
RES Renewable Energy Source
SOC State Of Charge
SUC Stochastic Unit Commitment
TSO Transmission System Operator
UC Unit Commitment
WT Wind Turbine
MINLP Mixed Integer Nonlinear optimization

Programming
MILP Mixed Integer Linear optimization Pro-

gramming
EABC Extended Artificial Bee Colony Algo-

rithm
MG Microgrid
ILP Integer Linear Programming
GA Genetic Algorithm
PSO Particle Swarm Optimization
AARO Affinely Adjustable Robust Optimiza-

tion
MCS Monte Carlo Simulation
PDF Probability Density Function
C&CG Column and Constraint Generation
LCOE Levelized Cost of Electricity
IGDT Information Gap Decision Theory
HSS Hydrogen Storage System

Parameters

ai, bi, ci Cost function coefficients of DE and MT
CMT Operation and maintenance cost of MT
CDE Operation and maintenance cost of DE
∆t Time between samples
DEmax Maximum generator capacity of DE
DEmin Minimum generator capacity of DE
MTmax Maximum generator capacity of MT
MTmin Minimum generator capacity of MT
P i
max Maximum generation capacity of unit i

P i
min Minimum generation capacity of unit i

Pc
max Maximum charging rate of the BESS

Pd
max Maximum discharging rate of the BESS

SOC i
max Maximum state of charge of BESS i

SOC i
min Minimum state of charge of the BESS i

ηc Battery charging efficiency
ηd Battery discharging efficiency
EWT State space of WT power
9403
EPV State space of PV power

Variables

Ru
DE(t) Up spinning reserve of DE at time t

Rd
DE(t) Down spinning reserve of DE at time t

Ru
MT (t) Up spinning reserve of MT at time t

Rd
MT (t) Down spinning reserve of MT at time t

ω(t) Power difference between actual and
expected demand at time t

δDE(t) Power on/off variable of DE at time t
δMT (t) Power on/off variable of MT at time t
B(t) Battery power at time t
D(t) Power demand at time t
D̂(t) Power demand forecast at time t
P̂(t) Solar power forecast at time t
Ŵ (t) Wind power forecast at time t
ˆSOC(j|t) Prediction of SOC for time j at time t

DE(t) Power given by DE at time t
MT (t) Power given by MT at time t
PV (t) Power given by PV at time t
WT (t) Power given by WT at time t
RDE(t) Power spinning reserve of DE at time t
RMT (t) Power spinning reserve of MT at time t
SOC(t) State of charge of BESS i at time t
SOC(t) State of charge of BESS i at time t
SOC(t) State of charge of BESS i at time t
SOC(t) State of charge of BESS i at time t
JWT
n WT-Markov chain
JPVn PV-Markov chain
φ(s, t) Transition probability function
P(k) non-homogeneous transition probabil-

ity matrix
P homogeneous transition probability ma-

trix

(MT), EESSs and controllable loads (Xie et al., 2021). They can help
integrate the above components into the grid, improving their
reliability and reducing the dependence on fossil fuels that emit
carbon for power generation (Trivedi et al., 2022). Current de-
centralization and co-ownership of the consumer in RESs require
that these electricity systems support the growing penetration of
electric vehicles, facilitate demand flexibility, enhance the active
role of the consumer, and participate in the supply of comple-
mentary services to the distribution grid (Eghbali et al., 2022). For
this reason, MGs face two major challenges in the future: on the
one hand, overcoming the regulatory barriers that currently exist
and, on the other hand, developing energy management tools that
enable their optimal operation, whether connected to the main
grid or in stand-alone mode, facilitating the interaction between
electricity end-users and energy resource managers, transmission
system operators (TSOs), distribution system operators (DSO) and
the market operator.

1.2. Related work

Energy Management Systems (EMS) are an important part of
the control of MGs. They allow monitoring, analyzing, and fore-
casting the power generation of RESs and demand, considering
weather factors and prices of the energy market (Bordons et al.,
2020). They also perform optimal short-term energy scheduling
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f the MG, based on RESs forecasts and load demand, taking into
ccount technical, economic and environmental aspects (Eghbali
t al., 2022), as well as managing DER power flows in the MG,
etween it and the main grid, and among other MGs, and facili-
ating a smooth transition of MG operation modes, isolated and
nterconnected to the grid (Chen et al., 2011a). From the review of
he literature, it can be seen that several optimization strategies
r techniques have been proposed for EMSs applied to MGs (Zia
t al., 2018). As MGs consolidate in the new energy model, as
n important resource to increase the efficiency of DG systems
nd favor a greater penetration of RESs, the scientific literature
hows an increase in approaches based on the resolution of the
C problem, as a basic tool in predictive planning of the operation
f these systems (Moretti et al., 2020).
The UC problem applied to MGs requires two stages. The

irst, known as UC, aims to schedule the on/off switching of the
ontrollable generators and the load/discharge mode of the EESSs
o cope with the energy deficit or surplus. The second, known
s economic dispatch (ED), aims to minimize the operating cost
n MG energy dispatch by defining the hourly energy to be gen-
rated by each controllable generation unit turned on, and that
tored or delivered by the battery system and supplied by the
ain grid (Wang et al., 2020). From a mathematical point of view,

t is presented as a mixed-integer nonlinear optimization problem
MINLP) (Alvarado-Barrios et al., 2020a; Reddy et al., 2019), due to
he binary nature of the off/on decision of controllable generating
nits and the nonlinearity of the fuel cost curves associated
ith these units and the grid equations where appropriate. The

ntermittency of RES production due to weather conditions and
emand variability introduces uncertainties into the UC problem.
iven these characteristics, stochastic approaches are crucial to
ddress optimal MG management Marneris et al. (2017), Alasali
t al. (2019), Stochastic Unit Commitment (SUC), which has mo-
ivated several studies in the literature (Khan et al., 2016; Li and
u, 2014). These approaches contribute to the robustness of the
olutions, making them more suitable for real implementation in
Gs.
The deterministic formulation has only one forecast scenario,

gainst which the margins for the corrections are applied in real
ime. This is achieved by imposing that the available committed
eneration capacity is sufficient to compensate for deviations of
et demand from forecasts. The authors in Ghasemi-Marzbali
t al. (2021) propose an economic model for the design of an
solated hybrid MG in the Ardabil region of Iran, consisting of a
V, DE, WT and a BESS. It formulates an optimization problem
ith the objective of minimizing the operating costs of 20 years of
peration. To solve it, it uses an Extended Artificial Bee Colony Al-
orithm (EABC) based on chaos theory. The results obtained show
hat the proposed model is approximately 2.2% less expensive
han other methods. In Kiptoo et al. (2020) a deterministic energy
anagement model for hybrid MG based on RES is presented that
onsiders DR and operates in isolation. The optimization problem
s formulated as an MILP problem. The objective is to minimize
he total operating costs of the MG, which includes investment
osts, maintenance, and demand management. In Rana et al.
2021), a master–slave optimization problem is developed for
he hybrid PV-BESS MG connected to the grid. That algorithm
ncorporates a real-time management subproblem that detects a
ossible island mode and operates the isolated MG accordingly.
he proposed algorithm can control battery charge–discharge
perations and ensure optimal use of the PV unit for peak shaving,
hus ensuring that the ED minimizes total operating costs.

In Gabriel et al. (2022), optimal penetration rates are pro-
osed for each technology (PV, WT, DE, BESS and DR) that allow
inimizing the total operating cost and the cost of unsupplied

nergy at different horizons of a predominantly residential MG
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powered by renewable resources. That work uses an integer
linear programming (ILP) approach, utilizing two optimization
algorithms based on heuristic approaches, GA and PSO, to achieve
demand side management control. The authors in Nemati et al.
(2015), Askarzadeh (2018) adopt this approach for the optimal
management of a hybrid MG off-grid, evaluating performance im-
provement over non-predictive heuristic management strategies
as a function of forecast uncertainty.

Stochastic programming takes into account the random vari-
ables present in the optimization problem, each associated with
a probability of occurrence. Several authors have used this tech-
nique to analyze optimal energy management in MGs connected
to the power grid. In Moretti et al. (2020) they present a ro-
bust adjustable formulation, in which they propose an objective
function to minimize the expected total operating cost of multi-
energy systems and MGs, comprising the cost of fuel and the
value of exchanges with external power grids. They adopt a for-
mulation called Affinely Adjustable Robust Optimization (AARO)
and, among the possible approaches to handle uncertainty, se-
lect the decision rule-based approach, which allows different
response strategies, depending on the sign of the forecast error.

In Querini et al. (2021) they present a two-level SUC that in-
tegrates the power procurement contract, the uncertainty-driven
operating schedule and the response to the demand for con-
nected MGs. They use LINGO optimization software that includes
solvers that perform linearization automatically. Economic feasi-
bility studies are applied to the design of a hybrid MG for Gato
Colorado, Santa Fe region, Argentina. In Bolurian et al. (2022)
three objective functions are considered to optimize operating
costs, pollution emission, and flattening of the electricity demand
profile of a grid-connected MG. The architecture is made up of
nonrenewable generators (DE), RES (WT), and EES and considers
a set of adjustable and constant loads. The uncertain behavior
of RES production, stochastic modeling of electric loads, and
electric power price are modeled using the Monte Carlo technique
(MCS). The objective functions have been optimized using the col-
umn generation and constraint generation (C&CG) optimization
algorithm.

The impact assessment of electric vehicles and the economic
feasibility of offloading stored energy from their batteries to the
grid (from vehicle to grid) in a MG environment are evaluated
in O’Neill et al. (2022). They developed a hybrid residential MG
model that includes RES (PV, WT), BESS and DE, using data from
Smart Grid Smart City (Australian Government, 2014) and stud-
ied four different penetration scenarios. The simulations were
performed in openCEM, which is an ‘‘open source’’ power grid
modeling tool developed by ITP Analytics (ITP Analytics, 2020).
The optimization results include the capacity required and the
capacity factors of each generation unit to meet the demand
with the lowest operating cost measured by the levelized cost of
electricity (LCOE).

The operation of isolated MGs in the presence of DERs be-
comes very difficult due to the intermittency of the power supply
from the RES and the variability of demand. In Alvarado-Barrios
et al. (2020a), the design of an EMS for a MG is proposed using
the SUC tool in two stages. An optimization problem is presented,
whose main objective is to minimize the total operating cost
of the MG operating in isolation, consisting of an ED, MT as
controllable generation units, WT and PV units as noncontrollable
RESs, and a BESS. The problem has been formulated as MILNP in
a stochastic environment, by considering the error in the demand
prediction, guaranteeing a reliable islanded operation of the MG.
It applies an Autoregressive Moving Average Model (ARMA) to
predict the demand curve.
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Table 1
Relevant literature in optimization of microgrids. Objective Function: Operation Cost (CO), Emission Cost (EC), Compensation Cost
of Load Shedding (CCLS), energy contracted/consumed (ECC), power contracted/consumed (PCC), self-healing operation (SHF). Type:
Single Objective. Microgrid: Standalone (SA), Grid Connected (GC). Approach: Deterministic Unit Commitment (DUC), Stochastic Unit
Commitment (SUC). Strategy: Genetic Algorithm (GA), Enhanced Genetic Algorithm (EGA), ILP, NLP, MILP, MILNP, Binary Particle
Swarm Optimization (BPSO).
Ref. no. Objective function Type Microgrid Uncertainty modeling Approach/Strategy

Moretti et al. (2020) min f(OC, EC) SO GC decision-rule-based SUC (MILP-AARO)
Wang et al. (2020) min f(OC) SO GC MCS SUC (ILP)
Alvarado-Barrios et al. (2020a) min f(OC) SO SA ARMA SUC (MILP)
Li and Xu (2014) min f(OC, EC, CCLS, NL) SO SA ... DUC (BPSO)
Ghasemi-Marzbali et al. (2021) min OC SO SA ... DUC (MILP-EABC)
Kiptoo et al. (2020), Rana et al. (2021) min OC SO SA ... DUC (MILP)
Gabriel et al. (2022) min OC SO SA ... DUC (MILP-GA,PSO)
Nemati et al. (2015) min OC SO SA ... DUC (EGA)
Askarzadeh (2018) min OC SO SA ... DUC (MGA)
Querini et al. (2021) min f(OC, ECC, PCC) SO GC chance-constrained SUC (MINLP)
Bolurian et al. (2022) min f(OC, EC, CCLS) SO GC MCS SUC (MILP- C&CG)
O’Neill et al. (2022) min OC SO GC openCEM SUC (MILP)
Tostado-Véliz et al. (2022a) min OC SO SA Stochastic-IGDT SUC (MILP)
Tostado-Véliz et al. (2022b) min OC SO SA Forecast Intervals SUC (MILP)
Thornburg and Krogh (2021) min OC SO SA PLASMiS (MCS) SUC (MILP)
Nikkhah et al. (2020) min OC SO SA Weibull(PDF) SUC (MINLP-GAMS)
Ahmadi et al. (2020) min f(OC, SHF) SO SA LHS SUC (MILP)
Present min OC SO SA Markov process SUC( UC-MILP, ED-QP)
In Tostado-Véliz et al. (2022a), an MILP is formulated for op-
imal scheduling of isolated MGs and DR programs, whose objec-
ive is to minimize the impact of possible failures of MG compo-
ents, thus reducing their detrimental effects on the overall econ-
my and welfare of the autonomous system. To this end, a novel
tochastic IGDT model is developed, in which uncertainties in re-
ewable generation and demand are modeled through scenarios
stochastic programming), while failures are modeled using the
nformation gap decision theory (IGDT) method. In Tostado-Véliz
t al. (2022b) a new optimal programming model is developed
or isolated MGs containing a green hydrogen storage system
HSS) and DR programs. The HSS is modeled using logic rules,
nd an optimization based on MILP is formulated. Uncertainties
n renewable generation and local demand are handled by an
riginal interval formulation and an iterative solution procedure.
The design of PLASMiS, an MCS simulator that evaluates op-

rational strategies for isolated MGs, is presented in Thornburg
nd Krogh (2021). This software probabilistically models MG
perations over time with and without demand side management
DR) for MGs with limited or undersized generation assets. The
G in the case study is located in Rwanda. It is made up of a 12 V

ead acid car battery bank, PV, DE, a hydroelectric unit, and WT
o supply loads consisting of 40 single-family houses, a hospital,
nd a factory.
In Nikkhah et al. (2020), an integral coupled framework of UC

ptimal power flow (OPF) is proposed to investigate the impacts
f voltage stability and uncertainty about wind power generation
n the power scheduling of isolated MGs in the presence of WT,
V and BESS. The proposed model is a mixed-integer nonlinear
rogramming problem (MINLP), which is solved with existing
olvers in GAMS

®
. To model the WT power output as a stochastic

variable, the model uses the Weibull probability density function
(PDF) for the uncertainty of the wind speed and the scenario-
based approach. A flexible two-level EMS is presented in Ahmadi
et al. (2020). The upper-level EMS is responsible for the optimal
scheduling of the normal operating MGs, while the lower-level
helps the MGs to operate in case of failure in islanded self-
heating modes. To account for the uncertainties of the RES-based
units and load consumption, he presents a stochastic modeling
strategy. Many scenarios of RES-based generation and load con-
sumption are generated using Latin hypercube sampling (LHS)
to represent prediction errors over the 24-hour time horizon.
Table 1 shows a summary of the literature review.
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The literature review shows limitations in the application of
optimization techniques to achieve optimal energy management
in isolated MGs that can affect their viability, performance and
scalability. The following limitations are identified: (i) not ad-
equate treatment of the intermittencies associated with RESs
and demand variability, proposing deterministic analyzes in the
solution of the UC problem (see Li and Xu (2014), Askarzadeh
(2018)), (ii) not considering all sources of uncertainties present
(for example, in Alvarado-Barrios et al. (2020a) authors only
consider the errors in the demand prediction, neglecting the
ones from RESs, in this case, PV and WT), (iii) not taking into
account all conditions of wind speed variability and solar irra-
diance, (e.g. Ghasemi-Marzbali et al. (2021)), (iv) the computa-
tional complexity can increase exponentially depending on the
uncertainty analysis techniques that are incorporated into the
optimization algorithms (e.g. using scenarios, as in the case of
MCS (Wang et al., 2020; Bolurian et al., 2022)). The present
work contributes to responding to and overcome some of the
limitations mentioned above.

Regarding the modeling of uncertainties, in the recent litera-
ture, there are different probabilistic methods that consider and
model them, mainly caused by RESs to schedule activities in
MGs. In Atwa et al. (2009) the authors calculate a probabilistic
generation-load model to obtain all combinations of all possible
generations of renewable sources. These sources are modeled
by probability density functions that are divided into a number
of states, each of them having a different probability. In the
field of storage scheduling and optimal generation, the authors
in Gast et al. (2014) use the persistence wind prediction model
to forecast wind power at any time in the future considering only
the average wind power of the previous hour. The same method
is used in Bejan et al. (2012) where the marginal distributions
of errors obtained from the difference between the prediction of
the wind power at time t + h and the wind power at time t are
approximated by the Laplace distribution.

In this work, in contrast to what was done in Atwa et al.
(2009), the probabilities are obtained directly from the applica-
tion of a homogeneous Markov chain for PV and a nonhomo-
geneous Markov chain for wind power. The approach aims to
incorporate the autocorrelation that exists in these phenomena
and to consider the dependence of the power produced in an
hour within a day. In particular, wind power shows a differ-
ent transition probability matrix for each hour of the day, and
therefore the chain is not homogeneous. PV power is studied
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n the basis of seasonal trend and modeling the residual with
he homogeneous Markov chain. This methodology improves the
ersistence approach done in Gast et al. (2014) because in the
on-homogeneous Markov model, the power prediction value
epends on the power value at the current time through spe-
ific transition probability matrices that change every hour. The
uitability of this choice is supported by previous work showing
he accuracy of Markov models and some of their extensions in
ind speed and power forecasting (Papaefthymiou and Klockl,
008; Yang et al., 2015; D’Amico et al., 2013, 2014), as well as
Vs (Eniola et al., 2019; Li et al., 2008). It is worth noticing that
ur approach is completely nonparametric and does not need any
pecification of the model parameters and probability distribution
unctions, with the exception of the state space of the Markov
rocess. The suitability of this strategy is confirmed by real data.

.3. Contributions

In this work, the main novelty consists in combining the
pplication of non-homogeneous and homogeneous Markov pro-
esses to model the uncertainties of WT and PV in a SUC and
D problem. We join the application of these stochastic models
o the MG scheduling problem management, adding stochastic-
ty and uncertainty. In particular, we use 10-year hourly wind
peed and solar irradiation data to obtain the Markov probability
ransition matrices and, consequently, to simulate 100 days of
T and PV powers. Furthermore, demand is modeled using the

utoregressive moving average (ARMA) technique to obtain its
rediction.
The optimization problem aims to cover demand while min-

mizing the total cost and is divided into three stages, as in
lvarado-Barrios et al. (2020b). In the first stage, uncertainties
re modeled, in the second stage UC and ED are obtained, and
n the third stage, a second ED is solved considering a spinning
eserve in dispatchable units (DE and MT) to cover the difference
etween the predicted and actual value of demand.
Furthermore, we consider two different scenarios in which we

odify the capacity and maximum power of the BESS to see how
hese parameters impact the problem.

To get further confirmation, we also compare the results ob-
ained from the proposed strategy in which uncertainties are
ssociated with demand and RES, with the study in Alvarado-
arrios et al. (2020b) in which only the uncertainty associated
ith demand is considered. We show how RES production affects
G management and total cost.

.4. Paper organization

The rest of the document is structured as follows. Section 2
hows the structure of the MG and the description of the prob-
em. Section 3 shows the demand models and the sources of
lectrical energy. In Section 4 the optimization problem and the
ontrol strategy are presented. Section 5 shows and explains the
esults obtained for the different scenarios considered. Finally, the
onclusions are presented in Section 6.

. Proposed energy management system

This section shows the structure of the MG and presents the
ormulation of the problem, highlighting all the variables that

lay a fundamental role in it.
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Fig. 1. Microgrid structure.

2.1. Microgrid structure

In this work, an AC MG has been considered, as shown in
Fig. 1. It is integrated by a set of interconnected loads and DERs
with clearly defined electrical limits such as: DE and a MT as
dispatchable units, and a WT and a PV plant as non-controllable
RESs. Finally, a BESS integrated by lithium-ion technology batter-
ies acting as a controllable and independent unit is considered.
The MG operates disconnected from the main medium and/or
low-voltage grid, i.e., in isolation.

2.2. Problem description

When a MG operates in a stand-alone mode, it is necessary to
control the distributed energy sources to ensure the voltage and
frequency stability of the MG, but in this work a physical net-
work is not considered, so the authors only solve the generation
dispatch. Frequency stability is guaranteed because the power
balance must be met in order to obtain generation dispatch.
The MG concept is vital to manage the growing energy demand
through local energy production and to reduce greenhouse gas
emissions. Given the presence of intermittent RESs and the vari-
ability of demand, stochastic approaches are crucial to address
optimal management of MG.

This article proposes the design of the energy system man-
agement for a MG using the Stochastic Unit Commitment, con-
sidering the uncertainty in demand prediction and the stochastic
nature of the wind and solar irradiance.

The power generated by the RESs (PV and WT) is treated as
stochastic variables modeled by Markov processes. The powers
generated by the dispatchable units (DE and MT), as well as the
management of the BESS, are variables of the problem. The hourly
scheduling problem of the generation units makes it possible to
obtain which dispatchable unit should be connected to the MG
and the power to be delivered at each moment.

Management of the energy system proposes an optimization
problem whose main objective is to minimize the total operating
cost of the MG in a stochastic environment. Fig. 2 shows the
procedure proposed in this work for the design of an energy
management system for the MG.

The problem is divided into the following three stages:

• In the first stage, given a time series of historical data on
demand, wind speed, and solar irradiation, an ARMA model
is applied to predict the demand curve together with the
calculation of the error in the demand forecast, and the
Markov model is applied to simulate wind and PV power.
The time horizon is 24 h.

• In the second stage, the SUC is calculated and, consequently,
the demand coverage is determined. It is assumed that the
spinning reserve provided by conventional generation units
(MT and DE) and the BESS is able to cover the error in the
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Fig. 2. Flowchart of the problem.
demand forecast. The above condition guarantees the reli-
able operation of the MG on the island. Therefore, reliability
criteria are incorporated into the optimization problem to
ensure this.

• In the third stage, the real-time operation of the MG is mod-
eled and it is observed that there is a difference between the
demand prediction and the actual value, giving rise to a new
spinning reserve value. Then, a second optimization problem
is solved, in which it is decided which generators have to
cope with the demand variation, so that the operating costs
are minimized.

3. System modeling

3.1. Demand

The demand for power is predicted for the next 24 h, using
n ARMA model, applied on 2-year historical data from Sardinia
Italy), as it was done in Alvarado-Barrios et al. (2020b), Pappas
t al. (2008). The equation describing the demand model is as
ollows:

(t) =

p∑
i=1

φiD(t − i) +

q∑
j=0

θjε(t − j), (1)

where D(t) is the demand at current time t , θj and φi are the
coefficients of the moving averages and the autoregressive model,
respectively, and ε(t − j) are errors due to predictions. The model
makes demand depend on its antecedent p values and on the
antecedent q values of the errors. The latter two parameters are
calculated by using the Akaike’s Information Criterion. ε(t− j) are
calculated as relative forecast error percentages in each hour and
fit a normal distribution. The 3σ criterion is applied, which gives
a range where the demand error will be for 99, 73% of the cases.
In the scenarios studied, demand D(t) consists of its forecast D̂(t)
plus an actual value of the error within the range ω(t), as shown

in Section 4.3.
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3.2. Wind generation

We consider 10 years of hourly wind speed data, precisely
from 01/08/2008 to 01/08/2018, which refer to a location in Sar-
dinia with geographical coordinates of 39,5N latitude and 8,75E
longitude (G.E.S. Data, I.S.C.G. DISC, 2015a). To obtain the pro-
duction of wind power from the wind speed data, the WT power
curve is taken in the analytical form shown in Eq. (2) (Tapia et al.,
2003; Lei et al., 2006).

WT (t) =

⎧⎪⎪⎨⎪⎪⎩
0 for v < vci,

Pr
v3−v3ci
v3r −v3ci

for vci < v < vr ,

Pr for vr < v < vco,

0 for v > vco,

∀t ∈ {1, 2, . . . , 24}

(2)

Pr and vr represent the rated power (kW ) and the wind speed
(m/s), respectively, and vci, vco and v are the cut-in, cut-out and
actual wind speed, respectively. The power curve is shown in
Fig. 3. In particular, the WT produces power for a wind speed
higher than or equal to 4 m/s, and production becomes constant
for a wind speed greater than or equal to 13 m/s.

Data are scaled to have a maximum wind power output on
the grid equal to 80 kW to have the same maximum wind
energy supply as we find in Alvarado-Barrios et al. (2020b). Wind
energy production is modeled as a non-homogeneous Markov
reward process (D’amico et al., 2018). A random variable JWT

n is
considered with values in the set EWT

= {1, 2, 3, 4, 5} that denote
the different levels of wind power generated by the system.
In the following, a precise identification of the values of the
elements of EWT will be given later. JWT

n indicates the state of the
system at the transition nth. Each transition from one hour to the
next is governed by a probability transition matrix that depends
on the time of day the system is in. Analyzing the actual data
yields 23 probability transition matrices that satisfy the following
relationship:

P[JWT
n+1 = j | JWT

n = in, JWT
n−1 = in−1, . . . , JWT

1 = i1,

JWT
0 = i0] = P[JWT

n+1 = j | JWT
n = in] = pinj(n + 1).

(3)
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Fig. 3. The power curve.

n practice, the transition matrices change over time. Defining
(s, t) = (φij(s, t))i,j∈EWT , s, t ∈ N, as a matrix function with the
lements obtained by φij(s, t) = P[Jt = j | Js = i], that is, φij(s, t)

denotes the probability of having a wind power equal to j at time
t, given that at time s the wind power generated was equal to
i. Therefore, the transition probability function can be obtained
according to the following equation:

t∏
k=s+1

P(k) = φ(s, t), s, t ∈ N, 0 ≤ s ≤ t. (4)

The states of the set E are five because the power output is
divided into five ranges according to its value. Specifically, state
1 corresponds to the power values between 0 and 16 kW, state
2 corresponds to the power values between 16 and 32 kW,
state 3 corresponds to the power values between 32 and 48
kW, state 4 corresponds to the power values between 48 and
64 kW, and state 5 corresponds to power values between 64
and 80 kW. Once the states of the non-homogeneous Markov
chain are represented, a random reward is assigned to each state
with the intention of assigning to each state a specific wind
power production belonging to the intervals that identify the
states of EWT . This is done by extracting a random value from
the set of wind power data classified in the corresponding state.
In this way, the simulation of 10-year wind power production
data is obtained. Fig. 4 shows a comparison between the hourly
average of the real and simulated wind power productions ob-
tained by the non-homogeneous Markov reward process. It is
evident that the two curves follow the same trend over time
and this demonstrates the validity of the Markov reward process
approach.

As an example, two probability transition matrices are shown:
matrix (5) referring to hours 2 : 00 − 3 : 00 a.m. and matrix (6)
referring to hours 8 : 00 − 9 : 00 a.m.

⎛⎜⎜⎜⎝
1 2 3 4 5

1 0.98 0.02 0 0 0
2 0.10 0.80 0.10 0 0
3 0 0.16 0.73 0.10 0.01
4 0 0 0.27 0.64 0.09

⎞⎟⎟⎟⎠ (5)
5 0 0 0.01 0.10 0.89
9408
Fig. 4. Hourly average of the wind power production in a day for real and
simulated data.

⎛⎜⎜⎜⎝
1 2 3 4 5

1 0.94 0.05 0.01 0 0
2 0.15 0.63 0.20 0.02 0
3 0.01 0.13 0.57 0.24 0.05
4 0 0 0.07 0.43 0.50
5 0 0 0 0.05 0.95

⎞⎟⎟⎟⎠ (6)

For example, if it is the hour 2 : 00 in the morning and the state
of the chain is equal to 1, the probability that the next state is
again equal to 1 is 98%. Similarly, if it is 8 : 00 a.m. and the state
of the chain is equal to 2, the probability that the next state is
equal to 2 is 63%.

3.3. Photovoltaic generation

10 years of hourly solar irradiation are taken from 2008/08/01
to 2018/08/01 at the same geographical coordinates considered
for the wind speed data (G.E.S. Data, I.S.C.G. DISC, 2015b). Taking
into account Eq. (7) to obtain the PV power (Lasnier and Ang,
1990):

PV (t) = PSTC
n · EM,t

ESTC
[1+ h(TM,t − TSTC )], ∀t ∈ {1, 2, . . . , 24} (7)

where PV (t) is the output power of the PV plant at time t , EM,t
and TM,t is the solar irradiance and the module temperature at
time t , and PSTC , ESTC and TSTC are the maximum power, the
rradiance, and the temperature under Standard Test Conditions
STC), respectively. Finally, n denotes the number of PV panels, h
the power temperature coefficient (%/◦C). Data are scaled to have
a maximum PV power output in the grid equal to 40 kW. Again,
the motivation for this choice is to have the same maximum PV
source power supply as in the study in Alvarado-Barrios et al.
(2020b). PV power is detrended by computing the average hourly
power for each month of the year and calculating the difference
between this and the PV power data. In this way, residuals are
obtained and modeled using a homogeneous Markov reward
process (D’Amico et al., 2021). In this case, a random variable JPVn
with values in the set EPV

= {1, 2, 3} is considered. In this case,
the states in the space EPV are three because the residuals are
divided according to whether they are positive, negative, or equal
to 0. JPVn indicates the state of the system at the nth transition.
Analyzing the actual data yields a probability transition matrix
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Fig. 5. 72-hour sample of hourly PV power production, detrendized power and residuals.
Fig. 6. Histogram of the residual values.

hat satisfies the following relation:

P[JPVn+1 = j | JPVn = in, JPVn−1 = in−1, . . . , JPV1 = i1,

JPV0 = i0] = P[JPVn+1 = j | JPVn = in] = pij.
(8)

In this case, the transition probabilities of the Markov chain that
represents the production of PV energy are independent of time
n, so the process is said to be homogeneous over time.

For the probability transition matrix P = (pi,j)i,j∈EPV , the
simulated residual Markov chain is obtained and a reward is
substituted for each state of the chain, randomly extracting a
value from the set of values that are in the corresponding state.

In practice, the detrended power is obtained, to which we add
the simulation of the residuals over time. A 72-hour sample of
this methodology is shown in Fig. 5, where it is observed that the
PV energy production is higher than the detrended power and
this fact produces positive residuals in the central hours of each
day. The histogram of the residual values is shown in Fig. 6 and
it can be seen that the largest number of values are close to zero.

In Fig. 7 it is evident that the hourly average of the real and
simulated PV powers follows the same trend over time.
9409
Fig. 7. Hourly average of the PV power production in a day for real and
simulated data.

The probability transition matrix (9) of the residual Markov
chain is shown below.

( 1 2 3
1 0.91 0.04 0.05
2 0.08 0.82 0.10
3 0.08 0.10 0.82

)
(9)

For example, if the state of the chain is equal to 2, the probability
that the next state is again equal to 2 is 82%.

3.4. Microturbine and diesel engine

The non-renewable sources connected to the MG are the MT
and the diesel engine. The power generated by these conventional
generators is physically limited within the limits and is modeled
with Eqs. (10).

DEmin ≤ DE(t) ≤ DEmax

MTmin ≤ MT (t) ≤ MTmax (10)
∀t ∈ {1, 2, . . . , 24}
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Emin and DEmax define the minimum and maximum power limits
f the DE, and MTmin and MTmax are the power limits of the MT
enerator.

.5. Spinning reserve

Spinning reserve is the additional generation capacity avail-
ble by increasing the power output of the generators (Rebours
nd Kirschen, 2005; Ortega-Vazquez and Kirschen, 2007). In this
ork, the spinning reserve is composed of a diesel engine RDE(t)
nd a MT generator RMT (t), and can be expressed at each time
hrough Eqs. (11).

DE(t) = DEmax − DE(t)

MT (t) = MTmax − MT (t) (11)
∀t ∈ {1, 2, . . . , 24}

.6. Energy storage system

The battery is a storage energy element that can work as a
enerator or as a consumer at each time, so the state of charge
SOC) must be updated at each time through Eqs. (12) (Chen et al.,
011b).

OC(t) = SOC(t − 1) −

{
∆t · B(t) · ηc for B(t) < 0

∆k·B(t)
ηd

for B(t) > 0 (12)

∀t ∈ {1, 2, . . . , 24}

where ηc , ηd and ∆t are, respectively, the efficiency of charging
and discharging and the time between samples. If the battery
works as a generator, the power value B(t) is positive and nega-
tive in the opposite sense. Furthermore, the SOC must not exceed
the maximum and minimum limits to avoid damage. Therefore,
it must satisfy Eq. (13).

SOCmin ≤ SOC(t) ≤ SOCmax (13)
∀t ∈ {1, 2, . . . , 24}

3.7. Power balance

The power balance means that power generation must be
equal to the power consumed at each time k. This is expressed
in Eq. (14).

DE(t) + MT (t) + PV (t) + WT (t) + B(t) = D(t) (14)
∀t ∈ {1, 2, . . . , 24}

where DE(t), MT (t), PV (t), WT (t), B(t) and D(t) are, respectively,
diesel engine, MT, PV, WT and battery power and power demand
at time t .

4. Optimization and control strategy

For optimization processes, the predicted values of variables v

are taken, which will be noted by v̂.

4.1. Unit commitment and economic dispatch

For the proposed strategy to operate the MG, a two-step
optimization program is followed, similar to the real way in
which electricity grids are managed. The forecast of demand and
noncontrollable sources, denoted as d(t):

d̂(t) = [D̂(t), P̂(t), Ŵ (t)], (15)

where D̂(t) is the forecast of demand and P̂(t) and Ŵ (t) are the
forecasts of solar and wind powers, respectively.
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Table 2
Parameters of each device of the microgrid (Alvarado-Barrios
et al., 2020b).
Source Pmax (kW) Pmin (kW)

MT 20 5
DE 150 15
WT 80 0
PV 40 0

Operational controllable sources are denoted by u(t):

u(t) = [δMT (t), δDE(t), B(t),MT (t),DE(t)]. (16)

The decision on how much operational controllable sources
should contribute is calculated, as above, in two separate steps.
The first step is known as UC. It only decides whether a plant is
on or off. For this purpose, binary variables δMT (t) and δDE(t) are
used. Sometimes, it also provides an estimate of the power they
will have to supply the next day. The UC has a decision horizon
of one day. ED is the name of the second step in which, due to
the error between the forecasts and the actual needs, the actual
power to be supplied by the controllable sources is decided. This
process uses the measured values of the noncontrollable signals
so far, and can also use future forecasts to calculate its decision.
The state of the plant is the SOC of the battery.

4.2. Objective and constraints

UC and DE will depend on minimizing operating costs. Pro-
duction values must be chosen that satisfy demand with the
minimum associated cost. Thus, together with the production
constraints (see Table 2), the energy production must satisfy the
following constraint for all time steps t:

D(k) = PV (t)+WT (t)+ B(t)+ δMT (t) ·MT (t)+ δDE(t) ·DE(t). (17)

At an operating point, the DE and the MT will have power avail-
able due to inertia, called the spinning reserve. We can define it
as the difference between the maximum power the generator can
deliver, and the power that is generating at a given instant t:

Ru
DE(t) = DEmax − DE(t)

Ru
MT (t) = MTmax − MT (t) (18)

These powers have an associated cost, which depends on them
and must also be minimized. From the prediction model devel-
oped in Section 3.1, a load prediction is obtained for each time
step t , D̂(t), with an error with normal distribution N (µt , σ

2
t ).

Regarding the ARMA model described in Section 3.1, it can be
seen that in 99.73% of the cases, the prediction error will be
within the interval [µt − 3σt , µt + 3σt ]. Thus, the total spinning
reserve must be at least greater than three times the statistical
deviation, to satisfy, with the described uncertainty, the power
demanded.

Ru
DE(t) + Ru

MT (t) ≥ 3σt (19)

Moreover, as a further constraint, the difference in power be-
tween the generated power at time t and the minimum power
must be greater than or equal to 3σt , that is,

Rd
DE(t) = DE(t) − DEmin

Rd
MT (t) = MT (t) − MTmin (20)

d d
RDE(t) + RMT (t) ≥ 3σt (21)
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Fig. 8. Daily WT, PV and Total Power Sum of 100-day real data sample and the corresponding value of the daily objective function.
Fig. 9. Daily WT, PV and Total Power Sum of 100-day simulated sample and the corresponding value of the daily objective function.
ontrol actions that minimize costs on a prediction horizon N

are calculated; that is, if horizon N is 24, there are 72 decision

variables.
 r
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4.3. Optimization algorithm

If CMT and CDE are the costs associated with MT and DE,
espectively, for each time step t and for j = 0 . . . ,N − 1, the
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Fig. 10. Daily objective functions of 100-day real and simulated data and the corresponding linear interpolation and slopes for Scenario 1.
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Fig. 11. 50 simulations of the objective function referred to the days 10th
January 2019 and 10th August 2019 and the corresponding average.

optimization problem can be formulated as:

min
δMT ,δDE ,

B,MT,DE

N−1∑
j=0

(
CMT (δMT (j),M(j)) + CDE(δDE(j),DE(j))

+CRDER
u
DE(j) + CRMT R

u
MT (j)

)
(22a)

s.t. D̂(t + j) = P̂V (t + j) + ŴT (t + j)
+B(j) + MT (j) + DE(j) (22b)
ˆSOC(j + 1|t) = f

(
ˆSOC(j|k), B(j)

)
(22c)

ˆSOC(0) = SOC(t) (22d)
ˆSOC(j|t) ∈ S, (22e)

δMT (j), δDE(j) ∈ {0, 1} (22f)
MT (j),DE(j), B(j) ∈ E (22g)
Ru(j) ≥ 3σj (22h)

Rd(j) ≥ 3σj (22i)

Where D̂(t + j), P̂V (t + j) and ŴT (t + j) are the predicted
demand, PV and WT power, respectively, at time t, for the next
 t

9412
steps j. ˆSOC(j+1|t) is the prediction of the SOC for the time j+1,
at the current instant t , which starts with its current value SOC(t)
and its dynamic evolution will depend on the previous SOC and
the battery power (22d). The sets S and E are the battery charge
and power limits, respectively.

In the second optimization problem (ED), it is assumed that
the binary variables δMT (t), δDE(t) remain constant and the actual
demand, which differs from the expected demand, is known.

D(t) = D̂(t) + ω(t) (23)

And the decision variables will be the power increments that
optimize the cost, taking into account the actual demand. In this
case, the objective function is as follows:

min
∆MT ,∆DE,∆B

N−1∑
j=0

[
aMT δMT (j) + bMT (MT (j) + ∆MT (j))

+ cMT (MT (j) + ∆MT (j))2 (24a)
+ aDEδDE(j) + bDE(DE(j) + ∆DE(j))
+ cDE(DE(j) + ∆DE(j))2

]
s.t. ω(j) = ∆MT (j) + ∆DE(j) + ∆B(j), (24b)

DEminδDE(j) ≤ DE(j) + ∆DE(j) ≤ DEmaxδDE(j),
MTminδMT (j) ≤ MT (j) + ∆MT (j) ≤ MTmaxδMT (j),
ˆSOC(j + 1|t) = f

(
ˆSOC(j|t), B(j) + ∆B(j)

)
,

ˆSOC(0) = SOC(t),
ˆSOC(j|t) ∈ S,

MT (j) + ∆MT (j),DE(j) + ∆DE(j), B(j) + ∆B(j) ∈ E

. Results

This section shows the parameter values for any scenario and
resents the results.

.1. Microgrid data

The parameters of the microgrid devices are listed in Table 2.
Regarding the BESS, two different scenarios are considered

n which the maximum power and capacity are modified. In
he scenarios 1 and 2, the same system characteristics used
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Fig. 12. Demand coverage curve of the day 10th August in real data for Scenario 1.
Fig. 13. Demand coverage curve of the day 30th October in real data for Scenario 1.
n Alvarado-Barrios et al. (2020b) are considered for the sce-
arios the authors called ‘‘case 2’’ and ‘‘case 4’’, respectively.
he parameters of the BESS used in each scenario are shown in
ection 5.2.

.2. Simulation results

In this subsection, the results of the scheduling problem are
hown, highlighting the importance of considering the
ncertainty of RESs in the optimization process. As specified
bove, two scenarios are calculated in which only the character-
stics of the BESS are changed, as can be seen in Table 3.
9413
Table 3
Parameters of the BESS in the different scenarios (Alvarado-Barrios et al.,
2020b).
Source Pc

max (kW) Pd
max (kW) SOCmin (kWh) SOCmax (kWh)

Scenario 1 80 80 70 280
Scenario 2 120 120 0 280

As seen subsequently, the value of the objective function is
strictly influenced by the contribution of WT and PV power for
both scenarios studied.

Regarding the computational cost, daily simulations (hourly
time step) are carried out on an Intel(R) Core(TM) i7-8750H CPU
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Fig. 14. Demand coverage curve of the day 2nd November in simulated data for Scenario 1.
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.21 GHz laptop and the average CPU time for each simulation is

.51 min. To perform the 100-day simulations, the CPU time is
qual to approximately 4.18 h.

.2.1. Scenario 1
First, Scenario 1 is considered, in which the power and capac-

ty of the BESS are lower than in Scenario 2. The optimization
esults for the real and simulated data in the 100-day sample,
espectively, are shown in Figs. 8 and 9.

In both cases, it can be seen that an increase in wind power
roduction leads to a decrease in the objective function, and
t is clear that wind power is the renewable source that most
nfluences the total cost value. The trend of PV power decreases
ver time because the first 100 days of our data are consid-
red, this means that the data start on 1 August and end in
ovember. This fact makes the contribution of this renewable
ource decreasing over time and this influences the trend of the
bjective function, which obtains a positive slope over time. We
an observe this phenomenon for both real and simulated data,
nd we highlight it in Fig. 10. The total of the objective function
nd its average calculated from the real data are e 716460 and e

7164.6, respectively. The same results for the simulated data are
e 684110 and e 6841.1, respectively. As can be seen, the values
obtained are very close. Furthermore, the days 10 January 2019
and 10 August 2019 and d 50 simulations of each are randomly
chosen to obtain the objective function. In particular, we keep the
detrended PV power of the considered day constant and simulate
the residuals for PV power and wind power as shown above.
The box plot in Fig. 11 shows that the mean of the objective
function is higher and equal to e 7280.9 for 10 January when
the contribution of PV power is lower because it is winter. For
10 August 2019, it is equal to e 6054.6. This result shows that
the variability of the objective function in one day is considerably
high.

In Figs. 12 and 13 we show the demand coverage curves on
a day with a small contribution of wind power and on a day in
which the contribution of the power produced from the WT is
 F
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Fig. 15. Hourly SOC mean for 100-day real and simulated data for Scenario 1.

onsiderably high, respectively. In Fig. 14 the demand coverage
urve is shown on a simulated day. In both real and simulated
ases, we can see that wind power influences the final value of
he objective function and the final SOC of the battery being equal
o 0 the day in with the wind contribution is low. In Fig. 15 it is
vident that the hourly SOC mean follows the same trend for real
ata and simulations, reaching maximum values in the first part
f the day and presenting values almost equal to the minimum
OC level in the final hours when the contribution of RESs tends
o decrease. Figs. 16(a) and 16(b) show the UC result indicating
ow many times in the real sample of 100 days the MT and the
E are off at each hour of the day. DE is off only the last 3 hours of
he day, whereas MT presents a more widespread behavior, but
lways with a higher probability of being off the last 3 hours. This
esult is in line with the one obtained in Alvarado-Barrios et al.
2020b). The same behavior is shown for the simulated case in
igs. 17(a) and 17(b).
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Fig. 16. Hourly off-status histograms of MT (a) and DE (b) for the real 100-day sample for Scenario 1.
Fig. 17. Hourly off-status histograms of MT (a) and DE (b) for the simulated 100-day sample for Scenario 1.
Fig. 18. Objective function histograms of real (a) and simulated data (b) with the indication of the mean value for Scenario 1.
.2.2. Comparative analysis for Scenario 1
Comparing the mean of the objective function of Scenario 1

which is equal to e 7164.6) with the result obtained in Alvarado-
arrios et al. (2020b) for the scenario called ‘‘case 2’’, the result
f the objective function in e, is equal to e 3159.38 and this
eans that the authors consider an optimistic scenario in which

he contribution of wind energy is high on the day considered.
hese results can be compared because the optimization has the
ame boundary conditions and the optimization process used in
he paper. This underscores the importance of considering the
tochastic nature of RESs. This is also confirmed by looking at
he histogram in Fig. 18(a), where most of the values of the
bjective function are greater than e 7000. Furthermore, a very
9415
similar result is obtained for the simulated data, as can be seen
in Fig. 18(b).

5.2.3. Scenario 2
In Scenario 2 the power and capacity of the BESS increase,

compared to scenario 1. In this scenario, results are obtained that
confirm the results obtained in Scenario 1. Fig. 19 shows the daily
objective functions and linear interpolation with information on
the slope of the real and simulated 100-day data and the slopes.
Also, in this case, the trend of the real and simulated cases is
similar with slope values close to each other.

The histogram of the values of the objective functions of the
real data sample of 100 days is shown in Fig. 25(a). It is evident
that most of the values are greater than e 6000 and the objective



S. Vergine, C. Álvarez-Arroyo, G. D’Amico et al. Energy Reports 8 (2022) 9402–9419

f
o
i
c
c
c
s
s
i
t
d

t
D
i
a
T

t

Fig. 19. Daily objective functions of 100-day real and simulated data and the corresponding linear interpolation and slopes for Scenario 2.
Fig. 20. Demand coverage curve of the day 10th August in real data for Scenario 2.
unction average is equal to e 6779.6, which is less than the one
btained in Scenario 1 (e 7164.6). This is due to the fact that
n Scenario 2 we consider a BESS with a higher Pmax in both
harge and discharge and a lower minimum SOC limit, which
orresponds to a larger capacity. Figs. 20–22 show the demand
overage curves for the real and simulated data and for the
ame days considered in Scenario 1. These figures have many
imilarities with those obtained in the first scenario, and even
n this scenario, it can be seen that the SOC level at the end of
he day is highly influenced by the existence or absence of wind
uring the day.
Figs. 23(a) and 23(b) show the UC result for MT and DE in

he real sample of 100 days, respectively. As in Scenario 1, the
E is off only the last 3 hours of the day, whereas this behavior
s more evenly distributed throughout the day for the MT, but
lways with a higher probability of being off the last 3 hours.
hese results are similar to those obtained previously.
Figs. 24(a) and 24(b) also show a similar trend for the simula-

ions obtained for Scenario 2.
9416
5.2.4. Comparative analysis for Scenario 2
Also for Scenario 2, the value of the mean value of the ob-

jective function is compared, which is equal to e 6779.6, with
the result obtained in Alvarado-Barrios et al. (2020b) ‘‘case 4"
(i.e. ‘‘case 4"), which is equal to e 2884.8. It seems clear that
in this case, the solution is also influenced by the optimistic WT
and PV scenario considered by the authors. If the simulated data
are considered, the mean of the objective function is equal to
e 6458.1, which is very close to the value obtained for the real
data above and is lower than the mean of the objective function
of the simulated data for Scenario 1 (equal to e 6841.1). For
completeness and to better illustrate how optimistic the result
obtained in Alvarado-Barrios et al. (2020b) is, Fig. 25 shows the
histogram of the objective function of the real and simulated data
with the indication of the mean value. The two distributions are
very similar for both cases.

6. Conclusion

In this article, a model has been proposed to solve the schedul-
ing problem of a hybrid generation MG, highlighting the influence
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Fig. 21. Demand coverage curve of the day 30th October in real data for Scenario 2.

Fig. 22. Demand coverage curve of the day 2nd November in simulated data for Scenario 2.

Fig. 23. Hourly off-status histograms of MT (a) and DE (b) for the real 100-day sample for Scenario 2.

9417
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Fig. 24. Hourly off-status histograms of MT (a) and DE (b) for the simulated 100-day sample for Scenario 2.
Fig. 25. Objective function histograms of real (a) and simulated (b) data with indication of the mean value for Scenario 2.
f the uncertainty of renewable energy on the final result. An
UC and an ED have been solved to schedule the management
f isolated MG with the total cost as the objective function to
e minimized. Demand forecasting is performed using the ARMA
odel, which is applied to 2 years of historical data. WT and PV
roductions are modeled using a non-homogeneous Markov re-
ard process and a homogeneous Markov reward process applied
o the residuals, respectively. The 100-day objective function
s obtained for both real and simulated data considering the
wo scenarios studied. First, it is shown that the implemented
tochastic models adequately simulate the behavior of the RESs,
here it is evident that the total cost faced by the MG is strongly

nfluenced by the wind speed present on each day considered.
he PV power is found to influence the objective function only in
erms of the general trend, which is visually translated into slopes
f 6.9÷8.6 for the first scenario and 7.2÷8.2 for the second sce-
ario. The slopes are positive because a time period starting from
ugust 1st and lasting 100 days is considered and consequently
orresponds to a period in which solar irradiance decreases over
ime. Furthermore, 50 simulations of two fixed days have been
erformed for each scenario to show the following two aspects:
he value of the mean objective function is higher when the PV
ontribution is lower and the variability of the values is consid-
rably high due to the stochasticity of the RES contributions. Due
o the large amount of data processed, the UC distributions for
he MT and the DE are obtained, and it is found that the highest
robability of having these two devices off is in the last 3 h of
he day. Compared to the study conducted in Alvarado-Barrios
t al. (2020b), we want to highlight the importance of correctly
onsidering and modeling the stochastic nature of RESs. Using
he stochastic Markov model, it is shown that the WT and PV
onditions considered in that study are very optimistic and do
ot capture the true nature of the phenomena. In the present
9418
work, for simplification, a battery degradation model and a cost
associated with the production of renewable energy have not
been taken into account. These and others, such as the reduction
of computational cost in the design phase and the incorporation
of a physical MG to carry out frequency and voltage stability
studies, are proposed as future research work along the same
lines.
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