
Classifying and resolving software product line redundancies using an
ontological first-order logic rule based method

Megha Bhushan a,*, José Ángel Galindo Duarte b, Piyush Samant c, Ashok Kumar d, Arun Negi e
a School of Computing, DIT University, Dehradun, Uttarakhand, India
b University of Seville, Spain
c Adventum Advanced Solution Pvt. Ltd. Bangalore, Karnataka, 560066, India
d Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab 140401, India
e Deloitte USI, Hyderabad, India

Keywords:

Feature model

 First-order logic

Ontologies

Quality

Redundancy

Software product line

A B S T R A C T

Software product line engineering improves software quality and diminishes development cost and time by efficiently developing
software products. Its success lies in identifying the commonalities and variabilities of a set of software products which are generally
modeled using feature models. The success of software product lines heavily relies upon the quality of feature models to derive high
quality products. However, there are various defects that reduce profits of software product line. One of such defect is redundancy.
While the majority of research work focuses on the identification of redundancies, their causes and corrections have been poorly
explored. Causes and corrections must be as accurate and comprehensible as possible in order to support the developer in resolving the
cause of a redundancy. This research work classified redundancies in the form of a typology. An ontological first-order logic rule based
method is proposed to deal with redundancies. A two-step process is presented for mapping model to ontology based on predicate
logic. First-order logic based rules are developed and applied to the generated ontology for identifying redundancies, their causes and
corrections to resolve redundancies. The proposed method is illustrated using a case study from software product lines online tools
repository. The results of experiments performed on 35 models with varied sizes of real world models as well as automatically-
generated models from the Software Product Line Online Tools repository and models created via FeatureIDE tool conclude that the
method is accurate, efficient and scalable with FM up to 30,000 features. Thus, enables deriving redundancy free end products from
the product line and ultimately, improves its quality.

1. Introduction

Software Product Line (SPL) is the popular software reuse approach
in the communities that deal with reuse. SPL is a collection of software
products that satisfy the needs of a specific domain (Clements &
Northrop, 2001). The benefits of SPL include higher quality, shorter time
and lower cost to deliver a new product. Many companies like Hewlett-
Packard, Cummins, Inc., Boeing, McDonalds and Philips to exploit the
benefits exhibited by SPL (Northrop, 2008). In SPL, Feature Model (FM)
notation captures variant and common features along with the repre-
sentation of variability within SPL (Kang, Cohen, Hess, Novak &
Peterson, 1990). It represents features and their relationships as a tree
like structured model or graphical feature diagram. Each product in SPL

is the distinctive and legal integration of features. A well known char-
acteristic of a software system which is significant to the user is defined
as a feature. The standard example of an e-shop incorporates features
payment and security as its basic functionality for enabling payment and
providing security for the electronic shopping, respectively.

The development of accurate software products in SPL depends on
numerous activities including technical management, organizational
management and software engineering activities (Northrop, 2008). For
instance, interfaces, testing, reuse aspect, and overloaded software
development eventually lead to the success of SPL approach. However,
the quality of software product is one of the most influencing factors that
impacts on the productivity and quality of an SPL. Defects may get
inadvertently introduced in FMs with the increasing size as well as

* Corresponding author at: School of Computing, DIT University, Dehradun, Uttarakhand 248009, India.
E-mail addresses: dr.megha@dituniversity.edu.in, mb.meghabhushan@gmail.com (M. Bhushan), jagalindo@us.es (J. Ángel Galindo Duarte), piyushsamantpth@

gmail.com (P. Samant), ashok.kr@chitkara.edu.in (A. Kumar), arun98765@gmail.com (A. Negi).

mailto:dr.megha@dituniversity.edu.in
mailto:mb.meghabhushan@gmail.com
mailto:jagalindo@us.es
mailto:piyushsamantpth@gmail.com
mailto:piyushsamantpth@gmail.com
mailto:ashok.kr@chitkara.edu.in
mailto:arun98765@gmail.com
www.sciencedirect.com/science/journal/09574174
https://www.elsevier.com/locate/eswa
https://doi.org/10.1016/j.eswa.2020.114167
https://doi.org/10.1016/j.eswa.2020.114167
https://doi.org/10.1016/j.eswa.2020.114167
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2020.114167&domain=pdf

2

The novel contributions of our proposed method are as follow:

I. Classification of FM redundancies in the form of various cate-
gories and their cases.

II. Mapping of FM to ontology based on predicate logic as it presents
a communication between FM and ontology

III. Developing and applying FOL based rules to the generated
ontology in order to deal with redundancies.

IV. Identification of redundancies with their causes and suggesting
corrections in natural language.

V. Information given to SPL developers for resolving redundancies
in order to derive redundancy free end products from the PL.

VI. Enhancement in the quality of SPL as it deals with more types of
redundancies (see Section 2).

The article’s structure incorporates a typology of redundancies in
Section 2. The methodology followed by the proposed work is described
in Section 3. A motivating example of FM is provided in Section 4.
Sections 5 and 6 describe the proposed approach and the details of its
experimental evaluation. The results followed by discussion are pro-
vided in Section 7. The related work has been given in Section 8. Finally,
Section 9 provides conclusion of the proposed method and future work.

2. Typology of redundancies

In this Section, various FM redundancies that exist in the literature
have been classified mainly into six categories as shown in the typology
given in Fig. 1 (Elfaki, Fong, Aik & Johar, 2013; Felfernig, Benavides
Cuevas, Galindo Duarte & Reinfrank, 2013; Mazo, 2011; Salinesi &
Mazo, 2012; Salinesi, Mazo & Diaz, 2010). The redundancies include
defects due to redundant relationships in models. These redundancies
have been classified conforming to their level of significance. For
example, redundancies associated with the quality improvement of
models without varying their semantics. A unique number has been
allotted to each category that describes the order in which the re-
dundancies should be considered. The typology is shown as a tree where

Fig. 1. Typology of redundancy.

complexity of models and due to inaccurate combinations of features.
These defects are the imperfections that impede the production of valid
software products (Salinesi & Mazo, 2012) and diminish the quality of
FM as well as benefits from the SPL. A defect due to redundancy in FM is
one of such defects which are concerned to the redundant relationships
in a model. A FM is redundant if one of its constraints can be removed
without changing the set of derived products. Though redundancy does
not affect the semantics of a model, however, it increases the complexity
of the model as well as the computational efforts required for deriving
valid software products, and simultaneously decreases the maintain-
ability of the model. These defects can adversely affect the other derived
software products from SPL. Moreover, defects due to redundancy yet
have not been explored much like other defects (i.e. dead features,
wrong cardinality, inconsistencies and false optional features etc.) in the
existing literature.

In order to attain high quality SPL approach and to produce redun-
dancy free products from FMs, it is necessary to avoid replicating the
redundancy defects (occurred in prior software products) in new derived
products. However, it is unfeasible to manually detect and fix re-
dundancies. Therefore, the aforementioned information motivated us to
propose an ontological First-Order Logic (FOL) rule based method to
deal with redundancies in FMs in order to improve the quality of SPL.
The results of experiments performed on 35 FMs with varied sizes
conclude that the method is accurate, efficient and scalable with FM up
to 30,000 features. FMs were selected from: (i) Software Product Line
Online Tools (SPLOT), a FM repository of real FMs (available
at https://ec2-52-32-1-180.us-west2.compute.amazonaws.com:8080/
SPLOT/feature_model_repository_depot.html), (ii) SPLOT FM re-
pository of automatically-generated FMs (available at https://
ec2-52-32-1-180.us-west2.compute.amazonaws.com:8080/SPLOT/ind
ex.html), and (iii) building them with the FeatureIDE tool (see
https://github.com/FeatureIDE/FeatureIDE/wiki/Tutorial).

https://ec2-52-32-1-180.us-west2.compute.amazonaws.com:8080/SPLOT/feature_model_repository_depot.html
https://ec2-52-32-1-180.us-west2.compute.amazonaws.com:8080/SPLOT/feature_model_repository_depot.html
https://ec2-52-32-1-180.us-west2.compute.amazonaws.com:8080/SPLOT/index.html
https://ec2-52-32-1-180.us-west2.compute.amazonaws.com:8080/SPLOT/index.html
https://ec2-52-32-1-180.us-west2.compute.amazonaws.com:8080/SPLOT/index.html
https://github.com/FeatureIDE/FeatureIDE/wiki/Tutorial

3

I. The generation of a standard and reusable approach to handle
redundancies.

II. The classification of redundancies based on a perspective that
allows identifying similarities and differences among various
categories of redundancy.

III. Various cases of redundancy which diminish the efforts to iden-
tify redundant relationships between reusable features (for this
no cases have been reported at the same source in the existing
work).

IV. The categories of redundancy have different priority and order, as
they have different impact. For instance, the category of redun-
dancy is placed first in the typology that occurs due to the same
cause(s) i.e., by exclusion and group cardinality. It includes less
complexity and requires reduced computational efforts for
deriving redundancy free valid products.

V. The choice of redundancy case(s) that one wants to deal with
according to the expected quality level of a model or the impact of
these cases of redundancy. For instance, there is a possibility that
some redundancies are actually intended so as to reinforce the
relationship between features. Moreover, other possibility may
include that some practitioners do not want to detect a specific
type of redundancy.

VI. SPL developers can employ the typology to identify and correct
redundancy along with its various possible cases as per their
impact on SPLs.

The categories of redundancy along with their cases are explained in
Fig. 1. Further, Table 1 explains the FM notation.

2.1. Redundancy caused by exclusion and group cardinality (Salinesi
et al., 2010)

Table 2 depicts the cases of redundancy caused by exclusion of an
alternative-child feature.

2.2. Redundancy caused by implication and full-mandatory feature
(Elfaki et al., 2013; Salinesi et al., 2010; Van Der Storm, 2007; Von der
Maßen & Lichter, 2004; White et al., 2010)

Table 3 represents the cases of redundancy caused by implication
constraint(s) and a FMF.

Table 1
Types of relationships in feature model.

Notation Type of relationship

Mandatory (Kang et al., 1990): c (child feature) must be
contained in each valid product whenever p (parent feature)
is chosen and vice versa.
Optional (Kang et al., 1990): c (child feature) may or may
not be contained in the valid product(s) related with p
(parent feature).
Alternative (Benavides, Segura & Ruiz-Cortés, 2010): c1
and c2 (child features) are in alternative relationship with p
(parent feature) when exactly one of the child features has to
be incorporated for developing any valid product whenever
p is incorporated.
Or (Benavides, Segura & Ruiz-Cortés, 2010): c1 and c2 (child
features) are in or-relationship with p (parent feature) when
multiple child features are incorporated for developing any
valid product whenever p is chosen.

Implication (Von der Maßen & Lichter, 2004): Features c1
and c2 related with implication constraint represent that c2
should be included in each valid product with c1.
Exclusion (Von der Maßen & Lichter, 2004): The exclusion
constraint between features c1 and c2 will not allow
incorporating these features concurrently in the same valid
product.

Table 2
Cases of redundancy caused by exclusion and group cardinality.

Case (with rule no.) Description of Rule

p is the parent
feature (either
FMF or root) of
alternative-child
features c1 and c2.

c1 and c2 are associated in group
cardinality < 1.0.1 > where c2 is
excluded by c1. Thus, exclusion
(exc1) becomes redundant.

c1 and c2 are associated in group
cardinality < 1.0.1 > and FMF c3
has a parent c1. Further, c2 is
excluded by FMF c4 which has a
parent c3. It represents a multiple
exclusion of an alternative-child
feature c2 which is redundant.

FMF: Full-mandatory feature

Table 3
Cases of redundancy caused by implication and full-mandatory feature.

Case (with rule
no.)

Description of Rule

p is the parent feature
(either FMF or root) of
child features c1 and c2.

FMF c1 is implied by an optional
feature c2, in any case, c1 is
always selected and therefore,
implication (imp1) from c2 to c1 is
redundant.

An optional feature c3 has a
parent optional feature c1. Both,
FMCF c4 and optional child
feature c5 have same parent FMF
c2 where c1 implies c4. In any
respect, c4 is always incorporated
in all the configurations and
therefore, implication (imp1)
from c1 to c4 is redundant.
FMF c2 is implied by an optional
feature c1 where c2 appears in all
the configurations and thus,
implication (imp1) from c1 to c2 is
redundant. The FMCF c3 is
implied by its parent feature c2.
This implication (imp2) is also
redundant as both c2 and c3 will
always be selected in any case.

An optional child feature c1 has a FMPF p1 and another FMCF
c2 has a parent FMF p2. It means c2 is incorporated in every
product and thus, c1 implies (imp1) c2 is redundant.

Both FMCFs c1 and c2 have parent feature p (here, p can be
either FMF or root), and these child features are implied by p.
In any case, c1 and c2 appear in all the configurations and thus,
implications (imp1 and imp2) are redundant.

FMF: Full-mandatory feature, FMCF: Full-mandatory child feature,
FMPF: Full-mandatory parent feature.

Redundancy is the root of tree. The main categories and various cases of
redundancy are represented by the nodes and sub-nodes of tree,
respectively. The typology includes categories from 1 to 6 which are
further composed of various cases. This typology can be used to attain
redundancy free valid products by identifying and resolving FM re-
dundancies according to their impact on SPLs. The typology of redun-
dancy directs to:

4

3. Methodology

This section describes the methodology followed by the proposed
approach which includes

(i) The input FM (in SXFM format is available in online SPLOT FM
repository of real FMs or automatically-generated FMs) is auto-
matically read and analyzed using FeatureIDE tool through
importing its model from SPLOT (SXFM format). (Note: FMs can
be manually encoded by using FeatureIDE tool).

(ii) Additional features and cross-tree constraints are intentionally
injected in the input model by enabling editing in FeatureIDE’s
model editor to cause redundancies.

(iii) The modified input model (i.e. in XML format) generated from
FeatureIDE is transformed to ontology (based on predicate logic)
using an XML parser (available at https://bit.ly/3aqRUZA).

(iv) To identify redundancies along with their causes and corrections,
a set of redundancy rules based on FOL is developed and applied
to the generated ontology.

Table 4
Cases of redundancy caused by multiple implications.

Case (with rule no.) Description of Rule

p is the parent
feature (either FMF
or root) of child
features c1 and c2.

FMF c1 implies an optional
feature c2, and c1 is a parent
of FMCF c3, thus, the
implication (imp2) from c3 to
c2 is redundant.

FMCF c3 has a FMPF c1 where
c3 implies an optional feature
c2 means that mandatory
child feature c4 of parent c2 is
also included. Therefore,
implication (imp2) on c4 after
c2 is implied is redundant.

FMF c1 implies an optional
feature c2 means that this
implication (imp1) constraint
will be reflected in each
mandatory or FMCF of the
two features c1 and c2.
Simultaneously, FMCF c3 has
a parent c1 implies another
mandatory child feature c4
which has a parent c2 is
redundant.
FMFs c1, c2, c3 and c4 where
c3 has a parent c1 implies c2
and its child feature c4. Both
implications (imp1 and imp2)
are redundant because c2 and
c4 are already included in
each product.

FMF: Full-mandatory feature, FMCF: Full-mandatory child feature,
FMPF: Full-mandatory parent feature

Table 5
Cases of redundancy caused by multiple exclusions.

Case (with rule no.) Description of Rule

p is the parent feature
(either FMF or root) of
FMCF c1 and optional
child feature c2.

c2 is excluded by c1 where c1 is
the parent of FMCF c3, thus,
exclusion (exc2) from c3 to c2 is
redundant.

c1 excludes c2 means that all
the FMCFs of c1 exclude by
default all the mandatory child
features of the excluded c2.
Simultaneously, FMCF c3 has a
parent c1 excludes another
mandatory child feature c4
which has a parent c2 is
redundant.

FMF: Full-mandatory feature, FMCF: Full-mandatory child feature.

Table 6
Case of redundancy caused by cyclic implications.

Case (with rule no.) Description of Rule

Feature c1 implies feature c2, c2 implies feature c3 and c3
implies c1. The cycle can start from any feature. In this case,
the selection of c3 leads to c1 is implied by c3 and c2 is
implied by c1, therefore, c1 is implied by c3 is redundant
since feature c3 is already chosen.

Table 7
Cases of redundancy caused by transitive implications.

Case (with rule no.) Description of Rule

Features c1 and c2 directly implies a feature c3 where
c2 is implied by c1. The implication (imp3) from c1 to c3
is redundant as the transitive implication from c1
through c2 already implies c3.

FMCF c1 has a parent feature p (either full-mandatory
or root) and the FMCF c2 has a parent c1 where p
implies c2. The implication (imp1) from p to c2 is
redundant due to a transitive relationship between p
and c2.

FMCF c1 has a parent feature p (either FMF or root) and
the FMCF c2 has a parent c1 where c2 implies p. The
implication (imp1) is redundant due to a transitive
relationship between c2 and p.

FMF: Full-mandatory feature, FMCF: Full-mandatory child feature.

2.3. Redundancy caused by multiple implications (Elfaki et al., 2011;
Salinesi, Mazo & Diaz, 2010; Van Der Storm, 2007; Von der Maßen &
Lichter, 2004

Table 4 shows various cases of redundancy caused by several
implication constraints.

2.4. Redundancy caused by multiple exclusions (EElfaki et al., 2013;
Mazo, 2011; Salinesi et al., 2010; Van Der Storm, 2007; Von der Maßen
& Lichter, 2004

Table 5 depicts the cases of redundancy caused by numerous exclu-
sion constraints.

2.5. Redundancy caused by cyclic implications (Salinesi et al., 2010; Von
der Maßen & Lichter, 2004

Table 6 represents a case of redundancy caused by cyclic implication
constraints.

2.6. Redundancy caused by transitive implications (Salinesi et al., 2010;
Trinidad et al., 2008; Von der Maßen & Lichter, 2004; White et al., 2010

Table 7 illustrates the cases of redundancy caused by transitive
implication constraints.

https://bit.ly/3aqRUZA

5

method throughout the paper. The modified form of E-commerce sys-
tem1 FM from SPLOT repository is used to describe the proposed
method as shown in Fig. 2. The entire SPL is represented by the root
feature “e-commerce system” which is required to be incorporated in each
valid product of the PL. Further, unique name is assigned to each feature
and cross-tree constraint relationship for better explanation. Thus,
unique names are given to the features appearing twice. To demonstrate
the presented method, 29 cross-tree constraints and 68 features are
intentionally injected in the FM to describe redundancies.

5. Approach

This section explains the implementation of our method to deal with
redundancies for deriving redundancy free valid products from SPLs.
The running example of E-commerce system1 FM (explained using
Fig. 2) is used for describing the presented method.

5.1. Mapping of E-commerce system1 PL to ontology

The mapping of FM to ontology based on predicate logic is a two-step
process which is as follow:

5.1.1. SPLOT to FeatureIDE
FeatureIDE tool (Thüm, Kästner, Benduhn, Meinicke, Saake & Leich,

2014) automatically reads E-commerce system1 FM through importing
its model in SXFM format from SPLOT repository. The corresponding
model can be graphically represented by means of FeatureIDE’s visu-
alization functionality. The model editor of this tool further enables

editing. To illustrate the proposed method, additional features (i.e. a1-
a68) and cross-tree constraints (i.e. imp1-imp23 and exc1-exc6) are
intentionally inserted in the input E-commerce system1 FM file to cause
defects due to redundancy as shown in Fig. 2

Following illustrates the relationships shown in Fig. 2 in order to
comprehend the model developed in FeatureIDE:

A dashed arrow (starts from the source and finishes towards the
target) represents an implication relationship which has been assigned a
unique name such as imp1. A double headed dashed arrow represents an
exclusion relationship which has been assigned a unique name such as
exc1. The features associated in the group cardinality are basically
optional features (Baader, Calvanese, McGuinness, Patel-Schneider &
Nardi, 2003; Lesta, Schaefer & Winkelmann, 2015).

5.1.2. FeatureIDE to ontology
A parser (available at https://bit.ly/3aqRUZA) is developed that

maps an XML file of modified input E-commerce system1 FM (available
at https://bit.ly/2XRgAHZ) from FeatureIDE to ontology (based on
predicate logic) as shown in Fig. 3. The features and their relationships
in E-commerce system1 FM are represented in the generated ontology.
This ontology comprises of following types of predicates: parent,
exclusion, implication, feature and cardinality which are represented
using “p”, “e”, “i” ,“f ” and “c”, respectively. Table 8 illustrates the
mapping patterns used to attain the ontology from FM and examples for
defining these predicates. In ontology, predicates represent properties
and classes using ternary and binary predicates, respectively.

5.2. Analyze SPL redundancies

In this Section, redundancy rules are developed and applied as FOL
queries to the generated ontology using SWI Prolog (Wielemaker, 2015).
Following subsections incorporate redundancy rules to deal with defects
due to redundancy and their results:

5.2.1. Redundancy rules
A set of redundancy rules based on FOL is developed as shown in

Fig. 4, which represents particular cases of misuse among the

Fig. 2. E-commerce system1 feature model from software product lines online tools repository representing redundancies.

(v) The results obtained after applying all rules consist of identified
redundancies along with their causes and provide corrections.
The generated results enable PL developers to resolve re-
dundancies, i.e. by eliminating cross-tree constraints incorpo-
rated in the source of redundancies.

M. Motivating example of FM

A running example of FM is used to demonstrate the proposed

https://bit.ly/3aqRUZA
https://bit.ly/2XRgAHZ

6

Fig. 3. Ontology of E-commerce system1 feature model.

7

Table 8
Mapping patterns from feature model to ontology with description of predicates.

Type FeatureIDE Notation Feature Model Notation Ontology
Representation
based on Predicate
logic Type

Description Example

Mandatory f(feature_1, m) Feature feature_1 is mandatory f(manufacturer,m)

Optional f(feature_1, o) Feature feature_1 is optional f(photos,o)

Parent p(feature_1,
feature_2)

Parent feature_2 has child feature_1 p(photos,manufacturer)

Exclusion e(feature_1,
feature_2, exc1)

feature_2 is excluded by feature_1 where
exc1 is an exclusion constraint

e(a2,a3,exc1)

Implication i(feature_1,
feature_2, imp1)

feature_2 is implied by feature_1 where
imp1 is an implication constraint

i(a11,a10,imp1)

Group cardinality Alternative
relationship

c(feature_1,
[feature_2,
feature_3], [Min,
Max])

Child features feature_2 and feature_3
have same parent feature_1 belong to
the group cardinality < min..
max > where maximum (Max) and
minimum (Min) describe the count of
child features which are allowed to be
specified in a cardinality relationship. In
this case, child features can be more
than two.

c(a1,[a2,a3],[1,1]) represents that
only one child feature can be
selected from a set of features (i.e.
a2 and a3) with group
cardinality < 1.0.1 > .

Or-relationship c(p,[c1,c2],[1,2]) represents two
child features c1 and c2 having
same parent p is equivalent to a
group cardinality < 1…2 > where 2
is the maximum count of features.

8

Fig. 4. Redundancy rules based on first-order logic.

9

Fig. 5. Results attained after implementing rules to E-commerce system1 ontology.

10

relationships in a model that generated redundancies. Each rule is
developed corresponding to each case of redundancy shown in
Tables 2–7. These rules (as FOL queries) can be implemented indepen-
dently as well as simultaneously to the developed ontology of E-com-
merce system1 FM (see Fig. 3) in Prolog.

5.2.2. Results
Fig. 5 represents the results obtained after applying each redundancy

rule to the ontology of E-commerce system1. The results comprise of
identified redundancies along with their causes and provide corrections
in natural language which is easily comprehensible by users. SPL de-
velopers can use the generated results to resolve redundancies, i.e. by
eliminating cross-tree constraints incorporated in the source of
redundancies.

6. Experiment evaluation

The presented method was evaluated by performing experiments on
35 FMs up to 30,000 features. These models were selected from SPLOT
FM repository (Tables 9 and 10) and others were built by FeatureIDE
tool (Table 11). The goal was to measure the accuracy, scalability,
completeness as well as minimalism of the set of redundancy rules and
finally, to compare the proposed method with existing work. Following
discusses these measurements:

6.1. Experimental environment

The environment for the evaluation of our method includes a Dell
workstation T-5600 with Windows 7 Professional N of 64 bits, RAM
memory of 8.00 GB 1600 MHz, processor Intel® Xeon® CPU E5-2650
@2.60 GHz, HDD-SATA 500 GB @7200RPM, online SPLOT repository,
Eclipse Luna SR2 (5.5.2), SWI-Prolog (Version 7.4.2, 64 bits) and Fea-
tureIDE 2.7.4.

6.2. Accuracy

The accuracy of proposed method is based on the correct (i) mapping
of FMs into ontologies, and (ii) identification of redundancies along with
their causes and corrections.

6.2.1. Accuracy of the mapping
As discussed in Section 5.1, in order to check that models have been

accurately mapped, the number of mandatory features, optional fea-
tures, implications, exclusions, and cardinalities in the results obtained
with our mapping were compared against the input XML files from
FeatureIDE (by searching the corresponding tags used in the parser).
These comparisons were made over all 35 FMs with root feature, fea-
tures, group cardinalities and cross-tree constraints, and these models
were of varied sizes up to 30,000 features. The outcomes of these
comparisons are same, resulting in 100% accuracy in the mapping of
models into ontologies with 0% false positives.

6.2.2. Accuracy of the identification of redundancies with their causes and
corrections

The ratio of the number of redundancies with their causes and cor-
rections that are accurately identified by the proposed method to the
total number of redundancies (with their causes and corrections) in the
FM is defined as accuracy. The proposed method identified 100% of the
redundancies with their causes and corrections in 35 FMs by considering
our set of rules for redundancies with 0% false positives. Additionally, it
was observed that all rules simultaneously and individually, identified
the expected redundancies with their causes and corrections signifying
100% accuracy to handle redundancies considered in the proposed
method.

Feature models Total
number
of
features

Total
number of
cross-tree
constraints

Identified
number of
redundancies

Identified
type of
redundancies

Isolation 21 2 2 1
E-commerce system1 80 29 17 All
Computers 53 9 7 1,2
e-Event 78 17 11 1–3
ATM Software 95 21 13 1–4
Tankwar 107 24 14 1–5
WebCollaboration 111 24 14 1–5
GerenciaLojaVirtual 128 26 16 1–5
BioFM 138 32 18 All
Berkley DB 148 43 19 All
E-science application 148 32 18 All
Nákladný automobile 160 277 19 All
Windows 157 29 17 All
FISH 171 32 19 All
ModelTransformation 203 38 24 All
SmartTV 231 46 28 All
Xtext 283 51 30 All
Total Informatica 300 58 34 All
BattleofTanks 339 67 41 All
FM_Test 363 113 41 All
Printers 412 87 51 All
android60 431 115 53 All
android510 486 134 58 All
Electronic Shopping 586 125 62 All
A Model for Decision-

making for
Investments on
Enterprise
Information
Systems

686 308 68 All

windows80 792 256 70 All

Type of redundancies: There are a total of six categories of FM redundancies as
shown in the typology in Fig. 1, where “All” represents all six categories.

Table 10
Description of automatically-generated 3-CNF Feature Models from software
product lines online tools repository (Available at https://doi.
org/10.5281/zenodo.3820862).

Feature
models

Total
number of
features

Total number
of cross-tree
constraints

Identified
number of
redundancies

Identified type
of redundancies

FM-1 916 175 75 All
FM-2 1495 233 79 All
FM-3 2658 254 92 All
FM-4 6016 319 99 All
FM-5 11,580 283 109 All

Type of redundancies: There are a total of six categories of FM redundancies as
shown in the typology in Fig. 1, where “All” represents all six categories.

Table 11
Description of Feature Models generated using FeatureIDE tool (Available at
https://doi.org/10.5281/zenodo.3820862).

Feature Models Total
number of
features

Total number of
cross-tree
constraints

Identified
number of
redundancies

Identified type of
redundancies

FM-15000 15,000 203 119 All
FM-20000 20,000 212 126 All
FM-25000 25,000 232 136 All
FM-30000 30,000 256 150 All

Each generated FM comprises of mandatory feature, optional feature and cross-
tree constraints.
Type of redundancies: There are a total of six categories of FM redundancies as
shown in the typology in Fig. 1, where “All” represents all six categories.

Table 9
Description of REAL feature models taken from software product lines online
tools repository (Available at https://doi.org/10.5281/zenodo.3820862).

https://doi.org/10.5281/zenodo.3820862
https://doi.org/10.5281/zenodo.3820862
https://doi.org/10.5281/zenodo.3820862
https://doi.org/10.5281/zenodo.3820862

11

Table 12
Comparing the accuracy of FeatureIDE tool with the proposed method using E-commerce system1 Feature Model for redundancies.

Rules Constraints description FeatureIDE tool Proposed method Status (S)

R.1 (i) a2 excludes a3 (i) Dead features: manufacturerscatalogue,
manufacturercategories, a1-a10, a12, a14, a16,
title, a18, a20-a23, manufacturer, description, a25-
a30, a32-a34, products, a36-a39, a41-a47
False-optional features: a40, a35, a31, a24, a17,
a15, a13, a11, photos

Defect: Redundancy1
Cause: exclusion between alternative-child features a2
and a3 is redundant
Correction: eliminate exc1

0

R.2 (i) a8 excludes a6 (i) CR Defect: Redundancy2
Cause: multiple exclusion of an alternative-child feature
a6
Correction: eliminate exc2

1

R.3 (i) a11 implies a10 (i) CR Defect: Redundancy3
Cause: optional feature a11 implies the full-mandatory
feature a10 is redundant
Correction: eliminate imp1

1

R.4 (i) a13 implies a16 (i) CR Defect: Redundancy4
Cause: optional feature a13 implies the full-mandatory
feature a16 is redundant
Correction: eliminate imp2

1

R.5 (i) a19 implies a20
(ii) a20 implies a21

(i) CR
(ii) CR

Defect: Redundancy5
Causes: optional feature a19 implies a full-mandatory
feature a20
and mandatory child feature a21 is implied by its parent
a20 are redundant
Corrections: eliminate imp3 and imp4

1

R.6 (i) a24 implies a25 (i) CR Defect: Redundancy6
Cause: optional feature a24 implies a full-mandatory
featurea25 is redundant
Correction: eliminate imp5

1

R.7 (i) a26 implies a27
(ii) a26 implies a28

(i) CR
(ii) CR

Defect: Redundancy7
Causes: both mandatory child features a27 and a28 are
implied by their parent a26 are redundant
Corrections: eliminate imp6 and imp7

1

R.8 (i) a30 implies a31
(ii) a32 implies a31

(i) CR
(ii) CR

Defect: Redundancy8
Cause: multiple implication of an optional feature a31
Correction: eliminate imp9

0.5

R.9 (i) a36 implies a35
(ii) a36 implies a37

(i) CR
(ii) CR

Defect: Redundancy9
Cause: implication on a37 is redundant after a35 is
implied by a mandatory feature a36
Correction: eliminate imp11

0.5

R.10 (i) a39 implies a40
(ii) a41 implies a42

(i) CR
(ii) CR

Defect: Redundancy10
Cause: mandatory feature a41 implies another
mandatory feature a42 is redundant
Correction: eliminate imp13

0.5

R.11 (i) a46 implies a45
(ii) a46 implies a47

(i) CR
(ii) CR

Defect: Redundancy11
Causes: implications on mandatory features a45 and
a47are redundant
Corrections: eliminate imp14 and imp15

1

R.12 (i) a49 excludes a50
(ii) a51 excludes a50

(i) CR
(ii) CR

Defect: Redundancy12
Cause: multiple exclusion of an optional feature a50
Correction: eliminate exc4

0.5

R.13 (i) a53 excludes a54
(ii) a55 excludes a56

(i) CR
(ii) CR

Defect: Redundancy13
Cause: mandatory feature a55 excludes another
mandatory feature a56 is redundant
Correction: eliminate exc6

0.5

(continued on next page)

12

6.2.3. Comparing accuracy of the proposed method with FeatureIDE tool
The proposed method is compared with FeatureIDE tool for accu-

racy. The experiments were carried out for redundancies by considering
the practicability of the proposed method with FeatureIDE. Table 12
shows the results obtained after analyzing E-commerce system1 FM with
redundancies using (i) FeatureIDE tool (as shown in column 3), and (ii)
proposed method (as shown in column 4). The accuracy is represented
with Status (S). When FeatureIDE finds accurate redundancy or
constraint(s) for the cause of redundancy, the status is indicated with 1.
Similarly, when it only identified one or half of the constraint out of two
or more constraints involved in the cause of redundancy, the status is
indicated by 0.5. Further, when FeatureIDE is unable to find accurate
redundancy or constraints involved in the cause of redundancy or did
not identify any redundancy, the status is indicated by 0. The number of
models, number of rules and the status are represented by m, r, and Sm,r,
respectively, Sm,r ∈ [0,1].

The computed values of S for E-commerce system1 FM including
redundancies are demonstrated in Table 12. The value of Status (S) was
calculated for each of the considered 17 rules for redundancies, which
further were executed for 35 models as illustrated in Eq. (1). The final
accuracy of FeatureIDE is 73.53% for redundancies which was
computed based on the average of the values obtained from Eq. (1).

However, our method handled 100% of the considered redundancies
with 0% false positives. Further, all rules individually and jointly
identified as well as provided causes and corrections of all the expected
redundancies, indicating 100% accuracy of the proposed method.

accuracy =
1
m

∑35

m=1

(
1
r

∑17

r=1
Sm,r

)

(1)

6.3. Computational scalability

As shown in Fig. 6, the average execution time (in seconds) was
calculated after executing entire rules to deal with redundancies on each
one of the six FMs with features 5000, 10,000, 15,000, 20,000, 25,000
and 30,000 for testing the performance of proposed method. X-axis and
Y-axis represent the number of features in all models and time respec-
tively. The scalability of proposed method to deal with redundancies is
determined by the plot.

It describes the minimum and the maximum time required by the
queries to deal with redundancies in models with 5000 features and
large-sized FMs with 30,000 features respectively. Results conclude that
queries take a reasonable time of 0.185 sec to deal with redundancies in
huge FM up to 30,000 features. The reliable and valid measures of
execution time are acquired by executing the entire rules for 50 times on
each of the 35 FMs. The overall execution time considered is the average
of 50 executions for the entire rules over all the FMs.

6.4. Completeness, consistency and consistency gain of the set of
redundancy rules

To measure the quality of rules, usage of fitness function is consid-
ered as an interesting issue in rule-based approaches (Zhou, Xiao, Tirpak
& Nelson, 2003). The focus is on proving the completeness and consis-
tency of the developed set of redundancy rules. In literature, various
formulas exist which integrate completeness and consistency as shown
in Eqs. (2) and (3) respectively (Bruha, 1997). Instead of using consis-
tency metric, we are using consistency gain of rule (Michalski & Kauf-
man, 2001), as it considers the distribution of positive examples and
negative examples in the training set (TS).

Here, a set of rules (a ruleset) represents the redundancy rules, where
“ruleset” and “rule” are used as “rule” and as a component of a rule
respectively. The number of negative examples and positive examples in
the complete TS are represented using NE and PE respectively. Let r be a
rule (or a ruleset) developed for that TS to cover its examples where ne Ta

bl
e

12
 (

co
nt

in
ue

d)

Ru
le

s
Co

ns
tr

ai
nt

s
de

sc
ri

pt
io

n
Fe

at
ur

eI
D

E
to

ol

Pr
op

os
ed

 m
et

ho
d

St
at

us
 (S

)

R.
14

(i

)
a5

7
im

pl
ie

s
a5

8
(i

i)
 a

58
 im

pl
ie

s
a5

9
(i

ii)
 a

59
 im

pl
ie

s
a5

7

(i
)

CR

(i
i)

 C
R

(i
ii)

 C
R

D
ef

ec
t:

Re
du

nd
an

cy
14

Ca

us
e:

 im
pl

ic
at

io
n

fr
om

 a
59

 to
 a

57
 is

 r
ed

un
da

nt

Co
rr

ec
tio

n:
 e

lim
in

at
e

im
p1

8

0.
5

R.
15

(i

)
a6

0
im

pl
ie

s
a6

1
(i

i)
 a

61
 im

pl
ie

s
a6

2
(i

ii)
 a

60
 im

pl
ie

s
a6

2

(i
)

CR

(i
i)

 C
R

(i
ii)

 C
R

D
ef

ec
t:

Re
du

nd
an

cy
15

Ca

us
e:

 im
pl

ic
at

io
n

fr
om

 a
60

 to
 a

62
 is

 r
ed

un
da

nt

Co
rr

ec
tio

n:
 e

lim
in

at
e

im
p2

1

0.
5

R.
16

(i

)
a6

3
im

pl
ie

s
a6

5
(i

)
CR

D

ef
ec

t:
Re

du
nd

an
cy

16

Ca
us

e:
 im

pl
ic

at
io

n
fr

om
 a

63
 to

 a
65

 is
 r

ed
un

da
nt

Co

rr
ec

tio
n:

 e
lim

in
at

e
im

p2
2

1

R.
17

(i

)
a6

8
im

pl
ie

s
a6

6
(i

)
CR

D

ef
ec

t:
Re

du
nd

an
cy

17

Ca
us

e:
 im

pl
ic

at
io

n
fr

om
 a

68
 to

 a
66

 is
 r

ed
un

da
nt

Co

rr
ec

tio
n:

 e
lim

in
at

e
im

p2
3

1

CR
: C

on
st

ra
in

t i
s

re
du

nd
an

t a
nd

 c
ou

ld
 b

e
re

m
ov

ed
.

13

and pe are the number of negative examples and positive examples
covered by r, called negative and positive support respectively.

For r, the completeness (relative support or relative coverage), consis-
tency and inconsistency (training error rate) are defined by Eqs. (2)–(4)
respectively.

comp(r) =
pe
PE

(2)

con(r) =
pe

pe + ne
(3)

incon(r) =
ne

pe + ne
(4)

A complete cover of the training examples is obtained if there is 100%
completeness of a ruleset for a single class and consistent cover is obtained
if there is 0% inconsistency of the ruleset.

The distribution of positive examples and negative examples in the
TS is measured by the ratio PE/(PE + NE). The distribution of positive
examples and negative examples in the set covered by the rule is
measured by the consistency pe/(pe + ne). The consistency gain of the
rule over the dataset distribution is given by the difference between
(pe/(pe + ne)) − (PE/(PE + NE)).

To normalize the expression, we have divided it by (1 − (PE/(PE +

NE))), or equivalently by NE/(PE + NE). After rearranging the
normalized expression, the consistency gain (cons(r)) is defined by Eq.
(5).

cons(r) =
((

pe
pe + ne

)

−

(
PE

PE + NE

))

×
PE + NE

NE
(5)

This expression determines the value of consistency gain as (i) Zero,
when the distribution of positive examples and negative examples
covered by a rule is identical to the distribution in the entire TS (as a
random guess), (ii) One, in case of perfect consistency, and (iii) Nega-
tive, this turns the rule to be less accurate than a pure random guess.

The normalized expression obtained above calculates the benefits of
using the rule over making random guesses. If the rule generates poor
results then the value of the benefit becomes negative. The fitness
function for evaluating the rules is defined by Eq. (6).

fitness(r) =
{

0, if cons(r) < 0
cons(r) × exp (comp(r) − 1), otherwise (6)

where comp(r) = pe/PE is the completeness of rule.
The exp() function gives preference to the use of consistency gain of

the rule, for measuring the quality of rule. The fitness function given
above is simple and returns a normalized value between 0 and 1.

6.5. Minimalism of the set of redundancy rules

A rule should be comprised of at least (a) two features; one of these
should be the root feature, and (b) one relationship that relate both
features. It means that there is no model with a single feature, as a single
feature does not lead to redundancy in FM. As our domain is FM, the
elements features, relationships and cross-tree constraints can represent
an entire FM. The notations (see Section 5.1.2) used for developing the
set of redundancy rules can represent a FM where each developed rule
comprises of at least two features represented in the form of mandatory
or optional features and one cross-tree constraint represented in the form
of implication or exclusion. Additionally, alternative and or relationships
are represented by cardinalities.

The minimalism of proposed set of rules can be achieved by mini-
mizing the number of related rules. The elimination of a related rule
from the set of redundancy rules does not affect the expected outcome
which comprises of identified redundancies with their causes and cor-
rections. For instance, Table 13 represents that the elimination of related
Rule R.3 from the set of redundancy rules does not affect the outcome, as
the same redundancy can be identified using Rule R.5. Eliminating Rule
R.3 from the set will reduce the overall execution time (0.08 sec) by
0.005 sec which in turn will improve the performance of proposed
method.

The accuracy is defined by Eq. (7).

Table 14
Comparing proposed method with existing methods on the basis of number of rules and execution time to deal with redundancies.

Article Description of features,
constraints and defects

Total rules or
criteria

Number of rules or
criteria per defect type

Execution time (in sec)
Existing methods Proposed method

(Mazo, Lopez-Herrejon, Salinesi,
Diaz & Egyed, 2011)

10,000 9 Rules R (1), NR (3), Others
(5)

Execution time of each
rule < 0.14

Execution time of each
rule < 0.008

(Salinesi & Mazo, 2012) 2000 15 verification
criteria

R (6), Others (9) Execution time of each
verification operation < 19

Execution time of each
rule < 0.008

(Felfernig et al. (2013)) 172 – – HSDAG algorithm (100)
FASTDIAG algorithm (10.54)

0.126

(Elfaki, Fong, Aik & Johar, 2013) 20,000 13 Rules R (9), Others (4) Detection with cause
(221.516)

Identification with cause
(0.058)
Identification with cause
and correction (0.07)

(White, Benavides, Schmidt,
Trinidad, Dougherty & Ruiz-
Cortes, 2010)

2513 features, 2,833
constraints, R (563), NR
(204)

– – 16,546.44 3.475

Proposed method 30,000 17 Rules R (17) – 0.185

R: redundancies, NR: defects other than redundancy, Others: Rules not for defects. Here, R (1) signifies that there is 1 rule or criteria for redundancy.

Table 13
Description of rule for the minimalism of set of redundancy rules.

Related rule Canonical rule Time (in sec)

R.3 R.5 0.005

Fig. 6. Execution time, for the entire rules, per number of features, to deal with
redundancies.

14

Amax,r − Brel,r = Cmin,r (7)

where, Brel,r =

{
∅, if there is no related rule in the set

Brel,r ∈ Amax,r otherwise

Here,
Amax,r: a set of maximum number of redundancy rules handled by our

method
Brel,r : a set of related rules
Cmin,r : a minimal set of rules that include minimum number of rules

which are enough to identify redundancies with their causes and cor-
rections handled by the proposed method.

Moreover, the minimal set of rules leads to lower execution times
and higher accuracies than a larger randomly chosen set of rules which
suggests that there is no gain using additional rules than the minimum
set of rules. However, rule R.3 is still required to deal with particular
redundancy independently, although this redundancy is being handled
in collaboration with rule R.5 as shown in Table 13.

7. Results and discussion

The results of implementing our method to deal with redundancies
are discussed in this section. We compare the results of our method with
existing methods and threats to validity are also discussed.

7.1. Comparison with existing methods

This subsection illustrates the results obtained after comparing
existing methods with our method based on various factors. Salinesi and
Mazo (Salinesi, Mazo & Diaz, 2010) presented a typology of FM verifi-
cation criteria. It includes 15 verification criteria where each criterion
represents a case of defect. Their typology provided only 6 verification
criteria for redundancies while our work classified FM redundancies into
17 cases (i.e., broadly into six major categories) in the form of a typology
(as shown in Fig. 1). Salinesi and Mazo (2012) identified redundancy
based on their verification criteria. Few researchers worked on the
identification and cause of redundancies (Elfaki, Fong, Aik & Johar,
2013; White, Benavides, Schmidt, Trinidad, Dougherty & Ruiz-Cortes,
2010), but none of them resolved redundancy. Felfernig et al. (Felfer-
nig, Benavides Cuevas, Galindo Duarte & Reinfrank, 2013) have not
given any details related to the implementation of recommended solu-
tions for redundancies. Moreover, their explanations comprise of
constraint sets which increase the difficulty to understand the anomaly
for developers. However, the proposed method, in addition to identi-
fying redundancies with their causes, also identified corrections in a
user-friendly language (Section 5.2.2) which are comprehensible by SPL
developers in resolving redundancies. A tool was developed by Thüm,
Kästner, Benduhn, Meinicke, Saake and Leich (2014) that recommends
solutions to resolve defects including redundancies. Their tool does not
support solutions which require elimination of multiple relationships.
However, our method provides corrections which incorporate elimina-
tion of multiple relationships. It is worth noting that the proposed
method detected actual defective features and the cross-tree constraints
for their causes and corrections, and not defective FMs. Additionally,
correction provided by our method is minimal, as it targets the cross-tree
constraints itself which are involved in the source of redundancy.

According to Table 14, the proposed method not only deals with
redundancies considered by existing works (column 1) but also handled
other cases of redundancy (Section 2). It provides more rules (17) to deal
with redundancies when compared to (Elfaki, Fong, Aik & Johar, 2013;
Felfernig et al., 2013; Mazo, Lopez-Herrejon, Salinesi, Diaz & Egyed,
2011; Salinesi, Mazo & Diaz, 2010; White, Benavides, Schmidt, Trini-
dad, Dougherty & Ruiz-Cortes, 2010). The presented method takes less
time to deal with redundancies (column 6) for particular cases (columns
2–4) when compared to existing methods (column 5). The results indi-
cate the improved performance as compared to existing methods.

Further, it handled redundancies in huge FMs up to 30,000 features
(column 2) in 0.185 s when compared to prior methods (column 2)
resulting in enhanced scalability (in an extremely reasonable time). Our
method is validated using real FMs and automatically-generated FMs
available in SPLOT repository, as well as models generated using Fea-
tureIDE tool in contrast to Elfaki, Fong, Aik and Johar (2013) who have
used their own generated data sets for the validation of their method.

7.2. Threats to validity

Following are the validity threats that may affect the experimental
results of presented method:

7.2.1. External validity
The FMs used in the experiments are mostly real-world models from

SPLOT repository, some of them are automatically-generated models,
which may cause a threat to external validity as these FMs are not
reflecting real-world models. The problem size and model’s complexity
may vary with real-world FMs. Thus, the use of models created using
FeatureIDE tool and automatically generated 3-CNF-FMs from SPLOT
minimizes the aforementioned effect. To diminish the impact of other
threads (for instance, threads of operating system) on the computed
execution time, each of the FM is analysed independently. This impact is
minimized by using the average of results attained after executing entire
rules for 50 times on all models.

7.2.2. Internal validity
Additional cross-tree constraints and features are inserted in the input

FMs to cause redundancies, and it is one of the threats to internal validity.
Results obtained after transforming FMs comprise of these additional
features and cross-tree constraints. The threat to internal validity is
diminished as the proposed method identified all redundancies with their
causes as well as corrections generated due to the additional features and
cross-tree constraints, in a reasonable performance time of 0.185 sec in
huge FMs up to 30,000 features. Further, FMs are automatically mapped
into ontologies using parser. The threat to internal validity is diminished
by obtaining the same results (the number of mandatory features,
optional features, implications, exclusions, and cardinalities) by
computing the accuracy of the mapping manually for all 35 FMs.

8. Related work

Numerous existing work focuses on dealing with redundancies in
FMs is discussed in this section. For instance, Salinesi and Mazo (2012)
analyzed FMs by representing them in Constraint Program (CP). A series
of algorithms is proposed that verified the models against the typology
of verification criteria (Salinesi, Mazo & Diaz, 2010) in single-view and
multi-view Product Line Models (PLMs). Their approach only identified
void models, false-optional features, dead features, false PLM, redun-
dant constraints and wrong cardinality in FMs. The approach is limited
to FMs up to 2000 features, as the solver used in this approach does not
allow accommodating more than 5000 variables.

Later, the causes of FM anomalies are explained by Felfernig et al.
(2013). The minimal diagnoses and minimal sets for non-redundant
constraints are determined by discussing the FASTDIAG and FMCORE
algorithms respectively. The model consistency can be attained by
modifying or removing the minimal sets of constraints from the FM.
FASTDIAG, independent of any solver is used to explain each defect.
Reiter proposed Hitting Set Directed Acyclic Graph algorithm for
detecting and fixing a conflict by determining the complete set of di-
agnoses (Guo, Wang, Trinidad & Benavides, 2012). Further, corrections
for anomalies have been recommended by the authors in terms of re-
dundancies and inconsistencies, however, no implementation details
have been given for the same. Further, no information was provided for
the number or types of defects in the FM. The evaluation of their
approach is limited to FMs with 172 features available at SPLOT

15

9. Conclusion

One of the major factors behind the successful derivation of defect free
valid software products from SPL is the quality of FM. Defect due to
redundancy in FMs is one of such defects which hinder the derivation of
high-quality valid software products in SPL. An ontological FOL rule based
method is proposed to deal with redundancies. FM redundancies are
classified in the form of a typology (various categories and their cases). FM
has been mapped to ontology based on predicate logic. FOL rules are
developed and applied to the generated ontology using Prolog that iden-
tified redundancies with their causes and corrections in natural language.
This information helps SPL developers to resolve redundancies. Further,
these rules can be implemented independently and simultaneously as they
are independent in nature. The method has been validated using 35
models with varied sizes up to 30,000 features which conclude that it is
efficient, accurate and scalable. Thus, allows deriving redundancy free
valid end products from the SPL and subsequently, improves its quality.

In future, the set of rules can be modified by adding new rules to deal
with redundancies in different FM notations (EFM, decision model, OVM
and textual variability language). Further, SWRL based rules can also be
developed for the auto identification and correction of redundancies.

The presented method only resolves redundancies by eliminating
redundant relationships. Consequently, an improvement in corrections
includes eliminating redundant features in model.

CRediT authorship contribution statement

Megha Bhushan: Conceptualization, Methodology, Software, Vali-
dation, Funding acquisition. José Ángel Galindo Duarte: Investigation,
Validation. Piyush Samant: Writing - original draft, Visualization.
Ashok Kumar: Supervision, Writing - review & editing. Arun Negi:
Project administration, Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgement

Corresponding author Megha Bhushan, gratefully acknowledges the
University Grants Commission (UGC), New Delhi, Government of India,
for awarding her the RGNF (Grant no. F117.1/201415/
RGNF201415SCJAM66324) to carry out this research work.

References

Baader, F., Calvanese, D., McGuinness, D., Patel-Schneider, P., & Nardi, D. (Eds.).
(2003). The description logic handbook: Theory, implementation and applications.
Cambridge university press.

Benavides, D., Segura, S., & Ruiz-Cortés, A. (2010). Automated analysis of feature models
20 years later: A literature review. Information Systems, 35(6), 615–636.

Bruha, I. (1997). Quality of decision rules: Definitions and classification schemes for
multiple rules. Machine learning and statistics, the interface, 107–131.

Clements, P., & Northrop, L. (2001). Software Product Lines: Practices and Pattern (3rd
ed.). Addison-Wesley Professional.

Elfaki, A. O., Fong, S. L., Aik, K. L. T., & Johar, M. G. M. (2013). Towards detecting
redundancy in domain engineering process using first order logic rules. International
Journal of Knowledge Engineering and Soft Data Paradigms, 4(1), 1–20.

Felfernig, A., Benavides Cuevas, D. F., Galindo Duarte, J. Á., & Reinfrank, F. (2013).
Towards anomaly explanation in feature models. Paper presented at the 15th
International Configuration Workshop (ConfWS-2013) (pp. 117-124). CEUR-WS.

Guo, J., Wang, Y., Trinidad, P., & Benavides, D. (2012). Consistency maintenance for
evolving feature models. Expert Systems with Applications, 39(5), 4987–4998. https://
doi.org/10.1016/j.eswa.2011.10.014

Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., & Peterson, A. S. (1990). Feature-
Oriented Domain Analysis (FODA) feasibility study. Technical Report CMU/SEI-90-
TR-21, ESD-90-TR-222, SEI.

Kowal, M., Ananieva, S., & Thüm, T. (2016, October). Explaining anomalies in feature
models. Paper presented at the International Conference on Generative
Programming: Concepts and Experiences (GPCE). ACM SIGPLAN Notices (Vol. 52,
No. 3, pp. 132-143). ACM. New York.

Lesta, U., Schaefer, I., & Winkelmann, T. (2015). Detecting and explaining conflicts in
attributed feature models. arXiv preprint arXiv:1504.03483.

Mazo, R. (2011). A generic approach for automated verification of product line models
(Doctoral dissertation). Université Panthéon-Sorbonne-Paris.

Mazo, R., Lopez-Herrejon, R. E., Salinesi, C., Diaz, D., & Egyed, A. (2011, July).
Conformance checking with constraint logic programming: The case of feature
models. Paper presented at the 35th Annual Computer Software and Applications
Conference (pp. 456-465). IEEE.

Michalski, R. S., & Kaufman, K. A. (2001). Learning Patterns in Noisy Data: The AQ
Approach. Machine Learning and Its Applications.

Northrop, L. (2008). Software product lines essentials. Pittsburgh: Software Engineering
Institute Carnegie Mellon University.

Rincón, L., Giraldo, G., Mazo, R., Salinesi, C., & Diaz, D. (2015). Method to identify
corrections of defects on product line models. Electronic notes in theoretical computer
science, 314, 61–81. https://doi.org/10.1016/j.entcs.2015.05.005

Salinesi, C., Mazo, R., & Diaz, D. (2010). May). Criteria for the verification of feature
models. In Paper presented at the 28th INFORSID (pp. 293–308).

Salinesi, C., & Mazo, R. (2012). Defects in product line models and how to identify them.
In Software Product Line-Advanced Topic (pp. 97-122). IntechOpen. https://doi.org
/10.5772/ 35662.

Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., & Leich, T. (2014).
FeatureIDE: An extensible framework for feature-oriented software development.
Science of Computer Programming, 79, 70–85.

Trinidad, P., Benavides, D., Durán, A., Ruiz-Cortés, A., & Toro, M. (2008). Automated
error analysis for the agilization of feature modeling. Journal of Systems and Software,
81(6), 883–896. https://doi.org/10.1016/j.jss.2007.10.030

repository. Additionally, understanding the anomaly becomes chal-
lenging for developers as explanations consist of constraint sets which
are indirectly concerned to the model’s structural information. The
scalability of FASTDIAG for large-scale FMs is missing.

Mazo (2011) proposed the conformance checking of PLMs (namely
FMs) based on Constraint Logic Programming (CLP). Nine conformance
checking rules were identified and applied using GNU Prolog constraints
solver. The elements related to each particular conformance rule are
tested using CLP in extended feature models (EFMs). His approach is
efficient and scalable to industry size FMs, as it was validated by
implementing these rules on 50 FMs up to 10,000 features. Later, the
variability in SPL is represented using FM and Orthogonal Variability
Model (OVM) together, and further, Elfaki, Fong, Aik and Johar (2013)
identified redundancies and dead features in Domain Engineering (DE)
process using FOL rules. The efficiency of their work lies in the direct
detection of redundancy in the DE. Their method has been validated
using own generated data sets. Results conclude that these methods are
scalable up to 20,000 features in a reasonable time.

Rincón, Giraldo, Mazo, Salinesi and Diaz (2015) transformed FMs
into CPs. They identified false PLs, false-optional features, dead features
and redundancies by analyzing CP using algorithms given by Salinesi
and Mazo (2012). They identified MCSes (i.e. a minimal subset of re-
lationships) of an unsolvable CP for detecting potential corrections of FM
defects. MCSes should be filtered out of the FM to fix minimum single
defect. Their method identified all MCSes for defects by systematically
removing relationships from the FM. The identified corrections for re-
dundancies include the elimination of constraints without changing the
semantics of the model. Designers would easily understand the identified
corrections, even without knowing constraint programming. Designers
can decide on the correction according to their interests and possible
MCSes. However, their method only provides corrections by removing
relationships from the FM. Further, the method is evaluated using 78
models with a varied number of features, up to 120 dependencies.

Kowal, Ananieva & Thm (2016) proposed a generic algorithm to
explain various anomalies such as void model, dead features, false-
optional features and redundant constraints in FMs based on predicate
logic. It explains each type of anomaly encoded in a Conjunctive Normal
Form (CNF) and a set of assumptions based on initial truth values. These
explanations are in a user-friendly way. They computed short explana-
tions and benefited developers by highlighting the most significant parts
of them that may be the possible source of an anomaly. Due to the
support of their open-source tool in FeatureIDE, the scalability is eval-
uated with industrial-size FMs. However, the evaluation is restricted to
models with 2,513 features and 2,833 constraints.

http://refhub.elsevier.com/S0957-4174(20)30905-2/h0010
http://refhub.elsevier.com/S0957-4174(20)30905-2/h0010
http://refhub.elsevier.com/S0957-4174(20)30905-2/h0015
http://refhub.elsevier.com/S0957-4174(20)30905-2/h0015
http://refhub.elsevier.com/S0957-4174(20)30905-2/h0020
http://refhub.elsevier.com/S0957-4174(20)30905-2/h0020
http://refhub.elsevier.com/S0957-4174(20)30905-2/h0025
http://refhub.elsevier.com/S0957-4174(20)30905-2/h0025
http://refhub.elsevier.com/S0957-4174(20)30905-2/h0025
https://doi.org/10.1016/j.eswa.2011.10.014
https://doi.org/10.1016/j.eswa.2011.10.014
http://refhub.elsevier.com/S0957-4174(20)30905-2/h0065
http://refhub.elsevier.com/S0957-4174(20)30905-2/h0065
http://refhub.elsevier.com/S0957-4174(20)30905-2/h0070
http://refhub.elsevier.com/S0957-4174(20)30905-2/h0070
https://doi.org/10.1016/j.entcs.2015.05.005
http://refhub.elsevier.com/S0957-4174(20)30905-2/h0080
http://refhub.elsevier.com/S0957-4174(20)30905-2/h0080
http://refhub.elsevier.com/S0957-4174(20)30905-2/h0090
http://refhub.elsevier.com/S0957-4174(20)30905-2/h0090
http://refhub.elsevier.com/S0957-4174(20)30905-2/h0090
https://doi.org/10.1016/j.jss.2007.10.030

16

(2010). Automated diagnosis of feature model configurations. Journal of Systems and
Software, 83(7), 1094–1107. http:// dx.doi. org /10.1016/j.jss.2010.02.017.

Wielemaker, J. SWI-Prolog (Version 7.2.3), free software (2015). University of
Amsterdam, Amsterdam.

Zhou, C., Xiao, W., Tirpak, T. M., & Nelson, P. C. (2003). Evolving accurate and compact
classification rules with gene expression programming. IEEE Transactions on
Evolutionary Computation, 7(6), 519–531.

Dr. Megha received her Ph.D. degree from Thapar University,
Punjab, India. She is currently an Assistant professor in the
School of Computing, DIT University, Dehradun, India. She has
worked as Junior Research Fellow under UGC, New Delhi,
Government of India from 2014 to 2016. She has also worked as
Senior Research Fellow under UGC, New Delhi, Government of
India from 2016 to 2018. She was awarded with fellowship by
University Grants Commission (UGC), Government of India, in
2014. In 2017, she was a recipient of Grace Hopper Celebration
India (GHCI) fellowship. She has filed 4 patents and published
many research articles in international journals and confer-
ences of repute. Her research interest includes Software quality,
Software reuse, Ontologies, Artificial Intelligence, and Expert
systems. She is also the reviewer and editorial board member of
many international journals.

José Ángel Galindo Duarte is with University of Seville, Spain.
His interests include Recommender systems, software visuali-
zation, and variability-intensive systems.

Mr. Piyush Samant is currently working as an AI and
Biomedical expert in Adventum Advanced Solution Pvt. Ltd.
Bangalore, Karnataka, India. He has done M. E. in Electronics
and Instrumentation Engineering from Thapar University,
Patiala. He is also pursuing Phd from Thapar University,
Patiala. His research interests include machine learning and
expert systems.

Dr. Ashok Kumar is currently an Assistant Professor in Chit-
kara University Research and Innovation Network (CURIN)
Department, Punjab, India. He is PhD in Computer Science and
Engineering from Thapar University, Punjab, India. He has 15+
years of teaching and research experience. He has filed 3 pat-
ents and published many articles in International Journals and
Conferences of repute. His current areas of research interest
include Cloud Computing, Internet of Things, and Mist
Computing. His teaching interest includes Python, Haskell,
Java, C/C++, Advanced Data structures and Data mining

Major Arun Negi is presently working with Deloitte USI,
Hyderabad, India. Before joining Deloitte, he served as a Major
in Indian Army, Government of India, India. He has research
publications in conferences of repute. His research conferences
of repute. His research research interests include Artificial In-
telligence, Software product line, Software reuse and Expert
systems.

Van Der Storm, T. (2007). In Generic feature-based software composition (pp. 66–80).
Berlin, Heidelberg: Springer.

Von der Maßen, T., & Lichter, H. (2004, August). Deficiencies in feature models.
In workshop on software variability management for product derivation-towards
tool support (Vol. 44, p. 21).

White, J., Benavides, D., Schmidt, D. C., Trinidad, P., Dougherty, B., & Ruiz-Cortes, A.

http://refhub.elsevier.com/S0957-4174(20)30905-2/h0100
http://refhub.elsevier.com/S0957-4174(20)30905-2/h0100
http://refhub.elsevier.com/S0957-4174(20)30905-2/h0110
http://refhub.elsevier.com/S0957-4174(20)30905-2/h0110
http://refhub.elsevier.com/S0957-4174(20)30905-2/h0110
http://refhub.elsevier.com/S0957-4174(20)30905-2/h0120
http://refhub.elsevier.com/S0957-4174(20)30905-2/h0120
http://refhub.elsevier.com/S0957-4174(20)30905-2/h0120

	Classifying and resolving software product line redundancies using an ontological first-order logic rule based method
	1 Introduction
	2 Typology of redundancies
	2.1 Redundancy caused by exclusion and group cardinality (Salinesi et al., 2010)
	2.2 Redundancy caused by implication and full-mandatory feature (Elfaki et al., 2013; Salinesi et al., 2010; Van Der Storm, ...
	2.3 Redundancy caused by multiple implications (Elfaki et al., 2011; Salinesi, Mazo & Diaz, 2010; Van Der Storm, 2007; Von ...
	2.4 Redundancy caused by multiple exclusions (EElfaki et al., 2013; Mazo, 2011; Salinesi et al., 2010; Van Der Storm, 2007; ...
	2.5 Redundancy caused by cyclic implications (Salinesi et al., 2010; Von der Maßen & Lichter, 2004)
	2.6 Redundancy caused by transitive implications (Salinesi et al., 2010; Trinidad et al., 2008; Von der Maßen & Lichter, 20 ...

	3 Methodology
	4 Motivating example of FM
	5 Approach
	5.1 Mapping of E-commerce system1 PL to ontology
	5.1.1 SPLOT to FeatureIDE
	5.1.2 FeatureIDE to ontology

	5.2 Analyze SPL redundancies
	5.2.1 Redundancy rules
	5.2.2 Results

	6 Experiment evaluation
	6.1 Experimental environment
	6.2 Accuracy
	6.2.1 Accuracy of the mapping
	6.2.2 Accuracy of the identification of redundancies with their causes and corrections
	6.2.3 Comparing accuracy of the proposed method with FeatureIDE tool

	6.3 Computational scalability
	6.4 Completeness, consistency and consistency gain of the set of redundancy rules
	6.5 Minimalism of the set of redundancy rules

	7 Results and discussion
	7.1 Comparison with existing methods
	7.2 Threats to validity
	7.2.1 External validity
	7.2.2 Internal validity

	8 Related work
	9 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgement
	References

