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Abstract
The use of natural resources as an input to economic growth and the interactions between economic and ecological systems 
have resulted in an accumulation of environmental externalities. This accumulation can negatively affect future levels of 
welfare and economic growth. In this paper, such dynamics are assessed and quantified by introducing explicit environ-
mental externality variables in a production function. This is performed in an endogenous growth model where cumulative 
environmental externalities interact with economic growth. Using efficiency analysis, a dynamic econometric model is esti-
mated showing the significance of a negative influence of past levels of use of natural resources on GDP over a broad range 
of stochastic frontier analysis estimations. The results are applied to propose an alternative specification to the production 
function of a modelling tool used by the European Commission for the assessment of climate policies in the European Union. 
The findings show that observed GDP is overestimated when environmental externalities are not considered.

Keywords  Economic growth · Climate change · Environmental externalities · Production functions · Stochastic frontier 
analysis · Natural resources

1  Introduction

Climate change is the most pressing challenge facing the 
global economy in the coming decades. Whilst the climate 
emergency gains wider political momentum and public poli-
cies shift from targets and roadmaps for climate neutrality 
(European Commission 2019) to specific policies to reduce 
greenhouse gas (GHG) emissions (i.e. the “Fit for 55” pack-
age in the European Union) (European Commission 2021), 
new and fundamental questions arise. Will climate policies 
reduce the dependency of economic growth on natural com-
modities? Will we be able to maintain the current levels of 

welfare and living conditions in a decarbonised world? Such 
questions, even if uncomfortable, need to be addressed when 
designing credible climate policies. If such policies are not 
put in place, the maintenance of current living conditions 
will inevitably result in increased environmental costs that 
will need to be paid by the current and future generations. 
This paper aims to quantify these dynamics by including 
proxy variables for the use of environmental resources (in 
particular, CO2 emissions and material extraction) in a pro-
duction function and by studying their dynamic relationship 
with the evolution of GDP for the 27 Member States of the 
European Union from 2000 to 2018. This will be carried out 
by using the concept of efficiency in production functions, 
and by analysing whether the accumulation of environmental 
externalities over time exerts an effect on productivity in 
economic growth.

Economic growth is often measured by the evolution 
of Gross Domestic Product (GDP) over time. As shown in 
Stratford (2020), the production of goods and services that 
amount to the total GDP in each period is largely reliant on 
the interplay of economic systems with their surrounding 
natural environment and on the use of natural capital or 
environmental goods. The evolution of GDP over time has 
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frequently been explained by economists via the concept 
of the production function. Under this approach, the allo-
cation of different proportions of production factors and 
their associated productivities constitute the main driv-
ers of change in GDP, with the Cobb–Douglas produc-
tion function as the cornerstone model (Cobb and Doug-
las 1928). The production function relies on the premise 
that the right combination of production inputs produces 
outputs that are to be considered “desirable”, such as eco-
nomic growth and increased wealth in the form of goods 
and services, whereas the correlative accumulation of bad 
outputs (i.e. in the form of increasing environmental dam-
age due to the excessive use of natural goods as input for 
production processes) tends to be ignored.

Similarly, the Economy-Environment interplay has been 
largely overlooked in the analysis of economic growth 
(Mäler 2001; Moretti et al. 2021), despite the evidence 
that CO2 increases global temperature and causes major 
environmental changes (Nordhaus 1991) and the persis-
tent effects of previously emitted CO2 and its associated 
environmental disruptions (IPCC 2018). These dynam-
ics, in which economic growth is linked to an extensive 
use of natural resources, have been amplified by an ever-
increasing availability of financial streams (Hagens 2020) 
that often fail to include the real environmental cost as 
a shadow price of financial decisions (Bulckaen and 
Stampini 2009). This has resulted in a parallel accumula-
tion of costs in the form of negative environmental exter-
nalities that need to be mitigated by the current and future 
generations, who will bear most of the cost of climate 
change (Stern 2007; Tsigaris and Wood 2016).

The interactions between economic growth and material 
extraction have been explored from a variety of perspectives 
in the recent literature, including the concepts of eco-effi-
ciency (Zabalza Bribián et al. 2011; Yu et al. 2018), exergy 
(Dai et al. 2014; Carmona et al. 2021), net primary produc-
tivity (Du et al. 2021), and in applications of Hotelling’s 
model in the circular economy (Hoogmartens et al. 2018). 
All these approaches rely on one principle: economic growth 
has persistently been driven by an increasing and unsustain-
able pressure on natural material resources that needs to be 
considered in modelling applications. Conversely, the inte-
gration of these dynamics on production functions remains 
a largely unexplored line of research. Their inclusion is fun-
damental since, if environmental costs are not considered 
in a production function, modelling optimisations applied 
when designing public policy can lead to misleading out-
comes in which an excessive use of environmental goods 
shows no repercussions on the projected economic growth. 
As pointed out by Moretti et al. (2021), accounting for these 
dynamics of environmental externalities is key to designing 
policy responses more accurately and it has been the focus 
of recent economic literature for a variety of sectors under 

different modelling approaches (Mangmeechai 2014; Kiet 
et al. 2020; Lv et al. 2020; Wang et al. 2020).

This paper assesses the integration of the Economy–Envi-
ronment interplay in production functions. As a starting 
point, the following question is posed: Does the uncon-
strained use of environmental goods over time eventually 
become a negative determinant of economic growth? The 
answer, as explained below, requires taking an intermediate 
stance between macroeconomic and microeconomic levels. 
In this regard, we consider that Stochastic Frontier Analy-
sis (SFA) provides the most appropriate modelling frame-
work for a variety of reasons. First, SFA enables a deeper 
understanding of the influence of the accumulation of envi-
ronmental externalities on economic growth (Wang et al. 
2020). Second, SFA takes an intermediate approach between 
a macroeconomic estimation of production functions and a 
microeconomic estimation in which the abatement decisions 
of individual agents can be factored in. This approach aims 
to fill the gap existing between different modelling tech-
niques, by using a similar rationale to that of Rogna (2020). 
Finally, by including explicit proxy variables representing 
environmental externalities in the parameters of the SFA 
model, a clearer representation is attained of the way in 
which the economy interacts with the environment, thereby 
allowing the quantification of the consequences of ignoring 
these interactions in the estimation of GDP.

The literature on SFA models is vast and has greatly 
evolved since the seminal papers by Aigner et al. (1977) 
and Meeusen and Van den Broeck (1977) to include a broad 
range of sectors and applications (Fernandez and Koop 
2005). The added value of SFA lies in its ability to explain 
heterogeneity in observed values via the concept of dis-
tance to an unobserved frontier. When applied to production 
functions, SFA enables not only assessing the complexity 
of technical inefficiency for a given set of inputs (Mastro-
marco 2008), but also including exogenous variables as 
determinants of efficiency. The latter, however, has rarely 
been linked to environmental conditions (Wang et al. 2020) 
and provides opportunities for further research. Additionally, 
SFA approaches have hitherto been focussed on particular 
sectors with almost no attempts to estimate technical inef-
ficiency in production functions in a macroeconomic context 
(de la Fuente-Mella et al. 2020).

Three contributions of this paper can be outlined. First, 
we propose an alternative specification of GDP that consid-
ers the intertemporal influence of negative environmental 
externalities. Second, this alternative specification is quan-
tified through an SFA estimation of a production function 
that explicitly considers the macroeconomic impacts of envi-
ronmental externalities. Finally, our results are applied to 
the model by Havik et al. (2014), which is a modelling tool 
for policy design developed for the European Commission. 
In particular, on the latter, we propose a modification of 
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the Total Factor Productivity (TFP) specification to render 
the model sensitive to the accumulation of environmental 
externalities.

The paper is structured as follows. In Sect. 2, the relevant 
SFA literature and theoretical specification of the model are 
discussed. The proposed model and EU27 macroeconomic 
data are described in Sect. 3. Section 4 presents the results 
obtained for an array of SFA econometric estimations, whilst 
Sect. 5 covers the implications of the results for EU environ-
mental policy and includes the proposal for a modification 
on the TFP specification of the model by Havik et al. (2014). 
Section 6 concludes.

2 � Literature review

Empirical explanations of long-term determinants of eco-
nomic growth using production functions can be traced back 
to the model by Harrod (1939), where long-term economic 
growth is explained through a dynamic set of factors that 
result in an oscillating steady-state equilibrium. The neo-
classical growth models of Swan (1956) and Solow (1956) 
contested this result, arguing that it was built on the notion 
that production factors intervened in production functions 
in fixed proportions. This approach claimed that it was the 
variant combination of capital, labour, technical progress, 
and especially capital accumulation propelled by technologi-
cal advancements that drove the economy towards a stable 
equilibrium. These models became the dominant line of 
reasoning in the explanation of long-term economic growth 
in the economic literature until the end of the twentieth 
century, and still exert decisive influence (Boianovsky and 
Hoover 2009). Environmental externalities, however, were 
not included in the analysis of growth.

In the 1990s, a new approach emerged with the mod-
els of Lucas (1988) and Romer (1990). This new paradigm 
paved the way to the estimation of production functions that 
included elements beyond just the usual production factors. 
Negative environmental externalities, understood as undesir-
able outputs of production processes that ultimately affect 
the path of economic growth in the long run, constituted one 
of these possible new elements.

A first contemporary approach to the estimation of pro-
duction functions reflecting externalities is well presented by 
Burnside et al. (2006), where external effects are captured 
through the returns of scale of the production function with 
no explicit representation of undesirable outputs. The influ-
ence of external effects over production is considered only 
implicitly, and the key parameter to estimate is the change 
in the returns of scale of the production function given a 
change in the external effects (Basu and Fernald 1995). Con-
versely, there are contributions in which undesirable outputs 
are explicitly considered from which three subgroups can 

be identified, including a first family of “top-down” analy-
ses, where the dynamics of externalities in production are 
analysed from a general perspective, by considering the 
economy as a whole and by estimating an environmental 
production function. A second subgroup of approaches can 
be referred to as “bottom-up” since they take the perspec-
tive of a rational economic agent and its incentives to reduce 
pollution. Finally, there is stochastic frontier analysis (SFA), 
which we identify as a middle option between the two afore-
mentioned subgroups.

Within the “top-down” category, we include the 
approaches given by translog (transcendental logarithmic) 
and CES (constant elasticity of substitution) production 
functions. On the one hand, translog functions have been 
used extensively in the economic literature since they enable 
variability in the returns of scale of the production function 
(Boisvert 1982; Heathfield and Wibe 1987; Raihana 2012) 
and allow for a feasible estimation of environmental produc-
tion functions (Zhou et al. 2014; Cisco and Gatto 2021). 
On the other hand, CES functions arise as a Cobb–Douglas 
extension that permit an elasticity of substitution between 
inputs other than unity (Heathfield and Wibe 1987), albeit 
for only a reduced number of production inputs (Henningsen 
and Henningsen 2011). These approaches enjoy the advan-
tage of taking a broad perspective and aiming to estimate 
the production function for the entire economy of a country 
or sector(s); they are criticised, however, on the grounds of 
failing to take the perspective of the economic agent into 
consideration (Färe et al. 2007).

The “bottom-up” approaches estimate environmental 
externalities through their shadow prices. These are defined 
as the opportunity cost of desirable output to be surrendered 
by a rational agent in order to comply with environmental 
regulations and to reduce units of the associated undesirable 
output of the production process (Färe et al. 1993; Zhou 
et al. 2014). In other words, valuable production efforts are 
reallocated to mitigation, thereby causing an opportunity 
cost. Proponents of this approach argue that the perspective 
of the rational agent needs to be the viewpoint for the cal-
culation of mitigation pathways, since, in the end, emission 
reduction efforts are largely carried out by private agents 
(Zhou et al. 2014). However, climate change remains a 
public policy issue, especially in Europe, where a public 
authority (i.e. EU institutions) calibrates targets and adopts 
regulations, whilst considering the economy as a whole and/
or entire sectors.

In short, “bottom-up” approaches appear to be rather 
limited in their scope and fail to conceive climate change 
as a policy-driven issue (which is particularly the case in 
the EU), whereas the “top-down” approaches do not take 
the perspective of the representative agent into considera-
tion. To overcome these drawbacks, in our understanding, 
an intermediate stance between these approaches needs to 
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be taken, and this is where SFA can come into play. There-
fore, SFA is employed in our estimations to include proxy 
variables representing environmental externalities (i.e. CO2 
emissions and material extraction) in addition to the usual 
production factors, together with two sets of control vari-
ables. This could be considered a “top-down” approach that 
takes a general perspective of economic growth and the 
economy as a whole. However, the use of stochastic frontier 
analysis as an estimation technique enables the ineffective 
behaviour of individual observations to be reflected within 
the sample (Mastromarco 2008), as well as external effects 
outside the sphere of control of the producer (Daraio and 
Simar 2005). Additionally, since SFA analyses how such 
behaviour influences efficiency, it therefore provides the 
appropriate modelling framework for the estimation of an 
environmental production function and for the proposal of 
a modification of TFP in the model by Havik et al. (2014), 
as presented later.

Stochastic frontier analysis was first proposed by Aigner 
et al. (1977) and Meeusen and Van de Broeck (1977). By 
introducing a composite error term that included individual 
technical efficiency, the authors estimated a frontier produc-
tion function that explained the variance across individuals. 
The main benefit of this formulation is that it allows the 
maximum achievable output to be estimated given a set of 
inputs, thereby providing a more precise definition of the 
production function and the determinants of growth (Mas-
tromarco 2008; Rao et al. 2019). The economic rationale of 
such an approach, as shown by Aigner et al. (1977), relies on 
considering elements which the individual economic agent 
can directly manage (such as production factors) together 
with elements that remain outside the agent’s direct sphere 
of control.

The economic literature has used efficiency analysis via 
SFA to study a broad range of policy-oriented fields (Lovell 
1995; Fernandez and Koop 2005); this includes efficiency 
analysis that considers environmental conditions. Most 
examples of the latter are related to the quantification of 
environmental externalities on agricultural productivity 
(Reinhard et al. 1999), analysing the effects of the man-
agement of natural resources in development programmes 
(Bravo-Ureta et al. 2012) or quantifying the influence of 
externalities on crop yields (Kiet et al. 2020; Wang et al. 
2020). However, these studies tend to ignore the accumula-
tion of environmental externalities over time and take only 
sectoral perspectives. In our case, an SFA-based model is 
proposed. The model explicitly includes proxy variables 
that represent environmental externalities (in particular, 
CO2 emissions and material extraction) to estimate a pro-
duction function that accounts for intertemporal environ-
mental effects whilst taking a macroeconomic approach. The 
contribution of the model consists of explicitly including 
the effects of environmental externalities in an econometric 

estimation to quantify their influence on economic growth, 
and of applying said model to the EU for comparison with 
observed data. To the best of our knowledge, no study of this 
kind can be found in the literature.

3 � Data, model, and estimation

In this section, our model is presented and estimated for the 
EU27 data, which will enable implications for environmen-
tal policies to be extracted. In recent years, the European 
Commission has stepped up its policy efforts towards the 
goal of climate neutrality by 2050, as laid out in the Euro-
pean Green Deal (European Commission 2019) with policy 
initiatives such as the revised Circular Economy Action Plan 
(European Commission 2020a), the 2030 Climate Target 
Plan (European Commission 2020b), and the recent “Fit for 
55” package (European Commission 2021). In this context, 
quantification of environmental externalities and their effect 
on economic growth constitutes a highly relevant task in the 
design of credible climate policy, hence the application of 
our proposed model to the EU.

3.1 � Model description

The original SFA model by Aigner et al. (1977) can be 
expressed as follows:

where “ yit ” is the production level in each period (t) for a 
set of individual observations (i), which in our case are the 
27 Member States of the European Union. “ f

[

xit(t), �
]

 ” is 
the estimated frontier production function, “ xit ” a vector of 
production inputs (in our case capital and labour), and “β” a 
vector of technology parameters. The model takes a compos-
ite error measure where “ ui ” is a measure of technical inef-
ficiency. “ vi ” is a random error term. In the original model, 
time played no role in the determination of inefficiency 
(Aigner et al. 1977). This approach has been expanded to 
accommodate dynamic effects on all variables of the model, 
as carried out by Greene (2005)1:

where the variables are the same as in Eq. (1) but are allowed 
to change both across time and individuals in the sample. 
Following Kiet et al. (2020) and Wang et al. (2020), deter-
minants of inefficiency linked to environmental externalities 

(1)yit = f
(

xit, �
)

+ ui + vi,

(2)yit = f
(

xit, �it
)

+ uit + vit,

1  We omit the firm-specific term of the Greene (2005) model, since 
the country-specific characteristics of the different Member States are 
captured by the control variables presented in Sect. 3.3.
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can be introduced as additional variables within the inef-
ficiency term, uit . Hence, the following specification of the 
term is proposed:

The specification of the inefficiency term ( uit ) pre-
sented in Eq. (3) incorporates an intertemporal influence 
of environmental externalities quantified by lags up to a 
generic “n” and “m” order for material extraction and CO2 
emissions, respectively. Such intertemporal relation tries 
to capture the persistent effects of environmental exter-
nalities on economic growth, which have been explored 
in the relevant literature, whereby for instance past lev-
els of emissions reduce the remaining carbon budget and 
therefore imply negative economic effects (Capellán-Pérez 
et al. 2014; Friedlingstein et al. 2014). The choice of using 
lags in Eq. (3) is an attempt to model such effects in a SFA 
modelling context. �it is a random, white noise error term.

In most of the applied SFA modelling literature, the 
parameters of interest to be estimated are those contained 
in the technology vector β in Eq. (2), since they represent 
the marginal contribution of each production input (Rao 
et al. 2019). However, in our case, the relevant param-
eters are those of the variables representing environmental 
externalities (γj and δk) since they represent the quanti-
fied effect of CO2 emissions and material extraction on 
GDP. With the econometric estimation of the model, we 
intend to test whether a representative lag specification of 
both variables in the sample range for EU27 exists, which 
serves as our initial modelling hypothesis.

The model presented in previous equations needs an 
explicit functional form to be estimated. There are sufficient 
examples in the literature that point out the utility of using a 
simple Cobb–Douglas production function for this purpose 
(Havik et al. 2014). Our function appears as follows:

where  Φit is the intertemporal externality term in Eq. (3) in 
its exponential form, that is:

The parameters (to be estimated by SFA) are those in 
Eqs. (3) and (4). The constant Ai refers to neutral techno-
logical change. Equation (2) can be fitted in Eq. (4) by tak-
ing logarithms, which will also facilitate the comparison 
with other modelling approaches and the interpretation of 
the results in terms of elasticities. The final model to be 
estimated is therefore the following:

(3)uit =

n
∑

j=0

�jmatit−j +

m
∑

k=0

�kCO2it−k + �it.

(4)Yit = Ai×K
�1

it
× L

�2

it
× Φit ,

(5)Φit =

n
∏

j=0

MAT
�j

it−j
×

m
∏

k=0

CO2
�k

it−k
.

3.2 � Sample and measures

The proposed model in Eq. (6) will be applied to a selection 
of key variables observed in the 27 Member States of the 
European Union during the latest longest available period in 
Eurostat: 2000 to 2018. Gross Domestic Product (Y) will be 
the explained variable of the model and, together with Gross 
Fixed Capital Formation (K), it is expressed in real terms to 
prevent price-related distortions. To this end, the Eurostat 
deflator with base 2015 for every year and Member State has 
been used (Eurostat 2021). As a proxy for labour (L), people 
aged between 15 and 64 from the Eurostat Labour Force 
Survey (Eurostat 2020a) have been considered.

The proxy variable for materials (Mat), Direct Material 
Inputs, is calculated by Eurostat as the sum of all materi-
als extracted in Europe (known as domestic extraction) and 
materials imported from non-EU countries for all branches 
of activity (Eurostat 2020b). This yields a measure of the 
total extraction generated by economic activity, either inside 
the economy or in foreign markets, thereby accounting for 
the total input of materials outsourced from the environment. 
As for emissions (CO2), we limit ourselves to the case of 
carbon dioxide, since it provides better data availability and 
is the most commonly present particle in air pollution in 
developed countries (Eurostat 2020c; Stern 2017). Table 1 
shows the main variables and descriptive statistics.

3.3 � Adjustments to the sample

Several adjustments to the dataset of the key variables shown 
in Table 1 were implemented prior to the econometric esti-
mations. First, the outlier detection routine by Verardi and 
Dehon (2010) was applied, which led to the exclusion of 
Malta from the analysis. Second, cluster-robust standard 
errors were employed, which have also been implemented 
by clustering Member States in order to factor in heteroge-
neity between the different countries. Logs of all variables 
were also taken, not only to account for the functional form 
described in Eq. (4), but also to render homogeneous units 
of measurement of the variables reported in Table 1.

Emissions and resource utilisation tend to show strong 
correlation with GDP, which can lead to the omitted vari-
able bias and misleading results if a sufficient set of control 
variables is not included in the econometric estimation. To 
avoid this, two sets of control variables have been introduced 
as reported in Table 2. On the one hand, time dummy vari-
ables for the years 2008, 2009, and 2010, reflect the effects 
of the crisis that were still structurally negative during those 

(6)

yit = ai + �1kit + �2lit +

n
∑

j=0

�jmatit−j +

m
∑

k=0

�kCO2it−k + vit .
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Table 1   Descriptive statistics for key variables

Individuals in the sample are the Member States of the European Union (without counting Malta, which is omitted after having been identified 
as an outlier in the sample) with data from 2000 to 2018 inclusive. All data comes from the Eurostat Database (Eurostat 2021)

Variable name Unit Code Observed 
values

Mean Standard deviation Min. value Max. value

Gross domestic product Millions of euros Y 513 369,274.57 610,653.32 3032.24 3,504,696.19
Gross fixed capital formation Millions of euros K 513 80,104.77 127,913.13 721.04 753,744.44
Labour Thousands of people L 510 6696.91 8923.85 143.00 40,636.00
Direct material inputs Thousands of tonnes Mat 513 320,305.42 381,375.69 3450.17 1,754,895.74
Carbon dioxide emissions Thousands of TOEs CO2 513 115,256.46 175,909.89 −3887.52 891,957.83

Table 2   Estimation results

FE fixed effects, RE random effects, TV time-varying SFA model, TI time-invariant SFA model, PI persistent inefficiency model, HN half nor-
mal distribution for the inefficiency term, TN truncated normal, �

u
 standard deviation of measured inefficiency, �

v
 standard deviation of error 

term
***, **, *Denote that the coefficients are significant at 1%, 5%, and 10% levels, respectively. The z-statistics are given in parentheses

Time-varying 
parametric 
model (Kumb-
hakar 1990)

Time-varying 
decay model 
(Battese and 
Coelli 1992)

Inefficiency 
effects model 
(Battese and 
Coelli 1995)

Time-invariant 
model with 
half-normal 
distribution (Pitt 
and Lee 1981)

Time-invariant 
model with 
truncated-nor-
mal distribution 
(Battese and 
Coelli 1988)

True random 
effects model 
with half-nor-
mal distribution 
(Greene 2005)

Generalised least 
squares

Model type FE; TV; HN FE: TV; TN RE; TV; TN FE; TI; HN FE; TI; TN RE; PI; HN RE; N/A; N/A
Key variables
 ln Kt 0.857*** 

(0.053)
0.997*** 

(0.043)
1.006*** 

(0.046)
0.969*** 

(0.075)
0.969*** 

(0.077)
0.906*** 

(0.079)
0.942*** (0.079)

 ln Lt 0.284** (0.093) 0.257** (0.096) 0.245* (0.099) 0.298* (0.161) 0.297* (0.165) 0.364** (0.129) 0.328* (0.172)
 ln Matt  − 0.589*** 

(0.111)
 − 0.907*** 

(0.173)
 − 0.894*** 

(0.208)
 − 0.858*** 

(0.138)
 − 0.858*** 

(0.137)
 − 0.515** 

(0.183)
 − 0.829*** 

(0.136)
 ln Matt−1 0.359** (0.116) 0.585** (0.176) 0.579** (0.201) 0.499** (0.171) 0.499** (0.171) 0.182 (0.142) 0.494*** (0.176)
 ln CO2t−2  − 0.040 (0.026)  − 0.129* 

(0.060)
 − 0.123* 

(0.071)
 − 0.131* 

(0.063)
 − 0.131* 

(0.063)
 − 0.044 (0.064)  − 0.141* (0.071)

 ln CO2t−3 0.096* (0.055) 0.166* (0.075) 0.161* (0.084) 0.176* (0.068) 0.176** (0.067) 0.034 (0.058) 0.156* (0.064)
Control variables
 d2008 0.003 (0.027)  − 0.176*** 

(0.031)
 − 0.182*** 

(0.029)
 − 0.167*** 

(0.038)
 − 0.167*** 

(0.038)
 − 0.133*** 

(0.028)
 − 0.161*** 

(0.038)
 d2009 0.042 (0.035)  − 0.152*** 

(0.042)
 − 0.158*** 

(0.034)
 − 0.140*** 

(0.037)
 − 0.140*** 

(0.037)
 − 0.116*** 

(0.031)
 − 0.135*** 

(0.037)
 d2010 0.060* (0.033) 0.008 (0.029) 0.004 (0.024) 0.007 (0.025) 0.007 (0.025)  − 0.024 (0.032) 0.011 (0.024)
 Middle  − 0.129* 

(0.061)
 − 0.138* 

(0.066)
 − 0.131* 

(0.071)
 − 0.149 (0.092)  − 0.167 (0.095)  − 0.158* 

(0.095)
 − 0.187* (0.098)

 Low  − 0.158* 
(0.094)

 − 0.125* 
(0.070)

 − 0.107 (0.072)  − 0.063 (0.076)  − 0.140 (0.092)  − 0.086 (0.103)  − 0.209* (0.091)

 Cons 3.043*** 
(0.484)

3.022*** 
(0.570)

3.071*** 
(0.582)

3.507*** 
(0.931)

3.506*** 
(0.945)

3.927*** 
(0.596)

3.468*** (0.967)

Parameters
 �

u
0.305*** 

(0.037)
– 0.687 (0.543) 0.194*** 

(0.045)
0.194*** 

(0.048)
0.265*** 

(0.040)
0.126

 �
v

0.133*** 
(0.019)

0.036 (0.008) 0.173** (0.053) 0.158*** 
(0.181)

0.158*** 
(0.005)

0.024 (0.034) N/A—Non-SFA 
model

 Log-likeli-
hood

211.848 99.462 99.737 146.681 146.681 173.632 N/A—Non-ML 
estimation
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years (Altdorfer 2017). On the other hand, structural dummy 
variables further account for the heterogeneous income 
distribution across Member States of the European Union 
(Fredriksen 2012). In Table 2, EU27 has been divided into 
three groups in terms of income (“high income”, “middle 
income”, and “low income”) by ranking them according to 
per capita GDP in Purchase Power Parity from 2018, the 
latest year for available data (Eurostat 2020d).2 The data 
has then been sorted into a stacked time series in terms of 
Member State and imported into STATA for dynamic panel 
data SFA analysis using the “sfpanel” STATA code package 
developed by Belotti et al. (2013).

Thus, the model to be estimated is specified as follows:

Although several econometric techniques are available for 
the estimation of Eq. (7), the Maximum Likelihood Estima-
tion method (MLE) remains as the reference method used 
across a wide range of applications within the relevant SFA 
literature (Greene 1982; Mastromarco 2008). For our data, 
MLE seems to be more appropriate than other available 
alternatives such as Data Envelopment Analysis (as carried 
out in Sueyoshi et al. 2017; Yu et al. 2018) and the Gener-
alised Method of Moments (as in Acheampong 2018) for 
several reasons. On the one hand, our sample is large (27 
individuals observed over 19 years covering 5 variables). For 
large samples, the parametric assumptions underlying the 
MLE method are more suitable to the observed data, and its 
results remain largely robust compared to other estimation 
techniques, such as the Generalised Method of Moments 
(Behr and Tente 2008).

On the other hand, MLE is related to the incidental 
parameter problem (Lancaster 2000), under which the 
number of parameters to be estimated increases with the 
number of observations (Emvalomatis et al. 2011). This 
problem, however, arises when the number of individuals 
observed in the sample is large and the time horizon is rela-
tively short (Belotti et al. 2013). Our panel is sufficiently 
balanced between individuals and time since 27 individuals 
are observed over 19 periods.

Regarding the modelling of the lags in the variables rep-
resenting environmental externalities (material extraction 

(7)
yit = ai + �1kit + �2lit +

n
∑

j=0

�jmatit−j +

m
∑

k=0

�kCO2it−k

+ d2008 + d2009 + d2010 + middle + low + vit.

and CO2 emissions), an initial estimation of lags up to an 
order of t−10 has been tested. Given the length the time 
horizon (t = 18), beginning the time series analysis by t−10 
is considered a sufficient starting point. Several rounds of 
econometric estimations using different SFA approaches 
were done, arriving to a parsimonious model where a maxi-
mum number of lagged variables were significant. The 
results are presented in the next section.

4 � Results

The results of econometric modelling using SFA are shown 
in Table 2 across a broad range of SFA estimations and as 
a GLS-based benchmark, as shown in Greene (2005). The 
reason for the application across this range of estimations 
is to ensure that the results obtained from the econometric 
analysis involve a truly empirical relationship between the 
variables, specifically regarding the dynamics of the envi-
ronmental externality variables on GDP in the production 
function. As explained in Sect. 3, Table 2 shows the distri-
bution of lags in material extraction and CO2 emissions that 
obtains a parsimonious model in most estimations.

The reasoning underlying the selection of these particular 
estimation methods can be summarised as follows. All mod-
els presented in Table 2 are panel data models and use maxi-
mum likelihood for the estimation of the coefficients. Other 
approaches, such as those presented in Schmidt and Sickles 
(1984), Cornwell et al. (1990), and Lee and Schmidt (1993), 
have been omitted from the analysis since they use other 
estimation techniques to render the results more comparable. 
Most of the models presented in Table 2 are based on fixed-
effect panel-data estimation techniques since the observed 
sample of countries remains the same over time. However, 
random-effect approaches, such as those presented in Battese 
and Coelli (1995) and in Greene (2005) are also included 
to render the SFA modelling sample more representative.

It is particularly relevant to estimate the model by Greene 
(2005), given its potential to consider unobserved heteroge-
neity when estimating inefficiency (Kumbhakar et al. 2015), 
although the large number of parameters to be estimated 
makes the incidental parameter problem an issue for the 
inference of the results (Belotti et al. 2013). The result of 
the Greene (2005) specification is therefore to be interpreted 
cautiously. The fixed-effect models by Kumbhakar (1990) 
and Battese and Coelli (1992) estimate SFA production fron-
tiers with a lower number of individuals in the sample, but a 
time horizon similar to our case. However, these approaches 
estimate a common intercept for all individuals in the sam-
ple, thereby leading to problems of misspecification (Belotti 
et al. 2013). Conversely, in Pitt and Lee (1981) and Battese 
and Coelli (1988), larger panels of individuals are analysed 

2  This has resulted in the following categories: A first group of 
“high-income” Member States includes AT, BE, DE, DK, FI, IE, 
LU, NL, and SE. This category constitutes the reference group and is 
therefore not included in the econometric estimations. A second cat-
egory, classified as “middle-income” countries, includes CZ, CY, ES, 
FR, IT, LT, SI, and SK. The remaining countries, BG, EE, EL, HR, 
LV, HU, PO, PT, and RO, are listed under “low-income”.
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but over shorter times (only three periods), and inefficiency 
is assumed to be time-invariant.

A second classification across the different SFA estima-
tions can also be made in terms of the way in which time is 
dealt with in each model, between time-varying (where inef-
ficiency is expected to be largely explained by time rather by 
the differences between individuals in the sample) and time-
invariant, with the opposite assumption. In our case, the 
observed data regarding the number of individuals (N = 26) 
is more prolific than in the number of time periods (t = 19), 
but this difference is only slight, hence the presentation of 
both time-invariant and time-varying approaches appears to 
be appropriate.

The results from Table 2 suggest a negative correlation 
of CO2 emissions and material extraction with GDP. When 
each of the environmental externality variables approaches 
t = 0, their contribution to the overall efficiency changes 
from a positive to a negative sign. The negative effect of 
the externality over the overall production efficiency in the 
frontier is more pronounced in the case of materials than in 
CO2 emissions. Importantly, these results hold coherently 
across all SFA estimations presented in the table with sig-
nificant results, including the GLS benchmark. The sum of 
the technology coefficients of the standard production inputs 
(capital and labour) is roughly equal to 1 across all estima-
tions, which supports the general assumption of constant 
returns to scale of the production function and greatly sim-
plifies the estimation and interpretation of the results (Havik 
et al. 2014).

Our results are partially in line with those found by 
Capello (1998) and Wang et al. (2020), insofar as these 
authors argue the presence of environmental externalities 
as a significantly negative factor of change in economic 
growth that should be modelled in the framework in pro-
duction functions. Furthermore, our results seem to indicate 
the existence of a tipping point beyond which environmental 
externalities generate an intertemporal shadow price on eco-
nomic growth. Beyond a certain threshold in the past use of 
environmental commodities, the associated environmental 
externalities begin to exert negative consequences on eco-
nomic growth. This can be explained by the current climate 
policy context: the longer climate action is delayed, the more 
costly and stringent mitigation and adaptation policies need 
to become (IPCC 2018).

Importantly, the obtained results also reflect the notion 
of intergenerational equity: the negative effects of exter-
nalities associated to past levels of economic growth 
(expressed by the coefficients of the model) persist until 
the present, thereby imposing external costs on the cur-
rent generation. Policymakers therefore face the trade-off 
between either surrendering present welfare in order to 
guarantee the wellbeing of future generations by estab-
lishing a strict climate policy or leaving most of the effort 

to future generations (mostly on climate adaptation) by 
adopting a more relaxed approach on mitigation at present 
(Stern 2007). The implications of these dynamics have 
been assessed by the United Nations as one of the main 
factors to be considered in cost–benefit analyses of climate 
policy (United Nations 2013; Skillington 2019).

The notion of intergenerational equity is related to the 
scarcity of environmental commodities, which also explains 
the modelling results of Table 2. The successive extraction 
of materials from the environment and/or the emission of 
CO2 over time reduce the availability of their associated 
environmental goods (Common 1996), that is, remaining 
materials and air quality, respectively. Economic growth 
relies on the use of these environmental commodities, but 
when they become increasingly scarce, a negative influ-
ence on economic growth can be observed, hence the val-
ues obtained in the coefficients of the model. This assump-
tion uses a similar reasoning to that of the Environmental 
Kuznets curve (Dinda 2004; Marsiglio et al. 2016; Stern 
2017), but applied to environmental externalities: when 
undesirable outputs are accumulated up to a tipping point, 
they start affecting economic growth negatively (Selden and 
Song 1994; Dinda 2004; Yu et al. 2018). Following Moretti 
et al. (2021), we identify the use of natural resources for the 
production of economic goods as the determinant of envi-
ronmental externalities. Under this approach, for the case of 
material extraction, the increasing need for the production of 
additional goods stemming from economic growth translates 
into an ever-increasing scarcity of the materials required, 
which in turn increases their price and eventually harms eco-
nomic growth itself. For emissions, the feedback loops are 
more complicated since they entail the reduction of air qual-
ity and associated damage linked to the accumulation of CO2 
emissions. From an economic perspective, and analogously 
to the case of materials, the increasing need for additional 
production translates into higher emissions, thereby result-
ing in increasing environmental damage, thereby also harm-
ing economic growth.

The model confirms the initial modelling hypothesis, 
and provides further insights on the interaction between 
economic growth and environmental commodities that are 
coherent with the economic reality. Values closer to the 
present (t = 0) can be expected to affect economic growth 
more negatively (hence the marginally higher values of the 
obtained coefficients closer to t = 0), as they have accumu-
lated for a longer period than the same variables observed 
at a previous moment in time. The effect, however, differs 
between externalities. Whilst materials become scarce at the 
very same moment of extraction (t = 0), CO2 emissions take 
longer periods of time to accumulate in the atmosphere and 
then influence economic growth (Tsigaris and Wood 2016).

All estimations show similar coefficients, both of 
the technology and the externality parameters, with the 
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exception of the model by Kumbhakar (1990), which shows 
a downward bias. Except for the case of Greene (2005), all 
variables show appropriate levels of individual significance. 
One possible explanation for the differences in the results 
from the Kumbhakar (1990) model involves its underlying 
assumptions, which make it fit for any variation (of any sign) 
on the efficiency in the frontier, whereas in our model this 
effect is largely of negative sign. Another comparison can 
be drawn in the results if we distinguish between the random 
and fixed-effect approaches. Overall, in our case, a fixed-
effect modelling approach seems justified from a theoretical 
standpoint, since the same set of individuals (EU Member 
States) are observed over the time horizon.

Finally, it can also be noted that time-invariant models 
show a marginally better fit in terms of log-likelihood than 
do time-varying models. This is, to a certain extent, coherent 
with the economic reality. Given the still large and struc-
tural differences in income across EU27, better results are 
achieved by models that estimate inefficiency by granting 
special importance to these differences that persist over time 
(Fredriksen 2012). The best results combining significance, 
log-likelihood, and appropriateness to the data observed are 
those coming from fixed-effect, time-invariant models such 
as those proposed by Pitt and Lee (1981) and Battese and 
Coelli (1988), which yield almost identical results. However, 
the Pitt and Lee (1981) model in the original paper by the 
authors is applied to a dataset that is much more similar 
to our case. The latter, therefore, yields the most relevant 
result and is hence the one selected for the Discussion sec-
tion below.

5 � Discussion: implications on environmental 
policy

5.1 � Proposed modification to the Havik et al. (2014) 
model

For the reasons laid out in the section above, we have cho-
sen the Pitt and Lee (1981) estimation results to trace the 
economic policy implications of our findings. To this end, 
we apply these results to the production function methodol-
ogy used by the European Commission for the calculation 
of potential growth rates and output gaps, as developed by 
Havik et al. (2014). The production function in this model 
also features capital and labour, as does ours, although no 
attention is paid to environmental dynamics and externali-
ties. In this respect, the dynamics captured by Eq. (6), under 
the Pitt and Lee (1981) estimation shown in Table 2, can be 
used to render the production function of the Havik et al. 
model sensitive to such interactions. Since an SFA estima-
tion has been utilised that allows us to reason in efficiency 
terms, the TFP specification of the model is the appropriate 

place to include our proposed modification (Kiet et al. 2020; 
Wang et al. 2020).

The production function in Havik et  al. (2014) is a 
Cobb–Douglas production function with capital and labour 
adjusted for capacity utilisation and efficiency:

where total factor productivity (TFP) is defined as:

The first term of TFP accounts for the adjustment on the 
overall level of efficiency. EL and EK account for efficiency 
of labour and capital respectively, adjusted by a technol-
ogy parameter (α). The second term captures excess capac-
ity (represented as UL and UK , utility coefficients of labour 
and capital respectively, also adjusted by α) (Havik et al. 
2014). Kiet et al. (2020) and Wang et al. (2020) show that 
environmental externalities can be introduced as additional 
variables within the inefficiency term in SFA models. The 
following modification to the specification of TFP can there-
fore be proposed on the basis of our results:

with ENVMAT ,CO2 as an estimated function that accounts for 
the cumulative effect of environmental externalities, which, 
in our case, are dependent on material extraction and CO2 
emissions. By considering Eq. (5) and following the Pitt and 
Lee (1981) estimation reported in Table 2, we can propose 
the following formulation for the ENV function:

With this specification, the estimation of overall effi-
ciency in the production function includes the influence of 
negative environmental externalities. The result is a produc-
tion function that captures the presence of environmental 
dynamics and that can be used as a basis for the calculation 
of an environmentally balanced GDP series that considers 
the interactions between economic growth, material extrac-
tion, and CO2 emissions in EU27. We call this an environ-
mentally balanced estimation of GDP.

5.2 � Comparison of an environmentally balanced 
GDP versus observed GDP

We can compare the environmentally balanced estima-
tion of GDP elicited in the previous section with observed 
GDP to show the consequences of applying the proposed 
modification in TFP to the model by Havik et al. (2014). 
Figure 1 shows the differences between observed GDP and 
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the resulting calculation of GDP using the ENV function in 
Eq. (11) and the results from the Pitt and Lee (1981) esti-
mation from Table 2. Since the results include lags of up to 
t−3 in the specification of the externality, results for only 
the period 2003 to 2018 are reported. The data includes all 
the EU27 countries except Malta, which, as explained in 
previous sections, was identified as an outlier and therefore 
removed from the sample. Since the model has been calcu-
lated in logarithmic terms, the results are presented likewise.

Figure 1 reveals a negative effect of the accumulation of 
the environmental externality in all periods. The growth of 
observed GDP is systematically overestimated when envi-
ronmental externalities are not taken into consideration. The 
persistence of undesirable outputs, generated by economic 
growth in the form of accumulation of CO2 in the atmos-
phere and by increased pressure on natural resources caused 
by material extraction, show a negative influence on GDP. 
As stated in Sect. 4, this can also be explained in policy 
terms: the longer society waits to adopt stringent climate 
policies that can have a tangible effect on CO2 reduction,3 
the higher the costs that arise in terms of the needed climate 
mitigation and adaptation (IPCC 2018).

The net effect of the environmental externality (calcu-
lated as the difference between observed GDP and calculated 
GDP with environmental externality) is presented in bars 
in the graph as an additional indicator and shows that the 
gap between observed GDP and GDP with environmental 
effects has reduced over time (from 2.8% of observed GDP 
in 2004 to 1.2% in 2018). This change could be attributed to 

the introduction of mores stringent climate policies that has 
taken place within the European Union in recent years. The 
gap between the two GDP values represents the opportunity 
cost in terms of growth in the presence of externalities and 
can be used as a relevant indicator for policymaking in EU27 
to measure the impacts of reducing environmental externali-
ties over time. In the absence of environmental externalities 
as a by-product of economic growth, the gap between the 
two variables should equal zero; this should constitute the 
long-term quantitative objective of EU climate policy.

The results presented in Fig. 1 are also relevant from an 
economic theory standpoint. The model proposed in this 
paper is an endogenous growth model that builds on the 
ideas already presented in the endogenous growth models 
of Romer (1990) and Lucas (1988). In our model, the envi-
ronmental externalities resulting from the GDP increase over 
time which ends up compromising growth itself. Not only 
does economic growth generate wealth, but it also incurs 
environmental costs that eventually reduce future levels of 
wealth. To this end, we aim to present a simple representa-
tion of the quantitative consequences of the intergenerational 
equity dilemma for the EU27 case.

6 � Conclusion

In this paper, the quantification of environmental externali-
ties using econometric efficiency analysis has been explored 
to propose a definition of an environmentally balanced pro-
duction function for the EU27. We have analysed the deter-
minants of economic growth whilst explicitly considering its 
associated negative environmental externalities, focussing 
on CO2 emissions and material extraction. The proposed 
model relies on the theoretical framework of endogenous 
growth models and uses SFA for the quantification of the 

Fig. 1   Observed and estimated 
GDP with environmental 
externality
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3  We are aware that climate mitigation extends beyond CO2 and that 
an array of Greenhouse Gases and local pollutants must be brought 
into the picture for it to be complete. Our model focusses on CO2 
only because this is the main indicator targeted in the referred EU cli-
mate policies and constitutes the main driver of climate change.
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external effects. After controlling for Member State hetero-
geneity and for the break in the series caused by the years 
of the economic crisis (2008 to 2010), we estimated the 
coefficients of an environmentally balanced estimation of 
GDP growth. Our modelling approach obtains representative 
results across a broad range of SFA estimations. Moreo-
ver, the model proposed presents implications for economic 
theory and policymaking, since it provides an analytical 
representation of endogenous economic growth negatively 
influenced by the accumulation of environmental externali-
ties and an analytical pathway to keep economic growth 
within environmental boundaries.

The econometric estimation of the model quantifies the 
influence of CO2 emissions and material extraction (repre-
senting environmental externalities) on economic growth. 
Both variables show positive signs in past levels and nega-
tive signs when approaching t = 0 on all SFA estimations. 
This confirms other findings in the literature, under which 
environmental externalities become a negative determinant 
of efficiency in the production function when they accumu-
late over time (Selden and Song 1994; Yu et al. 2018). The 
findings also indicate that such a negative influence only 
takes place after a certain tipping point, beyond which the 
use of environmental commodities compromises economic 
growth itself.

The model has been applied in order to propose a modi-
fication in the Cobb–Douglas production function model-
ling tool of the European Commission presented in Havik 
et al. (2014), in the form of the inclusion of the influence 
of environmental externalities in the definition of efficiency 
in total factor productivity. The use of efficiency analysis 
(SFA) in the econometric estimation provides grounds for 
the proposal of such a change. The results achieved provide 
a benchmarking metric between environmentally balanced 
GDP and observed GDP for both the quantification and a 
more accurate representation of the impacts of environmen-
tal dynamics on economic growth, which can be employed 
on the evaluation and design of climate change policies in 
the EU.

With our contribution, we have intended to reply to the 
research questions posed in the Introduction, since the model 
proposed provides insights on the quantitative relationship 
between GDP growth and the accumulation of environmen-
tal externalities. Climate policies, which aim at precisely 
reducing such accumulation of side costs of economic 
growth, are portrayed in the proposed modelling approach 
as a way to ensure continuous economic growth kept within 
environmental boundaries, as shown in Fig. 1 in the GDP 
series including the environmental externality. Prosperity 
is possible without compromising the welfare of future 
generations.

The approach used presents some limitations, especially 
because environmental externalities go beyond material 
extraction and CO2 emissions. On the one hand, economic 
activities generate pollutants that are not included in our 
model. On the other hand, there are environmental damages, 
such as biodiversity loss, that are not captured by the coef-
ficients shown in Table 2. The model and this research are 
rather aimed at bringing the issue of dynamic environmental 
externalities to the attention of economic growth modelling.

The model can also be expanded in several ways. Fur-
ther research is needed as regards the dynamics of the rela-
tionship between economic growth and the accumulation 
of environmental externalities. The use of datasets with a 
longer time horizon together with an increase in the granu-
larity of the data to observe these interactions on a sectoral 
level could also yield significant results. Broadening the 
scope of the environmental externality considered in the 
model by including local air pollutants and other greenhouse 
gases such as methane, sulphur dioxide, and nitrogen oxides 
may also provide meaningful insights into this topic, as may 
the inclusion of other impacts such as the loss of biodiversity 
and water use.
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