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Abstract

Biomedical research has been revolutionized
by high-throughput techniques and the enor-
mous amount of biological data they are able
to generate. Genetic networks arise as an es-
sential task to mine these data since they ex-
plain the function of genes in terms of how
they influence other genes. Genetic networks
based on discrete states, such as boolean net-
works, have been widely used and have shown
abilities to model some of the complex dy-
namics of gene expression networks. In this
work we propose a new method for the dis-
cretization of gene expression data based on
the fuzzification of already proposed tech-
niques. The proposal is applied to the mi-
croarray data obtained from a problem on the
inflammation and host response to injury in
human beings.

Keywords: Microarray, Boolean network,
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1 INTRODUCTION

Microarray technology has revolutionized modern
biomedical research by its capacity to monitor the be-
havior of thousands of genes simultaneously [2]. In
particular, time-series expression experiments are an
increasingly popular method for studying a wide range
of biological phenomena. The reconstruction of ge-
netic networks is becoming an essential task to under-
stand the enormous amount of information generated
by this high-throughput technique data [4].

Systems biology research arises at this point as the
field to explore the life regulation processes in a co-
hesive way making use of the new technologies. In
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regulatory networks, proteins have a main role in the
regulation of genes [13], but unfortunately, for the vast
majority or biological datasets available, there is no
information about the level of protein activity. There-
fore, we use the expression level of the genes as an in-
dicator of the activity of proteins they generate. Gene
networks represent these gene interactions. A gene
network can be described as a set of nodes which usu-
ally represent genes, proteins or other biochemical en-
tities and the transcription factors that regulate the
system.

Given the complexity of this problem, most approaches
work on discretized versions of the gene expression
data. In fact, discrete state, time and models have
been extensively used to model biological networks,
and have shown to be able to model, at least in part,
the complex dynamics of these networks.

In this paper, we describe a number of methods for
the discretization of gene expression data and we pro-
pose a new method based on the fuzzification of the
already described methods capable to reduce the rate
of misdiscretized data. We apply these methods to
the microarray data obtained from a problem on the
inflammation and host response to injury in human
beings.

2 BACKGROUND

In this section we will introduce the discretization
methods used in the experimental section and the in-
ference process developed to extract a boolean network
from a set of microarray time-series data.

2.1 DISCRETIZATION PROCESS

Several discretization techniques have been used in
expression data analysis. These techniques can be
grouped in two high level categories: (1) discretization
using expression absolute values, and (2) discretization
using expression variations between time points [9].
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2.1.1 Notation

Let A’ be an n row by m column gene expression ma-
trix, where Agj represents the expression level of gene
i under condition j. The matrix A is defined by its set
of rows, I, and its set of columns, .J. Moreover, let A}
denote the average value in the expression matrix A’
and Aj; and A7, denote the mean of row i and condi-
tion j, respectively. Let let H;; denote the maximum
(high) value in the expression matrix A and H;; and
Hpj denote the maximum value of row ¢ and column
7, respectively. In the same way, let M;; denote the
median value in the expression matrix A and M;; and
M7; denote the median value of row ¢ and column j,
respectively.

In this work, we are concerned with applications that
use a discretized version of the matrix, where each
element in A’ is mapped to one element of an alpha-
bet, ¥. FEach different symbol represents a distinct
activation level. In the simpler case, ¥ may contain
only two symbols, one used for regulation and other
for non-regulation. In this case, the expression matrix
is usually transformed into a binary matrix, where 1
means regulation and 0 means no regulation. After
the discretization process, matrix A’ is transformed in
matrix A and A;; represents the discretized value of
the expression level of gene 7 under condition j.

We define the gene expression pattern for gene i as the
discretized expression level of gene i under all condi-
tions j = 1...m in matrix A. Note that for gene a and
gene b, the expression levels for conditions j = 1...m in
matrix A’ might result in the same discretized values
for conditions j = 1...m in matrix A (Figure 1). Then
we say that gene a and gene b share the same gene
expression pattern.

Sowiec’ Epremioo ¢

Figure 1: Genes with different expression values at
each condition might end up sharing a common ex-
pression pattern after the discretization process.
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2.1.2 Discretization methods using
expression absolute values

Several discretization methods that use expression ab-
solute values [1, 12] will be used in our experiments:

e A;j; method: Using the average expression value
alone, either computed using all the values in the
matrix (Equation 1), by row, or by column.

L oif Ay > A,

Aij = { 0 otherwise (1)

e Mj;; method: Using the highest and lowest ex-

pression values for each gene ¢ and computing its

median using all the values in the matrix (Equa-
tion 2), by row, or by column.

; /

0 otherwise

e H;; method: Using the maximal expression value
as the cut-off, observed for the whole matrix, for
each gene i or for each condition j. If X is a fixed
percentage of this maximal expression value, it
can either be computed using all the values in the
matrix (Equation 3), by row, or by column.

Aij:{ Loaf Al > Hry(1— X%) (3)

0 otherwise

e TOP X% method: Using a percentage X % of the
highest values, the expresssion values inside this
percentage are discretized to 1 and the remaining
to 0. Again, this procedure can be computed us-
ing all the values in the matrix (Equation 4), by
row , or by column.

if rank(A]

A — 1 ijrsort(A”)) > Xxnxm
71 0 otherwise

100

(4)
where sort(z) returns all elements of z in ascend-
ing order, and rank(z,y) returns the position of
element x in the list y.

2.1.3 Discretization methods using
expression variations between time
points

o Transitional state discrimination (TSD) method
[10]. For this discretization process all values need
to be standarized to z-scores (Equation 5):

e=F (5)
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NOT A = A NAND A
A AND B = (A NAND B) NAND (A NAND B)
A OR B = (A NAND A) NAND (B NAND B)

Table 1: Boolean functions obtained only using the
NAND function.

where x is a raw score to be standardized, o is the
standard deviation of the population and pu is the
mean of the population. The quantity z repre-
sents the distance between the raw score and the
population mean in units of the standard devia-
tion. If z is negative, then the raw score is below
the mean and positive when above.

After this standardization of A’ data, each gene
expression profile is discretized using two state
transitions (Equation 6, o = 0).

i oAl >

"1 0 otherwise

e Another alternative is to first compute the stan-
dard deviation for time point 0, std(0) and pro-
viding a parameter « to compute a discretization
threshold ¢ = std(0) x « [6] (Equation 6, o > 0).

2.2 BOOLEAN NETWORK
CONSTRUCTION

A boolean network is composed by a set of nodes n
which represent genes, proteins or other biochemical
entities. These nodes can take on/off values. The net
is determined by a set of at maximum n boolean func-
tions, each of them having the state of k specific nodes
as input, where k£ depends on each node. Therefore,
each node has its own boolean function which deter-
mines the next state (state at time t41) based on the
actual state (state at time t) of the input nodes. The
changes in the net are assumed to occur at discrete
time intervals.

The algorithm applied to build the boolean network
with our data is the GeneYapay [5]. It performs an
exhaustive search of boolean functions over the data,
where a number of nodes, less or equal than k, uni-
vocally determine the output of some other gene. All
possible subsets of 1,2, ...,k elements are visited cal-
culating the number of inconsistencies of the boolean
functions in relation to the output value of each gene.
The algorithm stops the search for each node when
a subset of nodes is found which defines the expres-
sion profile. The implementation applied [15] only uses
the NAN D function since all other boolean function
-AND, OR, NOT- can be expressed using NAND
(Table 1).
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3 PROPOSAL

Crisp discretization methods are widely used in mi-
croarray experiments [1, 12, 8, 10]. However, there is
a drawback in these methodologies when the expres-
sion level is near the threshold value specified by the
discretization method. Therefore, several points in the
microarray may be misdiscretizied. This is mainly due
to the crisp characteristics of the discretization meth-
ods (Figure 2 (a)). In this work, we propose an alterna-
tive methodology to avoid potential misdiscretization
errors by using fuzzy sets (Figure 2 (b)).
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Figure 2: Example of a fuzzyfied discretization method
M;yy. (a) Original method. (b) Fuzzified version,
where 0 is a given small value.

The basic idea is to extend the crisp set (Figure 2
(a)) to a fuzzy set by overlapping both crisp sets us-
ing a small value 0 as a deviation from the calculated
threshold (e.g., threshold £ §) (Figure 2 (b)). The
data in the intersection of both fuzzy sets (i.e., zero
set ZERO and one set ONE) can be discretize to 0
or to 1 as they have almost the same membership p to
both fuzzy sets (Figure 2 (b)). We suggest that expres-
sion values with u(ZERO) > 0 and u(ONE) > 0 to
both fuzzy sets are to be discretized to 0 or 1 depend-
ing on their correlation with the elements belonging to
the 0 or 1 set. That is, using the Pearson correlation
coefficient [11] we calculate if a given expression value
is more likely to be similar to the elements in the 0 set
(i.e., u(ZERO) > 0 and u(ONE) = 0) or to the 1 set
(i.e., W(ONE) > 0 and u(ZERO) = 0), an discretize
it accordingly.

Then, we can redefine the discretization methods in-
troduced in Section 2.1 using this new methodology.
We will notate them with an extra tilde (e.g., Mj,,
TSD') to differentiate them from the original versions.

4 EXPERIMENTS

Experiments using all the discretization functions de-
scribed in Section 2.1 and the new proposed versions
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were applied to an immuno-inflammatory response
problem. This study, in part carried out at the Cellular
Injury and Adaptation Laboratory, Washington Uni-
versity School of Medicine, is a piece of a large-scale
research project devoted to profile leukocyte gene ex-
pression and plasma proteins of burn and trauma pa-
tients [3]. The host response to trauma and burns is a
collection of biological and pathological processes that
depends critically upon the regulation of the human
immuno-inflammatory response. The objective of this
study is to identify significant relationships that reg-
ulate the integration of the human complex biological
system. For this purpose, 48 GeneChips®HG-U133A
v2.0 from Affymetrix Inc. were analyzed, derived from
samples taken from human blood of eight patients:
four treated with intravenous endotoxin and four with
a placebo and expression retrieved over time at hours
0,2,4,6,9 and 24.

The microarray data has been normalized by scal-
ing (Invariant Set Approach) and normalizing (Model-
Based Expression Index) [7].

4.1 Results for the original versions

Several interesting results were obtained after dis-
cretizing the microarray information with the differ-
ent methods (Tables 2 and 3). We analyze patient 1
as an example of a treatment patient and patient 5 as
an example of a control patient. Also, we analyze the
results obtained by the all patient expression patterns.

We can extract from Table 3 that all A;;, M;; and
Hpj obtain the same amount of patterns. Mj; and
Hjj discretization methods have a very similar behav-
ior since they discretize almost all genes in the same
fashion since the threshold for each method is almost
the same (Table 3). On the other hand, the compari-
son between the other methods (Table 2) show a high
dissimilarity in the discretized patterns. The union
of all patients shows similar results than the patients
taken independently (Table 2).

Thresholds calculated as a result of the different dis-
cretization process are very close to each other (Table
3). Nevertheless, a small difference in the threshold
value can affect the discretization of many genes.

The results obtained by the TOP X% discretization
methods (Table 3) produce different patterns, never-
theless most of the genes are clustered in two major
groups for all X = 10,20, 30, therefore providing a
very poor discretization.

Analyzing patterns I and II from Table 4, we can
see that T'SD a = 0,1 discretize them equally, while
TSD « = 2 discretize them differently. We can ob-
serve in Figure 3 that their expression levels are not
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Figure 3: Expression levels for the patterns in Table
4. Color-codes: expression pattern I (red, circle), ex-
pression pattern II (blue, triangle), expression pattern
III (green, plus sign), expression pattern IV (black,
cross), expression pattern V (orange, diamond) and
expression pattern VI (gray, upside-down triangle).

so different. Something similar happens with pat-
terns ITI and IV. An interesting result is obtained by
the discretization of patterns V and VI. We can ob-
serve in Figure 3, that they are almost opposite pat-
terns, but TSD «a = 1,2 discretize them equally, while
TSD «a = 0 discretize them correctly.

Our experiments reveal that the studied discretization
methods are sensible to the threshold used for each
of them, therefore, data located near this threshold
would have high probability of misdiscretization.

4.2 Results for the new versions

We applied the modified versions of the discretization
methods introduced in Section 2.1. Due to space re-
strictions, we will only show the results obtained for
method M7 ; for patient 1 as an example. We decided
to use a small threshold (§ = 0.01) since greater values
will force to unecessarily re-analyze a great amount of
discretizations.

The correlation between values inside the threshold
and a cluster prototype for each group (i.e., zero set
ZERO and one set ONE) are calculated. The dis-
cretization of these values is determined by the best
correlated group. Each cluster prototype is selected
between patters with expression level values outside
of the threshold.

Results show that correlation values of the new dis-
cretization method is much better (Table 5). We can
also see in Figure 4 that the expression levels are more
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Table 2: Comparison between discretization methods A;; (Equation 1), M;; (Equation 2) and H;; (Equation
3) described in Section 2.1.2. Each cell shows the number of genes, and its percentage of the total dataset,
discretized differently by each pair of methods. All methods applied to the eight patients, here we show only

patient 1 (treatment) and patient 5 (control).

METHODS | TREATMENT | CONTROL ALL

PATIENT | PATIENT | PATIENTS
Apy vs. My, 13752 (62%) | 9650 (43%) | 78725 (50%)
Apyvs. Hyy 13769 (62%) | 9677 (43.5%) | 78878 (50.7%)
My vs. Hyy 106 (0.47%) | 126 (0.56%) | 826 (0.53%)

Table 3: Discretization results. Discretization methods A;; (Equation 1), M;; (Equation 2) and Hy; (Equation
3) described in Section 2.1.2. Discretization method TOP X% (Equation 4) described in Section 2.1.2 with
X =10,20,30. Discretization method T'SD (Equation 6) described in Section 2.1.3 with a = 0,1, 2. All methods
applied to the eight patients, here we show only patient 1 (treatment) and patient 5 (control).

#PATTERNS

METHOD | TREATMENT | CONTROL | THRESHOLD

Ary 64 64 0.22242430

My 64 64 0.21305742

Hp; 64 64 0.21303658

TOP 10% 63 64 0.22853785

TOP 20% 55 54 0.23952316

TOP 30% 47 43 0.24580431

TSD a=0 64 64 -

TSD a=1 34 31 -

TSD ao =2 29 13 -

ues will be more appropriate.

g As an example of the results obtained by the new
° methodology proposed, Table 6 shows some genes
5 o whose M7 discretization is corrected by the new M7 ;.
g ° We then calculate the boolean networks for the original
8 . M;j; (Figure 5) and the modified M} ; method (Figure
g 37 A 6). The networks obtained have some portions in com-
A T T~ a mon, but also some other protions are quite different.
g ° SN Due to the discretization changes between Mj; and
© o—1 OX M3, several genes belonging to a pattern in the orig-
- 2§ 3 inal method, may now belong to a different pattern in
S \ T T T \ the new method. We studied the biological annotation
! 2 8 4 5 6 of every gene inside each of these patterns for both dis-
Time points cretization methods using the Onto-CC software [14].

Figure 4: Expression levels for the patterns in Table
5 against My and M, prototypes. Color-codes: ex-
pression pattern I (red, circle), expression pattern II
(blue, triangle), expression pattern III (orange, plus
sign), My, prototype (green, cross) and Mj; proto-
type (black, diamond).

similar to the new method’s prototype than the origi-
nal method’s prototype. Thus, the discretization val-
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We could see that the new discretization method M7 ;
produces more homogeneous sets, that is, the genes
in each set have a very simmilar annotation. For in-
stance, pattern G33 (100001) have 360 genes in the
M7y method, while the same pattern share the same
information plus five extra genes. These five genes are
annotated with several terms, like “ubiquitin cycle”
and “protein targeting” wich are also associated with
the other 360 genes. Therefore, the boolean networks
calculated using the new methodology are more reli-
able since they are constructed using information with
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Table 4: Example of genes discretized differently by T'SD aa =0, TSD aa =1 and TSD a = 2.
ID TSD TSD TSD EXPRESSION VALUES
a=0 a=1 a=2
I 010101 | 011000 | 000000 | 0.788009 | 2.053057 | 0.488498 | 0.726193 | 0.723284 | 1.513306
II | 010101 | 011000 | 001000 1.228279 | 3.221180 | 0.977528 | 1.173404 | 1.050649 | 1.557317
IIT | 010101 | 011000 | 001000 | 0.302274 | 1.974590 | 0.451306 | 0.454151 | 0.450831 1.090290
IV | 010101 | 011001 | 010001 1.002203 3.13927 | 1.284922 | 1.314039 | 0.876443 | 3.548847
V | 101010 | 010001 | 000000 | —0.649956 | —1.859078 | —1.167513 | —1.42009 | —1.26441 | —2.511316
VI | 110100 | 010001 | 000000 | —0.035346 | 1.223311 | 0.944796 | 0.948552 | 0.899278 | —0.105929
Table 5: Correlation between genes to My and My ;.
‘ ID ‘ EXPRESSION VALUES ‘ My ‘ My,
I 0.2186793 | 0.2076971 | 0.2517480 | 0.2386211 | 0.2355112 | 0.2120486 | 0.63664744 | 0.88130940
IT | 0.2240480 | 0.2070605 | 0.2665070 | 0.285858p | 0.2680730 | 0.2097774 | 0.55217325 | 0.95665902
IIT | 0.2184243 | 0.2069158 | 0.2377598 | 0.2361701 | 0.2328981 | 0.2108157 | 0.67215942 | 0.93229356

less missclassification errors.

5 CONCLUSIONS

Different discretization methods produce significant
differences in the analysis of microarray experiments.
Thus, selecting an appropriate method will directly
affect the quality of the results. Classical discretiza-
tion methods show major differences in their results
when applied to the same dataset. Moreover, expres-
sion levels near the threshold value in each method are
questionably discretized and produce potential misdis-
cretizations. We have proposed new fuzzy based meth-
ods that uses correlation to calculate the appropriate
discretization values for these dubious expression lev-
els. Thus, the boolean networks are calculated using
discretized expression values with a smaller missclassi-
fication errors. Further studies with different datasets
will provide more detailed analysis.
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Figure 5: Boolean network obtained for patient 1 using M7 ; discretization method. Each node correspond to a
an expression pattern.
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Figure 6: Boolean network obtained for patient 1 using M7 ; discretization method. Each node correspond to a
an expression pattern.
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