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H I G H L I G H T S

• There is a lack of approaches to model application capabilities and platform features with support of complex constraints.

• We propose MAYA, an extension of the FaMa Feature model analyzer to cope with such requirements.

• We evaluate in a real scenario demonstrating that this approach is valid and underline its limitations.
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A B S T R A C T

The proliferation of features and platforms in variability intensive systems, coupled with substantial technolo-gical progress, 
imposes several challenges for software developers and equipment manufacturers—in some cases referred as technical 
sustainability. For instance, in the mobile application domain, developers often need to know the requirements and limitations of 
their applications to be supported on a specific platform. Conversely, an equipment manufacturer is interested in knowing what 
additional features become accessible on the appli-cation layer when the or platform is being upgraded. To date, analyzing such 
interdependencies between specific feature and platform combinations is a tough problem, but important to solve. There are well-
established ap-proaches in the literature to analyze variability–intensive systems using feature models. However, there is a lack of 
approaches to analyze application and platform features in multiple layers. In this paper we present a fra-mework towards the 
analysis of multi-layered feature models. First, modeling the two layers including their respective interdependencies. Second, a 
definition of operations that can be imposed on such models. We also provide a reference implementation for analysis of multiple 
layers. Finally, we present two empirical evaluations demonstrating the feasibility of the approach in practice.

1. Introduction

Software product line engineering is about handling multiple variants
of a software system—often referred to as a family of products—by clearly
defining what is common and what is different between them [1]. A well
known approach to describe the common and variant parts of a software
product line in terms of an hierarchical structure of features and re-
lationship among them are feature models [2].

Mobile phones, with their hundreds of variations in features, are a
perfect example for a software product line [3]. The frequent application
feature changes coupled with the progress of technology make it necessary
to provide automated mechanisms to handle them. Using state of the art
product line techniques, features and their interactions can be analyzed

using the so-called automated analysis of feature models [4].
In today’s world, mobile phones are capable of things that were

hardly imaginable a few years ago. Looking a few years ahead, it is not
unlikely that people might consider today’s cutting edge technologies as
legacy technologies. Technical progress will continue to enable new
type of applications. While this situation is usually a very pleasant one
for the end user, not all parties experience advantages. From an ap-
plication developer point of view, it is challenging to keep up with the
latest developments [5]. The close relationship between application
features and platform components that realize these features is hard to
track. Considering near field communication (NFC) as an example, a
developer who wants to incorporate this feature into an application
must be aware that the required platform version must be 2.3 or higher
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on Android, or at least as high as iOS 11.x for third-party app support
on iOS devices.

The proliferation of tablet computers illustrates another useful use
case: Developers need to be aware of the consequences on existing
applications when the lower layer changes, e.g., when an application
shall be ported from a smartphone to a tablet computer or more gen-
erally, when a platform shall be upgraded to a new version. The dif-
ferent screen sizes and resolutions, the possible absence of a cellular
radio or the increased amount of memory may all have positive or
negative impacts on an application.

In the former scenarios, two elements are distinguished: the features
of the application and the features of the platform. An examples of
application feature is the text–to–speech capability while an example of
platform feature is the physical audio output. As previously indicated,
these features often are represented using features models. Since ap-
plication and platform features are conceptually separated, their fea-
tures can be modeled in two separated models organized in layers.

The problem at hand is the difficulty of tracing application features
to platform features. This calls for a means to model application and
platform features separately to reflect the possibly independent evolu-
tion of each layer. While that general idea is not new [6,7], little pre-
vious work has been done that focuses on the analysis of multiple-layer
feature models. In the literature, there are proposals working with
multiple layers of variability. For example Acher et al. [8], proposed the
merging and slicing of feature models to scale feature model analysis.
Also, there are works that rely on automated analysis of feature models
to deal with the increasing number of features in the context of smart
phones [3]. However, there is a lack of proposals to support the ana-
lysis of dependencies between different variability layers.

The proposal of this work is to provide a framework, where by
specifying the desired features from a user’s point of view, and speci-
fying the provided features from a platform point of view, one can
easily track the required platform features and get notifications about
potential conflicts (such as the unsupported NFC feature on platform X
in version Y). Conversely, by selecting a certain platform, the frame-
work would be able to tell the user what application features are
available for a particular platform configuration. The basic idea behind
this proposal has been introduced in [9], but it did not go into detail on
how such a system could be realized.

The problems mentioned above of easing the migration of an ap-
plication from a platform to another is known in the literature as
technical sustainability [10,11].

This paper’s main contribution is a two-layered feature model fra-
mework that includes application features of a system on a top layer
and platform features on a bottom layer. A detailed dependency map-
ping between these two to enable automated analysis is provided. We
also offer a reference implementation. Finally, two real-world empirical
evaluations are presented to show the applicability and need for the
proposal.

The remainder of this article is organized as follows: Section 2
provides background information on terms and concepts used
throughout the work. In Section 3 we present some typical challenges

this work is addressing. Section 4 introduces the proposed solution and
specifies the required model assets and type of relations. Operations
that define what questions the system will be able to answer are defined
in Section 5, and implementation-specific details are covered in
Section 6. Case studies of two real world examples in Section 7 de-
monstrate the applicability and benefits of the approach, before
Section 8 compares our approach to related work. Sections 9 and 10
conclude with a summary and outlook.

2. Preliminaries

In this section we present the background information:

2.1. Feature modeling

According to Clements and Northrop [1]: A software product line is
a set of software-intensive systems sharing a common, managed set of
features that satisfy the specific needs of a particular market segment
and that are developed from a common set of core assets in a prescribed
way. Back in 1990, the FODA (feature-oriented domain analysis) fea-
sibility study by Kang et al. [2] introduced the concept of feature
modeling, which remained to be one of the major research areas in
product line engineering. They also defined a feature to be “a promi-
nent or distinctive user-visible aspect, quality, or characteristic of a
software system or system”.

A feature model itself allows to represent all products of a product
line in terms of features and relationships in a compact way. A gra-
phical illustration, often referred to as feature diagram, is depicted in
Fig. 1.

Interestingly, it shows the features of a mobile phone example. We
investigate the same domain in subsequent sections and will argue how
we build upon and extend these classical examples.

Relationships. A feature model has a hierarchical structure, and one root
element. A child feature can only be included if the parent feature is
also included. Following types of relationships are typically
distinguished [12]: Mandatory, optional, alternative, or-relation. In
addition to that, so-called cross-tree relations can be used to express
dependencies between features that are not in a parent-child
relationship. The two most common types are requires and excludes
relations.

In the example above, the features Calls and Screen are mandatory
(i.e., these features must be included), while GPS andMedia are optional
(i.e., none of these features are required). When the parent feature
Screen is selected, exactly one of its child elements (Basic, Color, High
resolution) must be selected due to the alternative relationship. When
Media is selected, either Camera or MP3 (or both) must be selected (or-
relationship). The cross-tree constraints specify that selecting the Camera
feature requires to have a High resolution screen feature. Likewise, GPS
and Basic screen features exclude each other (i.e., they cannot be se-
lected together for one product).

Fig. 1. A sample feature model of a mobile phone (from [4]).



3. Challenges

In order to elaborate on what kind of problems this work is ad-
dressing, some typical challenges are pointed out below.

Challenge 1: Modeling application and platform features in software
development to support technology evolution and introduction of new
features. Application developers are constantly striving for improving
their applications, possibly integrating new features to account for the
best possible user experience. Adding features to an application brings
up various questions: What are the platform features that are required
in order to support that invention? Will the application still be
compatible with currently supported target devices? Different
operating systems and versions1 and the sheer number of devices

make it difficult to understand the consequences of such introductions.
Besides integration of new features, the fast pace of technical innova-

tion is the primary motivation that calls for a way to easily track ap-
plication features and their implementing platform components, as
otherwise it is easy to lose track of new developments and platform
evolutions.

We state challenge one as the need for a way to model application
and platform features and their interdependencies among each other.
Such a detailed model is a prerequisite to keep track of technology
evolution and introduction of new features into applications.

Challenge 2: Configuration and automated analysis assistance for supporting
technology evolution and introduction of new features. As stated in the
previous challenge, introducing features and technology evolution
raises questions about the consequences of such changes. For
instance, what features does a platform must have to in order to
support a new application feature? Is that new application feature
compatible with existing platform? What is the impact of porting an
existing application to a new platform? Finding answers to questions
like this is key to understand the impact of adding features to
applications, porting applications across different platforms, and
many others.

Feature model analysis can help to extract valuable information
from feature models [4]. Existing analysis operations usually focus on
single layer feature models. Applied to models of application and
platform features, challenge two is about defining operations that are
capable of analyzing questions arising from changing these feature
models. As a result, this will enable drawing conclusions about the
impact of changes due to technological evolution and introduction of
new features.

Challenge 3: Automated analysis / tool support. While analysis operations
as outlined above enable drawing conclusions in general, the real
benefit is in automating the analysis procedure. Quicker, repeatable
results, applying the operations to models of larger scale etc, are just
some of these advantages.

State of the art analysis tools are capable of running operations as
defined in today’s literature. By default, they would not be able to
analyze models that include application features on one, and platform
features on another layer (since they focus on a single layer instead).

Challenge three therefore is about seeking a way to adapt existing
configuration and analysis tools to account for the multi layer nature
(application features, platform features) of the models discussed in the
previous challenge. This enables the use of these tools for automating
the execution of the operations as mentioned in challenge two.

The challenges mentioned above are related to what is known in the
literature as technical sustainability. Concretely, these challenges can
affect the three dimensions of software sustainability mentioned in
[10,11]: the human, the economic and the environmental dimensions.

4. Two-layered feature models

To cope with the previously highlighted challenge in Section 3,
MAYA proposes to use a two-layered feature model approach to sepa-
rate application and platform features. For that, we need to have de-
tailed models in the two layers and relationships to connect them.

Fig. 2 shows an overview of our solution. The feature model on top
(a.k.a. top layer) illustrates the variability inherent in an application,
while the feature model at the bottom (a.k.a. bottom layer) depicts the
variability present in the underlying device/platform, where the ap-
plication is going to be executed. Given these two models, one can
reason over different questions, such as finding the set of devices that
can host a specified application. These reasoning operations are pre-
sented in Section 5.

1 Android version market share distribution among smartphone owners as of
September 2017 http://bit.ly/2iIitzz,https://developer.android.com/about/
dashboards/index.html.

C onfigurations. A c onfiguration specifies one  particular instantiation of 
the product line. It is characterized by specifying a set of selected and 
removed features. Configurations c an b e c lassified in to different 
categories, e.g. a valid configuration adheres to t he defined relations 
and constraints. A full configuration contains every feature in either the 
selected or the removed lists. When not all features are contained in the 
selected/removed sets, it is referred to as partial configuration. A  full 
configuration that only contains the set of selected features, while all 
remaining features are implicitly removed, is known as product [4]. In 
the context of extended feature models, configurations may also include 
the configuration of attributes [13] (i.e., determining a value for each 
attribute).

Extended feature model types. Next to the previously described basic 
feature models, a couple of extensions have been proposed. 
Schobbens [14] summarizes general semantics of feature diagrams 
common in literature. For instance, an extended feature model is 
characterized by features that can contain attributes. This allows for 
modeling specific p roperties o f a  f eature s uch a s c osts o r version 
information. At the same time, it enables complex cross-tree 
constraints that are dependent on the value of a certain attribute, e.g. 
if Camera.resolution is bigger than a certain threshold X, then we require to 
have a High resolution screen. Alternative terms for extended feature 
models are attributed or advanced feature models [15].

2.2. Automated analysis of feature models

Analysis is concerned with investigating feature models to extract 
valuable information, which could be of assistance for marketing or 
technical decisions. Using operations, different aspects of the models are 
analyzed. More than thirty different operations can be found in litera-
ture to date [4]. For instance, a Valid product operation will check 
whether a specified product represents a valid combination of features 
pertaining to a certain feature model. Likewise, the Number of products 
operation determines the number of valid products. Other operations 
aim at comparing feature models, e.g., regarding their resemblance.

The analysis of feature models is a tedious and error prone task. In 
order to help practitioners of feature modeling to extract information, 
different computer-aided mechanisms have been proposed. There are 
proposals based on specific a lgorithms, b inary d ecision diagrams 
(BDD), SAT and CSP. Some of the most known tools can be found in 
[3,4,8,16]. In this paper we extended the open-source framework 
FAMA [17], to enable the reasoning of two layered feature models.

http://bit.ly/2iIitzz
https://developer.android.com/about/dashboards/index.html
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4.1. Top layer feature model

The top layer comprises application functionality such as SMS, Call
or Text Input from a user’s point of view. Note that a user here could mean
an end user, a developer, or a marketing representative, depending on
the context of use. Fig. 3 illustrates an example of such application
functionality. This small subset of a feature phone (depicting its com-
munication features) will be used as example for illustrative purposes
throughout the remainder of the article. More complete scenarios are
discussed in Section 7.

Features are organized in a tree-like hierarchical structure, and can
be characterized by attributes (an InternetAccess feature might have a
minimally required datarate specified). There are also cross-tree rela-
tions, i.e., dependencies from a feature in one category to a feature in a
different category (e.g., SMS requires Text Input). Disregarding the
mapping between different layers, features and relations can be mod-
eled by means of state of the art product line engineering tools.

4.2. Bottom layer feature model

We refer to elements from the bottom layer as platform features. This
rather general term reflects the combined hardware and platform as-
pect, i.e., it is not meant to depict hardware only. For instance, a camera
feature in this model does not only consist of the actual hardware (lens,
etc.), but has a software aspect as there need to be drivers and/or APIs
to access the camera functionality. This combination allows to model
additional information as attributes that could be either hardware-
specific (a given maximum data rate of a communication component
would be a good example), or platform-specific (the provided platform
version (that could be minimally required for a certain feature) is an
example for that). Fig. 4 depicts example elements for this layer.

Regarding granularity level, it is noted that the actual level used
depends on how precise the analysis should be to fit one’s needs.
Instead of limiting somebody to a specific level of granularity, we
would rather propose the workflow and means, which can then be
adapted to meet one’s requirements. The same holds true for applica-
tion functionality (e.g., instead of Internet Access one may have actual
services, protocols, etc.).

4.3. Attribute specification

Each feature pertaining to either of the two layers can be further
described using attributes such as costs or version numbers. This ad-
ditional information can be used to model more complex constraints, as

mentioned in the next subsection. The following way of specifying at-
tributes is inspired by [18]. An attribute specification usually contains a
name, a domain, and a value [4]. We will also add a nullValue, a de-
faultValue, an isInheritable indicator and a unit. The combination of
feature name and attribute namemust be unique, e.g. WiFi.datarate. The
domain declares the valid data range, e.g. Boolean, Integer, and possibly
a range (e.g., [0.1024]). The null value specifies the value if the attri-
bute’s feature is not selected, and the default value declares the value if
no separate value has been configured. If isInheritable evaluates to true,
all child features inherit the same attribute definition (i.e., same name,
domain, null and default value, unit), however, it does not affect the
attribute’s values. This mechanism allows convenient attribute specifi-
cation for huge feature models. A unit will elaborate on the inter-
pretation of the value, i.e. whether the number is quantified in meters,
bytes, seconds, or others.

Regarding the computation of attribute values, each attribute can be
of one of two types:

• Basic attribute: The value of this type of attribute is a simple value,
i.e. it is directly assigned and does not depend on any other attri-
butes.

• Composite attribute: A composite attribute is one whose value is
composed of other attribute values, e.g. by calculating the sum or
determining the minimum of a group of specified attributes. If the
attribute is inheritable, it is sufficient to declare the desired group
function (e.g., sum, max, min) and then the function will be applied
to the attribute values of its selected child features. An example is an
inheritable attribute minApiLevel for the root feature, which is cal-
culated by determining the maximum value of all attributes named
minApiLevel in any of the selected child features.

4.4. Inter-tree relationships

To model relationships across layers inter–tree relationships are used.
Due to the nature of multiple layer feature models, common notations
used in feature models must be extended to connect them. All defined
inter–tree relationships are top-down, i.e. they connect a feature from
the top layer with features from the bottom layer. In our proposal, we
do not use a bottom-up relationship because we assume that there is an
abstraction gap between the application and platform features. This is,
the layers are decoupled enough that there are no software require-
ments for a hardware component (e.g. drivers). Figure 5 depicts ex-
ample elements to model relationships across layers. A summary of the
textual language used in presented in Table 1 and described as follows:

Fig. 2. Overview of the MAYA solution.



• 1:1 inter-tree relationships: The simplest type of inter-tree relation-
ships connect one feature on the top layer with one on the bottom
layer. They resemble common cross-tree relations (such as requires,
excludes), except that they connect features across trees (as opposed
to connecting features within the same tree).
Format: top1 requires bottomA (feature1 of top layer requires
featureA of bottom layer).
Example: AudioInput requires Mic.

• 1:n inter-tree relationships: To account for more complex feature in-
teraction patterns, a top-level feature does not always necessarily
require a single specific bottom layer feature, but one (or more) out
of a group of features. Therefore, the well known 1:1 relations are no
longer sufficient to model such circumstances [19,20] and 1:n re-
lations must be introduced. Similarly, the available parent-child
relations within a feature tree, group relations such as and, or, xor
shall be available to connect an application feature to multiple
platform features.
Format: top1 requires bottomA and/or bottomB.
Example: The top-level Call feature requires either a GSM or UMTS
bottom layer component (having both components is also possible).

• Constraint-based inter-tree relationships: While constraints are
common in extended feature models, their application to inter-tree
relationships enables modeling new aspects of a system. Note that
constraints can be combined both with 1:1 and 1:n re-
lations—effectively resulting in four different kinds of relations.
Format: top1 requires bottomA (and/or bottomB) and [constraint].
Example: The top-level feature Internet Access could be mapped to
either GPRS, UMTS, HSPA, WiFi (among others). While modeling a
VoIP application, it would be beneficial to specify a minimally re-
quired data rate to meet a certain quality of service. Therefore, when
the building block Internet Access is selected for such a VoIP appli-
cation, an inter-tree relationship constraint can be used to connect
bottom and top feature attributes. The constraint (e.g.,
bottomA.datarate > = top1.datarate) can then be evaluated to see
whether the requirements regarding datarate are met. In practice,
requiring a minimum data rate of e.g. 300 kbit/s for the Internet
Access feature can result in certain platform features not being able
to satisfy the condition. For instance, the maximum data rate of
GPRS is lower than the required 300 kbit/s, thus GPRS cannot be
used for VoIP applications.

These type of inter-tree relationships are the ones we defined for
MAYA—but are subject to extension for different applications.

5. Analysis operations

While the previous sections discussed problems regarding frequent
technological innovations and how to approach them using multi-layer
feature models, this section focuses on how MAYA defines operations

that can be executed on these models. The derived results provide
guidance for technical decisions or marketing strategies [21] and allow
to study the consequences of different input configurations. Actual use
cases will be demonstrated in Section 7.

Thirty different operations for the analysis of feature models have
been identified in the literature [4]. Below we will build and extend on
them by defining four major operations that operate on two-layered
feature models. For the sake of simplicity, we will refer to them as O1 -
O4 throughout this article.

Two high-level top-down (O1, O2) and two bottom-up operations (O3,
O4) are defined so far. Top-down/bottom-up refers to its main applica-
tion of use i.e., a top-down operation generally takes a top layer con-
figuration as input, and derives results pertaining to the bottom layer as
output (and vice versa for bottom-up operations).

High-level refers to the fact that each high-level operation might be
comprised of multiple low-level operations.

5.1. Operations: Common input

All subsequent operations take a common input:

• Top Layer Feature Model (TopFM): Contains the features and cross-
tree constraints of the application functionality layer.

• Bottom Layer Feature Model (BottomFM): Defines the features and
cross-tree constraints of the platform layer.

• Inter-Tree Relationships: The highly relevant specification of inter-
tree relationships (often referred to as mapping throughout the re-
mainder of this article), which enables analysis spanning multiple
layers in the first place.

Selected configurations must adhere to these model definitions. Any
additional input which is specific to an operation is defined at the re-
spective operation description below.

To illustrate the implications of our operations, we apply them on a
simple example throughout the remainder of this section. The common
input for this example is defined in Fig. 6.

Prerequisites. We require both top and bottom feature models to be
error free, i.e. they do not contain any dead features. A feature is said to
be dead if it cannot appear in any of the products. Such analysis can be
done using existing single layer operations respectively [4].

5.2. O1: Platform capability analysis

Given a set of selected features for a concrete application, the
Platform Capability Analysis (O1) identifies the minimally required
platform features. This information can be used to understand the
platform requirements to support the application. It addresses the

Table 1
A summary of currently supported language constructs that can be used to create inter–tree relationships in MAYA. This list may be extended as required to build
more complex relationships between layers.

Construct Syntax and example Description

1:1 top1 requires bottomA
example: SMS requires Cellular.

The feature of the top layer SMS connection in the mobile example requires a feature
of the bottom layer (Cellular in the example).

1:n top1 requires bottomA and/or bottomB.
example: Call requires GSM or UMTS

An upper layer feature does not always require a single specific lower layer feature,
but rather one or multiple features. The syntax to establish this connection defines the
upper level feature name followed by the required features of the lower level model.

Constraint top1 requires bottomA and/or bottomB and [constraint].
example: InternetAccess requires GPRS and [GPRS.datarate ≥
InternetAccess.datarate].

These restrictions can be combined both with 1:1 and 1:n relationships. The syntax to
establish this kind of restrictions between layers defines the name and the upper layer
feature together with the lower level features required as well as constraints on
attributes



• TopFM_Configuration: The full configuration of selected application
functionality.

Notice that all configurations used in MAYA are specified as full

configurations, i.e. each feature of the feature model is either explicitly
selected, implicitly selected (parent features of explicitly selected fea-
tures, and connected features due to required relations), or implicitly
removed (all remaining features). The configuration of attributes is also
included in a full configuration. Together with the mapping model this
top-level configuration is used as input. Then, the system responds with
a configuration detailing the minimally required platform features.

The output of O1 is a partial configuration of the bottom layer, as
well as constraints that the selected bottom layer features must meet. As
the different types of inter-tree relationships need to be interpreted
differently, the output is further separated into three categories. The
categories reflect to which extent a feature is required on the bottom
layer - i.e., whether it must be present, must not be present, or its at-
tributes must be within a limited attribute domain. Features that are in
neither of these categories can be freely selected.

• Must-have: A list of platform features that must be present on the
platform layer in order to meet the specified application require-
ments.

• Removed: The features in these categories must not be selected on
the bottom layer.

• Attribute domains: Constraint-based inter-tree relationships may af-
fect the range of attribute values in order to meet the specified re-
quirements from the top layer. If an attribute’s range is limited due
to the selection on the top layer, the attribute and its limited range is
listed in this category.

In addition, the output states some constraints that must be met
when further configuring the bottom layer. These constraints arise from
inter-tree relationships and can be easily calculated from their syntax.

5.2.2. Example
Next, we apply O1 on our running example. The configuration of the

input is:

=TopFM Configuration S SMS VoIP_ : { , }

Therefore, two features are explicitly selected. Their parents
(AppFeatures, Communication, Text, Voice) will be implicitly se-
lected—so would any of the required features due to cross-tree con-
straints (InternetAccess, and its parent Data). As it is a full configura-
tion, all other features from the top layer are implicitly removed. The
full configuration therefore is shown in Fig. 7 where selected features
are presented in gray and deselected in white:

The full configuration therefore is shown in Fig. 7, where selected
features are illustrated in gray and the deselected features are illustrated
in white:

In addition to the configuration of features, their attributes must be
configured as well. Only one feature has an attribute defined in our
example, and its value is assigned to be 300.

The corresponding output of O1 is:

PlatformFeatures, Radios, Cellular and Input are components that are
mandatory, thus not to be sacrificed. The set of removed features is
empty, as there are no constraints that cannot be met (e.g., an alter-
native relationship on the bottom layer could result in one feature being
removed, if the other is included in the set of must-have features). The
bottom layer constraint requires that either GPRS or WiFi (or both) have
to be selected.

The ranges of two attributes have been limited. Remember the inter-
tree relationship that specified that the bottom layer features’ datarate
had to be higher than the Internet Access top feature’s datarate:
InternetAccess requires (GPRS or WiFi)and [bottom.data-
rate >= top.datarate]. Since the required datarate of
InternetAccess has been configured to be 300 as input to O1, both GPRS
and WiFi need to provide a minimum datarate of at least 300 which is
expressed as attribute limitations in above example.

5.3. O2: Platform compatibility analysis

This high-level analysis operation can be used to compare the re-
quired platform features for a specific application (as retrieved in O1)
with concrete platforms/devices, and determine their (in-)compatibility
level. Such a categorization reveals features that are potentially in-
compatible or are missing to support the selected application. O2 ad-
dresses following main question: To what extent is the selected platform
combination capable of supporting the desired application on the top
layer?

By passing a full configuration of the top layer (the application) and
a full configuration of the bottom layer (the platform), this operation
determines a categorization of the bottom layer configuration which
identifies the components and their level of (in-)compatibility with

following main question: To enable a certain application, what cap-
abilities are required by the platform in use?

By passing a full configuration of the top layer (the application), this 
operation determines a partial configuration of the bottom layer which 
identifies t he m inimally r equired p latform f eatures f or t he specified 
application. This partial configuration can be used as starting point for 
further configuration on the bottom layer which can be accomplished 
using state of the art techniques for single layer feature model config-
uration, e.g. like the ones supported by FaMa [22].

5.2.1. Input/output
Next to the input common to all operations (top feature model, 

bottom feature model, inter-tree relationships), O1 takes following 
input:



• TopFM_Config1: The configuration of selected application function-
ality.

• BottomFM_Config1: The configuration of the components for the se-
lected platform combination.

By executing O2 multiple times for different platforms (and/or
versions), the question of compatibility among a wide variety of plat-
forms can be answered.

The output of O2 categorizes the features of the provided bottom
layer configuration into three distinct categories:

• Compatible: A list of platform features that are fully compatible with
the specified application features. A feature is said to be compatible
when it is required by the top layer and is present on the bottom
layer, and meets a given constraint, if any. Example: Consider the
inter-tree relationship A requires X, where A is part of the top layer
configuration, and X is part of the bottom layer configuration. Then
X is said to be compatible, since it is required by feature A, and
provided on the bottom layer.

• Missing: The features in these categories are missing in the respective
bottom layer configuration, although their existence would have
been required to realize the desired top level functionality. Example:
Consider the same inter-tree relationship A requires X from above. If
X is not part of the bottom layer configuration, then X is said to be
missing, since it is required by feature A, but not provided on the
bottom layer.

• Incompatible: Features declared in this list are present on the bottom
layer, but do not meet a given constraint, and therefore are said to
be incompatible. Example: Above inter-tree relationship is extended
by a constraint, such as A requires X and [constraint]. When A is a
selected top level feature, and X a selected bottom level feature, the
feature X is said to be incompatible if the constraint is not met.

5.3.2. Example
In the example below, we use the same input configuration as in O1

for the top layer, and provide a full configuration of the bottom layer in
addition to that:

=TopFM Configuration Selected SMS VoIP_ : { , }

=BottomFM Configuration Selected Input GPRS_ : { , }

Two features are explicitly selected on each layer. Remember that
their parents and any other required features (e.g. due to cross-tree
constraints) are implicitly selected, while all remaining features are
implicitly removed. The full configuration therefore is presented in
Fig. 8.

The resulting output is as follows:

Most of the features are compatible as is. WiFi on the other hand is
listed as missing, meaning that the component would be required to
realize all application functionality. GPRS is incompatible, as its datarate
is declared as 128, while the corresponding inter-tree relationship re-
quires a datarate higher than that of the InternetAccess feature, which
is configured to be 300.

5.4. O3: Application functionality potential analysis

Similar to O1 (though bottom-up), this operation will find the cor-
responding application features that are enabled by a certain platform.
However, it detects (a maximum number of) features that could theo-
retically be realized on the given platform. One use case would be to
recognize functionality that could be tapped into by an application
(such as a new text-to-speech feature), or early identify application
features that are not supported on a particular device/platform. O3
addresses following main question: Given a particular platform, which
features can be utilized in an application running on this platform?

By passing a full configuration of the bottom layer (the platform),
this operation determines a partial configuration of the top layer, ca-
tegorized into features which are enabled by the given platform, and
features that are removed by the same and thus cannot be used for an
application.

5.4.1. Input/output
Next to the feature models of both layers and the inter-tree re-

lationships (as specified earlier), this operation takes following input:

• BottomFM_Configuration: The full configuration of features for a
specific platform combination.

As an output, O3 delivers following information:

• TopFM_Configuration_Max: A top-level configuration containing the
set of features that are potentially enabled by the given platform.

• TopFM_Configuration_Removed: A top-level configuration containing
all the removed features, i.e. features that can definitely not be
realized on the given platform.

Therefore, the output distinguishes between features which can be
used by an application, and features which cannot be realized on the
particular platform (e.g. due to missing or limited platform features).

5.4.2. Example
Applied to our running example, the full configuration of the bottom

layer is shown in Fig. 9.

regard to the specified application.

5.3.1. Input/output
In addition to the common input, following specific input for O2 is 

required.



As a result, O3 retrieves:

The list of enabled features represents functions that can be tapped
into by applications. On the other hand, the removed features cannot be
realized in an application due to limitations of the platform. For in-
stance, the VoIP feature would require InternetAccess top level fea-
ture—which has inter-tree dependencies on either GPRS or WiFi, but
none of which is provided on the bottom layer.

5.5. O4: Platform migration analysis

Investigating potential conflicts of a platform migration is a pre-
vailing problem at the core of O4. It addresses the following main
question: How are existing application features affected by exchanging
the underlying platform?

Given a particular application and the source and target platforms,
the operation will highlight potential conflicts caused by such migra-
tions.

5.5.1. Input/output
The platform migration analysis operation takes a full configuration

of the top layer, and two different full configurations of the bottom
layer as input.

• TopFM_Config1: The configuration of selected application function-
ality.

• BottomFM_Config1: The provided modules of the current (= source)
platform in use.

• BottomFM_Config2: The provided modules of the future (= target)
platform. Both configurations must adhere to the same feature
model.

The result of the analysis classifies application features by different
categories:

• TopFM_ConfigUnaffected: A list of compatible application features
that are not affected by the platform migration.

• TopFM_ConfigEnabled: A list of application features that are enabled
by the new platform. Enabled means that this feature can be used
now on the new target platform (but was not available on the pre-
vious source platform).

• TopFM_ConfigIncompatible: A list of incompatible application fea-
tures that are somehow conflicted due to the platform change.
Conflicted in that sense means that the application feature can no
longer be sufficiently implemented on the new platform, e.g. due to

missing or limited platform features.

5.5.2. Example
The example below helps to illustrate this. The input configurations

are:

=TopFM Config S SMS VoIP_ : ,

=
BottomFM Config

S PlatformFeatures Radios Input Cellular GPRS WiFi
_ 1

: , , , , ,

=
BottomFM Config

S PlatformFeatures Radios Input Cellular GPRS GSM
_ 2

: , , , , ,

In order to retrieve the full configuration, all implicitly selected
features (i.e., parent features and required ones due to cross-tree con-
straints) are added, and all remaining (i.e. not selected) features are
removed. These full configurations are presented in Fig. 10.

The outcome of applying O4 is:

Most application features would be unaffected by the platform
change, meaning they could still be utilized after the change. Due to the
added GSM capabilities in the target platform, the Call feature has been
enabled on the top layer. Opposed to that, InternetAccess is now in-
compatible, since WiFi feature has been removed (and GPRS doesn’t
meet the attribute constraint of a minimum datarate of 300 kbps). As
VoIP requires InternetAccess, it is added to the incompatible features list.

Fig. 3. A sample top layer, comprising application functionality.



6. Implementation

To proof the validity of the MAYA approach, this section discusses
the prototypic implementation which laid the foundation to evaluate
the approach.

6.1. Tool selection

Tool support to automate some of the tedious and error-prone steps
is essential for the approach to be beneficial and efficient. First, it was
evaluated whether there are existing tools that could be adapted to our

needs, or a new one had to be developed from scratch. Ideally, such a
tool would be highly customizable to integrate support for multiple layers,
which, to the best of our knowledge, is not provided by any existing
automated analysis tool.

While there are numerous feature modeling tools available, when it
comes to automated analysis of feature models, tool support is more
limited. The ones that are available focus on traditional reasoning op-
erations, thus they operate on single layer feature models.

For MAYA, the main tool requirement was extensibility. The tool
must be adapted in order to

• take multiple input models, pertaining to the proposed top and
bottom layer,

• read and interpret the defined inter-tree relationships,
• extend and define reasoning operations that follow the multi layer

operation definitions from Section 5,
• extend the solver in order to operate on the defined operations.

Fig. 5. Inter-tree relationships: illustrative example.

Fig. 6. Example used to illustrate the proposed operations.

Fig. 7. Top full configuration used for O1.

Fig. 4. A sample bottom layer, comprising platform features.



While most of the available reasoning tools offered no or very
limited extensibility options, the extensible nature of FaMa [23] and its
open source approach made it the ideal choice for MAYA.

6.2. Automated analysis

The MAYA solution performs the reasoning process in three steps.
First, it loads the set of models (as text files) describing the problem.
Second, it parses the text files and translates them into a concrete logic
paradigm. Later, it applies an operation and determines the information
requested by the user. The subsections below discuss the process taken
by MAYA in more detail. The MAYA solution is shown in Fig. 11

MAYA relies on a concrete serialization for feature models based on
the FaMa feature model language. This extension add attribute in-
heritance between child and parent features support among other fea-
tures such as support for undetermined ranges when defining attributes.

Fig. 12 shows the syntax for specifying the relationships and car-
dinalities of the model represented in the feature diagram from Fig. 3.
Next to the feature model, constraints and attributes are specified in a
similar text-based format. This format starts by describing the feature
model tree. Every line starts with the name of a parent feature in a
relation and, after the colon, the children feature names. Note that,
depending on the kind of relationship to represent different text
structures can be used. For example, if the child is an optional feature it
will be presented between square bracelets. However, if is a set relation,
the square bracelets are used for the cardinality and the curly bracelets
for specifying the features in the group. Finally, if no symbol is used it
represents a mandatory feature.

After specifying the feature tree, there is a section containing the set
of cross-tree constraints. in this section, more complex constraints can
be described. For example, constraints containing relational operators
such as “VoIP REQUIRES InternetAccess OR Data”. The way an attributed
is defined is {feature name}.{attribute name}:{attribute type},{default
value},{null value}, Inheritable: {true or false depending is the attri-
bute is inheritable}.

Additionally, the mapping between the two layers is provided in
machine-readable text representation—cf. Fig. 13. This representation
can contain simple and complex constraints, as described in Section 4.4.

6.2.1. Conversion of feature models into CSPs
In order to answer the operations defined in the previous section,

the input models need to be transformed into so-called constraint sa-
tisfaction problems (CSPs) before they can be solved. As a reasoning
mechanism, MAYA relies on ChocoSolver, which is a Java im-
plementation of a CSP. The CSP generated is defined as the tuple

< >F A C IMC, , ,

where:

• F is the set of variables comprising of all boolean features—either
from the top layer feature model, or the bottom model. Being Fi the
variable representing feature i.

• A is the set of variables representing the attributes. Those variables
can be defined as real or integer variables. Thus, the Aj variable
represents the attribute j.

• C is a set of constraints containing i) the constraints between attri-
butes defined in the feature models and; (ii) a set of “virtual con-
straints” between each feature and their attributes. Those con-
straints will set the value of an attribute depending on the value of
their associated features. For example, if feature Fi is associated with
attribute Aj, then the constraint to be added will be if Fi equals 1, then
Aj equals default value, else Aj equals null value.

• IMC (inter model constraints) is a set of constraints representing the
requires and excludes relationships between the different layers.

Implementation-specific details and limitations. The MAYA architecture is
shown in Fig. 14. The core artefact provides a set of interfaces to
communicate with the different reasoners and metamodels. We
highlight the (i) readers and writers that allow MAYA to use different
set of textual and graphical representations as input or output. For
example, MAYA is able to read the splx format, which allows us to load
any of the models in the splot repository [16] as input; (ii) different
metamodels, by default MAYA takes as input two different types of

Fig. 8. Top and bottom full configurations used for O2.

Fig. 9. Bottom full configuration configuration used for O3.



metamodels. An attributed feature model representation and a
representation of the inter-model dependencies. However, other
metamodels such as the standard feature models or orthogonal
variability models [24] can be used; (iii) a set of reasoners, currently
the implementation offered by MAYA only supports CSP based solvers
because of the expressibility they offer. However, depending on the
metamodels taken as input we can easily extend this set of interfaces to
map the models into different artificial intelligence paradigms. Finally
(iv) questions, which represent the common interface for extracting
information from a problem.

7. Real world case study

The concepts introduced and defined in the previous sections are
demonstrated using case studies on two real world subjects. The overall
objective is to investigate whether or how MAYA could improve the state
of practice regarding handling of application and platform evolution in

the domain of application development for mobile phones.

7.1. Research questions

First, we define a set of research questions which shall be elaborated
throughout the study. In accordance with the two major tasks to apply
MAYA—modeling and automated analysis—we define a different high-
level research question for each category.

RQ1 Does our approach allow capturing the specifics of the mobile
phone domain?

RQ2 Given a model according to MAYA, does our approach provide
useful analysis results for both developers and handset manu-
facturers?
In order to prove that, these high-level questions are refined into
some more concrete questions:
RQ1.1 Can we provide MAYA models (application features,

Fig. 10. Configurations used for O4.

Fig. 11. The MAYA solution analysis process.



platform features, and inter-tree relationships) for the
cases under study, depicting realistic specifics of their do-
main?

RQ1.2 Is MAYA flexible enough to be applied to mobile devel-
opment projects of arbitrary scale? (from basic feature
phones to sophisticated smartphones)?

RQ1.3 Is it realistic to let top-level features be specified by de-
velopers themselves?

RQ1.4 Is it realistic to retrieve bottom-level models in practice
(e.g. by manufacturers, specifications)?
To enable a thorough investigation of RQ2 further ques-
tions are defined to refine on it:

RQ2.1 Given an application’s specification, can we find out the
minimally required platform features?

RQ2.2 Given an application’s requirements and a concrete phone/
platform combination (e.g., Samsung Galaxy S7 running on
Android 6.0.1), can we determine a list of compatible and
incompatible platform features for that application?

RQ2.3 Given a specific bottom layer configuration, what are the
features that are enabled by the platform to be potentially
used in an application?

RQ2.4 Given the specifications of two platforms (source, target),
and the application to be checked for compatibility issues
after porting, which application features are affected by
the platform change (i.e., are no longer supported, are
somehow limited, or are positively affected (e.g., due to a
better display))?

7.2. Hypothesis

Based on the questions posed above, we define our supposed hy-
pothesis:

We can model the mobile phone domain with our modeling ap-
proach, and it is feasible to execute analysis operations as defined in
MAYA in a reasonable time-frame, which we define as within one
second (near-instantaneous).

7.3. Case selection

Two subjects have been selected for this case study. The rationale
behind their selection was their different role they play in the

Fig. 12. Textual representation of the FM presented in Fig. 3.

Fig. 13. Textual representation of the mapping between the two-layers presented in Fig. 3.

Fig. 14. MAYA solution architecture.



investigation:
Subject one, Emporia Telecom,2 is a manufacturer of mobile phones

for the target group of elderly people. The main purpose of these phones
is to provide basic communication functionality such as texting, calling,
and phonebook management. Due to their focus on simplicity, no ad-
vanced features such as video playback or Internet browsing are re-
quired. On the other hand, other specific requirements arise, e.g. pro-
viding an emergency button which triggers an emergency procedure to
establish contact to caring family members or emergency organizations.

One of the authors has had a long-term cooperation with Emporia
with respect to software development for their handsets. Therefore,
particular insights and personal experience were gained which helped
in the data collection and analysis of this case.

Subject two, runtastic GmbH,3 is an Austrian mobile fitness company
that foremost focuses on providing smartphone applications targeted at
tracking and managing sports activities. The portfolio covers all major
smartphone platforms, including iOS, Android and Windows Phone.
This makes runtastic a viable candidate for a thorough investigation
using MAYA, as issues of compatibility and evolution among different
platforms arise on a daily base.

One of the authors was involved in an early project for tracking
sports sessions that later led to the foundation of the company.
Experiences gained there coupled with extensive use of runtastic’s ap-
plications over many years, brings a lot of insights that enables the
author to create realistic models of sports tracking applications for this
case study.

The main features of the application under study are the ability to
record accurate position data during a sports session, display that data
on a map, compute various statistics, and—after finishing an activi-
ty—upload all this information to runtastic’s web portal and/or share it
on social networks. A so-called live-tracking feature allows to send
current position data updates on the fly during a session, so that other
users can track the sportsman’s progress in real time on the web site.

Therefore, major differences exist in how each company could profit
from MAYA—the different angle of views (OEM vs. app developer
view), and the different classes of devices (feature phones vs. smart-
phones) being the main characteristics.

7.4. Data collection procedures

Data for these case studies come from various sources, although it is
clearly pointed out that the approach has not been directly applied on
the subjects in question over a longer period. Instead, the scenarios
rather are thought experiments that are grounded in practice, aiming at

exploring the potential consequences for each scenario.
As previously pointed out, one of the authors gained extensive ex-

perience in a cooperation agreement with subject one, Emporia, over a
period of five years. Access to technical data sheets provided additional
foundational data to specify the model assets in a realistic manner.

Subject two, runtastic, develops applications on a variety of
smartphone platforms. As we look at this case foremost from a devel-
oper’s point of view, the extensive use of runtastic applications on
different platforms over a long period, coupled with experience in
smartphone development, gives us detailed knowledge about the ap-
plication requirements and corresponding platform components, which
are transformed into models during the data collection process. As the
application in focus is their solution for Android, another useful source
of information was the specification of permissions as found on Google
Play store, as these permissions could be mapped to our top layer in a
rather straightforward way. Regarding specification of the bottom
layer, the information used to construct the models comes from various
sources. The capabilities of Android and its version history is publicly
available and was taken from the official documentation.4 Regarding
detailed hardware specifications, the information was collected from
sources such as the respective manufacturers websites, or websites with
huge accessible device databases such as GSMArena.5

To get feedback and possibly improve on the constructed models,
feedback sessions have been held with the respective companies. They
were shown the separate layers, and had the opportunity to comment
on it, raise concerns, or acknowledge the models as they are.

7.5. Analysis procedures

Analysis is supported using our tool implementation of MAYA,
which is based on FaMa’s extensible feature model analyzer. The
models we derived, as explained in the previous paragraphs, served as
input to MAYA. The detailed input requirements and specifications for
each analysis operation have been laid out in Section 5.

The output of MAYA is partly included in the results below. It is up
to the developers and/or manufacturers to interpret the results and
possibly draw further conclusions.

To increase the validity of the results, we held feedback sessions
with the two subjects, and inquired about comments or concerns of our
analysis. This reflection helped to interpret the output, or fine-tune the
models to rerun the operation for more realistic results. Relevant
statements are included throughout the results section.

Fig. 15. O1, case study 1: platform capability analysis.

2 Emporia Telecom Website: http://www.emporia.at.
3 Runtastic website: http://www.runtastic.com.

4 Android Developer Documentation: developer.android.com.
5 GSMArena website: www.gsmarena.com.

http://www.emporia.at
http://www.runtastic.com
http://www.gsmarena.com


7.6. Results

The following subsection will summarize results retrieved from the
study. According to its units of analysis, we will present the results in
corresponding order to each research question.

7.6.1. RQ1: platform capability analysis
It was rather straightforward to specify the application features,

which served as input for this analysis operation, for both cases. As a
developer, one knows what an application’s requirements are and can
thus easily capture them in a top-level feature model. Likewise, in the
case of our OEM of feature phones, the application features were known
in detail, too.

The output of the analysis were different sets of platform features.
From a developer’s point of view, it was useful to retrieve this in-
formation, as it helped to be aware of what the exact requirements for
the platform and hardware were. Likewise, the OEM could utilize the
information to get a clear list of minimally required platform feature-
s—precious information that helped the OEM to be clear on the
minimum requirements in their process of selecting a future target
platform. Fig. 15 represents the output of this operation.

7.6.2. RQ2: platform compatibility analysis
In the case of Emporia, operation two was valuable to evaluate

whether the existing application portfolio was compatible with pro-
spective future platforms. Compared to this particular example of
Infineon’s ULC2 platform, the DTMF component was pointed out as
possibly incompatible with the application’s requirements. Therefore,
the OEM has to watch out for alternative solutions (e.g. removing the
corresponding application feature, buying an external DTMF chip, or

implementing the functionality in software if the performance allows).
Also, the Flash has been marked incompatible, as the memory size
doesn’t match the required amount by the applications. Therefore, the
OEM has to compromise either on the top layer (e.g., support fewer
contacts in the phonebook), or upgrade the memory size (which has a
relevant cost implication).

Our fitness application company strives to offer their services on a
variety of platforms and versions, to further raise its distribution level.
It is crucial for them to know whether a specific platform/handset
combination meets the requirements of their application. By executing
operation two, runtastic was able to test the compatibility of their ap-
plications with a specific target device early on. For instance, when
compared to one of the flagship models in 2016, the Samsung Galaxy
S7, running on Android 6.0.1, all required bottom-layer features were
provided and thus compatible. Running the same compatibility check
on an old version of the platform, Android 2.3, immediately reveals
incompatible features, such as the inability to outsource the application
to external storage. Using this information, it is up to the developers to
decide how to deal with such incompatibilities—in this particular case,
the internal storage can/will be used instead, but the developer must be
aware that this could significantly affect the compatibility with old
devices that have limited amount of internal memory. Fig. 16 presents
the results of the MAYA application.

7.6.3. RQ3: application functionality analysis
Operation three was perceived to be rather easily implemented. All

the more interesting was it to find out whether the subjects could re-
trieve useful information from the operation’s output. For the smart-
phone case, we analyzed the scenario where a brand new Android de-
vice has been announced by Google, and provided its specifications as

Fig. 16. O2, case study 1: platform compatibility analysis.

Fig. 17. O3, case study 1: application functionality analysis.



bottom layer input. Specifically, Google’s Nexus 5X, the initial flagship
device for running Android version 6 (Marshmallow), has been se-
lected. It was interesting to see the list of features that an application
could tap into.

We observed that the additional advantage of such information
could be limited in practice, as information about a device’s new fea-
tures is often publicly released on the Internet. However, the informa-
tion becomes relevant when it establishes the relation to the application
feature layer, as the manufacturer’s specifications most often only re-
veal technical information about the platform layer, not the implica-
tions on potential applications.

On subject two, Emporia, we used operation three to get a quick
overview of the application features of a prospective new platform
running Brew OS.6 The output of O3 often depicts an abundance of
application functionality, and in Emporia’s case potentially highlights
new features such as MMS or making use of location services.

Another use case was to provide the specification of a rather limited
platform—a scenario which is common to increase an application’s
availability to a larger number of devices. When the output of MAYA’s
operation three does not include a desired feature, say emergency
procedure, it becomes obvious that the selected platform does not
sufficiently cover the desired functionality. Fig. 17 shows the results of
the MAYA application for this operation.

7.6.4. RQ4: platform migration analysis
The most complex of the four operations, the platform migration

analysis was at the same time expected to reveal the most useful in-
formation for adopters of MAYA.

In the first scenario, we investigated the case of Emporia’s need to
upgrade its platform. There were a variety of reasons for that step. From
a technical perspective, it was required to add a camera functionality
with an easy-to-use interface to its current portfolio. An economical
reason was the intended entrance in the Scandinavian market, where
GSM technology has been fully replaced by third generation tech-
nology, which is why UMTS communication chips had to be included.
The specification of this upgraded platform, along with the preceding
platform, was provided as input to MAYA.

Using O4 we were able to detect prospective (in-)compatibilities
with regard to the specified application features. For instance, the new
camera components can be utilized to take and send pictures, the GPS
sensor can be used to attach position information when conducting an
emergency call, and the accelerometer could be utilized to detect falls
of elderly people, which would be an additional benefit in combination
with the emergency procedure. While some of these findings seem
obvious, the section of the output highlighting possible

incompatibilities was all the more valuable. The missing DTMF tone
decoder negatively impacts the emergency procedure.7 Since the CPU of
the new platform is much more powerful, the decoding can be realized
in software though, and the limitation can be circumvented by the
OEM.

Regarding subject two, the described fitness application shall be
ported from a smartphone to a tablet. A developer is interested in
analyzing whether the application will be fully compatible on the new
target, or what the shortcomings are that may occur.

The tablet is characterized by components such as a bigger screen
and a newer software version, but on the other hand lacks cellular
connectivity. O4 shows that the specified application is positively im-
pacted with regard to the camera feature (the tablet provides a sec-
ondary, front-facing camera) or the graphics output (due to the im-
proved display resolution). These improvements can be used for
instance to present the map in more details, and/or display additional
content on the screen (such as additional statistics or fitness metrics).

On the other hand, the compromised cellular radios limits the data
transmission to runtastic’s web services. While data transmission is still
possible, the reduced mobility must be taken into account, as the ap-
plication will only work seamlessly when WiFi coverage is available.
Therefore, features such as live tracking are severely limited, as it is
unlikely to have complete WiFi coverage during a sports session.

Both subjects have pointed out that while some of the results were
rather obvious, it was interesting to receive a compact list of features
that potentially have to be compromised. Applying this operation in an
early analysis phase allows to think about the consequences or possible
workarounds to the outlined limitations. Fig. 18 shows the results of the
MAYA application for this operation.

7.7. Case study conclusions

We checked the feasibility of our approach on a realistic scenario
and showed the strong and weak points of our approach. We think that
it would be straightforward to apply these techniques to other apps and
OEMs. This certainly would improve the time to market of apps.

Currently we think that the main thing that is hindering a more
widespread application of our technique is that we need to convince
and motivate both OEMS and developers to release their specifications.
Moreover, we would need to encode them in the form of a feature
model or to adapt the technique to other variability descriptions.

As a future work we plan to extend the number of operations
available as well as finding industrial cases where they apply. Also, we

Fig. 18. O4, case study 1: platform migration analysis.

6 Brew website: developer.brewmp.com.

7 DTMF (dual-tone multi-frequency) detection is required to recognize if the
called emergency contact has acknowledged that the call was received (by
pressing a certain button). If the contact did not confirm the call, the next
emergency contact is being called.



plan to provide a graphical interface for the tooling as well as an in-
tegration for the TESALIA framework [3].

8. Related work

Product line engineering. Back in 1990, the FODA (feature-oriented
domain analysis) feasibility study by Kang et al. [2] introduced the
concept of feature modeling, which remained one of the major research
areas in product line engineering since then.

Feature models were used in a variety of scenarios [4], including
model-driven development, feature-oriented programming, software
factories or generative programming [25]. The focus of this work will
be to explicitly model the interrelations between features on different
layers, and draw top-down and bottom-up conclusions (e.g., what is the
impact of a platform change on an existing application).

An extended work by Kang et al. was the feature-oriented reuse
method (FORM) [6], which already recognized the importance of dif-
ferent granularity levels. Each feature therein pertains to one of four
layers (capability layer, operating environment layer, domain tech-
nology layer, implementation technique layer), and features across
layers could be connected using implemented by relations. Our work
with its different feature model layers resembles this categorization,
and adds on it as it focuses foremost on the relations between the
capability and implementing layers—to an extent where useful analysis
of consequences from application feature or platform feature selection
(in both directions) becomes possible.

Dhungana et al. [7] propose a framework to configure multi product
lines (i.e., multiple product lines from possibly different suppliers and
potentially different notations). To connect these models, they define
similar inter-model dependencies. While this highlights the importance
of dependencies across models, their focus is quite different as the goal
is to support the end-user product configuration (spanning multiple
product lines), while our approach aims at analyzing the feature in-
teraction across layers of different granularity (which for instance re-
quires sophisticated relations for meaningful results).

Feature interaction. In the early 1990s, feature interaction was
acknowledged as a problem in the telecommunication domain,
characterizing positive and, more importantly, negative side effects
when introducing new features into an existing base system. It was then
discovered that the basic problem of feature interaction spans across a
lot more disciplines, including software engineering [26].

Previous work has studied this problem in mobile phones. A case
study on Nokia phones [27] tried to model feature interaction using
Colored Petri Nets, but focused on interactions with the user interface of
the phones. Opposed to that, including the platform layer is central in
our work.

A simple feature model of a mobile phone was depicted in [4]—al-
though it demonstrated an example of feature interaction (a camera
requiring a high resolution screen), its sole purpose (unlike ours) was to
illustrate a sample feature model, but not to investigate the de-
pendencies of the mobile phone’s features.

MDD. Lack of portability due to technical revolution and changing
requirements is one of the main problems of software development for
consumer devices. Model-driven architecture (MDA) [28] has been
proposed by OMG as a means to tackle these issues. MDA relates to our
work in a way that our proposed two-layered models from Section 4
show a certain similarity to MDA’s separation of concerns—note the
resemblance of our top layer for application functionality to the concept
of Platform-independent models (PIM) in MDA. Analogously, the
bottom layer for platform components resembles a Platform-specific
model (PSM). While the aim of applying MDA is often to generate code,
we want to reason about software and platform evolution impacts on
both layers—which could be beneficial knowledge when it comes to
targeting platforms in MDA.

To analyze problems from a bottom-up perspective (e.g., what is the
impact on application features due to a platform change), Architecture-
Driven Modernization (ADM) is a related field [29], as it is concerned
with modernization of existing software solutions.

DSL and variability. There are proposals that use different variability
dimensions (layers) in language product lines [30,31] considering for
instance the abstract syntax, the concrete syntax and the semantics
dimensions. In this context, each feature of the corresponding feature
model represents a language module and the feature in the given
dimension.

These features can be shared and reused by different models, thus
establishing a common denominator that facilitates the inter-tree be-
tween them and allows the language designer to define a language in an
easy way according to the needs of the end users.

Although the applicability of multilevel variability has been ad-
dressed in this specific case to build a DSL using a line of language
products in the same application domain, in our proposal we address
the issue of variability in software product lines with a different ap-
proach.

On the one hand, we have considered the use of two layers (appli-
cation and platform) to track the application features to the platform
features and, on the other hand, to allow the reuse of components and
the easy migration of applications to different platforms or vice versa.
Some related works that use different layers are discussed in more de-
tail at the end of this section in a comparison made with our proposal.

Comparison of MAYA with other proposals. To complement this section,
we present some related proposals. Table 2 summarizes some of the
main characteristics of MAYA and compare them with other proposals.
We remark that the characteristics presented here are the ones that

Papers Models Layers Attributes O1 O2 O3 O4 Other operations Tool Evaluation

VFD+ [32] FM/OVM
Feature Trees [33] FM
CVM [34] FM
VELVET [35] FM
SPL Workflow[36] FM
FAMILIAR [8] FM
VeAnalyzer [37] FM
Invar [38] FM
Clafer [39] FM/CM
SPLAnE [40] FM
MAYA FM

Table 2
MAYA vs. other proposals.



evaluated in a real environment as one of the authors worked directly
on projects with the companies where the case studies were carried out.

9. Future work

Extending the operation catalogue. While we propose four operations in
this paper, they are are open for extension. For instance, a possible new
operation would be to ask for the minimally required platform version
to support a particular application. However, this would require to take
into account model versioning that is a feature not supported in our
current proposal. Also, we can imagine operations that instead of
retrieving a configuration work over the inter-tree relationships and
analyse them looking for inconstancies or errors.

Graphical frontend for analysis input/output. As mentioned in the
previous section, for our prototypical implementation we do not
employ tool support for product configuration of the input, nor is
there a graphical representation of the analysis output. There is ongoing
work8 to integrate FaMa toolsuite with various modeling tools (e.g.,
MOSKitt, pure::variants). While these tools help to model each layer
individually, we plan an extension that supports configuration on both
layers concurrently, e.g. by combining them in a graphical frontend.
Providing support for the complex task of defining mappings is very
important [19]. At the same time, such assistance also ensures the
integrity of the inter-tree relations, as only valid features and relation
types can be selected.

Presenting the output in a visual format, similar to the figures in
Section 5, will be another beneficial extension. The different colors to
reflect the meanings of the different output categories (e.g., a con-
flicting feature), will help the user to easily understand the impact of his
operation. It is envisioned to be implemented in a way that by just
hovering over single features, the respective feature(s) on the connected
layer can be highlighted, giving the user a real-time feedback upon (de-
)selection of a feature.

Runtime analysis. From what has been proposed so far, the mappings
between the two layers were of rather statical nature. An interesting
aspect would be to extend the analysis with runtime information.
Introducing runtime dependencies would allow for modeling dynamic
situations such as: If the battery drops < 15%, certain features get
deactivated. Another example would be: If we move to an area where there
is only GPRS coverage (and therefore the data rate drops), certain
applications would no longer work (e.g., a Video chat).

In terms of modeling these runtime dependencies, they could be
annotated as such, very much like the concept of binding times detailed
in [42]. In addition to that, a runtime environment, where one can
specify and simulate the environment events (battery drop, out of
coverage, etc.), will be required—which is all subject to future work.

Analysis with a unified feature model. As mentioned in Section 4, our
proposal was designed to work exclusively with two-layer models since
in a real environment there are different practitioners that make
platform and software, where each layer evolves in a different way
[38]. Having the platform and application layers separate enables us to
control the changes that may occur in the applications when they
update or when they migrate to different platforms without affecting
their performance.

However, in the future we could evaluate the integration of the two
layers in a single feature model where the platform and software layers
would be represented by two mandatory sub-features. In this way, we

8 http://www.isa.us.es/fama/?FaMa_Current_Projects.

show the main aspects of MAYA. However, there are other benefits of 
the related proposals that are not included in the comparison. For 
example, FAMILIAR [8] supports the merging of several models 
something that we do not handle in this work. All these other aspects 
are out of the scope of this comparison and therefore this comparison 
can be biased.

The Papers column in Table 2 shows some of the works that are 
directly related to our proposal.

The Models column in Table 2 indicates the type of model used by 
the proposals, unlike [32] that uses feature models together with or-
thogonal variability models, and [39] that unifies feature models with 
class models; all of the proposals use feature models as the main basis of 
the work.

The Layers column in Table 2 indicates the if the proposal support 
layers or not. Only [8] and [36] propose an architecture that, although 
it is not formally defined in the work, we have considered as two layers 
as it clearly distinguish two levels: the upper level destined to the re-
quirements of the users and the lower level corresponding to the logic 
of operations. In any case, only MAYA uses a well-defined architecture 
based on two layers (see Section 4).

The Attributes column in Table 2 indicates whether the proposal uses 
quality attributes. We note that in addition to MAYA, [8,33,39] fulfill 
this characteristic. Although it is true that the aforementioned propo-
sals use attributes at a certain moment, only MAYA takes full advantage 
of the attributes to perform the integration of feature models between 
the layers.

The column O1 in Table 2 refers to the “Platform Capability Analysis” 
operation included in MAYA. Analyzing each of the proposals, we can 
say that all of them make use of analysis operations that, in addition to 
allowing the integration of large-scale models. This enables new 
variability management operations not previously defined.

The column O2 in Table 2 refers to the operation of MAYA ”Platform 
C ompatibility Analysis”. Here, we find t hat t he p roposal p resented in 
[38] allows easy adaptation with modeling techniques and notations of 
other existing tools. On the other hand, in the proposal [40], an analysis 
is done on the models to ensure that they are compatible with all the 
specifications given by the user, with which we would say that both 
proposals include analysis operations for platform compatibility. The 
other proposals do not include operations that allow this analysis pro-
cess.

The column O3 and the column O4 in Table 2 refer to the operations 
of MAYA “Application Functionality Potential Analysis” and “Platform 
Migration Analysis” respectively. In this group, none of the proposals 
include analysis operations that allow easy integration of models or the 
ability to cope with the changes that a feature may have without af-
fecting the related models. On the other hand, it is also not evident that 
the proposals presented include operations that allow the handling of 
conflicts that arise due to changes in the configurations of the models, 
and how to control that the change of one does not affect the other or 
vice versa. In this sense, MAYA is a pioneer in including this type of 
analysis operations.

The Tool column in Table 2 indicates whether the proposal imple-
ments a tool as part of the contribution. All the proposals present a tool 
for the analysis of feature models in different layers. However, MAYA is 
the only tool that was implemented using a well-defined and structured 
scheme based on layers. It is also the only one that incorporates a set of 
operations that validate the platform’s capacity in terms of oper-
ationalization, and considers aspects such as migration, support, and 
the potential to solve problems if there are changes in the definition of 
the models.

Finally, the Evaluation column in Table 2 indicates whether the 
proposal has been validated using case studies. Almost all the proposals 
include an evaluation, some of them carried out in the business sector 
such as [8,33,34,36,41]. Although it is true that the proposals men-
tioned took real data provided by companies, none had direct partici-
pation during the evaluation process. MAYA, on the other hand, was
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10. Conclusions

In a world where hardware frequently outpaces software in terms of
innovation and speed up (which holds especially true for mobile phones
and consumer electronics in general), a mechanism to understand the
impact of these frequent technology changes on existing software is
desirable. At the same time, new types of applications are enabled due
to new or improved hardware components. It is equally interesting to
see whether certain types of applications can be implemented on ex-
isting hardware, and to understand the limitations why some applica-
tions may not be realizable (e.g., the platform version in use doesn’t
support a feature yet).

This work proposed to use two-layered feature models for the top
layer (comprising application functionality) and the bottom layer (in-
cluding platform components) of a mobile phone. The key part was to
connect the layers using inter-tree relationships, which enables
studying the consequences of changes on one layer onto the respective
other layer.

When it comes to platform and design decisions, both developers
and handset manufacturers could profit from such a model, because
potential problems and incompatibilities can be identified at a very
early development stage. Furthermore, such an instrument can be used
to discuss design decisions with marketing and other involved stake-
holders who might not have detailed technical knowledge.

The contribution of this work was to provide two fairly complex
feature models for the respective layers, as a prerequisite for further
research. We identified the required type of inter-tree relationships and

how they compare to well-known cross-tree relationships. Specifying
the operations O1–O4 set the stage for further analysis. A prototypic
implementation in Section 6 was used to demonstrate the validity of the
proposed approach. Building upon this implementation, future work
described planned enhancements. An additional extension could be a
runtime simulation environment that allows for studying the con-
sequences of runtime information updates, such as a drain in battery
capacity.

This work is flexible enough to cover anything from simple feature
phones, to top notch smartphones, to tablets. Finally, this method could
very well be applied to other domains facing similar problems, for in-
stance consumer electronics in general.

Accessing source code

The source code of MAYA and the dataset used in the operations
presented in this paper can be downloaded from the FaMa Github
project website: https://github.com/FaMaFW/FaMA/tree/branches/
fama-two-layers in the fama-two-layers branch.

It is not possible to publish the real data extracted from the feature
models used in the experimentation due to the privacy policies of the
companies that provided us with the information.
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that can open a new line of works from theoretical to practical.

More-than-two layers. In this work we have proposed a framework 
relying on two levels obs abstraction. However, we envision that there 
might be scenarios where having more than two levels is interesting. In 
future work, we plan to extend this framework to support as many 
levels of feature models required in the same spirit as in other domains 
such as in DSLs [43].

SMT reasoning. In future work we plan to investigate other mechanisms 
for implementing our tooling. Concretely, we plan to explore the use of 
SMT solvers that promises an scalable solution while coping with 
quality attributes and boolean variables.

Operation formalization. In the past, we have already formalized several 
FM operations [44] for single model scenarios. We plan to perform the 
same formalization for the operations considering more than one model 
in future work.
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