
A perfomance comparison study between
synchronous and asynchronous FPGA for spike based

Systems.
Under the AER synthetic generation

Rafael Paz-Vicente, Elena Cerezuela-Escudero, Manuel Dominguez-Morales, Angel Jimenez-Fernandez, Alejandro
Linares-Barranco and Gabriel Jimenez-Moreno

Arquitectura y Tecnología de Computadores. Universidad de Sevilla.
 Av. Reina Mercedes s/n, 41012-Sevilla, SPAIN

rpaz@atc.us.es

Abstract— Neuromorphic engineering tries to mimic biology in

information processing. Address-Event Representation (AER) is

a neuromorphic communication protocol for spiking neurons

between different layers. AER bio-inspired image sensors are

called “retina”. This kind of sensors measurees visual

information not based on frames from real life and generates

corresponding events. In this paper we provide an alternative,

based on cheap FPGA, to these image sensors that takes images

provided by an analog video source (video composite signal),

digitalizes it and generates AER streams for testing purposes.

This design was initially developed for Xilinx Spartan FPGA. In

this paper we present a comparison study between synthesis of

this design for Xilinx Spartan, Virtex FPGA and Achronix

asynchronous FPGA, measuring the maximum performance

reached in each case.

Keywords-Address-Event-Representation, AER synthetic

generation, visual processing, frame-free vision, FPGA, VHDL,

asynchronous logic.

I. INTRODUCTION

In these days, FPGA has been popularized in industrial,
educational and research environment due to its increasing
capability and speed, for a reasonable prize. They are very
useful particularly in research environment because they allows
fast prototyping for implementation of digital designs, that can
be changed without modification of hardware, just changing
logic design programmed on it. Developers can modify and test
their high speed design, without having to develop ASIC chips,
that requires long times of manufacturing, high prizes, and
many previous simulation to ensure that the design works
properly. May be one of the most popular families of FPGA
from some years are those manufactured by Xilinx, that
continuously develops new faster and bigger FPGA.

On the other hand, new companies have emerged offering
new and innovative solutions, trying to present attractive
alternatives to existing ones, or trying to solve weak points on
current technologies. One of these recently created companies
is Achronix Semiconductors. It presents a new type of FPGA
that it promises that can reach top speeds of about 1.5 Ghz, or
three to four times speed improvement comparing to existing

top performance FPGAs. Achronix Speedster FPGA was the
first family of FPGAs provided by Achronix, and this is the
one we have used in this study. Recently they released a new
family, Speedster22i, using 22nm technology, and it has signed
a contract with Intel for manufacturing hybrid chips.

Achronix FPGA is very different from traditional FPGA
because internally their logic is completely asynchronous.
Removing global clock allows avoiding clock propagation
problems, and taking the concept of pipeline to the limit, and in
theory, a well optimized design can reach clocks speeds of 1.5
GHz. Anyway, we have to take in consideration, that this high
speed clock does not means that any process will take one
clock cycle to finish, but that the pipeline can run so fast, but
use to have many stages.

Although internally Achronix Speedster works in an
asynchronous way, provided designs has to be clocked.
Speedster input ports are synchronous and input and output are
latched. Synthesis software takes synchronous designs and
maps it to fit on internal asynchronous logic to work properly.

In this paper we present a design developed initially for
Xilinx Spartan II 200 FPGA that lately we have re-synthetized
for Xilinx Virtex family and also for Achronix Speedster. We
compare synthesis time spent by synthesis software, for these
three cases. We also compare maximum clock frequencies that
can be reached by each design, and resources used by each
case.

Proposed design was developed for being used as a test tool
in developing AER systems for real time vision processing, as
a source of spikes. AER bus is a neuroinspired bus used in
spiking systems for video, audio or in general, sensorial
information processing.

II. AER BUS DESCRIPTION

Biology provides efficient solutions for several problems.
Trying to mimic biology, bio-inspired and neuro-inspired
systems have been extended in the last years. High degree of
parallelism and scalability makes this emerging computing

technology especially interesting for real time vision
processing.

One of the neuro-inspired models which mimic the neuron
layers in the brain are the spiking models. These models can
use the AER protocol to communicate spikes between different
layers. There is a growing community of AER system
developers. We can find several sensors (cochleas,
retinas…)[1][2][3], processing layers (filters, convolutions,
WTA…)[4][5][6][7], robotic controlling (Central Pattern
Generators, Eddie…)[8][9], computer interface for system
monitoring and sequencing (PCI-AER, USB-AER,
USBAERmini2…)[10][11], and computer software for real-
time processing (jAER, MATLAB interface)[12][13]. The goal
of this community is to build large multichip and multi-layer
hierarchically structured systems, for real-time massively-
parallel spike processing. One of the most extended fields is the
vision processing using an AER chain for objects recognition,
tracking, etc…[14][15][16] Figure 1 shows the biggest AER
chain developed for vision processing under the EU CAVIAR
project, composed by a temporal contrast retina, 2 convolution
chips, 1 WTA filter chip and one learning chip, connected
using mapper boards and inserting AER monitors for
debugging purpose. Figure 7 shows synthetic retina used as
first element in AER chains.

Figure 1. An AER chain for vision processing.

Spiking neurons codifies the information in a stream of
pulses (spikes), whose frequency (or spike rate) is proportional
to the neuron’s excitation, following a Pulse Frequency
Modulation (PFM). AER was proposed by Mead lab in
1991[17], as we have said before, for communicating
neuromorphic chips with spikes. If we have several layers with
hundred or thousand neurons, it becomes impossible to use a
point to multi-point connection between every layer. AER tries
to avoid this problem. The idea of the AER is to have only one
common bus, the AER bus, giving a digital code address to
every neuron. Every time a neuron fires a spike, it goes to an
arbiter that manages collisions [15], and to an encoder, who
writes the address in the AER bus (figure 2). Additional lines
of request (REQ) and acknowledge (ACK) are required to
communicate the address using a 4-step asynchronous hand-
shake protocol. In the receiver, neurons will be listening the
bus, looking for the spikes sent to them. Neurons are virtually
connected by streams of spikes.

Figure 2. Spiking neurons communication between two layers using AER.

First layer in an AER image processing chain is an AER
image sensor, also called retina that captures images from real
life and generates AER event describing them. There are
several ASIC AER retinas [1][2] that can be used for this
purpose. Some of these retinas provide events describing pixel
luminosity, but others send only luminosity changes
information. This last group is called derivative retinas.
Independently of the kind of retina we are using, both of them
are implement in ASIC CMOS chips, so high knowledge of
chip designing is required, many different polarization voltages
are used, they have very complex biases to adjust, and due to
expensive of custom chip prototyping, this technology is out of
the possibilities of some developing groups, or at least the
access to this devices can be very limited.

To popularize AER bus and neuro-inspired spiking
systems, cheap image sensor that can be widely available, may
be very interesting because that makes possible the
development of AER filters, testing and debugging them.
Furthermore, these sensors make this technology available for
a more extensive community.

In this paper we present a comparison study of three
implementations of a synthetic retina for FPGA using frame-
based video source with a frame to AER conversion. Proposed
synthetic retina try to provide this AER developing tool,
working in a very similar way of real AER retinas, but at a
lower cost. For that, most of the implementation of the
synthetic retina consists in a digital circuit that is implemented
in VHDL to be synthesized to fit on a CPLD or FPGA
programmable digital device.

Image sensor consists in a cheap CMOS or CCD camera
that output video composite signal. Alternatively, signal
provided by a Video Recorder, DVD player, or computer
output can be used. These video composite signals are captured
using an ADC converter, and digitalized information is
processed by digital logic to convert this video signal to AER
events.

III. SYNCHRONOUS FPGA

In this section, we describe synchronous FPGA, focused in
Xilinx FPGA, using for that Spartan and Virtex families. With
superior FPGA and CPLD products, Xilinx claim to be the
leader in digital programmable logic devices.

In general a FPGA is an integrated circuit designed to be
configured by the designer, so it can be programmed. It
contains programmable logic components called "logic
blocks", and a hierarchy of reconfigurable interconnects that
allow the blocks to be "wired together", as desired by the
designer.

At each configurable logic block (CLB) we can find usually
a register (of one or more bits), driven by a clock signal, and
some combinational logic, as multiplexors, adders, logic gates,
etc. These components allow the designer to implement fully
combinational blocks, or with the use of the mentioned
register, to get the implementation of any kind of synchronous
circuit, as several bit registers (combining several CLBs), shift
registers, finite states machines (FSM), etc.

FPGA manufacturer (Xilinx in our case), usually provides
design guidelines to help the designer to make implementation
that best fit with specific FPGA internal architecture, getting
better and faster designs.

Every CLB can be interconnected to others, using
programmable interconnection matrixes. Synthesis tool, first
translates described circuit by designer using a hardware
description language (HDL, as for example VHDL or verilog)
to a circuit. Then it chooses which parts of the circuit fits on
each CLB to make physical placement, attending which parts
of it has to be connected with which others, choosing properly
their proximity and trying to minimize propagation delays in
critic parts due to lines lengths by choosing the closest CLBs. It
also determines the way to configure interconnection elements
to properly interconnect different parts.

Usually, synchronous FPGA, in addition to generic I/O
pins, has specific clock pins to get external clock signal. These
clock pins, instead of being internally connected to generic I/O
buffer, they are connected to fast buffers, that are connected to
internal special lines that homogeneously distributes clock
signal internally to reach every block in FPGA minimizing
propagation delays and clock skew problems. Optionally, with
specific PLL or DLL (phase locked loop or delay looked loop),
this clock signal can be scaled or multiplied inside FPGA to get
faster clock signals.

As described in next section, this clock distribution can be a
limitation factor when trying to design high speed circuits.
Usually, combinational path complexity is most important
limitation factor, but even for very well optimized design,
where combinational complexity is minimized, and divided in
different stages with a fine grained pipeline, that allows speed
up clock signal; clock propagation problem still limits
maximum reachable clock frequency.

IV. ASYNCHRONOUS FPGA

In this section we explain asynchronous FPGA basics,
based on Achronix Speedster FPGA, first designer of an
asynchronous FPGA.

Achronix Semiconductor is a privately held fabless
corporation based in Santa Clara, California. Achronix claims
that he builds the world's fastest field programmable gate
arrays (FPGAs) which use a unique patented circuit
technology, providing 1.5 GHz throughput, a significant
performance advantage over traditional FPGA technology.

The design of this FPGA takes a completely new and
different approach when comparing with traditional FPGA
design.

Traditional FPGA design is based in synchronous (clocked)
reconfigurable pieces, named CLBs (Complex Logic Blocks).
Clock signal is usually provided by selected pins, and
internally it has to be distributed through all FPGA logic,
avoiding skew and delay problems.

Achronix FPGA design is radically different. Internally, it
is implemented by asynchronous logic, eliminating clock
propagation problems. Externally, its behavior is similar to
synchronous FPGAs, and synthesis tool provided by
manufacturer synthetizes most synchronous designs. It’s
internal design is based in picoPIPEs. Each picoPIPE is formed
by an array of RLBs (Reconfigurable Logic Blocks) connected
by reconfigurable fabric. Each picoPIPE is surrounded by
conventional synchronous I/O frames.

Traditional synchronous FPGA use a global clock that has
to be propagated globally through the whole FPGA. Clock
propagation is a limitating factor in maximum clock speed in
designs. Even in pipelined design, where logic propagation
delays effects can be minimized dividing global delay in
several pipelines stages, the need to distribute clock signal over
all FPGA fabric, becomes a limitation when working with high
speed clock frequencies.

Figure 3. Globally clocked pipeline stage in synchronous FPGA.

Achronix FPGA eliminates clock signal. Data are
transferred asynchronously from one stage to the next one. To
transfer one data bit, internally Achronix Speedster FPGA uses
two signals to transfer just one bit. Data is named token, so
with using this two lines, it is possible to signal when there are
a data or not been transferred, and in the case that there are
some data, it’s logic level.

When a token is received in one stage, an acknowledge
signal is sent back to previous stage, so next data can be
transferred. Using this method, there are implicitly defined a
pipeline between stages, allowing to reach maximum clock
speed.

Figure 4. Asynchronous Achronix Speedster FPGA pipeline.

In this kind of FPGA, clock signal defined in VHDL or
verilog code is used to determine chronologic succession of

events, so asynchronous design behaviour were similar to
described synchronous design, but without using a clock in real
implementation. When working with this kind of FPGA,
limitation factor for clock speed is not large combinational
path, like in standard FPGAs, but that combinational path is not
balanced, combining larges and smalls combinational path. In
this case, small combinational paths constitute a limitation for
pipeline. Synthesis tool allows to artificially introduces
additional stages in small combinational path to equalize
length.

Maximum clock speed is determined by relation between
largest and smallest combinational path, like shown in figure 5.

Figure 5. Path lenght misbalancing influence over clock speed.

As shown in previous table, path length doesn’t have any
influence in final clock speed (for example, table shows long
path of 28 stages in all the cases). Smallest combinational path
is the real limitating factor.

Achronix ACE tool provides a synthesis directive named
“set-extra-pipeline” that allows to automatically fill underfilled
pipelines paths, to tune the number of added dummy stages in
short length path, to increase maximum clock speed.

V. APLICATION UNDER STUDY

Due to the increasing of the AER community that develops
AER devices to perform filters and transformation of AER
coded visual information, some devices that generates AER
events are needed in order to provide a stimulus to these filters.

Figure 6. Synthetic retina boards

Figure 6 shows a block diagram of the proposed design. In
figure 7, a USB-AER board (green board) is connected (input
port) to an ADC board (copper) with video in connector,
attached to a small B&W video camera.

Figure 7. Synthetic retina boards

A. Video Composite Capture.

First step in frames to AER conversion rely on video
capture sampling video composite signal provided by a
camcorder or video camera. This camera should provide video
composite signal. Like current AER filters works with
monochrome images, and previously cited retinas are also
monochromes, we are not going to process color signals.

For image capturing, a fast ADC manufactured by Analog
Devices, ADC08100 is used. This ADC works with a clock
signal between 20Mhz and 100Mhz providing up to 100MSPS
(million of samples per second), delayed three clock cycles. It
outputs digital data as an 8-bit parallel word that is connected
to input pins of FPGA. Clock signal provided to ADC
(25MHz) is obtained from internal FPGA clock (50MHz
divided by 2). This sample rate is enough to sample both, color
and BW signal. A sample rate of about 4Mhz should be enough
to sample BW signals, but ADC 08100 doesn’t work below
20Mhz minimum frequency.

To remove color subcarrier external LC filter can be used to
filter it, or a simple FIR (Finite Impulse Response) or IIR
(Infinite Impulse Response) digital filter can be implemented
inside FPGA to digitally filter it. Oversampling the video
signal at 25 Mhz can be useful to perform mentioned digital
filtering. For reducing FPGA usage, implementing FIR or IIR
filter requires multiplication computation. Multiplication
operations, needed for this filter implementation, require a big
FPGA usage. Due to limited amount of resources available in
SPARTAN II 200 FPGA used in USB-AER board [10],
external LC filter are preferred and extra samples are simply
discarded.

ADC
FPGA

Board
AER BUS

B. Intensity retina and derivative retina.

Once the current frame is captured and stored in memory,
the AER event generator uses this data stored in memory to
scan it and generate events properly. In current AER state of
the art, two different kind of synthetic AER retina has been
developed: intensity and derivative one.

1) Synthetic Intensity AER retina
This synthetic AER retina sends AER events that describe

light intensity information of its pixels, so event frequency for
a given pixel is proportional to the amount of light that this
pixel of the sensor receives.

Figure 9 shows the block diagram for intensity synthetic
retina. “Scan counter” is divided in two halves, row counter
(less significant bits) and column counter (most significant
bits). Content of scan counter is used to access image RAM
and get pixel value. Data read from RAM is compared with
frame counter to determine if event address has to be sent. If
comparison results positive, it enables that the value of scan
counter used for pixel addressing, is now used as event address
and it is loaded to a FIFO in order to be sent out through an
AER output finite states machine.

Figure 8. Synthetic retina hardware implementation state machine.

Frame counter is increased every time scan counter
overflows, so they both can be implemented together, placing
frame counter as the top most significant part in the combined
counter. Frame counter bits are position reversed prior to
comparison, as described later to enhance event time
distribution.

Video composite capturer uses horizontal and vertical sync
pulses to maintain capture line counter synchronized to current
video line transmitted on video composite signal. Horizontal
scan timer is synchronized with horizontal sync pulses to
correctly temporize capture instants. It is implemented as
another finite states machine. This states machine is shown in
figure 8.

2) Synthetic Derivative AER retina
In this synthetic AER retinas, event frequency is not

proportional the amount of light received, but the difference of

light between current captured frame and last one, so event
frequency is proportional to the change of luminosity. Memory
requirements for this kind of retina is twice than for intensity
one because it is necessary to store two different frame
information, current one and previous one so we can subtract
them. Alternatively, it is also possible to implement derivative
retina storing last frame and the difference between it and
current. Difference frame is used to generate AER events, and
last frame intensity information is used to calculate difference
frame when next frame is going to be captured.

Figure 9. Derivative retina block diagram.

The result of subtracting two frame can have positive or
negative sign, depending on pixel luminosity change: from
darker to lighter, or opposite. In order to correctly represent
sign of subtraction when events are generated, event frequency
is proportional to absolute value of subtraction, but event
address is different if sign is positive or negative.

Derivative retinas can be useful because the AER traffic
generated is lower than brightness retina. Images with no
variation or small variations between frames generate low
event activity. Only those parts of the images that changes
generates AER events. This can be used to easily track moving
objects in a fixed background.

For external RAM, only one access bus is available (are
implemented using fast static one port RAM chips), so an
arbiter is needed to manage access to RAM from video
composite capturer and AER event generator. The number of
RAM access from event generator are several times bigger than
access from video capturer, so usually RAM chips are assigned
to it, except when a new pixel is captured, that momentary
interrupts the generator.

VI. COMPARISON STUDY

A. Maximun clock frequency comparison

In this section we compare maximum clock speeds that can
be reached for each device synthesis. At Xilinx Spartan II
initial design the input clock (50MHz) is doubled by an internal
PLL (100MHz) to be used in some parts of the design in order
to improve performance. As can be seen in table II, this

100MHz clock cannot be used for the entire design because
there are some parts of the circuit that requires a slower clock.

TABLE I. MAXIMUM CLOCK SPEED

FPGA Device Synthesis tool
Maximum

Frequency

Xilinx Spartan xc2s200-6 Xilinx ISE 10.1 68 Mhz

Xilinx Virtex 5vlx30ff324-3 Xilinx ISE 10.1 203Mhz

Achronix Speedster
 ACSPD60-FBGA1892

Synopsys
Simplify PRO &
Achronix ACE

545Mhz
 a

a. Depends of extra pipeline parameter

Achronix asynchronous design claims that can easily
handle and combine different clock domains in the same
design. Anyway, in this paper we are focused just in comparing
FPGA performance for a non trivial design, which implements
a commonly used finite state machine, where state transition
requires information about input and current state information.
This minimizes pipelining capabilities because of feedback
loops but give us more realistic information about logic
performance than only feed forward process. Feed forward
clock speed can be increased just adding more and more
pipeline stages in the design that can provide to us very high
clocks speed, but it is not accompanied by real improvements
in system performance (throughput of the system), as can be
seen in table III.

TABLE II. EXTRA PIPELINING VALUES VS. CLOCK FREQUENCY

Variation of XP for clk

Extra
Pipelining a Period (ps)

Frequency
(Mhz)

0 26388.0 37.9

1 13194.0 75.79

2 6597.0 151.6

3 4398.0 227.4

4 3295.0 303.2

5 2638.0 379.0

6 2199.0 454.8

7 1884.9 530.5

8 1835.0 545.0

a. Set by “set-extra-pipeline” directive

Based on these syntheses, we have measured the number of
events per second provided by the system, to get a practical
measurement of performance. Due to internal fifos that divides
performance influence between different parts of the global
design, and influence of represented image in the number of
events sent through the AER bus, we have supposed that all
pixel has maximum activity so the number of event transmitted
are maximum.

To indicate system latency, not all design is taken into
consideration. Video composite capture is independent of event
generation algorithm. A given pixel luminosity value is not
determined by just one event transmission, and event
transmission is homogeneously distributed in time, so it is
impossible to measure latency between the moment a pixel
value is read by the system, and the instant that it is sent out.
Instead of it, latency is estimated between the moment a pixel
value is read from RAM memory, and supposing it will be
sent, the moment that the event comes out.

TABLE III. AER EVENT THROUGHTPUT

FPGA Device
Million events

per second

Estimated

latency

Xilinx Spartan xc2s200-6 17 Mev/s 140 ns

Xilinx Virtex 5vlx30ff324-3 50 Mev/s 49 ns

Achronix Speedster
 ACSPD60-FBGA1892

136Mev/s 34 ns

B. Synthesis time comparison

In this section we compare the time consumed by the
synthesis tool (synthesis software) to complete synthesis,
placement and optimization processes. In order to make
comparable these time values we have used for the three cases
the same computer (Intel Dual Core processor with 2GB
RAM). If this process is repeated on another computer with
different clock speed, or memory size, different values can be
obtained, but absolute values won’t be different. Therefore,
these synthesis times can be used as a metric to compare how
much faster is a software than the other for a fixed hardware
configuration.

TABLE IV. SYNTHESIS TIME COMPARISON

FPGA Device Synthesis tool
Synthesis

Timea

Xilinx Spartan xc2s200-6 Xilinx ISE 10.1 0’ 56”

Xilinx Virtex 5vlx30ff324-3 Xilinx ISE 10.1 2’ 26”

Achronix Speedster
 ACSPD60-FBGA1892

Synopsys
Simplify PRO &
Achronix ACE

2’ 10”

C. Resource usage comparison

In this section we compare resources usage for each FPGA
device. Resources usage is not an easy parameter to be
measured. In both, Achronix and Xilinx devices, logics are
grouped in CLB or picoPIPEs, so it is not possible to directly
extrapolate resource consumption, for example traducing the
design requirements in a standard parameter as can be number
of transistors used in each case. Even in Xilinx devices, CLB
composition varies from one family of FPGA to another. Even
knowing the number of transistor implied in each CLB, not all
logic in a CLB can be completely used due to CLB
organization, so some resources are unusable after doing
placement.

TABLE V. RESOURCE USAGE COMPARISON

FPGA Device Synthesis tool
Logic Slices

Usage

Xilinx Spartan xc2s200-6 Xilinx ISE 10.1 7% (174/2352)

Xilinx Virtex 5vlx30ff324-3 Xilinx ISE 10.1 2% (105/4800)

Achronix Speedster
 ACSPD60-FBGA1892

Synopsys
Simplify PRO &
Achronix ACE

0.42%
(196/47040)

Anyway, we consider that it can be an interesting parameter to
compare qualitatively design complexity and FPGA
capabilities to fit complex designs. It can be used as a metric
for estimating proportionally the size of a given FPGA
comparing to another, regardless the ambiguous parameter of
FPGA size given in number of CLBs or picoPIPEs available,
not knowing how big or how complex is one of these blocks. In
table IV we show the resources consumption for the same
design in these three FPGAs. It can be seen that the number of
slices used for the Virtex 5 is lower that for Sparta II, and that
Achronix requires more PicoPipes that slices in any Xilinx
FPGA.

VII. CONCLUSIONS

In this paper we have described a design based of FPGA
logic programmable device, used in spiking systems for real
time image processing. In this case, AER device described is a
synthetic AER retina emulator, used to simulate spiking retina
behavior getting as video source a standard video composite
source.

This design has been synthesized in synchronous and
asyncrhonous FPGA devices to compare their capabilities. For
that we have used two Xilinx FPGAs (Spartan II and Virtex 5
families) and an Achronix Speedster FPGA. We have used
previous mentioned design as a benchmark to compare size,
speed and capabilities of these FPGAs devices.

Achronix ACE synthesis tool error report is not as intuitive
as Xilinx is, and also, required design practices are more
restrictive that when designing for Xilinx. Anyway, this is due
that Xilinx development environment is implanted long time
ago, and currently they deployed version 13, while Achronix
has only a few years of presence in the market, and is not
widely used. Sometimes Achronix tools can crash due to
incorrectly specified designs. Anyway, when design is
correctly specified taking Achronix recommendations into
account and synthesis success, final design clock speed are
very promising. We have to take also in consideration, that
synthesis effort required to the tool to automatically translate
synchronous design to innovative asynchronous internal
architecture of asynchronous FPGA makes more complex
synthesis task.

If not using properly pipeline capabilities, Achronix
performance is not very significant, being below cheapest
Xilinx Spartan II results, but with proper tuning, obtained clock
frequency multiplies several times clock frequency obtained
with Xilinx top end families (2.5x in own case, up to 5x

claimed by Achronix). Latency time is affected by pipeline
stages, but global performance and throughput is improved.

ACKNOWLEDGMENT

This work has been supported by Spanish VULCANO
project (TEC2009-10639-C04-02) funded by the Minister of
Science and Innovation of the Government of SPAIN. We also
want to thank E-Lab from Yale University and Professor Dr.
Eugenio Culurciello for inviting us to his lab and give to us the
opportunity to use the Achronix Speedster SPD60 evaluation
board and Ken Nechamkin from Achronix Semiconductor for
their technical support.

REFERENCES

[1] P. Lichtsteiner, C. Posh, T. Delbruck., "A 128×128 120dB 15 us
Asynchronous Temporal Contrast Vision Sensor"IEEE Journal on Solid-
State Circuits, vol. 43, No 2, pp. 566-576, Feb-2008.

[2] E. Culurciello, R. Etienne-Cumming, and K.A. Boahen, " A biomorphic
digital image sensor" IEEEE journal of Solid-State Circuits, vol. 38, p
281-204, 2003

[3] V. Chan, S.C. Liu, A.van Schaik, “AER EAR: A Matched Silicon
Cochlea Pair with Address-Event-Representation Interface”. IEEE
Transactions on Circuits and Systems-I. Vol. 54, No 1. pp. 48-59. Jan-
2007.

[4] Teresa Serrano-Gotarredona, Andreas G. Andreou, Bernabé Linares-
Barranco. “AER Image Filtering Architecture for Vision-Processing
Systems”. IEEE Transactions on Circuits and Systems. Fundamental
Theory and Applications, Vol. 46, N0. 9, September 1999.

[5] Oster, M.; Douglas, R.; Shih-Chii Liu, “Quantifying Input and Output
Spike Statistics of a Winner-Take-All Network in a Vision System”
Circuits and Systems, 2007. ISCAS 2007. IEEE International
Symposium on 27-30 May 2007 Page(s):853 – 856

[6] P. Hafliger. “Adaptive WTA with an Analog VLSI Neuromorphic
Learning Chip”. IEEE Transactions on Neural Networks, vol. 18, No 2,
pp. 551-572. March-2007.

[7] R. Serrano-Gotarredona, T. Serrano-Gotarredona, A. Acosta-Jimenez, C.
Serrano-Gotarredona, J.A. Perez-Carrasco, B. Linares-Barranco, A.
Linares-Barranco, G. Jimenez, A. Civit. “On Real-Time AER 2-D
Convolutions Hardware for Neuromorphic Spike-Based Cortical
Processing. IEEE Transactions on Neural Networks, Vol. 19, No 7, pp.
1196-1219. July-2008.

[8] F. Gomez-Rodríguez, A. Linares-Barranco, L. Miró, S.C. Liu, A. van
Schaik, R. Etienne-Cummings, M.A. Lewis, “AER Auditory Filtering
and CPG for Robot Control”. ISCAS 2007.

[9] R. J. Vogelstein, R. Etienne-Cummings, N.V. Thakor, A. H. Cohen.
“Dinamic Control of Spinal Locomotion Circuits”. ISCAS 2007.

[10] Gomez-Rodriguez, F.; Paz, R.; Linares-Barranco, A.; Rivas, M.; Miro,
L.; Vicente, S.; Jimenez, G.; Civit, A.; “AER tools for communications
and debugging” Circuits and Systems, 2006. Proceedings. 2006 IEEE
International Symposium on 21-24 May 2006. ISCAS.2006.

[11] R. Paz-Vicente, A. Linares-Barranco, D. Cascado, S. Vicente, G.
Jimenez, A. Civit. “PCI-AER interface for Neuro-inspired Spiking
Systems”. ISCAS 2006. Kos, Greece.

[12] Perez-Carrasco, J.A.; Serrano-Gotarredona, T.; Serrano-Gotarredona, C.;
Acha, B.; Linares-Barranco, B.; “High-speed character recognition
system based on a complex h ierarchical AER architecture”
Circuits and Systems, 2008. ISCAS 2008. IEEE International
Symposium on 18-21 May 2008 Page(s):2150 – 2153. ISCAS.2008

[13] R. Berner, Tobi Delbrück, Antón Civit Balcells, Alejandro Linares-
Barranco. “A 5 Meps $100 USB2.0 Address-Event Monitor-Sequencer
Interface”. ISCAS 2007.

[14] R. Serrano-Gotarredona , M. Oster, P.. Lichtsteiner, A. Linares-
Barranco, R. Paz, F. Gomez-Rodriguez, H. Kolle Riis, T. Delbrück, S.C.
Liu, S. Zahnd, A.M. Whatley, R. Douglas, P. Häfliger, G. Jimenez, A.

Civit, T. Serrano-Gotarredona, A. Acosta, B. Linares-Barrancoet al.
“AER Building Blocks for Multi-Layer Multi-Chip Neuromorphic
Vision Systems”. NIPS 2005.

[15] Kwabena A. Boahen. “Communicating Neuronal Ensembles between
Neuromorphic Chips”. Neuromorphic Systems. Kluwer Academic
Publishers, Boston 1998.

[16] A. Jiménez-Fernández, A. Linares-Barranco, R. Paz-Vicente,C.D.
Luján-Martínez, G. Jiménez, A. Civit. “AER and dynamic systems co-
simulation over Simulink with Xilinx System Generator”. ICECS 2008

[17] M. Sivilotti, Wiring Considerations in analog VLSI Systems with
Application to Field-Programmable Networks, Ph.D. Thesis, California
Institute of Technology, Pasadena CA, 1991.

[18] A. Linares-Barranco, R. Paz-Vicente, G. Jimenez, J.L. Pedreño-Molina,
J. Molina-Vilaplana, J.L. Coronado et al.. “AER Neuro-Inspired
interface to Anthropomorphic Robotic Hand”. IEEE World Conference
on Computational Intelligence. IJCNN. Vancouver, July-2006.

[19] A. Jiménez-Fernández, R. Paz-Vicente, M. Rivas, A. Linares-Barranco,
G. Jiménez, A. Civil. “AER-based robotic closed-loop control system”.
ISCAS 2008.

[20] F. Gomez-Rodriguez, R. Paz, L. Miro-Amarante, Alejandro Linares-
Barranco, Gabriel Jiménez, “Two Hardware Implementation of the
Exhaustive Synthetic Aer Generation Method”. LNCS 2005.

[21] jAER software. http://jaer.wiki.sourceforge.net/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00540068006500730065002000730065007400740069006e00670073002000610072006500200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e003000200061006e00640020006d0061007400630068002000740068006500200022005200650071007500690072006500640022002000730065007400740069006e0067002000660069006c0065007300200066006f00720020005000440046002000730070006500630069006600690063006100740069006f006e002000760065007200730069006f006e00200034002e0030002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

