
Variability-aware data migration tool
David Romero
Dept. of Computer

Languages and Systems
University of Seville

Seville, Spain
drorganvidez@us.es

José A. Galindo
Dept. of Computer

Languages and Systems
University of Seville

Seville, Spain
jgalindo@us.es

Jose-Miguel Horcas
Dept. of Computer

Languages and Systems
University of Seville

Seville, Spain
jhorcas@us.es

David Benavides
Dept. of Computer

Languages and Systems
University of Seville

Seville, Spain
benavides@us.es

ABSTRACT
Relational databases are widely present in the development of soft-
ware applications. A typical implementation can be seen in content
management systems found on most websites. However, the migra-
tion of database structure and content between different manage-
ment systems is not trivial, and themanual creation of scripts makes
it difficult to reuse them in other scenarios. This paper presents a
tool for database migration by modeling what we call a migration
product line. This tool allows to obtain different configurations
resulting in final products in a semi-automatic way, i.e., products
according to software requirements, considering the variability be-
tween any two relational databases. To study the feasibility of our
proposal, we have implemented a proof of concept that performs
the migration between two databases.

CCS CONCEPTS
• Software and its engineering → Software product lines;
Requirements analysis; Software design engineering; Software imple-
mentation planning.␣

KEYWORDS

databases,

 migrations,

 model transformations,

 product lines,

variability

1 INTRODUCTION

One of the problems when information systems evolve and suffer
from technical debt, is the migration of data [7]. Old data structures
must be migrated to new ones, or simply a piece of a system is
changed, and so are its corresponding data structures. When adding
a feature to an existing product, data migration can happen too.
This migration happens not only in software product lines but also
in system development.

Let’s take ContentManagement Systems (CMSs) as an illustrative
example. CMSs are present on many websites due to their ease of
implementation and the addition of new components that extend
the use of the system [1]. Examples such as Drupal or WordPress
allow speeding up the development of information systems, as
there are already predefined solutions compared to more traditional
development [6].

These CMSs use a relational database, typically MySQL1. A
CMS’s database structure is tied to a particular version of the soft-
ware, which can be modified by adding new components or plugins.
However, migrating database structure and content between two
CMSs is not trivial. Although certain plugins allow migration of the
base system, they are limited to specific versions of the source sys-
tem and specific versions of the target system. Regardless of the pair
of systems we want to study, an option is the manual creation of
SQL scripts2 detailing how to migrate each table and each attribute,
among others. However, this solution is impractical because of the
variability present in the two databases and the tight coupling with
their respective CMSs. Let 𝑉𝐴 be the number of versions of a CMS
𝐴 and 𝑉𝐵 be the number of versions of a CMS 𝐵. The number of
scripts required for a CMS 𝑆 to migrate a system from 𝐴 to 𝐵 and
vice versa will be determined by 𝑆 = 2 ·𝑉𝐴 ·𝑉𝐵 .

There are 531 current Drupal versions3 and 574 current Word-
Press versions4. Trying to make the migration bidirectional, we
get a total of 609,588 different SQL scripts. These scripts are not
reusable with each other, something unfeasible in technical terms.
In addition, the scripts would contemplate the complete migra-
tion from 𝐴 to 𝐵 but not small-scale migrations, e.g., migrating
only certain tables. Since each version can have a variable num-
ber of tables, let 𝑇𝐴 be the number of tables of CMS 𝐴, 𝐴𝑇𝑅𝐴 the
number of attributes of each table, 𝑇𝐴𝐴 the number of type of
each attribute, and making a simile with CMS 𝐵, we have 𝑆 =

2 ·𝑉𝐴 ·𝑇𝐴 · 𝐴𝑇𝑅𝐴 ·𝑇𝐴𝐴 ·𝑉𝐵 ·𝑇𝐵 · 𝐴𝑇𝑅𝐵 ·𝑇𝐴𝐵 ·𝑇𝐴𝐵 .
Let us assume that the two CMSs have the same number of

tables, e.g., 8, 5 attributes for each table along with their five types
and that CMS 𝐵 has the same structure except for a new table
with two attributes. If we apply the formula, we are left with 𝑆 =

2 · 531 · 8 · 5 · 5 · 574 · (8 · 5 · 5+ (1 · 2 · 2)) = 2.49 · 1010 scripts different
for the possible migrations partially. We should add the presence
of plugins that introduces their modification into each database.
For practical purposes, it is impossible to manually cover all these
configurations given the high variability of the problem.

1https://dev.mysql.com/doc
2https://gist.github.com/ryelle/3823356
3https://github.com/drupal/drupal/tags
4https://github.com/WordPress/WordPress/tags

https://doi.org/10.1145/3503229.3547062
https://doi.org/10.1145/3503229.3547062
https://dev.mysql.com/doc
https://gist.github.com/ryelle/3823356
https://github.com/drupal/drupal/tags
https://github.com/WordPress/WordPress/tags

Currently, there are Domain Specific Languages (DSLs) capable
of modeling migrations between two artifacts [8]; in our case, two
databases. However, the same problem remains, which is variability.
We understand the use of a DSL of this type as a tool that helps us
and makes it easier to model a migration between two databases
[4], which is a way to avoid programming the SQL script directly.

In section 2, we propose a tool where the domain expert user
can model a migration between two relational databases; in section
3, we show a demo, and finally, in section 4 we present conclusions
and future work.

2 TOOL: DATABASE TRANSFORMATIONS
USING A MIGRATION PRODUCT LINE

We propose to develop a tool that allows the modeling of migrations
within a Migration Product Line through an interactive process by
the domain expert user. The tool gives the user a choice of valid
actions to configure their migration without having to use a DSL.
In Figure 1 shows our proposal for generating such script from two
relational databases.

2.1 Extract simplified model
To facilitate the migration and study of each database, we have
devised a simplified model called Simple Database Model (SDM).
An SDM, which can be seen in the Listing 1, is an XML file that
contains a description of the entities, the relationships between
them, the associated attributes, and the type (e.g., char, varchar,
bool). This process can be manual, that is, the user details in the
XML, the structure of the source (or target) database, or it can be
extracted automatically by making a call to the machine’s MySQL
server. In our tool, we provide a utility that allows the automatic
generation of the SDM.

Listing 1: Simple Database Model example.
1 <?xml version="1.0" encoding="utf-8" standalone="yes" ?>
2 <sdm>
3
4 <entity id="post">
5 <name>Post</name>
6 <attribute>
7 <name>title</name>
8 <type>varchar(25)</type>
9 </attribute>
10 <attribute>
11 <name>body</name>
12 <type>text</type>
13 </attribute>
14 </entity>
15
16 <entity id="post_meta">
17 <name>PostMeta</name>
18 <attribute>
19 <name>author</name>
20 <type>varchar(25)</type>
21 </attribute>
22 </entity>
23
24 <relation>
25 <one id="post"></one>
26 <many id="post_meta"></many>
27 </relation>
28
29 </sdm>

2.2 Select actions
If we have already obtained their respective SMD’s from the source
and target databases, the system studies their differences. Since the
source database will transform until it reaches the target database,
the tool gives the user the choice of a series of available actions
from a predefined set of actions.

We have implemented a total of 9 predefined actions (but more
can be added):
- Concerning entities: create entity, rename entity, delete entity.
- Concerning attributes: create attribute, move attribute (from one
entity to another), rename attribute, change attribute type, delete
attribute.
- Concerning relationships: create relationship.

The list of actions available in the migration is variable, i.e.,
conditional on the current status between the two bases. Each time
the domain expert user selects an action, the tool generates a series
of new possible actions. For example, if the user has selected the
action Create entity, the tool will get new available actions such
as Create attribute or Move attribute to that entity. The selection
of an action can be manual or automatic. To implement automatic
selection, we have used a heuristic [5], which is a numerical estimate
of the difference between the two SDM.

Let 𝑋 be the source base, 𝑌 the target base. Let 𝐸 be an entity,
𝐴𝑡 be an attribute of an entity, and 𝑇 be the type of each attribute.
Let 𝑑𝑖 𝑓 (𝐴1, 𝐵2) be the nº of entities/attributes/attribute types of
attributes of X that do not appear in Y and the nº of entities/at-
tributes/attribute types of Y that do not appear in X.

𝐻 = 𝑑𝑖 𝑓 (𝐸𝑥 , 𝐸𝑦) +
|𝐸𝑥 |∑︁
𝑛=1

|𝐸𝑦 |∑︁
𝑚=1

𝑑𝑖 𝑓 (𝐴𝑡𝑛, 𝐴𝑡𝑚) + 𝑑𝑖 𝑓 (𝑇𝑛,𝑇𝑚)

For example, suppose the target database has one entity and
two new attributes that do not appear in the source database. The
heuristic will be at least +3 since these are the minimum actions
we will perform: Create entity (once) and Create attribute (twice).
A greedy algorithm [3] selects the action that most decreases this
heuristic and obtains a series of valid actions when it reaches 0.
Other heuristics can be added in the future.

2.3 Transform
The list of actions to be executed, obtained manually or by heuris-
tics, generates what we have called a Simple Transformation Model
(STM), which is an XML file detailing the type of action, the entities
involved, and the minimum information to carry out the transfor-
mation. We can see an example instance in the Listing 2.

In our example, we have selected the action Change attribute
type and the action Rename attribute. The selection of these two
actions has led to creating two types of transformations, both of type
attribute. Within each type of transformation there are predefined
types of actions, in our case, the actions retype and rename. This
structure allows the grouping of several actions of the same action
type, which will consider in future implementations of the tool.

The STM is translated into SQL statements with the help of a
template engine 5. The tool default copies the structure and data
from the source database to the final SQL script. Then, it applies

5https://jinja.palletsprojects.com/en/3.1.x

https://jinja.palletsprojects.com/en/3.1.x

Figure 1: Description of components of the proposed tool.

the transformations that the user has defined. That is, it translates
into SQL (MySQL) each transformation according to the variability.
These transformations are never incompatible because the tool has
been mutating the list of available actions taking into account the
previous selection immediately before.

Listing 2: Simple Transformation Model example
1 <?xml version="1.0" encoding="utf-8" standalone="yes" ?>
2 <stm>
3
4 <transformation type="attribute" id="ChangeAuthorType">
5 <action type="retype">
6 <entity>post_meta</entity>
7 <attribute>author</attribute>
8 <retype>VARCHAR(100)</retype>
9 </action>
10 </transformation>
11
12 <transformation type="attribute" id="RenameAuthorName">
13 <action type="rename">
14 <entity>post_meta</entity>
15 <attribute>author</attribute>
16 <rename>owner</rename>
17 </action>
18 </transformation>
19
20 </stm

2.4 Modeling into Migration Product Line
This phase is where we build what we have called aMigration Prod-
uct Lines, MPL. We define an MPL as a set of migrations that satisfy
constraints specified by the domain expert user. The definition is
similar to SPL, where each feature would be a migration in our case.
This MPL allows us to obtain several valid migrations depending
on the user’s selection.

Figure 2: Example ofMigration Product Line betweenDrupal-
based system and WordPress-based system.

We propose the use of an MPL as part of our systematic process.
We do not simply create the SQL script of a particular migration;
each such migration, i.e., of a set of domain expert user-guided
actions, is modeled in a migration product line. This MPL makes it
possible to generate final databases based on the choice of features
of that MPL. The final artifact is a SQL script composed of several
intermediate scripts that are fully compatible with each other since
it is the user himself who models the MPL and who configures the
constraints between migrations. Each time the user generates a
new migration, it is added to the MPL, specifying which restriction
it has concerning the other migrations.

As a simple example, we start from the use case of migration
between a Drupal-based system and a WordPress-based system in
Figure 2. In our MPL there can exist the migrations PostsMigra-
tion, UsersMigration and ForumMigration. We assume that there
is the particularity that ForumMigration cannot be performed if

UsersMigration is not applied first, but not the other way around.
The PostsMigration migration is independent and has no restrictions
of any kind. This would generate a total of 5 different final artifacts:
(1) PostsMigration, (2) PostsMigration - UsersMigration, (3) UsersMi-
gration, (4) PostsMigration - UsersMigration - ForumMigration, (5)
UsersMigration - ForumMigration. And each of those final artifacts,
i.e., scripts SQL, are valid configurations within our domain.

3 DEMO
Figure 3 shows the use of the console tool in manual selection mode.
The tool displays the possible actions between the source and the
target database in the first iteration. Depending on the selection of
the action, it will show us a new set of available actions, being able
to stop the execution at any time.

Figure 3: Example of the execution of the tool wherewe select
actions from a set of available actions

4 CONCLUSIONS AND FUTUREWORK
The solution proposed in the previous section exemplifies, for a
concrete case, that it is possible through a systematic analysis to
obtain different valid migrations being the user an expert in the
domain. This proposed tool avoids the cost of creating a script
for each pair of versions between two databases, building a model
that considers variability and generates new valid products. Our
tool allows reasonably easy source or target database modifications
without affecting the migration description process.

We propose an in-depth study of the following issues as future
work:
- Data variability study. When migrating between different struc-
tures, how data is organized and treated can lead to integrity prob-
lems, data loss, inconsistencies, and incompatibilities. A systematic
and structured analysis is proposed to establish thresholds and
indicators to alert these potential problems.
- Study of migrations between different paradigms. We will study
the possibility of implementing the solution to other non-relational
databases such as MongoDB and analyze if there are inconsisten-
cies during these transformations to avoid them or propose new
solutions.
- Generalizing migration product lines. Currently the proposed so-
lution allows the domain expert to generate a model representing
the possible migrations of his problem. We will study whether it is
possible to extend this horizon and cover different CMS and even
different data storage paradigms in the same product line.
- Data analysis. Although the final artifact is a SQL script that al-
lows automatic migration, intermediate artifacts of transformation
models allow data to be exported to other formats such as CSV for
more rigorous analysis through various technologies [2].
- Inclusion in other systems. We will analyze whether the tool can
be included in other software management systems, such as con-
tinuous integration tools and backups.

ACKNOWLEDGMENTS
This work was supported by the Project (RTI2018-101204-B-C22,
OPHELIA), funded by: FEDER/Ministry of Science and Innovation -
State Research Agency); and the Junta de Andalucia COPERNICA
(P20_01224) and METAMORFOSIS FEDER_US-1381375) projects.

REFERENCES
[1] Mustapha Bouakkaz and Yulia Strekalova. 2021. Content Management System

(CMS). Springer. https://doi.org/10.1007/978-3-319-32001-4_43-1
[2] Koti and Yogi Reddy Maramreddy. 2020. A Study On Applications Of Data Mining.

International Journal of Scientific Technology Research 9 (02 2020), 3385–3388.
[3] Annu Malik, Anju Sharma, and Mr. Vinod Saroha. 2013. Greedy Algorithm.

International Journal of Scientific and Research Publications 3 (08 2013).
[4] Marek Novak. 2010. Easy Implementation of Domain Specific Language using

XML. (01 2010).
[5] Marc Romanycia and Francis Pelletier. 1985. What is a heuristic? Computational

Intelligence 1 (01 1985), 47 – 58. https://doi.org/10.1111/j.1467-8640.1985.tb00058.x
[6] Geetha S, Shasvat Shasvat, and Harsh Shah. 2021. Coded Websites vs Wordpress

Websites. International Journal of Advanced Research in Science, Communication
and Technology (12 2021), 212–216. https://doi.org/10.48175/IJARSCT-2140

[7] M. Sridharan, M. Mantyla, L. Rantala, and M. Claes. 2021. Data balancing im-
proves self-admitted technical debt detection. In Proceedings - 2021 IEEE/ACM 18th
International Conference on Mining Software Repositories, MSR 2021. 358–368.

[8] B. Terzić, S. Kordić, M. Čeliković, V. Dimitrieski, and I Luković. 2016. An Approach
and DSL in support of Migration from relational to NoSQL Databases. IICIST 2016
Proceedings (2016), 179–184.

https://doi.org/10.1007/978-3-319-32001-4_43-1
https://doi.org/10.1111/j.1467-8640.1985.tb00058.x
https://doi.org/10.48175/IJARSCT-2140

	Abstract
	1 Introduction
	2 Tool: database transformations using a migration product line
	2.1 Extract simplified model
	2.2 Select actions
	2.3 Transform
	2.4 Modeling into Migration Product Line

	3 Demo
	4 Conclusions and future work
	References

