
Reverse engineering language product lines from existing DSL variants

David Méndez-Acuña

∗, José A. Galindo, Benoît Combemale, Arnaud Blouin, Benoît Baudry

INRIA/IRISA and University of Rennes 1 Campus de Beaulieu, Rennes, France

Keywords:

Language product lines

Software languages engineering

Domain-specific languages

Reverse-engineering

a b s t r a c t

The use of domain-specific languages (DSLs) has become a successful technique to develop complex sys-

tems. In this context, an emerging phenomenon is the existence of DSL variants, which are different
versions of a DSL adapted to specific purposes but that still share commonalities. In such a case, the

challenge for language designers is to reuse, as much as possible, previously defined language constructs

to narrow implementation from scratch. To overcome this challenge, recent research in software lan-

guages engineering introduced the notion of language product lines. Similarly to software product lines,

language product lines are often built from a set of existing DSL variants.

In this article, we propose a reverse-engineering technique to ease-off such a development scenario. Our
approach receives a set of DSL variants which are used to automatically recover a language modular
design and to synthesize the corresponding variability models. The validation is performed in a project
involving industrial partners that required three different variants of a DSL for finite state machines. This
validation shows that our approach is able to correctly identify commonalities and variability.

1

t

w

o

t

e

h

D

a

g

2

t

e

t

m

s

p

2

o

i

(

e

c

c

c

v

o

v

o

c

s

t

t

m

a

m

i

t

d

p

t

(

B

. Introduction

The increasing complexity of modern software systems has mo-

ivated the need of raising the level of abstraction at which soft-

are is designed and implemented (Chechik et al., 2010). The use

f domain-specific languages (DSLs) has emerged in response to

his need as an alternative to express software solutions in rel-

vant domain concepts, thus favoring separation of concerns and

iding fine-grained implementation details (Jézéquel et al., 2015b).

SLs are software languages whose expressiveness is focused on

 well defined domain and which provide abstractions a.k.a., lan-

uage constructs that address a specific purpose (Mernik et al.,

005). The adoption of such a language-oriented vision has mo-

ivated the construction of a large variety of DSLs. There are, for

xample, DSLs to build graphical user interfaces (Oney et al., 2012),

o specify security policies (Lodderstedt et al., 2002), or to ease off

obile applications’ prototyping (Ribeiro and da Silva, 2014).

Despite all the advantages furnished by DSLs in terms of ab-

traction and separation of concerns, this approach has also im-

ortant drawbacks that put into question its benefits (Gray et al.,

008). One of those drawbacks is associated to the elevated costs

f the language development process. The construction of DSLs

s a time consuming activity that requires specialized background
∗ Corresponding author.

E-mail addresses: damenac@gmail.com (D. Méndez-Acuña), jagalindo@inria.fr

s

m

(

i

m
J.A. Galindo), benoit.combemale@inria.fr (B. Combemale), arnaud.blouin@inria.fr (A.
louin), benoit.baudry@inria.fr (B. Baudry).
 Jézéquel et al., 2015b); language designers must own solid mod-

ling skills and technical knowledge to conduct the definition of

omplex artifacts such as metamodels, grammars, interpreters, or

ompilers (Jézéquel et al., 2015b).

The development of DSLs becomes more complex when we

onsider that DSLs often have many variants . A variant is a new

ersion of a given DSL that introduces certain differences in terms

f syntax and/or semantics (Homer et al., 2014). Typically, language

ariants appear under two situations. The first situation is the use

f well-known formalisms through different domains. Consider the

ase of finite state machines, which have been used in a the con-

truction of DSLs for a large spectrum of domains such as defini-

ion of graphical user interfaces (Oney et al., 2012) or games proto-

yping (Funk and Rauterberg, 2012). Those DSLs share typical state

achine concepts such as states or transitions. However, each DSL

dapts those abstractions to address the particularities of its do-

ain.

The second situation that favors the existence of DSL variants

s when the complexity of a given domain requires the construc-

ion of several DSLs with different purposes. In such a case, the

omain abstractions of the DSLs are similar, but their concrete im-

lementations require adaptations. For instance, suppose two DSLs:

he former is a DSL for specification and verification of railway

cheme plans (James and Roggenbach, 2014); the latter is a DSL for

odeling and reasoning on railway systems’ capacity and security

 Iliasov et al., 2013). These DSL share certain domain abstractions

.e., railway management. However, they both require different se-

antics and specialized constructs to achieve their purposes.

http://dx.doi.org/10.1016/j.jss.2017.05.042
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2017.05.042&domain=pdf
mailto:damenac@gmail.com
mailto:jagalindo@inria.fr
mailto:benoit.combemale@inria.fr
mailto:arnaud.blouin@inria.fr
mailto:benoit.baudry@inria.fr
http://dx.doi.org/10.1016/j.jss.2017.05.042

t

i

l

m

p

m

b

n

c

t

u

i

p

i

D

a

D

d

m

s

a

c

g

s

2

t

e

s

g

t

d

U

a

s

fi

t

s

i

D

D

s

u

e

m

m

l

d

p

i

2

g

2

d

s

t
The phenomenon of DSL variants is not a problem itself but

reflects the abstraction power of certain well-known formalisms

–such as state machines or petri nets– that, with proper adapta-

tions, can fit various domains. Besides, it shows how different is-

sues in a same domain can be addressed by diverse and comple-

mentary DSLs. Nevertheless, when the same team of language de-

signers has to deal not only with the construction of DSLs but also

with the definition of several variants, then their work becomes

even more challenging. After all, at implementation level each DSL

variant is a complete language itself requiring tooling such as edi-

tors, interpreters, compilers, and so on.

In this context, the challenge for language designers is to take

advantage of the commonalities existing among DSL variants by

reusing, as much as possible, formerly defined language constructs

(Zschaler et al., 2010). The objective is to leverage previous en-

gineering efforts to minimize implementation from scratch. To

achieve such a challenge, the research community in software lan-

guage engineering has proposed the use of Software Product Line

Engineering (SPLE) in the construction of DSLs (White et al., 2009;

Méndez-Acuña et al., 2016b). This led to the notion of Language

Product Line Engineering (LPLE) , i.e., the construction of software

product lines where the products are languages (Zschaler et al.,

2010; Kühn et al., 2015).

Similarly to software product lines, language product lines can

be built from a set of existing DSL variants through reverse-

engineering techniques (Kühn and Cazzola, 2016). Those tech-

niques should provide mechanisms for: (1) recovering of a lan-

guage modular design including all the language constructs exist-

ing in the DSL variants; and (2) synthesis of the corresponding

variability models.

In a previous work (Méndez-Acuña et al., 2016a; 2016c), we in-

troduced an approach to automatically infer a language modular

design from a given set of DSL variants. In this article, we ex-

tend that work to provide a complete reverse-engineering tech-

nique that produces not only the language modular designs, but

the entire language product line. In that sense, the delta of this ar-

ticle with respect to the previous one is the synthesis of the vari-

ability models. Those variability models are specified in terms of

well-known formalisms i.e., feature models (FM) and orthogonal

variability models (OVM) in such a way that they encode the vari-

ability of a language product line in a compact way while consider-

ing the diverse dimensions that such a variability may present. We

also show how those variability models can be used to configure

and assembly new DSL variants.

We validate our approach through the implementation within

an industrial project, which is composed of three variants of a DSL

for finite-state machines (Crane and Dingel, 2007). In this project

we manually developed an oracle to know in advance the existing

variation points. Then, we execute our approach on these DSL vari-

ants and we compare the produced results against the expected

ones. The result of this comparison shows that our reverse engi-

neering technique is correct since all the detected variation points

correspond to real differences in the DSL variants. Also, this valida-

tion allowed us to identify certain threats to validity regarding the

level of granularity of the detected variation points.

The remainder of this article is structured as follows:

Section 2 describes the problem statement. Section 3 introduces

our approach. Section 4 presents the experiments executed in the

context of the VaryMDE project that are used as a validation.

Section 5 discusses the related work. Finally, Section 6 concludes

the article.

2. Problem statement

Similarly to software product lines (Linden et al., 2007), the de-

velopment process of language product lines can be divided into
wo phases: domain engineering and application engineering. Dur-

ng the domain engineering phase, language designers build the

anguage product line. This process includes the design and imple-

entation of a set of interdependent language modules that im-

lement the language features and the construction of variability

odels encoding the rules in which those features can be com-

ined to produce valid DSL variants. During the application engi-

eering phase, diverse DSL variants are derived according to spe-

ific needs. Such a derivation process comprises the selection of

he features to include in a given DSL variant, i.e., language config-

ration and the assembly of the corresponding language modules,

.e., language modules composition.

Note, however, that in bottom-up language product lines, ap-

lication engineering is performed first and domain engineering

s performed afterwards through reverse-engineering techniques.

uring the application engineering phase, language designers build

n initial DSL. As the language development project evolves, some

SL variants are needed to address new requirements. Language

esigners create new development branches where they imple-

ent these new variants with the corresponding adaptations. At

ome point, language designers realize that there is potential reuse

mong the variants. Hence, they launch a reverse engineering pro-

ess –which in this case corresponds to the domain (re)engineering

phase– where the existing DSL variants are used to build up a lan-

uage product line. Using this language product line, language de-

igners can revisit the application engineering phase in order to

create new DSL variants.

.1. Motivating scenario

Suppose a team of language designers working on the construc-

ion of the DSL for finite state machines. Initially, language design-

rs followed the UML specification (OMG) to define language con-

tructs such as states, regions, transitions, and triggers. Those lan-

uage constructs are specified in terms of their syntax and seman-

ics. So, at the end of the language development process, language

esigners release an executable DSL whose behavior complies the

ML specification.

Once this first DSL was released, the language designers are

sked to build a new variant which must comply the Rhapsody

pecification (Harel and Kugler, 2004) (i.e., another formalism to

nite state machines). This new variant shares many commonali-

ies with UML state machines, but introduces differences at both

yntax and semantics levels (Crane and Dingel, 2007). After build-

ng this second variant, language designers obtained two different

SLs implementing different formalisms of state machines. Those

SL variants have some commonalities among them. And at the

ame time, the DSL have some particularities that make them

nique.

Note that this process is repeated each time language design-

rs have to build a new variant of the DSL for each new FSM for-

alism (e.g., Stateflow (Martaj and Mokhtari, 2010) or Harel state

achines (Harel and Naamad, 1996)). This becomes specially chal-

enging when final users need to combine some specifications to

efine hybrid formalisms. While several approaches have been pro-

osed to reverse engineering software product lines from exist-

ng product variants (Lopez-Herrejon et al., 2015; Martinez et al.,

015a; 2015b), in this article we propose techniques to reverse en-

ineering language product lines from existing DSL variants.

.2. Scope: Executable Domain Specific Languages

All the ideas presented in this article are focused to executable

omain specific modeling languages (xDSMLs) where the abstract

yntax is specified through metamodels , and the dynamic seman-

ics is specified operationally as a set of domain specific actions

Fig. 1. A simple DSL for finite state machines.

(

t

d

h

2

o

p

c

m

r

r

I

c

c

t

(

3

L

t

A

s

m

s

d

d

b

F

p

3

b

m

d

a

a

3

d

o

t

s

l

t

s

m

g

l

d

w

i

i

t

a

c

i

e

a

i

�

M

c

J

c

o

s

l

t

n

c

d

e

a

p

a

p

p

(

�

D

s
 Combemale et al., 2013). Whereas metamodels are class diagrams

hat represent language constructs and relationships among them,

omain specific actions are Java-like methods that introduce be-

avior in the metaclasses of a given metamodel (Jézéquel et al.,

015a).

Fig. 1 illustrates this type of DSLs through a simple example

n finite states machines. In that case, the metamodel that im-

lements the abstract syntax contains three metaclasses: StateMa-

hine, State , and Transition . There are some references among those

etaclasses representing the relationships existing among the cor-

esponding language constructs. The domain specific actions at the

ight of the Fig. 1 introduce the operational semantics to the DSL.

n this example, there is one domain specific action for each meta-

lass. Note that the interactions among domain specific actions

an be internally specified in their implementation by means of

he interpreter pattern , or externalized in a model of computation

 Combemale et al., 2013).

. Proposed approach: Reverse-Engineering Language Product

ines

In this section, we present our reverse engineering technique

o support the construction of bottom-up language product lines.

s shown in Fig. 2 , the proposed technique is composed of four

teps. During the first step, we automatically recover a language

odular design for the language product line. Such a modular de-

ign is composed of a set of language modules and a set of depen-

encies among them. During the second step, language modules’

ependencies are used to synthesize a variability model that can

e used, during the third step, to configure concrete DSL variants.

inally, during the forth step the DSL variant is assembled by com-

osing the involved language modules.

.1. Recovering a language modular design

Let us start the description of our reverse engineering technique

y explaining the way in which we identify the set of language

odules and dependencies that constitute the language modular

esign of the product line. The details of this recovering process

re explained below as well as the way in which language modules

re specified to guarantee their composability.

.1.1. Language modules. How to identify them?

To identify the language modules of a language product line, we

efine some comparison operators that facilitate the identification

f language constructs replicated in the DSL variants. These opera-

ors take into account both syntax and semantics of language con-

tructs. Then, we extract replicated constructs into interdependent
anguage modules whose dependencies are expressed through in-

erfaces guaranteeing that those language modules can be later as-

embled among them. Such a strategy to extract reusable language

odules is based on four principles explained in the following:

Principle 1: DSL specifications are comparable. So, replicated lan-

uage constructs can be automatically detected. To detect replicated

anguage constructs in a given set of DSL variants, we need to

efine some criteria to compare the DSL specifications to decide

hen a language construct is equal to another. For the technolog-

cal space discussed in this article, a language construct is defined

n terms of a metaclass and a set of domain specific actions.

Comparison of metaclasses. To compare metaclasses, we need to

ake into account that a metaclass is specified by a name, a set of

ttributes, and a set of references to other metaclasses. Two meta-

lasses A and B are considered as equal if all those elements match

.e., their names are equal; for all attributes in A there exists an

quivalent attribute in B; and for each reference in A there exists

n equivalent reference in B. Formally, comparison of metaclasses

s formalized by the operator � .

: M C × M C → bool (1)

C A � MC B ⇒
⇒ M C A · name = M C B · name

∧ ∀ a 1 ∈ MC A · attr | (∃ a 2 ∈ MC B · attr | a 1 = a 2)

∧ ∀ r 1 ∈ MC A · refs | (∃ r 2 ∈ MC B · refs | r 1 = r 2)

∧ | M C A · attr | = | M C B · attr |
∧ | M C A · refs | = | M C B · refs |

(2)

Comparison of domain-specific actions. To compare domain spe-

ific actions, we need to consider that –similarly to methods in

ava– domain specific actions have a signature that specifies their

ontract (i.e., return type, visibility rules, parameters, name, and so

n), and a body where the behavior is implemented. Two domain

pecific actions are equal if their signatures and bodies are equiva-

ent.

Whereas comparison of signatures can be performed by syn-

actic comparison of the signature elements i.e., checking if the

ames, return types, visitibilities are equal, comparison of bodies

an be arbitrary difficult. If we try to compare the behavior of the

omain-specific actions, then we will have to address the semantic

quivalence problem, which is known to be undecidable (Lucanu

nd Rusu, 2013). To address this issue, we conceive bodies com-

arison in terms of its abstract syntax tree as proposed by Biegel

nd Diehl (2010) . In other words, to compare two bodies, we first

arse them to extract their abstract syntax tree, and then we com-

are those trees. Formally, comparison of domain-specific actions

DSAs) is specified by the operator � .

 : DSA × DSA → bool (3)

S A A � DS A B ⇒
DS A A · name = DS A B · name ∧

DS A A · retu rnTy pe = DS A B · retu rnTy pe ∧

DS A A · visi bili ty = DS A B · visi bili ty ∧

∀ p 1 ∈ DS A A · para ms |
(∃ p 2 ∈ DS A B · para ms | p 1 = p 2) ∧
| DS A A · para ms | = | DS A B · para ms | ∧
DS A A · AST = DS A B · AST

(4)

Note that these comparison operators are structural for both

yntax and semantics of language constructs. They result useful

Fig. 2. Reverse engineering language product lines: approach overview.

Fig. 3. Factorizing replicated language constructs from DSL variants.

r

E

a

s

fi

t

m

s

t

e

s

p

c

w

s

p

w

w

r

m

c

a
when the DSL variants were built-up by using practices such as

clone-and-clone. To enhance the scope of the approach, other com-

parison operators that take into accoung not only the structure of

the constructs but their runtime behavior can be introduced. The

article presented by Bousse et al. (2015) presents some ideas in

that direction.

Principle 2: Replicated constructs can be viewed as sets’ inter-

sections, which is useful to factorization. A DSL specification can be

seen as a set of metaclasses and a set of domain specific actions. In

doing so, replicated constructs correspond to intersections among

those sets. Those intersection elements can be specified once and

reused in several DSL variants (Völter et al., 2013 , p. 60–61). Hence,

we can factorize replication constructs by breaking down the inter-

sections existing among DSL specifications.

Fig. 3 illustrates this observation through the running exam-

ple introduced in Section 2 . At the left of the figure, we show

two Venn diagrams to represent both syntax and semantic in-

tersections. The Venn diagram corresponding to the abstract syn-

tax shows that the classical constructs for state machines such as

StateMachine, State, and Transition are in the intersection of the

three given DSL variants i.e., UML state machines, Rhapsody, and

Harel’s state machines. In turn, there are certain particularities for

each DSL. For example, the concept AndTrigger is owned by UML

and Harel state machines but not for Rhapsody. Concepts such as

OrTrigger and NotTrigger are only provided by Harel state ma-

chines since the concept of Choice is exclusive of UML state ma-

chines.

For the case of semantic variability, the 3-sets intersection is

empty. It means that there is not a common semantic for the three

DSL variants. Rather, UML state machines and Rhapsody share the

domain specific actions corresponding to the constructs of State

Machine, State, and Transition. In turn, the implementation of

Harel state machines is different.
This way to conceive DSL specifications is useful to factorize

eplicated language constructs as illustrated at the right of Fig. 3 .

ach different intersection is separated in a separate subset that,

s we will explain later, is encapsulated in a language module.

Principle 3: Abstract syntax first, semantics afterwards. The ab-

tract syntax is the backbone of the DSL specification; it speci-

es its structure in terms of metaclasses and relationships among

hem whereas the domain-specific actions add executability to the

etaclasses. Hence, the process of breaking down intersections

hould be performed for the abstract syntax first, thus identifying

he way in which metaclasses should be grouped into the differ-

nt language modules. Afterwards, we can do the proper for the

emantics. In doing so, we need to take into consideration the

henomenon of semantic variability. That is, two replicated meta-

lasses might have different domain-specific actions. That occurs

hen two DSLs share some syntax specification but differ in their

emantics.

Principle 4: Breaking down a metamodel is a graph partitioning

roblem. A metamodel can be seen as a directed graph G = < V, A >

here:

• V : is the set of vertices each of which represents a metaclass.
• A : is the set of arcs each of which represents a relationship be-

tween two metaclasses i.e., references, containments, and inher-

itances.

This observation is useful for breaking down metamodels,

hich can be viewed as a graph partitioning problem where the

esult is a finite set of subgraphs. Each subgraph represents the

etamodel of a reusable language module.

The principles in action. Fig. 4 shows the way in which we re-

over a language modular design through the principles explained

bove. It is composed of two steps: unification and breaking down.

Fig. 4. Unifying and breaking down for recovering a language modular design.

u

w

a

a

t

c

i

c

n

v

m

s

a

t

s

p

t

l

u

o

d

c

w

u

3

m

d

i

l

l

c

Fig. 5. Specification of language modules.

d

c

m

d

r

c

w

p

s

s

U

r

g

p

t

t

“

m

m

a
Unification: match and merge . The objective of this step is to

nify all the DSL variants in a unique specification. To this end,

e first produce a graph G for the metamodel of each DSL variant

ccording to the principle 4. Second, we use the comparison oper-

tors defined in the principle 1 to match the vertices representing

he metaclasses repeated in two or more DSL variants. Third, we

reate the syntactic intersections defined in principle 2 by merg-

ng the matched vertices. In doing so, we remove replicated meta-

lasses. After this process, we have a unified graph (which is not

ecessarily a connected graph) including all the metaclasses pro-

ided in the DSL variants.

To identify semantic intersections, we check whether the do-

ain specific actions of the matched metaclasses are equal. If

o, they can be considered as semantic replications, and they are

lso merged. If not all the domain specific actions associated to

he matched metaclasses are equal, different clusters of domain

pecific actions are created, thus establishing semantic variation

oints.

Breaking down: cut and encapsulate . Once intersections among

he DSL variants have been identified, we factorize the replicated

anguage constructs. To this end, we break down the unified graph

sing a graph partitioning algorithm. Our algorithm returns a set

f clusters of vertices: one cluster for each intersection of the Venn

iagram. Arcs defined between vertices in different clusters can be

onsidered as cross-cutting dependencies between clusters. Finally,

e encapsulate each vertex cluster in the form of a language mod-

le.

.1.2. Language modules. How to specify them?

We have explained the way in which we recover a language

odular design by identifying clusters of language constructs and

ependencies among them. However, it is unclear how to spec-

fy those clusters in concrete implementation artifacts that can be

ater composed. To deal with this issue, we propose to specify a

anguage module in terms of (1) a metamodel containing the meta-

lasses corresponding to each construct cluster; and (2) a set of
omain specific actions implementing the semantics of their meta-

lasses (see Fig. 5). If there is semantic variability, then a language

odule can have several clusters of domain specific actions. The

ependencies among language modules are materialized through

equired and provided interfaces.

Required interfaces. A required interface is a mechanism to de-

lare the needs that a language module has towards other modules

hile assuming that their needs will be eventually fulfilled. Sup-

ose for example the development of a language module for finite

tate machines. This language module needs some additional ab-

tractions such as constraints to express guards in the transitions.

sing a required interface, those needs can be declared as a set of

equired constructs (e.g., Constraint).

We propose a mechanism to distinguish whether a given lan-

uage specification element (i.e., meta-class, property, operation,

arameter, enumeration, etc) corresponds to an actual implemen-

ation or a required declaration. The proposed mechanism is an ex-

ension to the EMOF meta-language that introduces the notion of

requirement”, so we can define required specification elements in

etamodels. When encapsulating clusters of concepts in language

odules, all the constructs contained in the cluster are defined

s actual implementations. In turn, all the references to specifica-

o

s

t

l

m

v

i

o

t

i

m

a

(

m

s

s

I

b

t

t

f

A

m

m

m

d

l

t

i

c

o

r

c

t

v

c

p

e

h

w

o

t

d

u

s

b

m

t

c

r

n

t

p

c

n
tion elements that belong to other clusters are defined as required

specification elements, so they are included in the required inter-

face.

Provided interfaces. The purpose of provided interfaces is to ex-

pose the functionality offered by the language module. Consider

for example a language module that offers the capability to express

and evaluate constraints. Using a providing interface, language de-

signers can express the essential functionality of the module i.e.,

expression and evaluation of constraints; and hide the implemen-

tation details and auxiliary concepts needed to achieve such func-

tionality e.g., context management.

To support the definition of provided interfaces, we propose to

extend EMOF with the notion of module visibility . This extension

allows to classify a certain specification element as either public

or private according to its nature. For example, a language de-

signer can classify a meta-class as public meaning that it repre-

sents essential functionality of the module so can be used by ex-

ternal modules and it belongs to the provided interface. Naturally,

if the meta-class is classified as private it cannot be used by exter-

nal modules and it cannot be considered as part of the provided

interface. Note that the notion of module visibility is different from

the notion of visibility already defined in EMOF. The later is asso-

ciated to certain access constraints of model elements with respect

to the package in which they are implemented.

When encapsulating a language module from a cluster of con-

structs, all the constructs that are used by external clusters are de-

fined as public.

3.2. Synthesizing language variability models

Once we have recovered a language modular design for the lan-

guage product line, we need to represent the existing variability in

a model that permits to configure concrete DSLs. To this end, we

need to find out an appropriated formalism to express that model,

and then to conceive a strategy to synthesize those models from

the language modular design.

3.2.1. Language variability. How to express it?

The challenge towards representing the variability existing in a

language product line is that such variability is multi dimensional.

Because the specification of a DSL involves several implementation

concerns 1 , then there are several dimensions of variability that we

must manage: abstract syntax variability, concrete syntax variabil-

ity, and semantic variability (Cengarle et al., 2009; Grönniger and

Rumpe, 2011).

Abstract syntax variability refers to the capability of selecting

the desired language constructs for a particular type of user. Con-

crete syntax variability refers to the capability of supporting dif-

ferent representations for the same language construct. Finally, se-

mantic variability refers to the capability of supporting different

interpretations for the same language construct. As the same as

our approach to language modularization, our approach to variabil-

ity management is scoped to abstract syntax and semantics; con-

crete syntax –and hence, concrete syntax variability– is not being

considered in the solution.

Modeling multi-dimensional variability. A solution to repre-

sent abstract syntax variability and semantic variability should

consider two main issues. Firstly, the definition of the semantics

has a strong dependency to the definition of the abstract syntax

–the domain-specific actions that implement the semantics of a

DSL are woven in the meta-classes defined in the abstract syntax–.

Hence, these dimensions of variability are not isolated from each
1 Just as traditional general purpose languages, domain specific languages are

typically defined through three implementation concerns: abstract syntax, concrete

syntax, and semantics (Harel and Rumpe, 2004).

v

r

i

a

ther. Rather, the decisions made in the configuration of the ab-

tract syntax variability impact the decisions that can be made in

he configuration of the semantic variability.

The second issue to consider at the moment of dealing with

anguage variability management is that a semantic variation point

ight be transversal to several meta-classes. Moreover, if the in-

olved meta-classes are introduced by different language modules

n the abstract syntax, then the semantic variation point depends

n two features. As a result, the relationship between a feature in

he abstract syntax and a semantic variation point is not necessar-

ly one-to-one.

Currently, we can find several approaches to support multi di-

ensional variability (e.g., Rosenmüller et al., 2011). Some of those

pproaches have been applied concretely to language product lines

 Liebig et al., 2013). The most common practice is to use feature

odels to represent all the dimensions of variability. Each dimen-

ion is specified in a different tree and dependencies among deci-

ions in those dimensions are expressed as cross-tree constraints.

n this article, we propose a different approach based on the com-

ination of feature models with orthogonal variability models. Fea-

ure models are used to model abstract syntax variability and or-

hogonal variability models are used to model semantic variability.

Fig. 6 illustrates our approach. At the top of the figure, there is a

eature model in which each feature represents a language module.

s aforementioned, each language module is composed of a meta-

odel and a set of domain specific actions. Hence, such a feature

odel is enough for language product lines where there is not se-

antic variability i.e., each language module has only one set of

omain specific actions. Differently, when there are one or more

anguage modules containing several sets of domain specific ac-

ions, then we have semantic variability that must be represented

n the variability model. To represent such a variability, we in-

lude an orthogonal variability model as illustrated at the bottom

f Fig. 6 which contains a variation point for each feature that rep-

esents a language module with more than one set of domain spe-

ific actions.

Why orthogonal variability models? An inevitable question

hat we need to answer at this point is: why we use orthogonal

ariability models instead of using feature models as proposed by

urrent approaches? The answer to this questions is two-fold:

(1) The structure of orthogonal variability models is more appro-

riated. As explained by Roos-Frantz et al. (2012) , feature mod-

ls and orthogonal variability models are similar. However, they

ave some structural differences. One of those differences is that

hereas a feature model is a tree that can have many levels, an

rthogonal variability model is a set of trees each of which has

wo levels. Each tree represent one variability point and its chil-

ren represent variants to that variation point.

Semantic variation points are decisions with respect to a partic-

lar segment of the semantics of a language. Although those deci-

ions can have some dependencies among them, they can hardly

e organized in a hierarchy. Indeed, we conducted an experi-

ent where we use feature models to represent semantic varia-

ion points, and we always obtained two-level trees: the first level

orresponds to the name of the variation point and its children

epresent the possible decisions. This fact suggests that orthogo-

al variability models are more appropriated than feature models

o represent semantic variability.

(2) The meaning of orthogonal variability models is more appro-

riated. According to Liebig et al. (2013) , a language feature is a

haracteristic provided by the language which is visible to the fi-

al user. This definition can be associated to the abstract syntax

ariability and the use of feature models can be appropriated to

epresent it. All the approaches on language product line engineer-

ng use feature models to this end showing that it is possible and

ppropriated.

Fig. 6. Approach to represent multi-dimensional variability in language product lines.

Fig. 7. Reverse-engineering variability models for language product lines.

c

d

D

m

t

v

h

o

m

3

a

f

n

a

v

s

t

e

b

w

m

d

g

t

g

e

o

r

m

d

c

g

(

h

The case of the semantic variability is different. A semantic de-

ision is not a characteristic of a language that we can select or

iscard. The semantic of a DSL should be always specified if the

SLs is intended to be executable. Rather, a semantic decision is

ore a variation point that can have different interpretations cap-

ured as variants. This vocabulary fits better in the definitions pro-

ided by orthogonal variability models. More than features, we

ave variation points and variants, which also suggest that the use

rthogonal variability models is more appropriate to represent se-

antic variability.

.2.2. Language variability. How to synthesize it?

Once we established an approach to represent language vari-

bility, we define an algorithm to synthesize variability models

rom a given language modular design. This algorithm produces

ot only a feature model with the abstract syntax variability, but

lso an orthogonal variability model representing the semantic

ariability. An overview of the approach is presented in Fig. 7 .

Synthesizing abstract syntax variability. The first step to repre-

ent the variability of a language product line is to extract the fea-
ure model that represents the abstract syntax variability. To this

nd, we need an algorithm that receives the dependencies graph

etween the language modules, and produces a feature model

hich includes a set of features representing the given language

odules as well as a set of constraints representing the depen-

encies among those modules. The produced feature model must

uarantee that all the valid configurations (i.e., those that respect

he constraints) produce correct DSLs.

In the literature, there are several approaches for reverse en-

ineering feature models from dependencies graphs (consider for

xample the approach presented by Assunção et al. (2015) , or the

ne presented by She et al. (2014)). In our case, we opt for an algo-

ithm that produces a simple feature model where each language

odule is represented in a concrete feature, and where the depen-

encies between language modules are encoded either by parent-

hild relationships or by the classical implies relationship. Our al-

orithm was inspired from the approach presented by Vacchi et al.

2013) which fulfills the aforementioned requirements. Besides, it

as been applied for the particular case of languages variability.

Fig. 8. Approach to support multi-staged configuration of language product lines.

w

t

t

c

v

e

s

a

i

o

a

c

3

i

c

p

a

i

v

m

c

s

t

f

n

s

fl

e

m

f

p

e

m

q

a

i

m

t

T

t

m

f

s

t

s

p

o

q

t

(

u

c

e

c

t

l

2 The relationship between a model type and a language module is called imple-

ments and it is introduced by Degueule et al. (2015) .
The tooling that supports our algorithms is flexible enough to

permit the use of other approaches for synthesis of feature model.

To this end, we provide an extension point that language designers

can use to add new synthesis algorithms. In addition to the one

proposed by Vacchi et al. (2013) , we have integrated our approach

with the one provided by Assunção et al. (2015) .

Synthesizing semantic variability. Once the feature model en-

coding abstract syntax variability is produced, we proceed to do

the proper with the orthogonal variability model encoding se-

mantic variability. To this end, we need to analyze the results of

the process for extracting the language modules. As explained in

Section 3.1 , according to the result of the comparison of the se-

mantics, a language module might have more than one cluster of

domain specific actions. This occurs when the two DSLs share con-

structs that are equal in terms of the abstract syntax, but differ in

their semantics. Since this is the definition of semantic variation

point, we materialize those clusters in semantic variation points of

an orthogonal variability model.

To do this, we scan all the language modules. For each one, we

verify if it has more than one cluster of domain specific actions. If

so, we create a semantic variation point where each variation ref-

erences one cluster. Finally, the semantic variation point is associ-

ated with the feature that represents the language module owning

the clusters.

3.2.3. DSL variants configuration

There are two issues to consider to support configuration of

DSL variants in language product line engineering. First, the multi-

dimensional nature of the variability in language product lines,

supposes the existence of a configuration process supporting de-

pendencies between the decisions of different dimensions of vari-

ability. For example, decisions in the abstract syntax variability

may impact decisions in semantic variability. Second, language

product lines often require multi-staged languages configuration.

That is, the possibility of configuring a language in several stages

and by different stakeholders.

Multi-staged configuration was introduced by Czarnecki et al.

(2004) for the general case of software product lines, and dis-

cussed by Dinkelaker et al. (2010) for the particular case of DSLs.

The main motivation to support such functionality is to trans-

fer certain configuration decisions to the final user so he/she can

adapt the language to exactly fits his/her needs (Dinkelaker et al.,

2010). In that case, the configuration process is as follows: the lan-

guage designer provides an initial configuration. Then, the config-

uration is continued by the final user that can use the DSL as long

as the configuration is complete. In doing so, it is important to de-

cide what decisions correspond to each stakeholder.

Suppose the scenario introduced in Fig. 8 where the language

designer is responsible to configure the abstract syntax variability
hereas the language user is responsible to configure the seman-

ics. When the language designer finishes its configuration process,

he orthogonal variability models will be available so the final user

an perform the configuration of the semantics. This orthogonal

ariability model will only include the variation points that are rel-

vant to the features included in the configuration of the abstract

yntax. Moreover, because each of the semantic variation points

re represented separately in a different tree, then we can imag-

ne a scenario where the language designer is able to configure not

nly the abstract syntax but also some semantic variation points,

nd then delegate to the final user only the decisions that he/she

an take according to its knowledge.

.3. Language modules composition

The final step of the language product line engineering process

s the composition of the language modules corresponding to the

onfiguration indicated in the variability models. This composition

rocess starts by checking the compatibility between the required

nd provided interfaces of the involved modules. Then, the spec-

fication of the modules are merged to produce a complete DSL

ariant.

Compatibility checking. To establish a compatibility checking

echanism between provided and required interfaces, we need to

onciliate two different (and potentially conflicting) issues. Firstly,

uch a compatibility checking must guarantee safe composition of

he involved language modules. Hence, we need to verify that the

unctionality offered by the provided interface actually fulfills the

eeds of required interface. Secondly, there must be some place for

ubstitutability. Hence, compatibility checking should offer certain

exibility that permits to perform composition despite some differ-

nces in their definitions. This is important because when language

odules are development independently of each other, their inter-

aces and implementations not always match (Gschwind, 2012).

To deal with the aforementioned issues, we propose an ap-

roach for compatibility checking which is at the same time strict

nough to guarantee safe composition, and flexible enough to per-

it substitutability under certain conditions. We extract both re-

uired and provided interfaces in the form of model types (Steel

nd Jézéquel, 2007). The model type corresponding to the required

nterface contains the required specification elements of a language

odule whereas the model type corresponding to the provided in-

erface the model type contains its public specification elements 2 .

hen, we perform compatibility checking by checking the sub-

yping relationship –introduced by Guy et al. (2012) – between the

odel types corresponding to the provided and the required inter-

aces. This relationship imposes certain constraints that guarantee

afe composition while permitting some freedom degrees thus in-

roducing some flexibility.

Merging modules’ specifications. The process of merging the

pecification of a set of language modules is performed in two

hases. First, there is a matching process that identifies one-to-

ne matches between required and public elements from the re-

uired and provided interface respectively. This match can be iden-

ified automatically by comparing names and types of the elements

where applicable). However, the match can be also specified man-

ally in the case of non-isomorphism.

Once the match is correctly established, the composition pro-

ess continues with a merging algorithm that replaces virtual el-

ments with public ones. When the process is finished, we re-

alculate both provided and required interfaces. The provided in-

erface of the composition is re-calculated as the sum of the pub-

ic elements of the two modules under composition. In turn, the

Fig. 9. Project planning.

r

e

p

4

l

n

i

s

p

e

h

w

t

r

T

s

s

4

c

v

D

a

s

i

r

e

c

s

t

t

o

n

t

d

t

g

D

4

t

a

v

D

s

d

r

s

e

i

a

4

s

p

t

b

m

u

i

s

c

t

U

m

t

m

e

G

e

C

4

a

T

w

t

t

S

u

t

t

a

4

p

D

i

D

l

t

t

o

a

s

l

c

u

i

a

t

c

3 GitHub repository: https://github.com/damende/puzzle/tree/master/examples/

state-machines .
equired interface of the composition is re-calculated as the differ-

nce of the required interface of the required module minus the

rovided interface of the providing module.

. Validation: the VaryMDE project

In this section, we introduce the VaryMDE project which is bi-

ateral collaboration between INRIA and Thales Research & Tech-

ology (TRT). The role of this project in the research presented

n this article is two-fold. On one hand, it provides a set of re-

earch questions that motivate our work. Concretely, the research

resented in this article represents an answer to some of the needs

merging in Thales in terms of language engineering. On the other

and, this project provides a realistic application scenario which

e used as validation of the approach. In the reminder of this sec-

ion, we present an overview of the project and we discuss the

esults of applying our approach in the scenario introduced by

hales. To explain this scenario we try to follow as close as pos-

ible the guidelines provided by Runeson and Höst (2008) for the

ake of clarity and organization.

.1. Background to the research project

Thales is a company whose business model turns around the

onstruction of different types of systems that solve needs in di-

erse domains such as transport, aerospace, security, or defense.

uring the construction of these systems, Thales’ engineers often

ppeal to the use of state machine languages to express behavior.

Despite the expressibility of state machines, the diversity of the

ystems built by Thales imposes an accidental complexity. Depend-

ng on the type of system under construction, there are different

equirements on the way in which a state machine should be ex-

cuted. Hence, there is certain semantic flexibility that state ma-

hine languages should offer to support the particularities of the

ystems unde construction. As a result, Thales engineers are in-

ended to build not only the devices themselves but also to adapt

he state machines formalisms.

The typical development process to address the implementation

f the formalisms for state machines is as follows: at the begin-

ing, language designers build an initial DSL for state machines

hat fits the needs of one type of system. Then, they create new

evelopment branches when they adapt the first variant of the DSL

o the needs of other types of systems. After some repetitions, lan-

uage designers have a family of DSLs for state machines. Those

SLs have both syntax and semantic differences.

.2. Design of the experiment

Objectives. One of the challenges of the VaryMDE project is

o find out a way to facilitate the development process descrived

bove. As an answer of this challenge, we propose the use of re-

erse engineering techniques to create language product lines of

SLs for state machines from existing variants.

Planning. The experiment was planned in three phases as

hown in Fig. 9 . In the first phase, the data set is prepared. Such a

ata set corresponds to the set of DSL variants that will be used to

everse engineer the language product line. This phase is iterative

ince we need to consider the feedback comming from the Thales’
ngineers. During the second phase, we execute our approach us-

ng the initial set of DSL variants. Finally, in the third phase we

nalyse the produced language product lines.

.3. Preparation for data collection

As aformentioned, the objective in this phase is to define the

et of initial DSL variants that will be used to execute our ap-

roach. The most important limitation we found at this stage is

hat many of the implementations for state machine DSLs are

uilt in different language workbenches and using diverse language

eta-languages. Under these conditions, commonalities and partic-

larities of DSLs are more difficult to detect.

To overcome such a limitation, we decided to implement the

nitial DSL variants in a unified language workbench and using the

ame meta-languages. Hence, the phase of preparation for data

ollection corresponds to a language development process where

hree different formalisms for state machiens were implemented:

ML state machines, Rhapsody, and Harel statecharts. Those for-

alisms were selected because they have a complete documen-

ation that allow to fully understand its semantics. The imple-

entation of the formalisms was conducted on top of Degueule

t al. (2015) language workbench and it is available on a dedicated

itHub repository 3 . The description of commonalities and differ-

nces existing among the selected formalisms are well-studied by

rane et al.and are described in Annexe A.

.4. Collecting evidence

Once we built the initial set of DSLs variants, we execute our

pproach and obtained a language product line for state machines.

he results are summarized in Fig. 10 . At the left of the figure

e present the set of language modules we obtained as well as

he language interfaces existing among them. Those modules group

he language constructs according to the heuristic introduced in

ection 3.1 on breaking down intersections. At the right of the fig-

re we show the corresponding variability models. Each feature of

he feature models is associated to a given language module. In

urn, the semantic variability points in the orthogonal model are

ssociated to clusters of domain specific actions.

.5. Analysis of collected data

Let us now discuss the results of the project regarding. As ex-

ected, we obtained a language product product line from a set of

SL variants for finite state machines. But... Does this product line

dentify all the variation points and commonalities existing in the

SL variants? Are those variation points properly specified in the

anguage modular design and variability models? Since we know

hese variation points and commonalities, we can check whether

hey are appear in the produced language product line. The results

f this verification are presented in Table 1 .

The results are promising in the case of abstract syntax vari-

bility. According to the Table A.2 , the DSL variants share 17 con-

tructs in common. Those constructs are properly factorized in a

anguage module that we named StateMachine. This module is

orrectly identified during the recovering of the language mod-

lar design, and it is properly specified as a language module

n terms of a metamodel enhance with domain specific actions

nd offering a provided interface. Besides, the particularities of

he DSL variants are also well factorized. There is a module that

ontains the constructs NotTrigger and OrTrigger that belong only

https://github.com/damende/puzzle/tree/master/examples/state-machines

Fig. 10. Language product line produced for the VaryMDE project.

Table 1

Analysis of the results.

Oracle Result

Properly identified? Properly specified?

Abstract syntax variability

Module: [StateMachine, Region, AbstractState, State, Transition, Trigger,

Pseudostate, InitialState, Fork, Join, ShallowHistory, Junction, FinalState, Constraint,

Statement, Program, NamedElement]

� �

Module: [NotTrigger, OrTrigger] � �

Module: [AndTrigger] � �

Module: [Choice] � �

Module: [Conditional] � �

Semantic variability

Events dispatching policy � ✘

Execution order of transitions’ effects � ✘

Priorities of conflictive transitions � ✘

5

p

t

w

o

2

o

w

i

l

p

a

g

u

p

f

N

g

p

c

m

c

t

c

F
to the variant complying the Harel’ statecharts specification. Be-

sides, there are three additional modules that contain the con-

structs AndTrigger, Choice, and Conditional respectively. Using this

modular design, we can re-compose any of the three initial DSL

variants.

The situation is different for the case of semantic variability.

Although our reverse-engineering strategy is able to identify that

the domain specific actions are different in the three DSL vari-

ants, the level of granularity at which those variation points are

detected is coarser than one might expect. At the beginning of

this section, we described three semantic variation points and

their possible interpretations i.e., events dispatching policy, ex-

ecution order of transitions’ effects, and priorities of conflicting

transitions. Using the proposed technique, we can identify just

one semantic variation point indicating that the language module

called StateMachines contains three different clusters of domain

specific actions, which is reflected in the orthogonal variability

model.

This threat to validity of our technique can be explained by the

fact that the analysis of commonalities and variability is conducted

by means of static analysis. We can analyze the structure of the

metamodels and the domain specific actions, but not their behav-

ior at runtime. Hence, we cannot see how these differences im pact

the execution of the models. For example, we cannot infer that the

differences among the domain specific actions in the StateMachine

module impact the way in which conflicting priorities are man-

aged. A next step in this research could be to use also dynamic

analysis in the domain specific actions to better specify semantic

variation points.
S
. Related work

The idea of reverse engineering software product lines from

roduct variants has been already studied in the literature. Besides,

here are several approaches that address this issue for the case in

hich the product variants have been built using the clone-and-

wn approach (Lopez-Herrejon et al., 2015; Martinez et al., 2015a;

015b). Although the applicability of such idea to the specific case

f language product lines is quite recent, there are some related

ork that we discuss in this section.

Recovering a language modular design. The first challenge dur-

ng reverse engineering language of product lines is to recover a

anguage modular design. Although this challenge has not received

roper attention, we found an approach that proposes insightful

dvances in this direction (Kühn et al., 2015). In that work, the lan-

uage modular design is achieved by defining one language mod-

le for each construct. That means that the reverse engineering

rocess will result in a language product line containing as many

eatures as constructs exist in the DSLs. The approach relies on

everlang Cazzola 2013a and AiDE Vacchi 2015b as tooling for lan-

uage modularization and variability management respectively.

This approach permits to exploit the variability in the language

roduct line since it provides a high level of granularity in the de-

omposition of language modules. Hence, language designers can

ake decisions with an important level of detail. However, the

omplexity of the product line might increase unnecessarily. From

he point of view of language users, there are clusters of language

onstructs that always go together thus separation is not needed.

or example, in our running on state machines, the concepts of

tateMachine , State , and Transition , go always together

s

a

t

e

a

c

t

t

s

s

o

(

c

c

m

a

i

p

t

e

f

m

(

t

h

t

u

t

t

i

d

s

a

A

c

b

e

i

c

f

a

h

g

p

m

t

c

o

i

a

t

t

c

r

t

6

s

s

p

r

l

fi

p

e

g

t

t

e

c

i

o

D

w

d

t

d

i

n

s

m

S

t

p

i

s

t

e

a

v

s

a

s

e

f

t

A

1

r

a

I

2

(

p

1

A

r

(

s

s

e

t

a

e
ince they correspond to a commonality of all the input DSLs. Sep-

rating these constructs in different features is not necessary in

his case and this increases the complexity of the variability mod-

ls. This can be a real issue if language designers decide to apply

utomatic analysis operations on those models.

Differently, in our approach we use the notion of specification

lones and intersections in order to achieve a level of granularity

hat captures the variability existing in the DSL variants given in

he input. This permits to identify those clusters of language con-

tructs that go always together in the given variants. This decision

implifies the language product line in the sense that the amount

f language modules is lower than in the approach by Kühn et al.

2015) . In doing so, we certainly reduce the possible variants that

an be configured by the language product line. This issue can be

onsidered as a threat to validity of our approach.

Synthesizing variability models. The synthesis of variability

odels has been largely studied in the literature. Some of those

pproaches have been adapted for the particular case of variabil-

ty in the context of language product lines engineering. The ap-

roach presented in Vacchi et al. (2014) proposes a search-based

echnique to find a features model that represents the variability

xisting in a set of language modules while optimizing an objective

unction. This approach uses an ontology that describes the do-

ain concepts of the language product line. The second approach

presented in Kühn et al., 2015) refines the former by removing

he ontology. This improvement is motivated by the difficulty be-

ind the construction of such ontology. Then, the authors propose

o annotate the BNF-like grammar with certain information that is

sed to create a variability model.

The aforementioned approaches support not only abstract syn-

ax variability, but also concrete syntax and semantic variability. In

he first case, the ontology can be used to identify all the exist-

ng syntactic and semantic variation points since it represents the

omain from both the syntax and semantic point of view. In the

econd case, the annotations provide the expressiveness enough to

ddress all these dimensions of the variability.

There is, however, an important limitation in those approaches.

lthough at the modeling level, feature models have shown their

apabilities to represent multi-dimensional variability and it has

een validated for language product lines, there is not support for

ffectively reverse-engineering such multi-dimensional variability

n the language product lines. Indeed, the solution provided by

urrent approaches is to synthesize variability models where each

eature capture both the abstract syntax of the language constructs

nd their semantics. Using this strategy, a language construct that

as different semantics interpretations is represented as two lan-

uage features. Those features have the same abstract syntax (a re-

eated definition of the specification) and their corresponding se-

antics.

The problem with this strategy is that it couples abstract syn-

ax variability with semantics variability, which limits multi-staged

onfiguration. The scenario in which language designers configure

nly the abstract syntax, and final users configure their semantics

s not supported since the configuration of the semantics depends

lso to configure a segment of the abstract syntax.

We claim that, in order to facilitate multi-staged configuration,

he abstract syntax variability should be defined separately from

he semantic variability. The main contribution of our approach

onstitutes an answer to that claim. We use feature models to rep-

esent abstract syntax variability, and orthogonal variability models

o represent semantics variability.

. Conclusion and future work

In this article we presented an approach to support the con-

truction of bottom-up language product lines. Our approach con-
ists of a reverse-engineering process that allows to automatically

roduce a language product line from a set of DSL variants. Such

everse-engineering process starts by recovering a language modu-

ar design, and then produces variability models that permit con-

guration of new variants. We validate our approach in a research

roject that uses different variants of DSL for state machines. How-

ver, our approach can be applied to other contexts where the lan-

uage development process ends up in the construction and main-

enance of several variants of DSLs. Some examples of those con-

exts can be the different languages for expressing petri nets, or

ven the different languages supporting BPMN (i.e., Business Pro-

ess Modeling Notation).

Thinking outside the clone-and-own approach. Thanks to the def-

nition of the comparison operators that we use in the first phase

f the approach, we are able to support the case in which the

SL variants are built-up using the clone-and-own approach. But...

hat if we have DSLs that are not necessarily built in those con-

itions? Suppose for example that we have as input a set of DSLs

hat share certain commonalities but that have been developed in

ifferent development teams. In that case, the probability of find-

ng specification scenarios is quite reduced, and our approach will

ot be useful. How our strategies can be extended to deal with

uch a scenario?

The answer to that question relies on the definition of

ore complex comparison operators. As we deeply explain in

ection 3.1 , the very first step of our reverse engineering strategy is

o perform a static analysis of the given DSLs and apply two com-

arison in order to specify specification clones. If what we want

s to find commonalities that are not necessarily materialized in

pecification clones but in “equivalent functionality”, then we need

o enhance the comparison operators in order to detect such as

quivalences.

Note the complexity behind the notion of “equivalent function-

lity”. In the case of abstract syntax, two meta-classes might pro-

ide equivalent functionality by defining different language con-

tructs e.g., using different names for the specification elements

nd even different relationships among them. In the case of the

emantics, two different domain specific actions might provide

quivalent functionality through different programs. We claim that

urther research is needed to establish this notion of equivalence

hus supporting more diverse development scenarios.

cknowledgments

This work is supported by the ANR INS Project GEMOC (ANR-

2-INSE-0011); the bilateral collaboration VaryMDE between In-

ia and Thales; the bilateral collaboration FPML between Inria

nd DGA; and the European Union within the FP7 Marie Curie

nitial Training Network RELATE under grant agreement number

64840. We also received support from the European Commission

FEDER); the Spanish government under BELi (TIN2015-70560-R)

roject and; the Andalusian government under the COPAS (TIC-

867) project.

ppendix A. A family of DSLs for state machines

Generally speaking, state machines are graphs where nodes rep-

esent states and arcs represent transitions between the states

 Harel, 1987). The execution of a state machine is performed in a

equence of steps each of which receives a set of events that the

tate machine should react to. The reaction of a machine to set of

vents can be understood as a passage from an initial configura-

ion (t i) to a final configuration (t f). A configuration is the set of

ctive states in the machine.

The relationship between the state machine and the arriving

vents is materialized at the level of the transitions. Each transition

http://dx.doi.org/10.13039/501100001665

T
a

b
le

A

.2

D
iv

e
rs

it
y

o

f
co

n
st

ru
ct

s
p

ro
v

id
e

d

b

y

th

e

D

S
Ls

fo

r
st

a
te

m

a
ch

in
e

s.

La
n

g
u

a
g

e

v

s.

S
ta

te
M

a
ch

in
e

R
e

g
io

n

A
b

st
ra

ct
S

ta
te

S
ta

te

T
ra

n
si

ti
o

n

T
ri

g
g

e
r

N
o

tT
ri

g
g

e
r

A
n

d
T

ri
g

g
e

r
O

rT
ri

g
g

e
r

P
se

u
d

o
st

a
te

In
it

ia
lS

ta
te

Fo
rk

Jo
in

D
e

e
p

H
is

to
ry

S
h

a
ll

o
w

H
is

to
ry

Ju
n

ct
io

n

C
o

n
d

it
io

n
a

l
C

h
o

ic
e

F
in

a
lS

ta
te

C
o

n
st

ra
in

t
S

ta
te

m
e

n
t

P
ro

g
ra

m

N
a

m
e

d
E

le
m

e
n

t
To

ta
l

C
o

n
st

ru
ct

U
M

L
•

•
•

•
•

•
–

•
–

•
•

•
•

•
•

•
–

•
•

•
•

•
•

2
0

R
h

a
p

so
d

y
•

•
•

•
•

•
–

–
–

•
•

•
•

–
•

•
•

–
•

•
•

•
•

1
8

H
a

re
l

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
–

•
•

•
•

•
2

2

is associated to one or more events (also called triggers). When

an event arrives, the state machine fires the transitions outgoing

from the states in the current configuration whose trigger matches

with the event. As a result, the source state of each fired transition

is deactivated whereas the corresponding target state is activated.

Optionally, guards might be defined on the transitions. A transition

is fired if and only if the evaluation of the guard returns true at the

moment of the trigger arrival.

The initial configuration of the state machine is given by a

set of initial pseudostates. Transitions outgoing from initial pseu-

dosates are fired automatically when the state machine is initial-

ized. In turn, the execution of a state machine continues until the

current configuration is composed only by final states (an special

type of states without outgoing transitions).

All of the DSLs included in this project support the notion of

region. A state machine might be divided in several regions that

are executed concurrently. Each region might have its own initial

and final (pseudo)states. In addition, the DSLs also support the def-

inition of different types of actions. States can define entry/do/exit

actions, and transitions can have effect actions.

Abstract syntax variability. Differences at the level of the ab-

stract syntax between the DSLs under study correspond to the di-

versity of constructs each of those DSLs provide. In particular, there

are differences in the support for transition’s triggers and pseu-

dostates.

In the case of transitions’ triggers, whereas Rhapsody only sup-

ports atomic triggers, both Harel’s statecharts and UML provide

support for composite triggers. In Harel’s statecharts triggers can

be composed by using AND , OR , and NOT operators. In turn, in UML

triggers can be composed by using the AND operator.

In the case of pseudostates, whereas all the DSLs support

Fork , Join , ShallowHistory , and Junction , there are two

psueudostates i.e., DeepHistory and Choice that are only sup-

ported by UML. The Conditional pseudostate is only provided

by Harel’s state charts. Table A.2 shows the language constructs

provided by each DSL.

Semantic variability. Semantic differences between the DSLs

under study can be summarized in three issues:

(1) Events dispatching policy: The first semantic difference in the

operational semantics of state machines refers to the way in which

events are consumed by the state machine. In a first interpretation,

simultaneous events are supported i.e., the state machine can pro-

cess more than one event in a single step. In a second interpreta-

tion, the state machine follows the principle of run to completion

i.e., the state machine is able only of supporting one event by step

so several events require several steps.

The semantics of UML and Rhapsody fit the run to completion

policy for events dispatching whereas Harel’s statecharts support

simultaneous events.

(2) Execution order of transitions’ effects: It is possible to define

actions on the transitions that will affect the execution environ-

ment where transitions are fired. These actions are usually known

as transitions’ effects. All the DSLs for state machines in our family

support the expression of such effects. However, there are certain

differences regarding their execution.

The first way of executing the effects of a transition is by re-

specting the order in which they are defined. This is due to the

fact that transitions effects are usually defined by means of imper-

ative action script languages where the order of the instructions is

intrinsic. The second interpretation to the execution of transitions’

effect is to execute them in parallel. In other words, the effects are

defined as a set of instructions that will be executed at the same

time so no assumptions should be made with respect to the exe-

cution order.

UML and Rhapsody execute the transition effects in parallel.

Harel’s statecharts execute transition effects simultaneously.

Fig. A.11. Example of a state machine with conflicting priorities.

b

t

g

t

w

m

fl

e

fi

t

p

m

i

s

f

a

fi

t

t

a

c

i

h

t

p

t

t

H

t

R

A

B

B

C

C

C

C

C

C

D

D

F

G

G

G

G

H

H

H

H

H

I

J

J

J

K

K

L

L

L

L

(3) Priorities in the transitions: Because several transitions can

e associated to the same event, there are cases in which more

han one transitions are intended to be fired in the same step. In

eneral, all the DSLs for state machines agree in the fact that all

he activated transitions should be fired. However, this is not al-

ays possible because conflicts might appear. Consider the state

achine presented in Fig A.11 . The transitions T D and T E are con-

ictive because they are activated by the same event i.e., e 2 , they

xit the same state, and they go to different target states. Then, the

nal configuration of the state machine will be different according

o the selected transition.

To tackle this situation, it is necessary to establish policies that

ermit to solve such conflicts. Specifically, we need to define a

echanism for prioritizing conflicting transitions so the interpreter

s able to easily select a transition from a group of conflicting tran-

itions. One of the best known semantic differences among DSLs

or state machines is related with these policies. In particular, there

re two different mechanisms for solving this kind of conflicts. A

rst mechanism for solving conflicting transition is to select the

ransition with the lower scope. That is, the deeper transition w.r.t.

he hierarchy of the state machine.

In the example presented in Fig A.11 the dispatched transition

ccording to this policy would be the transition T E so the state ma-

hine would move to the state S 5 . The second mechanism for solv-

ng conflicts in the transition is to select the transition with the

igher scope. That is, the higher transition w.r.t. the hierarchy of

he state machine. In the example presented in Fig A.11 the dis-

atched transition according to this policy is the transition T D so

he state machine will move to the state S 4 .

The semantics of UML and Rhapsody fits on the first interpre-

ation i.e., deepest transition priority whereas the semantics of

arel’s statecharts fits on the second interpretation i.e., highest

ransitions priority.

eferences

ssunção, W.K., Lopez-Herrejon, R.E., Linsbauer, L., Vergilio, S.R., Egyed, A., 2015. Ex-
tracting variability-safe feature models from source code dependencies in sys-

tem variants. In: Proceedings of the 2015 Annual Conference on Genetic and

Evolutionary Computation. ACM, New York, NY, USA, pp. 1303–1310. doi: 10.
1145/2739480.2754720 .

iegel, B. , Diehl, S. , 2010. Jccd: a flexible and extensible api for implementing cus-
tom code clone detectors. In: Proceedings of the International Conference on

Automated Software Engineering. ACM, Antwerp, Belgium, pp. 167–168 .
ousse, E., Mayerhofer, T., Combemale, B., Baudry, B., 2015. A Generative Approach

to Define Rich Domain-Specific Trace Metamodels. Springer International Pub-

lishing, Cham, pp. 45–61. doi: 10.1007/978- 3- 319- 21151- 0 _ 4 .
azzola, W., Vacchi, E., 2013a. Neverlang 2 - Componentised Language Development

for the {JVM}. In: Walter, B., Eric, B., Welf, L. (Eds.), Software Composition. In:
Lecture Notes in Computer Science, 8088. Springer Berlin Heidelberg, pp. 17–32.

doi: 10.1007/978- 3- 642- 39614- 4 _ 2 .
engarle, M.V., Grönniger, H., Rumpe, B., 2009. Variability within modeling language

definitions. In: Schürr, A., Selic, B. (Eds.), Model Driven Engineering Languages
and Systems. In: Lecture Notes in Computer Science, 5795. Springer Berlin Hei-

delberg, pp. 670–684. doi: 10.1007/978- 3- 642- 04425- 0 _ 54 .

hechik, M. , Gurfinkel, A. , Uchitel, S. , Ben-David, S. , 2010. Raising level of abstraction
with partial models: A vision. In: Proceedings of NSF/MSR Workshop on Usable

Verification . Redmond, Washington. ICMT 2012.
ombemale, B. , Hardebolle, C. , Jacquet, C. , Boulanger, F. , Baudry, B. , 2013. Bridging

the chasm between executable metamodeling and models of computation. In:
Proceedings of the International Conference on Software Language Engineering.
Springer, Dresden, Germany, pp. 184–203 .

rane, M., Dingel, J., 2007. Uml vs. classical vs. rhapsody statecharts: not all models
are created equal. Softw. Syst. Model. 6 (4). doi: 10.1007/s10270- 006- 0042- 8 .

zarnecki, K., Helsen, S., Eisenecker, U., 2004. Staged configuration using fea-
ture models. In: Nord, R. (Ed.), Software Product Lines. In: Lecture Notes in

Computer Science, 3154. Springer Berlin Heidelberg, pp. 266–283. doi: 10.1007/
978- 3- 540- 28630- 1 _ 17 .

egueule, T. , Combemale, B. , Blouin, A. , Barais, O. , Jézéquel, J.-M. , 2015. Melange: a

meta-language for modular and reusable development of dsls. In: 8th Interna-
tional Conference on Software Language Engineering (SLE) . Pittsburgh, United

States.
inkelaker, T. , Monperrus, M. , Mezini, M. , 2010. Supporting variability with late

semantic adaptations of domain-specific modeling languages. In: Proceedings
of the First International Workshop on Composition and Variability co-located

with AOSD’2010 .

unk, M., Rauterberg, M., 2012. PULP Scription: A DSL for Mobile HTML5 Game Ap-
plications. Springer Berlin Heidelberg, Bremen, Germany, pp. 504–510. doi: 10.

1007/978- 3- 642- 33542-6 _ 65 .
ray, J., Fisher, K., Consel, C., Karsai, G., Mernik, M., Tolvanen, J.-P., 2015a. Dsls: the

good, the bad, and the ugly. In: Companion to the 23rd ACM SIGPLAN Con-
ference on Object-oriented Programming Systems Languages and Applications.

ACM, New York, NY, USA, pp. 791–794. doi: 10.1145/1449814.1449863 .

rönniger, H., Rumpe, B., 2011. Modeling language variability. In: Calinescu, R., Jack-
son, E. (Eds.), Foundations of Computer Software. Modeling, Development, and

Verification of Adaptive Systems. In: Lecture Notes in Computer Science, 6662.
Springer Berlin Heidelberg, pp. 17–32. doi: 10.1007/978- 3- 642- 21292- 5 _ 2 .

schwind, T., 2012. Automated Adaptation of Component Interfaces with
Type Based Adaptation. Springer London, London, pp. 45–61. doi: 10.1007/

978- 1- 4471- 2350- 7 _ 5 .

uy, C., Combemale, B., Derrien, S., Steel, J.R.H., Jézéquel, J.-M., 2012. On model
subtyping. In: Vallecillo, A., Tolvanen, J.-P., Kindler, E., Störrle, H., Kolovos, D.

(Eds.), Proceedings of the 8th European Conference on Modelling Foundations
and Applications. Springer Berlin Heidelberg, Lyngby, Denmark, pp. 400–415.

doi: 10.1007/978- 3- 642- 31491- 9 _ 30 .
arel, D., 1987. Statecharts: a visual formalism for complex systems. Sci. Comput.

Program. 8 (3), 231–274. http://dx.doi.org/10.1016/0167- 6423(87)90035- 9 .

arel, D., Kugler, H., 2004. The rhapsody semantics of statecharts (or, on the ex-
ecutable core of the uml). In: Ehrig, H., Damm, W., Desel, J., Groe-Rhode, M.,

Reif, W., Schnieder, E., Westkmper, E. (Eds.), Integration of Software Specifi-
cation Techniques for Applications in Engineering. In: Lecture Notes in Com-

puter Science, 3147. Springer Berlin Heidelberg, pp. 325–354. doi: 10.1007/
978- 3- 540- 27863- 4 _ 19 .

arel, D., Naamad, A., 1996. The statemate semantics of statecharts. ACM Trans.

Softw. Eng. Methodol. 5 (4), 293–333. doi: 10.1145/235321.235322 .
arel, D., Rumpe, B., 2004. Meaningful modeling: what’s the semantics of “seman-

tics”? Computer (Long Beach Calif) 37 (10), 64–72. doi: 10.1109/MC.2004.172 .
omer, M., Jones, T., Noble, J., Bruce, K.B., Black, A.P., 2014. Graceful Dialects.

Springer Berlin Heidelberg, Uppsala, Sweden, ECOOP 2014, pp. 131–156. doi: 10.
1007/978- 3- 662- 44202- 9 _ 6 .

liasov, A., Lopatkin, I., Romanovsky, A., 2013. The SafeCap Platform for Modelling
Railway Safety and Capacity. Springer Berlin Heidelberg, Berlin, Heidelberg,

pp. 130–137. doi: 10.1007/978- 3- 642- 40793- 2 _ 12 .

ames, P., Roggenbach, M., 2014. Encapsulating formal methods within domain spe-
cific languages: a solution for verifying railway scheme plans. Math. Comput.

Sci. 8 (1), 11–38. doi: 10.1007/s11786- 014- 0174- 0 .
ézéquel, J.-M. , Combemale, B. , Barais, O. , Monperrus, M. , Fouquet, F. , 2015a. Mashup

of metalanguages and its implementation in the kermeta language workbench.
Softw. Syst. Model. 14 (2), 905–920 .

ézéquel, J.-M., Méndez-Acuña, D., Degueule, T., Combemale, B., Barais, O.,

2015b. When systems engineering meets software language engineering. In:
Boulanger, F., Krob, D., Morel, G., Roussel, J.-C. (Eds.), Complex Systems De-

sign & Management. Springer International Publishing, pp. 1–13. doi: 10.1007/
978- 3- 319- 11617- 4 _ 1 .

ühn, T. , Cazzola, W. , 2016. Apples and oranges: comparing top-down and bot-
tom-up language product lines. In: Proceedings of the 20th International Soft-

ware Product Line Conference. ACM, Beijing, China .

ühn, T., Cazzola, W., Olivares, D.M., 2015. Choosy and picky: Configuration of
language product lines. In: Proceedings of the 19th International Conference

on Software Product Line. ACM, New York, NY, USA, pp. 71–80. doi: 10.1145/
2791060.2791092 .

iebig, J., Daniel, R., Apel, S., 2013. Feature-oriented language families: a case study.
In: Proceedings of the Seventh International Workshop on Variability Modelling

of Software-intensive Systems. ACM, New York, NY, USA, pp. 11:1–11:8. doi: 10.

1145/2430502.2430518 .
inden, F.J.v.d. , Schmid, K. , Rommes, E. , 2007. Software Product Lines in Action: The

Best Industrial Practice in Product Line Engineering. Springer-Verlag New York,
Inc., Secaucus, NJ, USA .

odderstedt, T., Basin, D., Doser, J., 2002. Secureuml: a uml-based modeling lan-
guage for model-driven security. In: Jézéquel, J.-M., Hussmann, H., Cook, S.

(Eds.), UML 2002 - The Unified Modeling Language. In: Lecture Notes in Com-

puter Science, 2460. Springer Berlin Heidelberg, pp. 426–441. doi: 10.1007/
3- 540- 45800- X _ 33 .

opez-Herrejon, R.E., Linsbauer, L., Galindo, J.A., Parejo, J.A., Benavides, D., Segura, S.,
Egyed, A., 2015. An assessment of search-based techniques for reverse engineer-

http://dx.doi.org/10.1145/2739480.2754720
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0002
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0002
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0002
http://dx.doi.org/10.1007/978-3-319-21151-0_4
http://dx.doi.org/10.1007/978-3-642-39614-4_2
http://dx.doi.org/10.1007/978-3-642-04425-0_54
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0005
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0005
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0005
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0005
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0005
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0005
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0006
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0006
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0006
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0006
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0006
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0006
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0006
http://dx.doi.org/10.1007/s10270-006-0042-8
http://dx.doi.org/10.1007/978-3-540-28630-1_17
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0009
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0009
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0009
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0009
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0009
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0009
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0009
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0010
http://dx.doi.org/10.1007/978-3-642-33542-6_65
http://dx.doi.org/10.1145/1449814.1449863
http://dx.doi.org/10.1007/978-3-642-21292-5_2
http://dx.doi.org/10.1007/978-1-4471-2350-7_5
http://dx.doi.org/10.1007/978-3-642-31491-9_30
http://dx.doi.org/10.1016/0167-6423(87)90035-9
http://dx.doi.org/10.1007/978-3-540-27863-4_19
http://dx.doi.org/10.1145/235321.235322
http://dx.doi.org/10.1109/MC.2004.172
http://dx.doi.org/10.1007/978-3-662-44202-9_6
http://dx.doi.org/10.1007/978-3-642-40793-2_12
http://dx.doi.org/10.1007/s11786-014-0174-0
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0023
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0023
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0023
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0023
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0023
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0023
http://dx.doi.org/10.1007/978-3-319-11617-4_1
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0025
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0025
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0025
http://dx.doi.org/10.1145/2791060.2791092
http://dx.doi.org/10.1145/2430502.2430518
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0028
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0028
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0028
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0028
http://dx.doi.org/10.1007/3-540-45800-X_33

L

M

R

R

S

S

V

V

W

ing feature models. J. Syst. Softw. 103, 353–369. http://dx.doi.org/10.1016/j.jss.
2014.10.037 .

ucanu, D. , Rusu, V. , 2013. Program equivalence by circular reasoning. In: Proceed-
ings of the International Conference on Integrated Formal Methods. Springer,

Turku, Finland, pp. 362–377 .
artaj, N., Mokhtari, M., 2010. Stateflow. In: MATLAB R2009, SIMULINK et STATE-

FLOW pour Ingénieurs, Chercheurs et Étudiants. Springer Berlin Heidelberg,
pp. 513–586. doi: 10.1007/978- 3- 642- 11764- 0 _ 13 .

Martinez, J., Ziadi, T., Bissyandé, T.F., Klein, J., Traon, Y.L., 2015a. Bottom-up adop-

tion of software product lines: a generic and extensible approach. In: Proceed-
ings of the 19th International Conference on Software Product Line, SPLC 2015,

Nashville, TN, USA, July 20–24, 2015, pp. 101–110. doi: 10.1145/2791060.2791086 .
Martinez, J., Ziadi, T., Bissyand, T.F., Klein, J., l. Traon, Y., 2015b. Automating the ex-

traction of model-based software product lines from model variants (t). In: Au-
tomated Software Engineering (ASE), 2015 30th IEEE/ACM International Confer-

ence on, pp. 396–406. doi: 10.1109/ASE.2015.44 .

Méndez-Acuña, D. , Galindo, J.A. , Combemale, B. , Blouin, A. , Baudry, B. , 2016a. Re-
verse-engineering reusable language modules from legacy domain-specific lan-

guages. In: Proceedings of the International Conference on Software Reuse.
Springer, Limassol, Cyprus . ICSR 2016.

Méndez-Acuña, David, Galindo, J., Degueule, Thomas, Combemale, Benoit,
Baudry, Benoit, 2016b. Leveraging Software Product Lines Engineering in

the development of external DSLs: A systematic literature review. Computer

Languages, Systems & Structures 46, 206–235. doi: 10.1016/j.cl.2016.09.004 .
Méndez-Acuña, D., Galindo, J.A., Combemale, B., Blouin, A., Baudry, B., 2016c. Puzzle:

A Tool for Analyzing and Extracting Specification Clones in DSLs. In: Proceedings
of the International Conference on Software Reuse. Springer, Limassol, Cyprus

doi: 10.1007/978- 3- 319- 35122- 3 _ 26 . ICSR 2016.
Mernik, M., Heering, J., Sloane, A.M., 2005. When and how to develop domain-

specific languages. ACM Comput. Surv. 37 (4), 316–344. doi: 10.1145/1118890.

1118892 .
(OMG), O. M. G., 2011. Uml 2.4.1 superstructure specification.

Oney, S., Myers, B., Brandt, J., 2012. Constraintjs: programming interactive behaviors
for the web by integrating constraints and states. In: Proceedings of the 25th

Annual ACM Symposium on User Interface Software and Technology. ACM, New
York, NY, USA, pp. 229–238. doi: 10.1145/2380116.2380146 .

Ribeiro, A., da Silva, A.R., 2014. Xis-mobile: a dsl for mobile applications. In: Pro-

ceedings of the 29th Annual ACM Symposium on Applied Computing. ACM,
New York, NY, USA, pp. 1316–1323. doi: 10.1145/2554850.2554926 .
oos-Frantz, F., Benavides, D., Ruiz-Cortés, A., Heuer, A., Lauenroth, K., 2012. Quality-
aware analysis in product line engineering with the orthogonal variability

model. Softw. Qual. J. 20 (3), 519–565. doi: 10.1007/s11219-011-9156-5 .
osenmüller, M., Siegmund, N., Thüm, T., Saake, G., 2011. Multi-dimensional vari-

ability modeling. In: Proceedings of the 5th Workshop on Variability Modeling
of Software-Intensive Systems. ACM, New York, NY, USA, pp. 11–20. doi: 10.1145/

1944892.1944894 .
Runeson, P., Höst, M., 2008. Guidelines for conducting and reporting case study

research in software engineering. Empir. Softw. Eng. 14 (2), 131. doi: 10.1007/

s10664- 008- 9102- 8 .
he, S., Ryssel, U., Andersen, N., Wasowski, A., Czarnecki, K., 2014. Efficient synthesis

of feature models. Inf. Softw. Technol. 56 (9), 1122–1143 . Special Sections from
Asia-Pacific Software Engineering Conference (APSEC), 2012 and Software Prod-

uct Line conference (SPLC), 2012. http://dx.doi.org/10.1016/j.infsof.2014.01.012
teel, J., Jézéquel, J.-M., 2007. On model typing. Softw. Syst. Model. 6 (4), 401–413.

doi: 10.1007/s10270- 006- 0036- 6 .

Vacchi, E. , Cazzola, W. , Combemale, B. , Acher, M. , 2014. Automating variabil-
ity model inference for component-based language implementations. In: Hey-

mans, P., Rubin, J. (Eds.), SPLC’14 - 18th International Software Product Line
Conference. ACM, Florence, Italie .

acchi, E., Cazzola, W., Pillay, S., Combemale, B., 2013. Variability Support in
Domain-Specific Language Development. Springer International Publishing, In-

dianapolis, IN, USA, SLE 2013, pp. 76–95. doi: 10.1007/978- 3- 319- 02654- 1 _ 5 .

Vacchi, E., Cazzola, W., 2015b. Neverlang: A framework for feature-oriented lan-
guage development. Computer Languages, Systems & Structures 43, 1–40.

doi: 10.1016/j.cl.2015.02.001 .
ölter, M. , Benz, S. , Dietrich, C. , Engelmann, B. , Helander, M. , Kats, L.C.L. , Visser, E. ,

Wachsmuth, G. , 2013. DSL Engineering - Designing, Implementing and Using
Domain-Specific Languages. dslbook.org .

hite, J. , Hill, J.H. , Gray, J. , Tambe, S. , Gokhale, A.S. , Schmidt, D.C. , 2009. Improv-

ing domain-specific language reuse with software product line techniques. IEEE
Softw. 26 (4), 47–53 .

Zschaler, S., Sánchez, P., Santos, J.a., Alférez, M., Rashid, A., Fuentes, L., Moreira, A.,
Araújo, J.a., Kulesza, U., 2010. Vml ∗ a family of languages for variability manage-

ment in software product lines. In: van den Brand, M., Gasevic, D., Gray, J. (Eds.),
Software Language Engineering. In: Lecture Notes in Computer Science, 5969.

Springer Berlin Heidelberg, pp. 82–102. doi: 10.1007/978- 3- 642- 12107- 4 _ 7 .

http://dx.doi.org/10.1016/j.jss.2014.10.037
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0031
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0031
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0031
http://dx.doi.org/10.1007/978-3-642-11764-0_13
http://dx.doi.org/10.1145/2791060.2791086
http://dx.doi.org/10.1109/ASE.2015.44
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0035
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0035
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0035
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0035
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0035
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0035
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0035
http://dx.doi.org/10.1016/j.cl.2016.09.004
http://dx.doi.org/10.1007/978-3-319-35122-3_26
http://dx.doi.org/10.1145/1118890.1118892
http://dx.doi.org/10.1145/2380116.2380146
http://dx.doi.org/10.1145/2554850.2554926
http://dx.doi.org/10.1007/s11219-011-9156-5
http://dx.doi.org/10.1145/1944892.1944894
http://dx.doi.org/10.1007/s10664-008-9102-8
http://dx.doi.org/10.1016/j.infsof.2014.01.012
http://dx.doi.org/10.1007/s10270-006-0036-6
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0044
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0044
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0044
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0044
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0044
http://dx.doi.org/10.1007/978-3-319-02654-1_5
http://dx.doi.org/10.1016/j.cl.2015.02.001
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0046
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0046
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0046
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0046
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0046
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0046
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0046
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0046
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0046
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0047
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0047
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0047
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0047
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0047
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0047
http://refhub.elsevier.com/S0164-1212(17)30085-7/sbref0047
http://dx.doi.org/10.1007/978-3-642-12107-4_7

	Reverse engineering language product lines from existing DSL variants
	1 Introduction
	2 Problem statement
	2.1 Motivating scenario
	2.2 Scope: Executable Domain Specific Languages

	3 Proposed approach: Reverse-Engineering Language Product Lines
	3.1 Recovering a language modular design
	3.1.1 Language modules. How to identify them?
	3.1.2 Language modules. How to specify them?

	3.2 Synthesizing language variability models
	3.2.1 Language variability. How to express it?
	3.2.2 Language variability. How to synthesize it?
	3.2.3 DSL variants configuration

	3.3 Language modules composition

	4 Validation: the VaryMDE project
	4.1 Background to the research project
	4.2 Design of the experiment
	4.3 Preparation for data collection
	4.4 Collecting evidence
	4.5 Analysis of collected data

	5 Related work
	6 Conclusion and future work
	 Acknowledgments
	Appendix A A family of DSLs for state machines
	 References

