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ABSTRACT

How to submit a research paper, a technical report, a grant pro-
posal, or a curriculum vitae that respect imposed constraints such 
as formatting instructions and page limits? It is a challenging task, 
especially when coping with time pressure. In this work, we present
VaryLATEX, a solution based on variability, constraint program-
ming, and machine learning techniques for documents written
in LATEX to meet constraints and deliver on time. Users simply have 
to annotate LATEX source files with variability information, e.g.,
(de)activating portions of text, tuning figures’ sizes, or tweaking 
line spacing. Then, a fully automated procedure learns constraints 
among Boolean and numerical values for avoiding non-acceptable 
paper variants, and finally, users can further configure their papers 
(e.g., aesthetic considerations) or pick a (random) paper variant that 
meets constraints, e.g., page limits. We describe our implementation
and report the results of two experiences with VaryLATEX.
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1 INTRODUCTION

Technical writing is the process of producing technical or scien-
tific documents such as articles, books, theses, technical reports, 
deliverables or grant proposals. Besides filling the content of the 
document, writers should usually comply with 1) precise format-
ting instructions (e.g., page limit and document templates) and 2) 
strict deadlines to submit the final document. When the deadline is 
approaching, a recurrent, challenging and stressful task for writers 
is to meet the constraints in formatting instructions and page limits 
to deliver the document on time. As a result, writers usually apply

a quick-and-dirty1 solution that consists in editing the content, lay-
out, or styles of the document. Writers can make figures smaller,
tweak line spacing, use abbreviations, apply a different style (e.g.,
font size) for a portion of text, remove apparently superfluous text
or references, or other techniques to avoid missing the deadline
that will make useless all the writing effort2.

Of course, the best strategy is to properly revise the whole doc-
ument (e.g., carefully identifying unnecessary content). However,
in practice, this ideal solution is neither always possible (dead-
line might be imminent) nor sufficient (e.g., the page limit is hard
to fulfill). The challenge is especially more complex when using
document preparation tools like LATEXwhich are not based on the
WYSIWYG (What You See is What You Get) paradigm like Word
or Pages. In LATEX, authors are encouraged to focus on the content
and not in the appearance. Therefore, if authors want to meet the
constraints on page limits, they will try some modifications, build
the document, verify if the length fulfills page limits, and iterate this
work-flow until finding a solution. The whole process is manual,
laborious and error-prone since numerous edits should be tried.

One of the contributions of this work is an approach to anno-
tate the LATEX source files to include variability information. This
way, variation points can determine, for instance, the inclusion or
exclusion of text, different alternatives to present the same content,
variable numerical values to specify the space between elements of
the document, or changing the size of a figure. A variability model
can then pilot the generation of final documents (i.e., PDF outputs)
by setting configurations.

A problem remains, however. Out of the possible paper variants,
writers do not know in advance the papers that meet constraints
(e.g., page limits). We could generate all possible paper variants, but
in practice, this case is unlikely given the combinatorial explosion
of possible configurations and the amount of time or resources we
have at our disposal. As a result, the exploration of possible paper
variants is usually limited to a small sample. Moreover, writers can
hardly predict in advance the precise effects of some modifications.
In particular, we want to avoid (combinations of) edits that will
always lead to a page exceed. Apart from the variability annotations,
the second main contribution of this work is an approach to learn
constraints from a random sample of configurations and retrofit the
knowledge acquired directly into the variability model. This way,
the space of possible configurations is restricted by construction
to a good approximation. In particular, we can preclude the set
of modifications leading to overrun page limits. Users can then
1According to Oxford dictionary, this adjective is used for describing a quick calculation,
method, etc., especially one that is done or used until you have enough time or money to
do or use a more careful one.
2APhD comic nicely illustrates the situation: http://phdcomics.com/comics.php?f=1971
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configure their papers (e.g., for controlling the aesthetics) or pick a 
(random) paper variant that meets constraints e.g., page limits.

As a summary, the contributions of this work are:

• An approach to manually annotate the LATEX source with
variability information to automate the derivation of docu-
ment variants.

• An automatic process using machine learning to learn how
to meet the constraints using the annotated LATEX source.

• We report on two real usages of VaryLATEX for a scientific
paper and for a curriculum vitae with their corresponding
constraints.

• We make VaryLATEX source code and experiments’ data pub-
licly available.
https://github.com/FAMILIAR-project/varylatex

This paper is structured as follows: Section 2 presents VaryLATEX
for generating and learning paper variants that meet constraints.
Section 3 describes our implementation. Section 4 reports two expe-
riences. Section 5 presents related work. Finally, Section 6 presents
the conclusions and outlines future work.

2 LEARNING CONSTRAINTS TO MEET
PAPER VARIANTS’ CONSTRAINTS

Our solution is based on variability, constraint programming, and
machine learning techniques. Figure 1 describes the different steps
of the process that we detail in this section.

Variability annotation and modeling. First, users have to annotate
LATEX source files with variability information, e.g., (de)activating 
portions of text, tuning the figures’ sizes, or tweaking line spacing. 
We show examples on the left side of Figure 1 and in Figure 2.

Our solution relies on a basic template engine supporting condi-
tional directives and value substitutions. For instance, when ACK 
is set to true (i.e., we want to include the acknowledgments text 
that we made optional) and BOLD_ACK is also set to true, then,
the corresponding LATEX will be:

\textbf{Acknowledgment.} We thank anonymous re...

Numerical values can also be used. If bref_size is a percentage of
the size of a figure and we set it to 0.8, the corresponding LATEX will 
contain:

\includegraphics[width=0.8\linewidth]...%

Users can vary various elements of a LATEX source file: a footnote, 
the setting of a package for formatting code snippets, the size of 
a figure, etc. We give some examples in Figure 2a and Figure 2b. 
In the right-hand side of Figure 2a, we depict some paper variants 
corresponding to some combinations of values. We can notice some 
aesthetics’ differences and t hat some paper variants t ake more 
space.

Variability annotations do not specify the possible values of vari-
ables. Users can define the domain values of numerical variables 
in a dedicated variability model (shown on the left side of Fig-
ure 1, below LATEX source files). For example, bref_size can take real 
values between 0.7 and 1.0 while vspace_bib can take real values

Variability annotations and modeling1
Paper variants building and 

measurements

(sampling)

Machine Learning
(Classification problem)

Ready-to-
configure 

paper

(constraints 
extraction)

(pdflatex 
and bibtex)

// Boolean options (features) 
fmLaTeX = FM (VARY_LATEX : BREF BIB [PL_FOOTNOTE] [ACK] JS_STYLE 
[LONG_AFFILIATION] ; 
JS_STYLE : (JS_SCRIPTSIZE | JS_TINY | JS_FOOTNOTESIZE); // mutually exclusive
ACK : [LONG_ACK] (BOLD_ACK | PARAGRAPH_ACK); // LONG_ACK is optional
LONG_AFFILIATION : [EMAIL]; )
// numerical options (attributes)
real BIB.vspace_bib: [1.0..5.0] precision 1 // 1 decimal digit precision 
real BREF.bref_size: [0.7..1.0] precision 1 // either 0.7 0.8 0.9 or 1.0 
real cserver_size: [0.6..0.9] precision 1 // either 0.6 0.7 0.8 or 0.9
// specific constraints can be added a priori if needs be 
…

config1, 
config2, 

..
configN

variability 
model

LaTeX source files

// same original variability model
fmLaTeX = FM (VARY_LATEX ... )
// ...
real cserver_size: [0.6..0.9] precision 1
// constraints (^ is AND, ! is NOT, => is IMPLIES)
// we negate the paths leading to class "5" (non-acceptable)
// !(JS_SCRIPTSIZE ^ cserver_size >= 0.65) or more readable:
(JS_SCRIPTSIZE => cserver_size < 0.65) ^
// !(JS_SCRIPTSIZE ^ cserver_size < 0.65 ^ PARAGRAPH_ACK)
// equivalent to 
(JS_SCRIPTSIZE => (cserver_size < 0.65 => !PARAGRAPH_ACK)) ^
!(!JS_SCRIPTSIZE ^ cserver_size >= 0.9 ^ bref_size >=0.9)

variability 
model + constraints
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Figure 1: Varying LATEX: What are the correct combinations of options leading to paper variants that meet page limits?

https://github.com/FAMILIAR-project/varylatex


Variability and 
LaTeX source files

…

Paper variants (PDF)
(a) Variability annotations and excerpt of some possible paper variants

(b) Users can vary the font size of a code snippet, activate a footnote, vary the font size of a figure, etc.

Figure 2: Variability annotations within LATEX source files

between 1.0 and 5.0. Specific constraints can also be added, as the
logical implication between BOLD_ACK and ACK (in the example,
BOLD_ACK is a child of ACK). Overall, users can encode variability
information into an attributed feature model [3].

Paper variants generation. The second step of our process is the
automated derivation of papers (thanks to the variability anno-
tations and modeling step). The variability model can be used to
pilot the production of outputs (e.g., PDFs) from its valid configura-
tions. We consider that a configuration is an assignment of values
to configuration options (i.e., in our example, true/false values for
Boolean options like ACK and numerical values for bref_size and
vspace_bib). A configuration is valid if the values fulfill the logical
constraints defined in the variability model. Several strategies can
be used for assigning values and sampling configurations, such
as automatically picking random valid configurations. Based on a
valid configuration, we can resolve the variability of the template
and obtain plain LATEX files. Such files are then compiled to formats
like PDF by calling pdflatex and bibtex tools. Finally, an automated

procedure can measure interesting properties of a PDF file, such as
the number of pages. At the end of this step, we obtain a configura-
tion matrix. In the example of Figure 1 (see right-hand side), each
row corresponds to a configuration of a paper variant and consists
in 1) configuration values and 2) the obtained number of pages in
the last column.

Based on a configuration matrix, we can already identify some
paper variants that fulfill page limits. In our example, we consider
that the page limit is 4; we could filter out paper variants with
5 pages. It is already useful since we can pick at least one paper
variant that meets the constraints. However, we want to have the
means to choose among all paper variants that meet constraints,
not only among those that were part of the random sampling.

One paper variant is not enough: Configuration vs Special-
ization. The basic reason is that some paper variants may not be
that satisfactory. There might be other constraints (such as aesthet-
ics or the importance of some content) that are hard to formally
express or measure with an automated procedure. For example,



the removal of paragraphs is something that an algorithm should 
not decide. Users most likely want to configure every aspect of 
their papers. In a random paper variant that meets the page limits, 
perhaps a paragraph or a reference can be kept after all; the size of 
a figure could be augmented, or the tweaking of line spacing is not 
really necessary. We face this need in real-world cases, as reported
in Section 4. In other words, we pre-configure (specialize) the LATEX 
generator as follows: All options values presented to users should 
lead to paper variants that meet page limits. On the left side of 
Figure 1, at the bottom, we depict a specialized configurator. Users 
can interactively select or deselect Boolean options (with check-
boxes) and set values (with sliders). The configurator assists users 
at each step, typically through the propagation of choices. In our 
example, we can notice that some configurations (and therefore 
paper variants) are now no longer reachable. For instance, when se-
lecting JS_SCRIPTSIZE, users are forced to set a value between 0.6 
and 0.65 for cserver_size, and PARAGRAPH_ACK is not selectable 
(intuitively, the use of a paragraph takes too much space).

A Learning Problem. For avoiding non-acceptable paper variants, 
we need to learn constraints among Boolean and numerical options. 
Setting a specific value to an option is a special kind of constraint. 
In general, we also want to avoid some combinations of values. 
In our example, a configuration is considered as acceptable when-
ever the number of pages equals to 4. Thanks to the configuration 
matrix, we can classify a sample of configurations as acceptable 
or non-acceptable. We then address a statistical binary classifica-
tion problem in which we can predict which options (part of the 
configurations) lead to acceptable or non-acceptable configurations.

We consider all options of configurations as predictor variables. 
We have a training sample of N configurations on Y  class variables 
that take values {acceptable, non −acceptable}. Given training data 
(see the matrix on the right side of Figure 1), we want to learn a 
classifier able to predict the values of Y  from new, previously unseen 
configuration values.

Sampling and Learning. As for numerous existing configurable 
systems, a major issue is that it is unfeasible to evaluate all config-
urations (here because of the bref_size and vspace_bib that lead to 
an explosion of possible numerical values). In general, a solution 
based on a comprehensive enumeration is not possible because of 
the cost of derivation and measurement. In our case, compiling one
LATEX variant can take several seconds. Therefore, in practice, it 
is more realistic to assume that we rather have at our disposal a 
(small) sample of configurations.

Many approaches have been developed for addressing (binary) 
classification problems. We selected classification trees, a super-
vised machine learning technique that classifies data into classes [10]. 
Classification trees can handle Boolean and numerical values. More-
over, from classification trees, we can extract human-readable rules 
or constraints expressed in propositional logics. Specifically, we 
first build the conjunction of all decisions that lead to leaves that 
classify configurations as "non-acceptable"; we then negate the re-
sulting expression. Such constraints are eventually added in the 
variability model to exclude non-acceptable configurations. Figure 1 
gives an example of a decision tree (in the bottom right corner) and 
the extracted constraints.

Ready-to-configure. In the final step of  our process, users can 
configure papers that meet page limits. They still can control various

options (size of the figure, activation of some content, etc.) and 
produce a final paper variant. Off-the-shelf solvers internally use 
the variability model augmented with constraints, typically for 
propagating choices [6, 8, 18].

3 IMPLEMENTATION
VaryLATEX is implemented in Java and integrated with different spe-
cific languages for instrumenting the whole derivation and learning 
process. As presented in the introduction, Section 1, the source code 
among exemplary and experimental data is available online3. In 
this section, we go through the different libraries and languages
used to develop VaryLATEX.

Variability annotations.→ For annotating LATEX source files, we 
rely on Mustache4, a template language. We give some examples of 
the syntax in Figure 1. It is possible to write conditional directives
directly in LATEX (e.g., using TEX language or off-the-shelf packages). 
From our experience, the use of an external template language fits
our purpose. In particular, we can seamlessly annotate any construct
of a LATEX file (e.g., size of a figure or bibliographic reference). For 
resolving variability within templates, we use Trimou5 a templating 
engine implementation written in Java. Trimou can activate or 
deactivate some portions of texts or instantiate a specific value 
within the text.

Variability modeling and sampling.→ For specifying constraints 
among configuration options or defining the range of possible val-
ues of numerical options, we rely on an extension of FAMILIAR [2]. 
It allows users to define attributed feature models with a textual 
language. For reasoning about variability models, we translate them 
into MiniZinc6, an open-source constraint modeling language. A 
MiniZinc model can be imported in a wide range of solvers. We 
use this translation to generate a sample of valid configurations 
out of a variability model. We use the Choco solver 7 for randomly 
choosing some values for each option.

Generating and Learning.→ We generate Bash scripts to 1) in-
strument the compilation of LATEX source files into PDF; 2) measure 
each PDF paper; 3) build a CSV file for serializing the configuration 
matrix. We use R language and the rpart package for producing 
classification trees out of the CSV. We have also implemented a 
procedure in Java for extracting constraints out of decision trees.

Usage.→ Our tool expects as inputs annotated LATEX source files 
and a variability model. The rest of the process is automatic and 
can be launched through Java. Meanwhile, users can override and 
control many technical steps of the tool such as the size of the 
random sampling or the scripts in charge of compiling the files.

4 EXPERIMENTS WITH VARYLATEX
We used VaryLATEX in informal contexts for testing our implemen-
tation, prototyping and exploring the potential of the idea. Also,
we applied VaryLATEX in two concrete cases.

Finishing a short paper on time. Our first real experience 
was for finishing the paper [1] on time, both for submitting it and 
preparing the camera ready. The page limit was 4. Originally the
3 https://github.com/FAMILIAR-project/varylatex
4https://mustache.github.io/
5http://trimou.org
6http://www.minizinc.org/
7http://www.choco-solver.org/
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paper was eight pages long and it was rejected in another venue. 
Despite our effort to rewrite the whole content, we struggled to 
meet the constraints. After some quick-and-dirty modifications, 
we found some acceptable paper variants but we were not really 
satisfied. There were various reasons: The s ize of some figures 
tended to be too small; the tweak of line spacing was sometimes too 
aggressive; and we really wanted to keep some acknowledgments 
and bibliography references.

There were essentially two related problems. First, our manual 
trial-and-error process was limited because we only applied indi-
vidual edits and rarely their combinations. We wanted to explore 
and cover more cases. Second, we ignored what we should edit and 
what we could not change at all for meeting page limits. To sum 
up, a manual constraint inference based on manual tries and errors
had strong limitations. Therefore, we decided to use VaryLATEX to
1) automate the exploration and 2) learn actual factors that lead to 
acceptable paper variants.

Variability annotations and modeling. The example in Figure 1 
actually corresponds to our case. We used fourteen Boolean options 
and three numerical options. For instance, vspace_bib was a real 
option, whose values can range between 1.0 and 5.0. Our variability 
modeling language supports the specification of precision for real 
variable i.e., the effective number of decimal digits in it which are 
treated as significant for computations. The precision here was one 
decimal digit to limit the combinatorial explosion of possible values. 
Two other real options were used to affect the width of two figures. 
We used mutually exclusive Boolean options for specifying the font 
style of programs’ listing (three possible values: scriptsize, tiny, 
footnotesize) and for changing the formatting of acknowledgments. 
Other Boolean options were used for keeping or deactivating some 
text. It should be noted that we did not use constraints between 
Boolean or numerical options, but it is something our approach 
supports. Users simply have to specify constraints in the variability 
model. For example, users can state that a specific sentence cannot 
be activated unless another paragraph is activated elsewhere.

Sampling paper variants. The number of valid configurations 
was 73440. In detail, there are 90 valid combinations of Boolean 
features, 4 possible values for bref_size (either 0.7, 0.8, 0.9, or 1.0), 4 
possible values for cserver_size (either 0.6, 0.7, 0.8, or 0.9), and 51 
possible values for vspace_bib (either 1.0, 1.1, 1.2, ..., 4.9, or 5.0) in the 
variability model of Figure 1. As there are no constraints between 
numerical options and Boolean options, we obtain 90 ∗ 4 ∗ 4 ∗ 51 = 
73440 valid configurations. On average, our experiments showed 
that the building of a PDF took 4 seconds per configuration. The 
enumeration of all paper variants would have taken too much time 
i.e., more than 80 hours. We thus generated a sample of 400 PDFs. In 
the sample, the proportion of acceptable paper variants was around 
52% (i.e., 48% of paper variants had 5 pages).

Needs of learning. Among the acceptable paper variants, we no-
ticed that some of them were not “optimal”. For instance, the use 
of tiny font style for showing snippet codes was considered aggres-
sive; reviewers could hardly read it. The fact is that the activation 
of this style instantly resolved our problem: all papers were 4 pages. 
Still, we wanted to investigate whether we could somehow com-
bine other options to use a bigger font size in this case. Overall, 
it was a tradeoff among the different options regarding aesthetics, 
readability, and the importance of textual content.

Learning results.When classifying (unseen) configurations and
trying to generalize out of a sample, machine learning can introduce
mistakes. For example, a paper variant can be classified as accept-
able while it is, in fact, non-acceptable. We followed a traditional
approach for assessing our learning phase. From the 400 configura-
tions, we randomly selected a certain percentage of configurations
for building the training sample; the remaining configurations con-
stituted the testing set. The idea is to first train a classification
tree (with a training sample). Then, using the testing set, we can
confront the actual classes with the predicted classes (acceptable,
non-acceptable).

Results show that we can reach a high accuracy, precision, and
recall (more than 85%) even with a low percentage of configurations
in the training set (10%). It means that, with the derivation of 40
paper variants, we could already achieve accurate results and learn
interesting constraints. We can reach an accuracy, precision, and
recall higher than 90% with 200 paper variants in the training set.

Considering the classification trees obtained with 100 config-
urations in the training set8, we have been able to learn relevant con-
straints. In particular, we learnedwe cannot use JS_FOOTNOTESIZE
(to keep the example simple, it does not appear at the bottom of
Figure 1). Furthermore, we learned we can use another style than
JS_TINY (i.e., JS_SCRIPTSIZE) under the condition that we use
specific figure sizes or deactivated some content (see the bottom
of Figure 1). We finally adopted this solution and fine-tuned the
configuration of our paper.

Overall, the experience was positive. First, almost half of papers
(out of 73440) exceeded page limits. VaryLATEX saved us time and
resources. Second, VaryLATEX guided us in the configuration process
and helped to choose an acceptable paper variant.

Sending a CV. Our second real experience was for building a
curriculum vitae (CV) that should respect some constraints. Specif-
ically, the CV has to be included as part of a research proposal and
should not be longer than 18 pages. We used 5 Boolean options, all
optionals. These options aimed to keep or remove some bibliog-
raphy references and some other information about the career. In
total, we only had 32 configurations. We used VaryLATEX for generat-
ing all possible paper variants. In this specific case, we did not need
the learning phase (as the full exploration of the variability space
was possible). Then, we selected one paper out of acceptable paper
variants. The choice of the "best" CV variant was a bit arbitrary,
but we eventually succeeded to meet constraints.

5 RELATEDWORK
We can consider a technical document as an artifact intended for a
human to consume. Human-centered product lines have received
attention from the research community as a paradigm to adapt
Human-Computer Interaction (HCI) artifacts (e.g., user interfaces)
to specific constraints, needs or simply to optimize aesthetic or
usability preferences [11].We are aware of the substantial difference
between HCI artifacts and textual documents. However, there are
also commonalities: non functional properties such as readability
and aesthetic considerations remain as important factors.

8Our observations and results are on average, since we repeated the experiments 10
times.



There are tools such as FeatureIDE [7], pure::variants [4] and 
Gears [9] that provide variability management functionalities tar-
geting not only source code but also other artifacts including Mi-
crosoft Word text documents. Handling this artifact type while 
sharing most of their core functionality for variability management 
is possible through an extension in pure::variants 9 and a bridge in 
Gears 10. These approaches solve the challenge of making effective 
reuse for documents. However, the derivation of a specific docu-
ment will not be aware of external constraints (such as page limits)
which is one of the purposes of VaryLATEX.

There are numerous works for predicting the performance of 
configurations (e.g., [5, 12, 13, 17, 19]). We share the need to learn 
over a sample of measured configurations. However, our approach 
boils down to a classification problem while predicting a  perfor-
mance value is a regression problem. Predicting the performance of 
configurations typically helps to select an optimal configuration. 
In our case, we aim to synthesize constraints and still allow users 
to choose among acceptable configurations.

Temple et al. [16] presented an approach that infers constraints 
from a sample of configurations classified as valid and non-valid. In 
our case, we compute a quantitative value (number of pages) that 
is then treated as a categorical variable (e.g., either 4 or 5). It can be 
used to answer the Boolean question "Do the paper variants meet
the formatting instructions?" VaryLATEX builds upon our previous 
works [14–16] and shows a different applicability of variability and
machine learning techniques.

6 CONCLUSION
We presented VaryLATEX, a solution for automatically deriving pa-
per variants based on variability annotations within LATEX source 
files. We described how we can learn constraints among Boolean 
or numerical values of variation points in such a way that users 
can only obtain paper variants that meet specific constraints such 
as page limits. We reported on our experience in developing and 
applying the tool.

In the short term, we plan to extend our technical implementa-
tion for supporting other formats (e.g., Markdown or Word) and 
improve its usability. We aim to reduce the number of manual an-
notations by defining a set of predefined cases where adjustments 
can be usually made (e.g., the vertical separation between a figure 
and the caption text). We also want to study the state of the art in 
aesthetic aspects of documents and implement a metric that can 
be used to qualitatively compare variants of a document. It can 
eventually discard papers with low aesthetic values. In a sense, we 
aim to support other end-user constraints than page limits.

As future work, we aim to evaluate whether the variability mod-
eling effort pays off in  practice. In  general, we  believe that our 
work can be used in several technical writing contexts. We hope to 
further understand the needs and current practices for eventually
expanding the ideas behind VaryLATEX.

9pure::variants: https://www.pure-systems.com/products/extensions/pure-variants-
connector-for-microsoft-office-311.html
10Gears: http://www.biglever.com/ecosystem/bridges/microsoft.html
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