Towards a New Repository for Feature Model Exchange

José A. Galindo and David Benavides
Universidad de Sevilla
Sevilla, Spain
{jagalindo,benavides}@us.es

ABSTRACT

Feature models are one of the most important contributions to the
field of software product lines, feature oriented software develop-
ment or variability intensive systems. Since their invention in 1990,
many feature model dialects appeared from less formal to more
formal, from visual to textual, integrated in tool chains or just as a
support for a concrete research contribution. Ten year ago,
S.P.L.O.T. a feature model online tool was presented. One of its
most used features has been the ability to centralise a feature model
repository with its own feature model dialect. As a result of
MODEVAR, we hope to have a new simple textual feature
model language that can be shared by the community. Having a
new repository for that language can help to share knowledge. In
this paper we present some ideas about the characteristics that
the future feature model repository should have in the future.
The idea is to discuss those characteristics with the community.

CCS CONCEPTS

« Software and its engineering — Software product lines;
Re-quirements analysis; Software design engineering; Software
imple-mentation planning:X

KEYWORDS

feature model repository,
characteristics,
variability,

requirements

1 INTRODUCTION

Feature models are one of the most important contributions since
software product lines flourished [6] back in 1990. There are com-
mercial and academic software product line development tools that
use feature models as a cornerstone language. Most of these tools
use their own feature modelling dialect. Often, the semantics are
quite similar while there are differences among the concrete syntax
used to describe feature models. There are many textual and graph-
ical feature models dialects that can be found in the literature [5].

One of the ideas of the MODEVAR workshop is to find a common,
simple feature model language that can be used to share knowledge
among researchers.

Ten years ago S.P.L.O.T., a feature model online tool, was pre-
sented [8]. One of the most used characteristics of S.P.L.O.T was
the feature model repository that allows to share models among re-
searchers and practitioners. However, as other tools, S.P.L.O.T also
defined its own feature modelling language and the interoperability
with other tools was not always straightforward.

There is a strong effort around the world for what is called Open
Science [9] that promotes — among other principles— the repro-
ducibility of experiments and information sharing. We believe that
the software product line community has to put some effort to
follow this line. Although S.P.L.OT. has played its role during these
years, we think that a new feature model repository has to be set
up with new characteristics, technologies and open science spirit.

In this paper we present some ideas about the elements that a
feature model repository could have in the future. The idea is to
discuss those elements among the community to join forces to set
up a shared feature model repository for the next decades that can
complement the new feature model language.

2 REPOSITORY CHARACTERISTICS

Following, we enumerate and explain some of the characteristics
that we envision in a new feature model repository using the tech-
nique of user stories [2]. The characteristics were defined observing
S.P.L.OT. and other repositories such as Zenodo ! and after some
brainstorming discussions among the authors. We present the user
stories following the template of “As a [persona], I [want to], [so
that].” Then, we justify the potential importance of the user stories.

(1) As a researcher, I want to upload models to the repository, so
that my models are available for others. This is one of the most
basic features. It seems to be simple but some complexity
can appear. For example, a syntax checker could be added
to ensure that the uploaded models are syntactically correct.
This raised an additional user story as described below. Also,
a cross check validation could be implemented to approve
or deny uploads according to some criteria. Also, depending
on other user stories, some additional information to upload
the models can vary.

(2) As a researcher, I want to syntax check my models before

uploading in the repository, so that my models are syntax error

free. This will clearly depend on the abstract and concrete
syntax defined for the language.

As a researcher or user, I want to download models from the

repository, so that I can replicate experiments or use existing

models. This is also a basic feature but could also face some

—
[SY)
=

!https://zenodo.org/

https://doi.org/10.1145/3307630.3342405
https://doi.org/10.1145/3307630.3342405
https://zenodo.org/

(4)

®)

(©)

™

®)

©

(10)

(11)

complexity during its development. For instance, the way
models are downloaded could vary from one by one to batch
downloads. Designing a good solution for downloading mod-
els seems to be important to have a useful repository.

As a researcher, I want to generate a universal identifier for
my models in the repository, so that my models are citable and
easily identified. A possible interesting characteristic of the
repository could be to have a citable identified in the form of
a DOI or something similar. The DOI could correspond with
the DOI of a related research paper or could be a dedicated
DOI just for the model or even a set of models. This is an
interesting feature but may have a lower priority than the
former ones.

As a researcher or user, want to manage versions of my models,
so that I can compare different versions. This was a hardly
discussed story among the authors. We see a potential of
having models or benchmark versions but at the same time
we see that this can be a characteristic that could make the
repository more complex to maintain.

As a user, I want to search for models in the repository, so
that I can find the models I am interested in. A good search
engine can help find models among the ones in the repository.
Other search types could be implemented such as tag-based
or author-based.

As a user, I want to display models in the repository, so that
I can have a glance at the model in the case I want to use it.
Feature models of the repository could be used for bench-
marking purposes but also for teaching or dissemination. In
some cases, it could be useful to display the model. It has
to be decided how to visualise the model. A textual visu-
alisation will be available but other visual syntax could be
defined/discussed.

As a user or researcher, I want to know some indicators about
the models in the repository such as ratings or number of
downloads, so that I can compare models. This can allow to
see how many times a model has been downloaded or rated.
This could also help on the search user story described above.
As a developer or researcher, I want to have an API that can
interact with the repository, so that I can programmatically
access repository’s information. An interesting feature of a
repository would be that the content could be accessed pro-
gramatically in the form of an APIL This could allow a de-
veloper to call a method to download some models with
some characteristics for example such as a given number of
features.

As a user, I want to have recommendations according to my
profile, so that I can do better model selections. If metrics of the
models are stored according to downloads or user ratings,
we could envision a recommendation system based on user
profiles and ratings to better select models. This seems to be
a more long term feature to be considered.

As a researcher, I want to create communities, so that I can have
a common space to manage my models. This characteristic
has been discussed also in depth among the authors and
no consensus has been reached. The idea is to allow the
creation of communities inside the repository that could
allow to group people around a community. It could be the

case of a research group or university that has its own space
to share their models.

(12) As a user, I want to see model’s metrics, so that I can have extra
information about the models. There are some implicit infor-
mation in feature models such as the number of features,
the number of relationships or other structural metrics [1].
Having the possibility to obtain this information available
in the repository would be of help for people using it. Some
of the information can be computationally hard to calculate
(such as number of dead features) so a trade-off among in-
formation availability and computation capacity has to be
defined.

3 INFORMATION REQUIREMENTS

To implement the features described in Section 2, there is some
information that would be useful to store among the model:

e File. The concrete file of the model. This is, the serialization
of the model itself so it can be used across different platforms
and tools (e.g. FaMiLiar, FaMa or Feature IDE)

o Author. The author of the model. Information of the creator
of the model so it can be used to credit authors.

e Owner. The owner of the model that can be different of the
author. It might happen that different users took the time to
translate and transcribe the model from other languages or
visual formats.

e Hash. An identifier of the model that can be used also as
a checksum. This is useful for the integration within other
tools so we can avoid wrong downloads.

o Description. A brief description of the model.

e Organisation/Community. In the case Communities are al-
lowed, this information has to be stored.

e Language level. In the case different language levels are
defined for the language, the model has to define at which
level it belongs to. This is, if we ended up having a level
supporting attributes, we would need to specify if the model
contains such information.

e Rating. In the case models ratings are allowed. We can think
of popularity of models and ratings from the community.

e Tags. To associate free tags to a model that can serve as a
way to search and filter the models

e Version. In the case that different versions of the same model
are allowed. This is intended to allow the upload of different
versions of the same model. For example, showing how a
model has evolved.

o Model’s metrics. In the case that these metrics are allowed,
this information has to be stored. To know in advance some
characteristics of the models such as te number of features
or cross-tree relationships ratio.

4 DEPENDENCIES WITH LANGUAGES
ELEMENTS
There are several elements of the language that will affect the

development of the repository. Note that these aspects should be
discussing during the workshop:

4.1 Concrete syntax

The serialization for the selected feature model concepts can impact
how we store the models. In the literature we can find multiples
styles [4] of serializations for feature models. However, there are
three main styles: i) XML based, multiple tools such as FaMa, SPLOT
and Feature IDE rely in such representation. This representation
has as main drawback the size of storage of each model and how
hard to read visually can be. The main benefit is that we can rely
on multiple available tools to read and write XML files; ii) Bracelet-
based format: There are also tools that moved towards a more json
alike formats (e.g. FaMiLiar) in which the hierarchical relationships
are developed based on brackets. This ends up resulting in lower
size which is beneficial for transmission and storage of the models.
Those models are also more easy to read by a human. iii) Plain text
Formats: These file formats have defined custom syntax to define
each element of the feature model notation they work with. Some
tools that provide support for this formats are FaMa and Feature
IDE.

4.2 Abstract syntax/Model levels

In the literature we can find multiple variants of feature models that
are capable of representing different facets of variability. Usually,
two different groups of relationships are defined: i) hierarchical
relationships to define the options enabled by a variation point in a
product line and ii) cross-tree constraints to define restrictions on
features that do not share a common parent in the feature model
tree. We can define up to five flavours of feature models:

Basic feature models. These set of models are the most con-
strained ones and its first introduced in the FODA study [7]
paper. They only encode Boolean features; four types of
structural relationships. Namely, mandatory, optional, set
and or. Finally, two types of cross-tree relationships requires
and excludes. The basic feature model defines four kinds
of hierarchical relationships: i) mandatory; ii) optional;
iii) set which includes alternative; and or relationships;
In addition to these hierarchical constraints, two cross-tree
constraints are defined: i) requires, and; ii) excludes.

Cardinality based feature models. Thisrepresentationisan
attempt to unify feature models and UML constraint nota-
tions. This feature models definition, replaces the definition
of basic feature model relationships by cardinality-based
relationships.

Complex-constraints feature models. This representation
extends previous levels by allowing the definition of any
complex cross-tree constraint.

Attributed feature models. Attributed feature models is a
feature modelling extension that includes non-Boolean in-
formation about features. Complex constraints are allowed
between features and attributes such as “Every attribute
called cost must have a value greater than 10." There are a
variety of approaches to describe feature model attributes,
however, most of them share some characteristics such as
name and value.

Non-traditional feature models. This last group of feature
models extends the previous approaches by adding function-
ality to encode more complex variability. For example, in

Clients
REST API

Plugin | Plugin || Plugin

Core assets

Flask

Figure 1: Possible architecture for our repository.

this group we can find models containing multi-features [3],
when a feature can be present more than one time in a prod-
uct.

Our repository aims at supporting multiple flavours of the same
model (e.g. with and without attributes) we would need to define the
extension points of our language and the mechanisms to compose
it before uploading it to the repository. That is, we would need to
support versions of the same model but compatible with different
levels of the language.

4.3 Technological stack to build the language
infrastructure

We can summarise that the stack needs to fulfil the following re-
quirements given the requirements shown in Section 2:

e Extensible. This repository feature responds to the need of
providing rest interfaces, support for multiple attributes per
model as well as the creation of communities.

o Light. Due the amount of optional features identified it would
be interesting to rely on a small core.

o Reliable. There are several repositories that were built during
the last years. It would be advisable that the core component
of our repository is backed up by a larger project.

Figure 1 presents a possible architecture for our repository. First,
we chose to select the micro framework Flask 2 which provides a
light and extensive core for a web application and it is implemented
in Python. This will enable the support of basic functionality such as
accepting requests and build up our application. Second, a set of core
assets providing the basic functionality of hosting and organising
the models is needed. Then, we envision a plugin system to provide
other functionality such as the evaluation of metrics for models or
enable the rating of them. Finally, an API is provided to integrate
the repository in different tools. Also, an HTML front-end will be
built consuming such APL

Given those considerations, we propose to reuse and promote
open-science previous efforts. Concretely, we found a solution stack

2http://flask.pocoo.org/

http://flask.pocoo.org/

provided by Invenio 3 which was initially developed at CERN and
holding an open-source licence.

5 CONCLUSIONS

We expect that the number of requirements would require some
extensiveness in the repository so we can keep on adding new
functionality as time goes by. For example, functionality such as
the execution of analysis operations can be kept out of an initial
version.

Also, this modular architecture would enable to adapt the repos-
itory for different levels of variability or serialisations. Another
required main feature is the REST API so its easily interoperable
with various tools and frameworks.

We think that the Invenio solution can serve as a base for building
up a feature model repository that fulfills all our requirements.
During the workshop, we aim to retrieve such information and
reach consensus on the needs the community has.

ACKNOWLEDGEMENTS

This work has been partially funded by the EU FEDER program, the MINECO
project OPHELIA (RTI2018-101204-B-C22); the Juan de la Cierva postdoc-
toral program; the TASOVA network (MCIU-AEI TIN2017-90644-REDT);
and the Junta de Andalucia METAMORFOSIS project.

REFERENCES
[1

=

Ebrahim Bagheri and Dragan Gasevic. 2011. Assessing the maintainability of
software product line feature models using structural metrics. Software Quality
Journal 19, 3 (2011), 579-612. https://doi.org/10.1007/s11219-010-9127-2

Mike Cohn. 2004. User stories applied: For agile software development. Addison-

Wesley Professional.

[3] Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, and Axel Legay. 2013.
Beyond boolean product-line model checking: dealing with feature attributes
and multi-features. In Proceedings of the 2013 International Conference on Software
Engineering. IEEE Press, 472-481.

[4] Holger Eichelberger and Klaus Schmid. [n. d.]. Textual Variability Modeling Lan-
guages: An Overview and Considerations. In Proceedings of the 1st International
Workshop on Languages for Modelling Variability (MODEVAR 2019).

[5] Holger Eichelberger and Klaus Schmid. 2015. Mapping the design-space of textual

variability modeling languages: a refined analysis. STTT 17, 5 (2015), 559-584.

https://doi.org/10.1007/s10009-014-0362-x

José A. Galindo, David Benavides, Pablo Trinidad, Antonio-Manuel Gutiérrez-

Fernandez, and Antonio Ruiz-Cortés. 2019. Automated analysis of feature models:

Quo vadis? Computing 101, 5 (01 May 2019), 387-433. https://doi.org/10.1007/

500607-018-0646-1

Kang. 2010. FODA: Twenty Years of Perspective on Feature Modeling.. In Proceed-

ings of Fourth International Workshop on Variability Modelling of Software-Intensive

Systems, ICB-Research Report, volume 37, Universitit Duisburg-Essen, page 9.

[8] Marcilio Mendonca, Moises Branco, and Donald Cowan. 2009. SPLOT: software
product lines online tools. In Proceedings of the 24th ACM SIGPLAN conference
companion on Object oriented programming systems languages and applications.
ACM, 761-762.

[9] Brian A Nosek, George Alter, George C Banks, Denny Borsboom, Sara D Bowman,

Steven J Breckler, Stuart Buck, Christopher D Chambers, Gilbert Chin, Garret

Christensen, et al. 2015. Promoting an open research culture. Science 348, 6242

(2015), 1422-1425.

[2

(6

=

[7

[

3http://inveniosoftware.org/

https://doi.org/10.1007/s11219-010-9127-2
https://doi.org/10.1007/s10009-014-0362-x
https://doi.org/10.1007/s00607-018-0646-1
https://doi.org/10.1007/s00607-018-0646-1
http://inveniosoftware.org/

	Abstract
	1 Introduction
	2 Repository characteristics
	3 Information requirements
	4 Dependencies with languages elements
	4.1 Concrete syntax
	4.2 Abstract syntax/Model levels
	4.3 Technological stack to build the language infrastructure

	5 Conclusions
	References

