
VaryLATEX: Learning Paper Variants That Meet Constraints
Mathieu Acher
Paul Temple

Jean-Marc Jézéquel
Univ Rennes, Inria, CNRS, IRISA

Rennes, France
mathieu.acher@irisa.fr

José A. Galindo
University of Sevilla

Sevilla, Spain
jagalindo@us.es

Jabier Martinez
Tewfik Ziadi

Sorbonne University UPMC
Paris, France

jabier.martinez@lip6.fr

ABSTRACT

How to submit a research paper, a technical report, a grant pro-
posal, or a curriculum vitae that respect imposed constraints such
as formatting instructions and page limits? It is a challenging task,
especially when coping with time pressure. In this work, we present
VaryLATEX, a solution based on variability, constraint program-
ming, and machine learning techniques for documents written
in LATEX to meet constraints and deliver on time. Users simply have
to annotate LATEX source files with variability information, e.g.,
(de)activating portions of text, tuning figures’ sizes, or tweaking
line spacing. Then, a fully automated procedure learns constraints
among Boolean and numerical values for avoiding non-acceptable
paper variants, and finally, users can further configure their papers
(e.g., aesthetic considerations) or pick a (random) paper variant that
meets constraints, e.g., page limits. We describe our implementation
and report the results of two experiences with VaryLATEX.

KEYWORDS

LATEX,

technical writing,

 machine learning,

constraint programming,

variability modelling,

generators

1 INTRODUCTION

Technical writing is the process of producing technical or scien-
tific documents such as articles, books, theses, technical reports,
deliverables or grant proposals. Besides filling the content of the
document, writers should usually comply with 1) precise format-
ting instructions (e.g., page limit and document templates) and 2)
strict deadlines to submit the final document. When the deadline is
approaching, a recurrent, challenging and stressful task for writers
is to meet the constraints in formatting instructions and page limits
to deliver the document on time. As a result, writers usually apply

a quick-and-dirty1 solution that consists in editing the content, lay-
out, or styles of the document. Writers can make figures smaller,
tweak line spacing, use abbreviations, apply a different style (e.g.,
font size) for a portion of text, remove apparently superfluous text
or references, or other techniques to avoid missing the deadline
that will make useless all the writing effort2.

Of course, the best strategy is to properly revise the whole doc-
ument (e.g., carefully identifying unnecessary content). However,
in practice, this ideal solution is neither always possible (dead-
line might be imminent) nor sufficient (e.g., the page limit is hard
to fulfill). The challenge is especially more complex when using
document preparation tools like LATEXwhich are not based on the
WYSIWYG (What You See is What You Get) paradigm like Word
or Pages. In LATEX, authors are encouraged to focus on the content
and not in the appearance. Therefore, if authors want to meet the
constraints on page limits, they will try some modifications, build
the document, verify if the length fulfills page limits, and iterate this
work-flow until finding a solution. The whole process is manual,
laborious and error-prone since numerous edits should be tried.

One of the contributions of this work is an approach to anno-
tate the LATEX source files to include variability information. This
way, variation points can determine, for instance, the inclusion or
exclusion of text, different alternatives to present the same content,
variable numerical values to specify the space between elements of
the document, or changing the size of a figure. A variability model
can then pilot the generation of final documents (i.e., PDF outputs)
by setting configurations.

A problem remains, however. Out of the possible paper variants,
writers do not know in advance the papers that meet constraints
(e.g., page limits). We could generate all possible paper variants, but
in practice, this case is unlikely given the combinatorial explosion
of possible configurations and the amount of time or resources we
have at our disposal. As a result, the exploration of possible paper
variants is usually limited to a small sample. Moreover, writers can
hardly predict in advance the precise effects of some modifications.
In particular, we want to avoid (combinations of) edits that will
always lead to a page exceed. Apart from the variability annotations,
the second main contribution of this work is an approach to learn
constraints from a random sample of configurations and retrofit the
knowledge acquired directly into the variability model. This way,
the space of possible configurations is restricted by construction
to a good approximation. In particular, we can preclude the set
of modifications leading to overrun page limits. Users can then
1According to Oxford dictionary, this adjective is used for describing a quick calculation,
method, etc., especially one that is done or used until you have enough time or money to
do or use a more careful one.
2APhD comic nicely illustrates the situation: http://phdcomics.com/comics.php?f=1971

https://doi.org/10.1145/3168365.3168372
https://doi.org/10.1145/3168365.3168372
http://phdcomics.com/comics.php?f=1971

configure their papers (e.g., for controlling the aesthetics) or pick a
(random) paper variant that meets constraints e.g., page limits.

As a summary, the contributions of this work are:

• An approach to manually annotate the LATEX source with
variability information to automate the derivation of docu-
ment variants.

• An automatic process using machine learning to learn how
to meet the constraints using the annotated LATEX source.

• We report on two real usages of VaryLATEX for a scientific
paper and for a curriculum vitae with their corresponding
constraints.

• We make VaryLATEX source code and experiments’ data pub-
licly available.
https://github.com/FAMILIAR-project/varylatex

This paper is structured as follows: Section 2 presents VaryLATEX
for generating and learning paper variants that meet constraints.
Section 3 describes our implementation. Section 4 reports two expe-
riences. Section 5 presents related work. Finally, Section 6 presents
the conclusions and outlines future work.

2 LEARNING CONSTRAINTS TO MEET
PAPER VARIANTS’ CONSTRAINTS

Our solution is based on variability, constraint programming, and
machine learning techniques. Figure 1 describes the different steps
of the process that we detail in this section.

Variability annotation and modeling. First, users have to annotate
LATEX source files with variability information, e.g., (de)activating
portions of text, tuning the figures’ sizes, or tweaking line spacing.
We show examples on the left side of Figure 1 and in Figure 2.

Our solution relies on a basic template engine supporting condi-
tional directives and value substitutions. For instance, when ACK
is set to true (i.e., we want to include the acknowledgments text
that we made optional) and BOLD_ACK is also set to true, then,
the corresponding LATEX will be:

\textbf{Acknowledgment.} We thank anonymous re...

Numerical values can also be used. If bref_size is a percentage of
the size of a figure and we set it to 0.8, the corresponding LATEX will
contain:

\includegraphics[width=0.8\linewidth]...%

Users can vary various elements of a LATEX source file: a footnote,
the setting of a package for formatting code snippets, the size of
a figure, etc. We give some examples in Figure 2a and Figure 2b.
In the right-hand side of Figure 2a, we depict some paper variants
corresponding to some combinations of values. We can notice some
aesthetics’ differences and t hat some paper variants t ake more
space.

Variability annotations do not specify the possible values of vari-
ables. Users can define the domain values of numerical variables
in a dedicated variability model (shown on the left side of Fig-
ure 1, below LATEX source files). For example, bref_size can take real
values between 0.7 and 1.0 while vspace_bib can take real values

Variability annotations and modeling1
Paper variants building and

measurements

(sampling)

Machine Learning
(Classification problem)

Ready-to-
configure

paper

(constraints
extraction)

(pdflatex
and bibtex)

// Boolean options (features)
fmLaTeX = FM (VARY_LATEX : BREF BIB [PL_FOOTNOTE] [ACK] JS_STYLE
[LONG_AFFILIATION] ;
JS_STYLE : (JS_SCRIPTSIZE | JS_TINY | JS_FOOTNOTESIZE); // mutually exclusive
ACK : [LONG_ACK] (BOLD_ACK | PARAGRAPH_ACK); // LONG_ACK is optional
LONG_AFFILIATION : [EMAIL];)
// numerical options (attributes)
real BIB.vspace_bib: [1.0..5.0] precision 1 // 1 decimal digit precision
real BREF.bref_size: [0.7..1.0] precision 1 // either 0.7 0.8 0.9 or 1.0
real cserver_size: [0.6..0.9] precision 1 // either 0.6 0.7 0.8 or 0.9
// specific constraints can be added a priori if needs be
…

config1,
config2,

..
configN

variability
model

LaTeX source files

// same original variability model
fmLaTeX = FM (VARY_LATEX ...)
// ...
real cserver_size: [0.6..0.9] precision 1
// constraints (^ is AND, ! is NOT, => is IMPLIES)
// we negate the paths leading to class "5" (non-acceptable)
// !(JS_SCRIPTSIZE ^ cserver_size >= 0.65) or more readable:
(JS_SCRIPTSIZE => cserver_size < 0.65) ^
// !(JS_SCRIPTSIZE ^ cserver_size < 0.65 ^ PARAGRAPH_ACK)
// equivalent to
(JS_SCRIPTSIZE => (cserver_size < 0.65 => !PARAGRAPH_ACK)) ^
!(!JS_SCRIPTSIZE ^ cserver_size >= 0.9 ^ bref_size >=0.9)

variability
model + constraints

2

3

4

Figure 1: Varying LATEX: What are the correct combinations of options leading to paper variants that meet page limits?

https://github.com/FAMILIAR-project/varylatex

Variability and
LaTeX source files

…

Paper variants (PDF)
(a) Variability annotations and excerpt of some possible paper variants

(b) Users can vary the font size of a code snippet, activate a footnote, vary the font size of a figure, etc.

Figure 2: Variability annotations within LATEX source files

between 1.0 and 5.0. Specific constraints can also be added, as the
logical implication between BOLD_ACK and ACK (in the example,
BOLD_ACK is a child of ACK). Overall, users can encode variability
information into an attributed feature model [3].

Paper variants generation. The second step of our process is the
automated derivation of papers (thanks to the variability anno-
tations and modeling step). The variability model can be used to
pilot the production of outputs (e.g., PDFs) from its valid configura-
tions. We consider that a configuration is an assignment of values
to configuration options (i.e., in our example, true/false values for
Boolean options like ACK and numerical values for bref_size and
vspace_bib). A configuration is valid if the values fulfill the logical
constraints defined in the variability model. Several strategies can
be used for assigning values and sampling configurations, such
as automatically picking random valid configurations. Based on a
valid configuration, we can resolve the variability of the template
and obtain plain LATEX files. Such files are then compiled to formats
like PDF by calling pdflatex and bibtex tools. Finally, an automated

procedure can measure interesting properties of a PDF file, such as
the number of pages. At the end of this step, we obtain a configura-
tion matrix. In the example of Figure 1 (see right-hand side), each
row corresponds to a configuration of a paper variant and consists
in 1) configuration values and 2) the obtained number of pages in
the last column.

Based on a configuration matrix, we can already identify some
paper variants that fulfill page limits. In our example, we consider
that the page limit is 4; we could filter out paper variants with
5 pages. It is already useful since we can pick at least one paper
variant that meets the constraints. However, we want to have the
means to choose among all paper variants that meet constraints,
not only among those that were part of the random sampling.

One paper variant is not enough: Configuration vs Special-
ization. The basic reason is that some paper variants may not be
that satisfactory. There might be other constraints (such as aesthet-
ics or the importance of some content) that are hard to formally
express or measure with an automated procedure. For example,

the removal of paragraphs is something that an algorithm should
not decide. Users most likely want to configure every aspect of
their papers. In a random paper variant that meets the page limits,
perhaps a paragraph or a reference can be kept after all; the size of
a figure could be augmented, or the tweaking of line spacing is not
really necessary. We face this need in real-world cases, as reported
in Section 4. In other words, we pre-configure (specialize) the LATEX
generator as follows: All options values presented to users should
lead to paper variants that meet page limits. On the left side of
Figure 1, at the bottom, we depict a specialized configurator. Users
can interactively select or deselect Boolean options (with check-
boxes) and set values (with sliders). The configurator assists users
at each step, typically through the propagation of choices. In our
example, we can notice that some configurations (and therefore
paper variants) are now no longer reachable. For instance, when se-
lecting JS_SCRIPTSIZE, users are forced to set a value between 0.6
and 0.65 for cserver_size, and PARAGRAPH_ACK is not selectable
(intuitively, the use of a paragraph takes too much space).

A Learning Problem. For avoiding non-acceptable paper variants,
we need to learn constraints among Boolean and numerical options.
Setting a specific value to an option is a special kind of constraint.
In general, we also want to avoid some combinations of values.
In our example, a configuration is considered as acceptable when-
ever the number of pages equals to 4. Thanks to the configuration
matrix, we can classify a sample of configurations as acceptable
or non-acceptable. We then address a statistical binary classifica-
tion problem in which we can predict which options (part of the
configurations) lead to acceptable or non-acceptable configurations.

We consider all options of configurations as predictor variables.
We have a training sample of N configurations on Y class variables
that take values {acceptable, non −acceptable}. Given training data
(see the matrix on the right side of Figure 1), we want to learn a
classifier able to predict the values of Y from new, previously unseen
configuration values.

Sampling and Learning. As for numerous existing configurable
systems, a major issue is that it is unfeasible to evaluate all config-
urations (here because of the bref_size and vspace_bib that lead to
an explosion of possible numerical values). In general, a solution
based on a comprehensive enumeration is not possible because of
the cost of derivation and measurement. In our case, compiling one
LATEX variant can take several seconds. Therefore, in practice, it
is more realistic to assume that we rather have at our disposal a
(small) sample of configurations.

Many approaches have been developed for addressing (binary)
classification problems. We selected classification trees, a super-
vised machine learning technique that classifies data into classes [10].
Classification trees can handle Boolean and numerical values. More-
over, from classification trees, we can extract human-readable rules
or constraints expressed in propositional logics. Specifically, we
first build the conjunction of all decisions that lead to leaves that
classify configurations as "non-acceptable"; we then negate the re-
sulting expression. Such constraints are eventually added in the
variability model to exclude non-acceptable configurations. Figure 1
gives an example of a decision tree (in the bottom right corner) and
the extracted constraints.

Ready-to-configure. In the final step of our process, users can
configure papers that meet page limits. They still can control various

options (size of the figure, activation of some content, etc.) and
produce a final paper variant. Off-the-shelf solvers internally use
the variability model augmented with constraints, typically for
propagating choices [6, 8, 18].

3 IMPLEMENTATION
VaryLATEX is implemented in Java and integrated with different spe-
cific languages for instrumenting the whole derivation and learning
process. As presented in the introduction, Section 1, the source code
among exemplary and experimental data is available online3. In
this section, we go through the different libraries and languages
used to develop VaryLATEX.

Variability annotations.→ For annotating LATEX source files, we
rely on Mustache4, a template language. We give some examples of
the syntax in Figure 1. It is possible to write conditional directives
directly in LATEX (e.g., using TEX language or off-the-shelf packages).
From our experience, the use of an external template language fits
our purpose. In particular, we can seamlessly annotate any construct
of a LATEX file (e.g., size of a figure or bibliographic reference). For
resolving variability within templates, we use Trimou5 a templating
engine implementation written in Java. Trimou can activate or
deactivate some portions of texts or instantiate a specific value
within the text.

Variability modeling and sampling.→ For specifying constraints
among configuration options or defining the range of possible val-
ues of numerical options, we rely on an extension of FAMILIAR [2].
It allows users to define attributed feature models with a textual
language. For reasoning about variability models, we translate them
into MiniZinc6, an open-source constraint modeling language. A
MiniZinc model can be imported in a wide range of solvers. We
use this translation to generate a sample of valid configurations
out of a variability model. We use the Choco solver 7 for randomly
choosing some values for each option.

Generating and Learning.→ We generate Bash scripts to 1) in-
strument the compilation of LATEX source files into PDF; 2) measure
each PDF paper; 3) build a CSV file for serializing the configuration
matrix. We use R language and the rpart package for producing
classification trees out of the CSV. We have also implemented a
procedure in Java for extracting constraints out of decision trees.

Usage.→ Our tool expects as inputs annotated LATEX source files
and a variability model. The rest of the process is automatic and
can be launched through Java. Meanwhile, users can override and
control many technical steps of the tool such as the size of the
random sampling or the scripts in charge of compiling the files.

4 EXPERIMENTS WITH VARYLATEX
We used VaryLATEX in informal contexts for testing our implemen-
tation, prototyping and exploring the potential of the idea. Also,
we applied VaryLATEX in two concrete cases.

Finishing a short paper on time. Our first real experience
was for finishing the paper [1] on time, both for submitting it and
preparing the camera ready. The page limit was 4. Originally the
3 https://github.com/FAMILIAR-project/varylatex
4https://mustache.github.io/
5http://trimou.org
6http://www.minizinc.org/
7http://www.choco-solver.org/

https://github.com/FAMILIAR-project/varylatex
https://mustache.github.io/
http://trimou.org
http://www.minizinc.org/
http://www.choco-solver.org/

paper was eight pages long and it was rejected in another venue.
Despite our effort to rewrite the whole content, we struggled to
meet the constraints. After some quick-and-dirty modifications,
we found some acceptable paper variants but we were not really
satisfied. There were various reasons: The s ize of some figures
tended to be too small; the tweak of line spacing was sometimes too
aggressive; and we really wanted to keep some acknowledgments
and bibliography references.

There were essentially two related problems. First, our manual
trial-and-error process was limited because we only applied indi-
vidual edits and rarely their combinations. We wanted to explore
and cover more cases. Second, we ignored what we should edit and
what we could not change at all for meeting page limits. To sum
up, a manual constraint inference based on manual tries and errors
had strong limitations. Therefore, we decided to use VaryLATEX to
1) automate the exploration and 2) learn actual factors that lead to
acceptable paper variants.

Variability annotations and modeling. The example in Figure 1
actually corresponds to our case. We used fourteen Boolean options
and three numerical options. For instance, vspace_bib was a real
option, whose values can range between 1.0 and 5.0. Our variability
modeling language supports the specification of precision for real
variable i.e., the effective number of decimal digits in it which are
treated as significant for computations. The precision here was one
decimal digit to limit the combinatorial explosion of possible values.
Two other real options were used to affect the width of two figures.
We used mutually exclusive Boolean options for specifying the font
style of programs’ listing (three possible values: scriptsize, tiny,
footnotesize) and for changing the formatting of acknowledgments.
Other Boolean options were used for keeping or deactivating some
text. It should be noted that we did not use constraints between
Boolean or numerical options, but it is something our approach
supports. Users simply have to specify constraints in the variability
model. For example, users can state that a specific sentence cannot
be activated unless another paragraph is activated elsewhere.

Sampling paper variants. The number of valid configurations
was 73440. In detail, there are 90 valid combinations of Boolean
features, 4 possible values for bref_size (either 0.7, 0.8, 0.9, or 1.0), 4
possible values for cserver_size (either 0.6, 0.7, 0.8, or 0.9), and 51
possible values for vspace_bib (either 1.0, 1.1, 1.2, ..., 4.9, or 5.0) in the
variability model of Figure 1. As there are no constraints between
numerical options and Boolean options, we obtain 90 ∗ 4 ∗ 4 ∗ 51 =
73440 valid configurations. On average, our experiments showed
that the building of a PDF took 4 seconds per configuration. The
enumeration of all paper variants would have taken too much time
i.e., more than 80 hours. We thus generated a sample of 400 PDFs. In
the sample, the proportion of acceptable paper variants was around
52% (i.e., 48% of paper variants had 5 pages).

Needs of learning. Among the acceptable paper variants, we no-
ticed that some of them were not “optimal”. For instance, the use
of tiny font style for showing snippet codes was considered aggres-
sive; reviewers could hardly read it. The fact is that the activation
of this style instantly resolved our problem: all papers were 4 pages.
Still, we wanted to investigate whether we could somehow com-
bine other options to use a bigger font size in this case. Overall,
it was a tradeoff among the different options regarding aesthetics,
readability, and the importance of textual content.

Learning results.When classifying (unseen) configurations and
trying to generalize out of a sample, machine learning can introduce
mistakes. For example, a paper variant can be classified as accept-
able while it is, in fact, non-acceptable. We followed a traditional
approach for assessing our learning phase. From the 400 configura-
tions, we randomly selected a certain percentage of configurations
for building the training sample; the remaining configurations con-
stituted the testing set. The idea is to first train a classification
tree (with a training sample). Then, using the testing set, we can
confront the actual classes with the predicted classes (acceptable,
non-acceptable).

Results show that we can reach a high accuracy, precision, and
recall (more than 85%) even with a low percentage of configurations
in the training set (10%). It means that, with the derivation of 40
paper variants, we could already achieve accurate results and learn
interesting constraints. We can reach an accuracy, precision, and
recall higher than 90% with 200 paper variants in the training set.

Considering the classification trees obtained with 100 config-
urations in the training set8, we have been able to learn relevant con-
straints. In particular, we learnedwe cannot use JS_FOOTNOTESIZE
(to keep the example simple, it does not appear at the bottom of
Figure 1). Furthermore, we learned we can use another style than
JS_TINY (i.e., JS_SCRIPTSIZE) under the condition that we use
specific figure sizes or deactivated some content (see the bottom
of Figure 1). We finally adopted this solution and fine-tuned the
configuration of our paper.

Overall, the experience was positive. First, almost half of papers
(out of 73440) exceeded page limits. VaryLATEX saved us time and
resources. Second, VaryLATEX guided us in the configuration process
and helped to choose an acceptable paper variant.

Sending a CV. Our second real experience was for building a
curriculum vitae (CV) that should respect some constraints. Specif-
ically, the CV has to be included as part of a research proposal and
should not be longer than 18 pages. We used 5 Boolean options, all
optionals. These options aimed to keep or remove some bibliog-
raphy references and some other information about the career. In
total, we only had 32 configurations. We used VaryLATEX for generat-
ing all possible paper variants. In this specific case, we did not need
the learning phase (as the full exploration of the variability space
was possible). Then, we selected one paper out of acceptable paper
variants. The choice of the "best" CV variant was a bit arbitrary,
but we eventually succeeded to meet constraints.

5 RELATEDWORK
We can consider a technical document as an artifact intended for a
human to consume. Human-centered product lines have received
attention from the research community as a paradigm to adapt
Human-Computer Interaction (HCI) artifacts (e.g., user interfaces)
to specific constraints, needs or simply to optimize aesthetic or
usability preferences [11].We are aware of the substantial difference
between HCI artifacts and textual documents. However, there are
also commonalities: non functional properties such as readability
and aesthetic considerations remain as important factors.

8Our observations and results are on average, since we repeated the experiments 10
times.

There are tools such as FeatureIDE [7], pure::variants [4] and
Gears [9] that provide variability management functionalities tar-
geting not only source code but also other artifacts including Mi-
crosoft Word text documents. Handling this artifact type while
sharing most of their core functionality for variability management
is possible through an extension in pure::variants 9 and a bridge in
Gears 10. These approaches solve the challenge of making effective
reuse for documents. However, the derivation of a specific docu-
ment will not be aware of external constraints (such as page limits)
which is one of the purposes of VaryLATEX.

There are numerous works for predicting the performance of
configurations (e.g., [5, 12, 13, 17, 19]). We share the need to learn
over a sample of measured configurations. However, our approach
boils down to a classification problem while predicting a perfor-
mance value is a regression problem. Predicting the performance of
configurations typically helps to select an optimal configuration.
In our case, we aim to synthesize constraints and still allow users
to choose among acceptable configurations.

Temple et al. [16] presented an approach that infers constraints
from a sample of configurations classified as valid and non-valid. In
our case, we compute a quantitative value (number of pages) that
is then treated as a categorical variable (e.g., either 4 or 5). It can be
used to answer the Boolean question "Do the paper variants meet
the formatting instructions?" VaryLATEX builds upon our previous
works [14–16] and shows a different applicability of variability and
machine learning techniques.

6 CONCLUSION
We presented VaryLATEX, a solution for automatically deriving pa-
per variants based on variability annotations within LATEX source
files. We described how we can learn constraints among Boolean
or numerical values of variation points in such a way that users
can only obtain paper variants that meet specific constraints such
as page limits. We reported on our experience in developing and
applying the tool.

In the short term, we plan to extend our technical implementa-
tion for supporting other formats (e.g., Markdown or Word) and
improve its usability. We aim to reduce the number of manual an-
notations by defining a set of predefined cases where adjustments
can be usually made (e.g., the vertical separation between a figure
and the caption text). We also want to study the state of the art in
aesthetic aspects of documents and implement a metric that can
be used to qualitatively compare variants of a document. It can
eventually discard papers with low aesthetic values. In a sense, we
aim to support other end-user constraints than page limits.

As future work, we aim to evaluate whether the variability mod-
eling effort pays off in practice. In general, we believe that our
work can be used in several technical writing contexts. We hope to
further understand the needs and current practices for eventually
expanding the ideas behind VaryLATEX.

9pure::variants: https://www.pure-systems.com/products/extensions/pure-variants-
connector-for-microsoft-office-311.html
10Gears: http://www.biglever.com/ecosystem/bridges/microsoft.html

ACKNOWLEDGEMENTS
This work benefited from the support of the project ANR-17-CE25-
0010-01 VaryVary. This work was supported, in part, by the Euro-
pean Commission (FEDER), by the Spanish government under BELi
(TIN2015-70560-R) project, by the Andalusian government under
the COPAS (TIC-1867) project and by the ITEA3 15010 REVaMP2

project: FUI the Île-de-France region and BPI in France.

REFERENCES
[1] Mathieu Acher, Guillaume Bécan, Benoit Combemale, Benoit Baudry, and Jean-

Marc Jézéquel. 2015. Product lines can jeopardize their trade secrets. In Pro-
ceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering
(ESEC/FSE’15). 930–933.

[2] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert France. 2013. FA-
MILIAR: A Domain-Specific Language for Large Scale Management of Feature
Models. Science of Computer Programming (SCP) 78, 6 (2013), 657–681.

[3] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. 2010. Automated
analysis of feature models 20 years later: a literature review. Information Systems
35, 6 (2010), 615–708.

[4] Danilo Beuche. 2010. Modeling and Building Software Product Lines with
pure::variants. In SPLC Workshops. 296.

[5] Jianmei Guo, Krzysztof Czarnecki, Sven Apel, Norbert Siegmund, and Andrzej
Wasowski. 2013. Variability-aware performance prediction: A statistical learning
approach. In ASE.

[6] Mikolás Janota, Goetz Botterweck, and João Marques-Silva. 2014. On lazy and
eager interactive reconfiguration. In The Eighth International Workshop on Vari-
ability Modelling of Software-intensive Systems, VaMoS ’14, Sophia Antipolis, France,
January 22-24, 2014. 8:1–8:8. https://doi.org/10.1145/2556624.2556644

[7] Christian Kästner, Thomas Thüm, Gunter Saake, Janet Feigenspan, Thomas Leich,
Fabian Wielgorz, and Sven Apel. 2009. FeatureIDE: A tool framework for feature-
oriented software development. In ICSE. IEEE, 611–614.

[8] Ebrahim Khalil Abbasi, Arnaud Hubaux, Mathieu Acher, Quentin Boucher, and
Patrick Heymans. 2013. The Anatomy of a Sales Configurator: An Empirical
Study of 111 Cases. In CAiSE’13.

[9] Charles W. Krueger and Paul C. Clements. [n. d.]. Systems and software product
line engineering with BigLever software gears. In SPLC 2012: Volume 2. https:
//doi.org/10.1145/2364412.2364458

[10] Wei-Yin Loh. 2011. Classification and regression trees. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery 1, 1 (2011), 14–23.

[11] Jabier Martinez, Jean-Sebastien Sottet, Alfonso Garcia Frey, Tewfik Ziadi,
Tegawende Bissyande, Jean Vanderdonckt, Jacques Klein, and Yves Le Traon.
2017. Variability Management and Assessment for User Interface Design. In Hu-
man Centered Software Product Lines, Alfonso Garcia Frey Jean-Sebastien Sottet
and Jean Vanderdonckt (Eds.). Springer International Publishing, 81–106.

[12] A. Sarkar, Jianmei Guo, N. Siegmund, S. Apel, and K. Czarnecki. 2015. Cost-
Efficient Sampling for Performance Prediction of Configurable Systems (T). In
ASE’15.

[13] Norbert Siegmund, Marko RosenmüLler, Christian KäStner, Paolo G. Giarrusso,
Sven Apel, and Sergiy S. Kolesnikov. 2013. Scalable Prediction of Non-functional
Properties in Software Product Lines: Footprint and Memory Consumption. Inf.
Softw. Technol. (2013).

[14] Paul Temple, Mathieu Acher, Jean-Marc Jézéquel, and Olivier Barais. 2017.
Learning-Contextual Variability Models. IEEE Software (nov 2017). https:
//hal.inria.fr/hal-01659137

[15] Paul Temple, Mathieu Acher, Jean-Marc A Jézéquel, Léo A Noel-Baron, and
José A Galindo. 2017. Learning-Based Performance Specialization of Configurable
Systems. Research Report. IRISA, Inria Rennes ; University of Rennes 1. https:
//hal.archives-ouvertes.fr/hal-01467299

[16] Paul Temple, José A. Galindo, Mathieu Acher, and Jean-Marc Jézéquel. 2016.
Using Machine Learning to Infer Constraints for Product Lines. In Proceedings of
the 20th International Systems and Software Product Line Conference (SPLC ’16).
ACM, New York, NY, USA, 209–218. https://doi.org/10.1145/2934466.2934472

[17] Pavel Valov, Jianmei Guo, and Krzysztof Czarnecki. [n. d.]. Empirical comparison
of regression methods for variability-aware performance prediction. In SPLC’15.

[18] Yingfei Xiong, Arnaud Hubaux, Steven She, and Krzysztof Czarnecki. 2012. Gen-
erating Range Fixes for Software Configuration. In 34th International Conference
on Software Engineering.

[19] Yi Zhang, Jianmei Guo, Eric Blais, and Krzysztof Czarnecki. [n. d.]. Performance
Prediction of Configurable Software Systems by Fourier Learning (T). In ASE’15.

https://doi.org/10.1145/2556624.2556644
https://doi.org/10.1145/2364412.2364458
https://doi.org/10.1145/2364412.2364458
https://hal.inria.fr/hal-01659137
https://hal.inria.fr/hal-01659137
https://hal.archives-ouvertes.fr/hal-01467299
https://hal.archives-ouvertes.fr/hal-01467299
https://doi.org/10.1145/2934466.2934472

	Abstract
	1 Introduction
	2 Learning Constraints to Meet Paper Variants' Constraints
	3 Implementation
	4 Experiments with VaryLaTeX
	5 Related work
	6 Conclusion
	References

