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A B S T R A C T

Falls are current events that can lead to severe injuries and even accidental deaths among the population,
especially the elderly. Since them usually live alone and their contact with other people has decreased
since pandemic, recent years studies have focused on automatic fall detection systems with wearable devices
using machine learning algorithms. Overall, and according to other works, these systems can be classified as
non-guided, if the machine learning model directly uses raw data without feature extraction, or as guided
systems, if a previous step of feature extraction is needed to reduce complexity of the algorithm. However, no
recommendations are made in the literature on which system could be more advantageous for detecting fall
events. Therefore, in this work, a detailed comparison between both types of systems is carried out, using the
same process for different machine learning models in order to obtain an accurate classification of activities
of daily living, falling risks, and falls. This process includes the optimization of models’ hyperparameters to
obtain the best classifiers, followed by an assessment using common evaluation metrics, confusion matrices,
ROC curves and execution times. Results show a better classification of models’ three classes for the non-guided
models. However, the guided models show more stable metrics and lower computational load.
. Introduction

Fall detection is one of the most common events related to gait
tudy. This kind of event can lead to serious injuries; but the most
angerous consequences are that these injuries sometimes persist, be-
oming chronic diseases, and, in the worst cases, they can even cause
eath. Falls are more dangerous in older people and, according to the
ast study conducted by the World Health Organization (WHO), they
re one of the main causes of morbidity and mortality among this group
f people (World Health Organization, 2021).

In this study, the W.H.O. estimates that more than 680 thousand
ortal falls happen every year worldwide; therefore, after traffic ac-

idents, falls are the main cause of death from unintentional injuries.
urthermore, falls are the cause of more than 38 million permanent life
isabilities each year, more than transport injuries, drowning, burns,
nd poisoning combined.

Among the entire population, older people are at the highest risk of
erious injury problems or death caused by falls, and this risk increases
ear by year. For example, in the United States of America, between
0 and 30% of the elderly who fall suffer more than light injuries

∗ Corresponding author at: Architecture and Computer Technology department (ATC), Robotics and Technology of Computers Lab (RTC), E.T.S. Ingeniería
nformática, Avda. Reina Mercedes s/n, Universidad de Sevilla, Seville, 41012, Spain.

E-mail address: mjdominguez@us.es (M. Domínguez-Morales).

(concussions, hip fractures, and head injuries are very common in these
cases). Psychological aspects are also very important in falls (such as
fear of falling again), not only physical problems. All of these variables
cause variations in the gait pattern, increasing the risk of falling.

Regardless of the age group of the population, after a fall occurs, a
quick response is essential to prevent the consequences from escalating.
However, in exceptional situations such as the COVID-19 pandemic
(when mobility and personal contact must be reduced) or inaccessi-
bility to a caregiver or a family member who can attend quickly (due
to living in unpopulated areas or alone), automatic falling detection
systems (FDS) become essential.

The usual response of FDSs occurs after the user has fallen, acting
as a quick intervention mechanism. However, to avoid falls-related
injuries, it is interesting to detect not only falls itself, but also the risks
of falls to detect gait problems and prevent future falls (although these
situations are much more difficult to detect) (Toraman et al., 2010;
Jackson et al., 2017; Cuevas-Trisan, 2019). Therefore, the effectiveness
of FDS must be analyzed in terms of these three common states (or
classes): activity of daily living (ADL), fall, and risk of falling.
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There are multiple types of FDS that obtain good detection results:
user’s home integrated solutions (within the scope of the ‘‘smart home’’)
by means of cameras (Huang et al., 2018; Lotfi et al., 2018), telecare
solutions with user interaction (Do et al., 2018; Sarabia-Jácome et al.,
2020), mobile applications or wearable systems (Lee et al., 2018;
González-Cañete and Casilari, 2021), among others; but only a few of
them include the detection of falling risks.

Although many people tend to spend most of their time at home, it is
also important that these systems are able to detect falls outside it. This
is why, in recent years, wearable device-based systems have become
increasingly important, mainly using the inertial sensors (such as the
accelerometer) to detect falls based on sudden variation in acceleration.
In this field, this research group has extensive experience handling
acceleration sensors in embedded systems, obtaining promising results
in previous work (Luna-Perejón et al., 2021b, 2019).

However, analyzing the accelerometer signal is not a trivial task,
since multiple activities of daily living can be mistaken for possible
falls if rapid movement is required to perform them (such as sitting in a
chair, running, or walking down a staircase). Therefore, in recent years,
machine learning (ML) techniques have been applied to implement
a fall detection system with acceptable results. However, within this
field, there are multiple possibilities to extract the characteristics that
correctly define a fall and differentiate it from other activities(such as
a falling risk or ADL).

In general, there are two clearly differentiated approaches to ma-
chine learning-based systems according on how the data is previously
treated and then processed by the AI algorithm: On the one hand,
there are systems that are trained with the raw data and are able
to automatically extract the features that best define the provided
data (at the expense of increasing the complexity of these systems),
which follow a non-guided process of feature extraction; and, on the
ther hand, there are those systems in which the developer performs
previous process of manual feature extraction in order to facilitate

he task of the classifier (at the expense of having the responsibility
f properly selecting the features), which follow a guided process of

feature extraction.
Typically, non-guided systems for time-dependent information use

recurrent neural networks with a prefixed window size, while guided
systems for time-dependent information typically use features obtained
from the frequency components of the time window (usually using the
Fast Fourier Transform or the Discrete Wavelet Transform).

There is no global consensus on which of these mechanisms is
preferable, and it is up to the researcher to use whichever one he or
she deems appropriate. Likewise, a comparison of the two types of
systems is difficult to carry out because many different casuistics are
involved: dataset used, classes classified, hyperparameters of the neural
networks, training process, evaluation metrics, etc. Therefore, to make
an accurate comparison, the same process must be followed in both
systems, and both development teams must be coordinated.

Therefore, in this work, the main novelty is to take well-known
machine learning mechanisms and propose a reliable framework which
compares the two type of systems mentioned earlier and suggest a
consensus when choosing between one system or another. For this to
be achieved, we intend to carry out a double parallel process of design,
implementation, and evaluation of two independent classifiers to detect
falls, falling risks, and ADLs using the same dataset and following the
same classifier elaboration and optimization process. Each of these
systems will follow a different methodology to extract the system
features: one of them will follow a non-guided process using recurrent
neural networks (RNNs), while the second one will follow a guided
process using the DWT (Discrete Wavelet Transform) for the extraction
of frequency components. The purpose of this study is, starting from the
same premises and following a coordinated evolution, to compare these
two types of systems in the most rigorous way possible: first, in terms of
classification accuracy and, additionally, regarding the computational

efficiency (execution time).
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Once this internal comparison has been made, the final results will
be compared with previous work carried out in recent years.

This work is structured as follows: In the next section, a search
of previous works related to FDS implementations based on wear-
able device sensors is carried out; in the third section, the tools and
methodology used to develop both machine learning systems for fall
detection are presented; then, in the fourth section, the results of the
process detailed in the previous section are shown, and both systems
are compared with each other and with previous works, and the results
obtained are discussed in detail. Finally, the conclusions obtained from
this work are presented.

2. Related works

In this section, a search for similar works is performed in order to
compare this work at the end of the manuscript. For this purpose, a
global search is performed in the most commonly used search engines
(IEEExplorer, ScienceDirect, and Google Scholar) using the following
keywords: ‘‘wearable’’, ‘‘fall detection’’, and ‘‘machine learning’’. The
resulting set of works is filtered by year, restricting this parameter to
those published from 2018 to 2021 (last four years, not taken into
account year 2022 as it does not have been finished yet); and taking
into account only those works published in international journals with
at least five citations. Preprints or arXiv/bioRxiv works waiting for
acceptance are not selected.

An initial filtering of works that necessarily include a falling risk
classification has not been considered appropriate, as there are only a
few works that include this third class. In the filtered related works,
only two of them include a third class in their classification system.
The results after the search process and the filtering of articles that
eliminate those that were not focused on a classifier design reflect the
total number of 16 works. The final selected works after the search
process are briefly presented and summarized below, but their detailed
results are included in the comparison table placed in the results section
of this work:

• Howcroft et al. (2018): in this work, a study was carried out
with a custom dataset of 75 people (28 previously classified as
fallers and 47 as non-fallers) placing acceleration sensors on the
head, pelvis, and leg. This is a guided process of extraction of
29 features by accelerometer (87 in total) with Artificial Neural
Networks (ANN) and Support Vector Machines (SVM). Although
they also used an instrumented insole with pressure sensors, the
results of this device have not been taken into account compared
to this work. It is important to note that this study considered only
a single activity repeated multiple times over six months (walking
down a straight corridor while pronouncing a series of words).

• Yoo et al. (2018): In this work, a custom dataset is used again,
which only includes five men performing seven activities (of
which only one is a fall). Using a non-guided process (raw data) in
an artificial neural network with five layers and a large number of
neurons (input layer of 525, output layer of 2, and hidden layers
of 500, 500 and 2000 neurons), the work classifies between fall
and activity of daily living (ADL) using an accelerometer placed
on the wrist.

• Putra et al. (2018): In this third article, the information contained
in two public datasets (Cogent and Sisfall) is used to differentiate
between fall and ADL using two accelerometers located in the
chest and waist. A guided feature extraction process (27 features
in total) is followed from the pre-impact (9), impact (9) and
post-impact (9) phases of the falls. The system is used with a
k-Nearest-Neighbor classification algorithm (k-NN), Linear Re-
gression (LR), and SVM to train and test the system. It is important
to note the large imbalance between the fall and ADL samples,
which results in not providing information on the accuracy of the

system but having to resort to other metrics.
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• Khojasteh et al. (2018): Using various public datasets, a guided
temporal feature extraction mechanism (8 features) from an ac-
celerometer located on the wrist is used to classify between fall
and non-fall events. Several mechanisms are used in this work,
including ANN, Decision Tree (DT), Rule-Based System (RBS) and
SVM.

• Chen et al. (2019): In this work, an assembly of 4 ANNs is used
to distinguish between a fall event and ADL, following a guided
feature extraction process with 24 temporal and 6 frequential
features (30 in total) from the signal of an accelerometer located
on the wrist. The dataset used is collected for this work with 11
participants performing 18 activities (only three of them are falls),
causing a large imbalance with only 13 falls in total.

• Rivolta et al. (2019): In this work, a study were carried out on
79 elderly people with an accelerometer placed on the chest. Due
to the danger of falling in this population, this type of activity is
not carried out but 8 ADLs are performed. Therefore, this system
performs a classification on a single class (ADL), and any event
that escapes the trained parameters is considered an anomalous
event (which could include falls). They used 21 features extracted
from the accelerometer to train two types of system: one based
on a Linear Regression Model (LRM) and the other on artificial
neural networks (ANN).

• Hassan et al. (2019): Using the combination of a Recurrent Neural
Network (RNN) and a Convolutional Neural Network (CNN),
called ConvLSTM (because of the use of LSTM recurrent units), in
this work the training and classification of a fall detection system
is carried out with data from the MobiAct dataset (collected
from the mobile phone accelerometer of 67 subjects). The input
data to the network come from the extraction of 58 temporal
features of the accelerometer. In this work, two classifications
are carried out: a two-class classification (fall and no fall) and
another classification of three classes, in which a difference is
made between falling, standing up, and lying down.

• Santos et al. (2019): In this work, three public datasets (URFD,
SmartWatch, and Notch) are used with data collected from the
accelerometer of a smartphone located in the pocket. These data
are used without extracting features (raw data) as input to a
convolutional neural network (CNN) to distinguish between fall
and ADL. It is important to mention that due to the imbalance of
the falling samples (<20%) and the small amount of data in these
datasets, this work performs a data augmentation process that
multiplies the original samples of the URFD dataset by more than
100, and by more than 10 in the case of the remaining datasets.

• Wang et al. (2020): Using data from the SisFall dataset (which
contains information from the accelerometer located at the waist),
in this work, a CNN is evaluated to distinguish between falls and
ADLs by previously extracting 13 features per axis (39 in total).

• Yu et al. (2020): In this work, a classifier based on the com-
bination of a RNN and a CNN (ConvLSTM) is used again, but
classifications are made not only with the combination, but also
with each network independently. Using raw data from the Sisfall
dataset, it is classified into three classes: fall, non-fall, and pre-
impact. Although this last class is similar to fall risk events,
the SisFall dataset does not include activities with such events,
but in this work they are generated manually as a result of the
accelerometer variation prior to the fall event.

• Jansi et al. (2020): Using the URFD dataset (with data from six
men), a simple system is carried out to distinguish between falls
and ADLs based on a threshold detection algorithm. As in other
works that use this dataset, the number of samples is very low,
including only 40 activities of daily living and 30 falls among all
participants.

• Althobaiti et al. (2020): Here, a custom dataset collected from sig-
nals from an accelerometer located in the chest of 35 participants

is used. Through a guided extraction mechanism of 72 features
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(between temporal and frequency), four activity classifiers are de-
veloped that distinguish between drop and ADL: These classifiers
are based on Linear Discriminant Analysis (LDA), Decision Tree
(DT), SVM, and ANN. It should be noted that the collected dataset
is formed by seven activities, of which only one consists of a fall
(it includes only 525 samples of falls among all participants).

• Meyer et al. (2020): On this occasion, a proprietary dataset made
up of 37 patients with multiple sclerosis (18 labeled as fallers and
17 as non-fallers) is created, in which information is collected
for six months from two accelerometers located on the chest
and thigh. With this information, a classifier system is developed
that distinguishes between falls and ADL using raw information
from accelerometers and a bidirectional recurrent neural network
(BiLSTM).

• Alarifi et al. (2021): In this work, a custom dataset is used, in
which 14 participants wear accelerometers in various parts of
the body (chest, waist, head, both wrists, and both ankles) and
perform 36 activities (of which 20 are falls). To classify the
activity between falling and ADL, a guided feature extraction
process is performed until a total of more than 1,400 features are
reached, which are part of the input of a classifier system based
on convolutional neural networks (CNN).

• Galvão et al. (2021): In this work, a classification system between
fall and ADL is used, using information from two public datasets
(URFD and UP-Fall). To do this, they carried out an extraction
process of 165 characteristics that are used to distinguish between
fall and ADL using two mechanisms: CNN and RNN. Although
this work includes, in addition to the above, a vision system to
improve fall detection, only results without the vision sensor are
used to make the comparison.

• Waheed et al. (2021): In this last work, information from the
SisFall and UP-Fall datasets is again used to design an activity
classification system that distinguishes between fall and ADL. On
this occasion, RAW information from the accelerometer and a
bidirectional recurrent neural network (BiLSTM) are used.

It can be observed that there are works that use raw information
from the accelerometers (named as unguided process), while others
extract characteristics from the accelerometer data (named as guided
process). Although this is not related to the results, it is commonly
related to the classifier used: normally, systems that use recurrent
neural networks do not include a feature extraction process, since the
recursion of the network is capable of automatically extracting features
that it deems appropriate.

For this reason and to thoroughly compare a guided system with
an unguided one, in this work, a system based on recurrent neural
networks (unguided without prior feature extraction) is used with
another based on classical artificial neural networks (guided, with prior
extraction of temporal and frequency characteristics).

The following section will detail the process performed to obtain the
classifiers presented in this work. The inner comparison between both
classifiers and the comparison with the previous works’ quantitative
results are detailed in depth in the final part of the Results section.

3. Materials and methods

This section presents the components and methodologies involved
in the development of this work. We will start by detailing the data
used to train and test the classifiers; then, we will detail the elaboration
and optimization process followed for both classifiers; and finally, the
process followed to evaluate them.
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Table 1
AnkFall dataset characteristics obtained for
each participant.
Participants Activities

ADL Risk Fall

21 4 3 4

Table 2
Final distribution for each subset using Hold-Out methodology.

Subsets Participants Activities Samples

Train 1–4, 6–7, 11–20 463 6504
Test 5, 8, 9, 10, 21 152 2219

3.1. Dataset

The dataset used in this comparative work contains data from the
3-axis accelerometer obtained from the ADXL345 sensor from 21 partic-
ipants who performed 11 different activities (4 ADL activities, 3 falling
risk activities, and 4 fall activities). It was collected in the Robotics
and Technology of Computers lab. during 2020 and published in early
2021 under the name ‘‘AnkFALL’’, because the data recorder device was
located in the ankle. This dataset is publicly available online (https:
//github.com/mjdominguez/AnkFall) (Luna-Perejón et al., 2021a). The
content of this dataset is detailed in Table 1.

To evaluate the classifiers with the information provided by this
dataset, the Hold-Out technique is applied, splitting the dataset into
two subsets: the first is used for training and the second for testing
purposes. After this distribution, in order to avoid bias, each subset
contains data from different users: among all the participants, the data
from 16 of them are randomly selected for training, leaving the data
from the remaining 5 users for testing. A 64-sample temporal window
is used for segmentation purposes, corresponding to approximately
1.28 s acquired at a frequency of 50 Hz, and a 25% sample size
shift (corresponding to 16 samples), and this approach is applied as
a data augmentation technique: So, after this process, there is a 75%
overlap of information between two consecutive time windows. The
distribution of the data is shown in Table 2.

3.2. Classification

As previously mentioned, the main focus of this work is the devel-
opment and comparison of two classifiers based on different feature
extraction techniques for fall detection using an accelerometer signal:
on the one hand, a classifier is developed that follows a non-guided
feature extraction process and whose implementation consists of a
recurrent neural network (RNN), capable of automatically extracting
temporal information from the input data; on the other hand, a classi-
fier is developed that follows a guided feature extraction process and
whose implementation consists of a classical artificial neural network
(ANN) whose input features are previously obtained from the frequency
components of the temporal data window (extracted using the discrete
wavelet transform or DWT), and also from statistical values of the
temporal information.

The choice of these two deep learning models is because the analysis
of time series information needs a system that can treat a high number
of samples. In this case, RNN models, which have a more complex
architecture, are able to analyze these amounts of data by looking
for relationships between values of the information and comparing
it with the previous time window temporally stored. On the other
hand, less complex models, as classical ANN, are a great option if
the input data is previously simplified, by analyzing the raw infor-
mation and extracting informative frequency and temporal features.
Additionally, both families of algorithms have been extensively studied

and their implementation has been highly optimized in recent years in
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Table 3
Hyperparameter values.
Batch size [16, 32, 48]

Dropout rate [0.1, 0.2, 0.3]
Neurons and layers [8, 16, 32, 8:4, 16:8, 32:16]

various frameworks, which allow their optimal integration in systems
suitable for different contexts and for different purposes, including
embedded systems of low consumption that allows portability and
increased autonomy. This fact provides a preliminary advantage over
other algorithms framed within classical machine learning. The final
goal of this work can be observed in Fig. 1.

As can be seen, one network (RNN) has a much higher complexity
than the other; although in the classical ANN network the process of
converting to frequency components and extracting features from their
coefficients is computationally expensive. It is important to clarify that
this comparison will be carried out on a level playing field:

• The same dataset will be used.
• The same split between the training set and test set shall be used.
• The same temporal window width shall be used.
• The same overlap of consecutive time windows shall be used.
• The same hyperparameters’ values shall be evaluated.
• The same number of layers shall be assessed in both architectures.
• The same optimizer shall be used for the training and using the

same optimizer metric.

Finally, the process followed to obtain the best candidate for each
type of network (which will ultimately be used in the comparison) is
as follows for both networks:

• Phase 1 - Hyperparameters adjustment: multiple trainings are
performed by varying the batch size and dropout values, as well
as various alternatives of the architecture based on the number
of layers and the number of neurons. In more detail, batch size is
the parameter that indicates the number of samples used in each
iteration of the training process before updating any parameter.
As more samples are used in each iteration, the parameters will
suffer less updates. However, very low samples used can lead to
overfitting the model. Another parameter adjusted is the dropout
value, which indicates the rate of zeroing randomly selected
neurons in each layer of the network. This is done to prevent
the model to overfit. Other hyperparameters, like learning rate,
which sets the rate of updates of the weights in each neuron, will
be set to a fixed value of 0.0005. Finally, the same alternatives
of architecture for both types of network are applied. Taking
into account the size of the original dataset, combinations of
one and two hidden layers are evaluated, with number of nodes
from 8 to 32. Table 3 shows the summary of the hyperparameter
values used in this grid search process. 57 combinations will be
evaluated for each model to obtain an optimal hyperparameter
adjustment.

• Phase 2 - Best candidates selection: the previously obtained re-
sults are discussed and the best cases are selected, which will be
used in the following phases.

• Phase 3 - Exhaustive candidate assessment: more exhaustive
tests are performed over the previously selected candidates using
different techniques to assess the robustness by using cross-
validation, and the final results are detailed and discussed using
different evaluation metrics. Moreover, the execution times are
compared too.

3.2.1. Non-guided feature extraction
We refer to non-guided extraction methods as the use of Machine

Learning algorithms that fully automate the process of extracting useful
features for classification. Thus, these models receive raw data as input,

https://github.com/mjdominguez/AnkFall
https://github.com/mjdominguez/AnkFall
https://github.com/mjdominguez/AnkFall
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Fig. 1. Work’s Graphical Abstract. Fall images obtained from AnkFall dataset (Luna-Perejón et al., 2021a).
that is, as it could be registered by an acquisition device (i.e., the three
acceleration axes taken by an accelerometer). This kind of algorithms
are included under the term of Deep Learning, which have a large
number of adjustable parameters during the training process, and this
allows the identification of complex characteristics that are not easy to
identify using traditional methods.

These types of algorithms have gained special popularity in the field
of artificial vision (Daneshjou et al., 2021; Fu et al., 2021), as well as in
the recognition and interpretation of natural language (Chatterjee et al.,
2019; Stylianou and Vlahavas, 2021), but there are also numerous stud-
ies that use them to extract information from other types of data such
as signals (Casal et al., 2021; Buongiorno et al., 2021). Its application
in complex signals whose patterns are varied and difficult to cover by
extracting specific features is especially interesting, since they can lo-
cate and take advantage of undocumented characteristics that improve
accuracy by facing a regression or classification problem (Alkhodari
and Fraiwan, 2021). Additionally, trained with a sufficiently large and
representative set of samples, these algorithms prove to be tolerant to
noise, which makes it possible to dispense with filtering phases that
consume computing time and energy, and that can eliminate relevant
features in the process (Azar et al., 2021).

One of the most studied families of Deep Learning models for
the analysis of non-periodic signals are the RNNs, whose design was
mainly conceived to extract sequential and temporal characteristics.
Specifically, gated Recurrent Neural Networks (gated-RNN) are the
most commonly used, as they have a design that favors retaining
information extracted from medium and long length sequences. Studies
have shown that these algorithms can reach high levels of precision
distinguishing between activities of daily living and falls (Farsi, 2021),
to the point of also facing the identification of events in which there is
a high risk of culminating in a fall (Luna-Perejón et al., 2019). Their
main disadvantage is their high computational complexity, although
some studies have managed to reduce the complexity of the models
5

to the point that they can be executed in real time on low-power
microcontrollers.

RNNs have layers of neurons that receive as input information
about a sequence at an instant t and previous information obtained
by analyzing the sequence at previous instants. To implement these
networks, each recurrent layer is replicated as many times as the length
of the input sequences. Classical RNNs, due to their length, suffer from
the so-called vanishing gradient problem (Hochreiter, 1998), which
does not allow the training of the first layers during the application
of the backpropagation through time algorithm (Williams and Zipser,
1995). Gated-RNNs face this problem by including memory cells in
their architecture. The memory cells store information separated, sav-
ing it over the sequence analysis procedure. The updating and use
of the information that is stored during model inference is managed
by activation functions. In the context of recurrent neural networks,
these activation functions are called gates, due to the function they
perform. Their parameters are adjustable during the training process,
so that they learn what information is important to retain to extract
appropriate characteristics from the analyzed sequence.

The main exponents of this family of RNNs are Long Short-Term
Memory (LSTM) and Gated Recurrent Units (GRU). LSTM units
(Hochreiter and Schmidhuber, 1997) includes three gateways in its
architecture to manage the stored information. To update the stored
information, two of the three activation functions are used, which
are called input and forget gates. When the input gate is activated, it
introduces new information to the memory of the cell, while the forget
gate deletes information that is no longer considered relevant for the
analysis of the rest of the sequence. The third activation function, called
the output gate, manages the information that is relevant to use for
the inference process together with the next element of the analyzed
sequence.

The set of components that a classic LSTM unit (or LSTM layer
in an specific time t) has are modeled by the following mathematical
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expressions:

𝐡𝑡 = 𝐨𝑡◦ tanh(𝐜𝑡) (1)

𝐜𝑡 = 𝐟 𝑡◦𝐜𝑡−1 + 𝐢𝑡◦�̃�𝑡 (2)

�̃�𝑡 = tanh(𝐖𝑥𝑐𝐱𝑡 +𝐖ℎ𝑐𝐡𝑡−1 + 𝐛𝑐 ) (3)

𝐟 𝑡 = 𝜎(𝐖𝑥𝑓 𝐱𝑡 +𝐖ℎ𝑓𝐡𝑡−1 + 𝐛𝑓 ) (4)

𝐢𝑡 = 𝜎(𝐖𝑥𝑖𝐱𝑡 +𝐖ℎ𝑖𝐡𝑡−1 + 𝐛𝑖) (5)

𝐨𝑡 = 𝜎(𝐖𝑥𝑜𝐱𝑡 +𝐖ℎ𝑜𝐡𝑡−1 + 𝐛𝑜) (6)

In equations above, 𝐡𝑡 (Eq. (1)) indicates the final state values that
returns the LSTM unit (or layer) in the specific time t. The cell memory,
that is, the information stored, is represented by 𝐜𝑡 (Eq. (2)). The new
information coming from the RNN (that is denoted by �̃�𝑡 in Eq. (3)) is
merged by using a hyperbolic tangent function.

Regarding the LSTM gates, both 𝐟 𝑡 (Eq. (4)) and 𝐢𝑡 (Eq. (5)) represent
the forget and input gates, respectively. Finally, the output gate (𝐨𝑡
in Eq. (6)) calculates what stored information should be used as the
output or state of the cell. These gates use the new input (𝐱𝑡) and the
previous cell state to update the new cell memory information that
should be stored.

The ◦ symbol denotes vectorial pointwise multiplication, while 𝜎
and tanh represent the classic sigmoid and hyperbolic tangent activation
functions, respectively. The described equations use different parame-
ters whose values are adjusted during the learning process. These are
called weights, and are as follows:

• Bias weights: 𝑏𝑜, 𝑏𝑐 , 𝑏𝑓 , 𝑏𝑖 ∈ 𝑅𝑁

• Input weights: 𝑊𝑥𝑜,𝑊𝑥𝑓 ,𝑊𝑥𝑐 ,𝑊𝑥𝑖 ∈ 𝑅𝑁×𝑀

• Recurrent weights: 𝑊ℎ𝑜,𝑊ℎ𝑐 ,𝑊ℎ𝑓 ,𝑊ℎ𝑖 ∈ 𝑅𝑁×𝑁

here 𝑁 and 𝑀 represents the number of cell units and inputs,
espectively.

The second Gated-RNN considered, called GRU (Cho et al., 2014),
ontain two gates, named update and reset. This kind of gated-RNNs
iffer from LSTMs primarily in that they lack an output gate, and
herefore what the cell stores in memory is completely dumped into
he neural network during the entire training process. The update cell
tores new input information and the rset gate erases data stored from
revious iterations.

The equations that rule this gated-RNN are:
𝑡 = (1 − 𝐳𝑡)◦𝐡𝑡−1 + 𝐳𝑡 ◦ �̃�𝑡 (7)

𝑡 = 𝜎(𝐖𝑥𝑧𝑥
𝑡 +𝐖ℎ𝑧𝐡𝑡−1 + 𝐛𝑧) (8)

𝑡 = 𝑡𝑎𝑛ℎ(𝐖𝑥𝑐𝐱𝑡 +𝐖ℎ𝑐 (𝐫𝑡 ◦𝐡𝑡−1)) (9)

𝑡 = 𝜎(𝐖𝑥𝑟𝐱𝑡 +𝐖ℎ𝑟𝐡𝑡−1 + 𝐛𝑟) (10)

here 𝐳𝑡, 𝐫𝑡 represents the update and reset gates results, respectively.
t can be seen that these cells have fewer weight parameters.

In this work, four different main RNN architectures are proposed,
ifferentiated by the type of RNN layers used and the number of layers.
hus, the established architectures contain either one LSTM layer, one
RU layer, two LSTM layers, or two GRU layers (see Fig. 2). For each
ombination considered, a varied number of neurons were assessed
see Table 3). For those architectures with a single recurrent layer,
ariations with 8, 16, and 32 neurons in those layers were tested. For
hose architectures with two recurrent layers, the number of neurons
hat were analyzed in the first layer were also 8, 16 and 32, while the

umber of neurons in the second layer was half that of the previous

6

Fig. 2. Summary diagram with the RNN architectures considered in this study.

layer. To combine two consecutive recursive layers, the partial results
of the first layer, that is, the resulting states of each recursive unit at
each instant t (𝐡𝑡𝑓 𝑖𝑟𝑠𝑡_𝑙𝑎𝑦𝑒𝑟), must be used as inputs of each recursive unit
of the second layer 𝐱𝑡𝑠𝑒𝑐𝑜𝑛𝑑_𝑙𝑎𝑦𝑒𝑟, for the corresponding instant t.

To complete each architecture it is necessary to include additional
layers. First, the inputs layers consist of sequences of 64 × 3 samples,
corresponding to the 64 temporary samples, each one composed of
the values of the three acceleration axes. Second, they all have a
dense or fully connected layer of three neurons as output layer for the
classification of three classes (that is, ADL, RISK and FALL) combined
with a softmax activation function to normalize the outputs.

Finally, we provide each architecture with two complementary
operational layers. In first place, an initial batch normalization layer
is used, which normalizes the value of the samples with respect to
each batch used during training. This technique has been tested in
studies and has been found to facilitate the convergence of trained
model (Ioffe and Szegedy, 2015). In second place, dropout was applied
in each recurring layer, which randomly drops a random percent-
age of input connections to the layer (Hinton et al., 2012). In this
study three dropout values were analyzed ( Table 3), as well as three
batch size values. Both techniques are used only during the training
of each model, the first to improve convergence and the second to
combat overtraining. In addition, a loss function weighted inversely
proportional to the number of samples of each class is used. With
the use of this function during the training of the models, the error
in the classification of a sample belonging to minority classes (that
is, FALL or RISK) in the dataset has greater relevance than an error
in the classification of a sample of the most abundant class (ADL).
Previous studies have verified the effectiveness of these techniques in
this gated-RNN architectures (Torti et al., 2019; Luna-Perejon et al.,
2019).

3.2.2. Guided feature extraction
Guided extraction attempts to simplify the task of the classifier by

adding a previous step to the implementation of Machine Learning
models. In this way, the key step in the guided process is the feature
extraction procedure. Features are the variables that form the input of
the computational model, and they can be obtained from the raw data,
but it is essential to extract the correct set of features so that a successful
classification can be obtained (Jia et al., 2022). Through this process
of feature extraction, most of the information of raw data is preserved,

while the algorithm have a lighter processing. Moreover, by extracting
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features, the effects of redundant or irrelevant information is overcome,
obtaining a new feature space that can effectively be used to establish a
reliable correlation between input data and the output classes. Besides,
by adding this previous step of extraction, the computational load of
the Machine Learning model can be reduced significantly (Syed et al.,
2021).

As stated above, it is essential to extract adequate features, since
they are the main factor conditioning the success of any subsequent
Machine Learning endeavour (Guyon and Elisseeff, 2006). In the last
years, different methods have been developed to extract the best fea-
tures from raw data, obtaining time-domain features, frequency-domain
features or even time-frequency domain features. Some previous works
have shown that frequency features can achieve better performance
than those extracted from the time domain (Braccesi et al., 2015; Hertel
et al., 2016; Too et al., 2017). To obtain frequency-domain features, the
original data has to be decomposed in its frequency information, which
is usually obtained using Discrete Fourier Transform (DFT). However,
with physiological signals, as in the case of the acceleration signal used
in this work, the periodicity is non-stationary, so it is more accurate
to obtain the frequency information in time. The Discrete Wavelet
Transform (DWT) is often used as a signal decomposition in time-
frequency domain, conducting a feature extraction from the raw data in
time domain and frequency domain (Varuna Shree and Kumar, 2018;
Ji et al., 2019). On the other hand, several studies have also shown that
using only temporal features for acceleration signals can achieve good
classification results (Yang, 2009; Arif, 2015).

Having these two possibilities for the acceleration data, the pos-
sibility of combining both frequency and time-domain features seems
to be the right solution according to previous works. In particular, in
the scope of gait analysis and activity recognition, where the original
data consists of acceleration signals, previous works have studied the
combination of both types of features, achieving even more accurate
results when classifying between different events (Althobaiti et al.,
2020; Zhao et al., 2020). Following this purpose, in this work we
extracted features in both domains. On the one hand, frequency-domain
features are the fraction of energy of the DWT decomposition coef-
ficients versus total energy. This characteristic is also called energy
distribution, and with this feature some studies have obtained high ac-
curacy classification results (Ayrulu-Erdem and Barshan, 2011; Moran
et al., 2015), but also by combining it with the normalized variance of
each DWT coefficient (Mitchell et al., 2013). On the other hand, time-
domain features are common spatial statistical metrics obtained from
acceleration data (Althobaiti et al., 2020). In the following point, the
signal decomposition with DWT and the feature extraction process will
be detailed.

A wavelet is a wave oscillation which has two main properties: scale
and location. The scale is related to the wave frequency, while the
location defines the temporal position of the wave (Sekine et al., 1998).
Thus, the wavelet decomposition obtains the frequency information of
the signal as well as its spatial location. As mentioned previously, this
is very useful in non-stationary signals, like acceleration.

Going deeper in the explanation, the wavelet decomposition pro-
cedure consists of two main steps. On the one hand, it performs a
scalar product between the original signal and a discrete wavelet basis,
known as the mother wavelet, obtaining the approximation coefficients
of the decomposition. On the other hand, it performs the scalar product
between the original data and a father wavelet, which results in the
detail coefficients (Chakraborty and Nandy, 2020). In practice, this
explanation is implemented as a filter bank composed of levels of low-
pass filters, to obtain approximation coefficients, and high-pass filters,
which obtain detail coefficients. After the first level of decomposition,
approximation coefficients are downsampled through the same process
obtaining wavelet coefficients of the second level, and this consecu-
tively until the last level of decomposition is reached. Finally, the DWT
obtains one vector of approximation coefficients, 𝐴𝑖, and a set of detail
coefficient vectors, 𝐷1, 𝐷2,… , 𝐷𝑖, where 𝑖 is the chosen decomposition

evel (Songra et al., 2011). a

7

In this way, the mother wavelet is going to establish the properties
f the DWT, so it is necessary to choose the correct one, as well as
he order of the decomposition. In the literature, there are no specific
ethods to choose the mother function. In this work, we have selected
aubechies wavelet of third-order level decomposition (db3), since it
as a finite number of parameters, it enables fast implementation and
igh compressibility (Bruce et al., 2002).

The signal is now transformed in time-frequency domain and the
ext step is the reduction of the wavelet coefficients dimension. This is
one through the feature extraction process, which are the energy dis-
ribution of each coefficient vector. The energy distribution is obtained
s the ratio of the coefficient vector to the total energy of all coefficient
ectors. Thus, 𝐸𝑇 represents the total energy at the 𝑖th level; 𝐸𝐷𝑅𝐴

stands for the energy distribution of the low frequency coefficients at
the 𝑖th level, and 𝐸𝐷𝑅𝐷𝑗

is the energy ratio of the 𝑗th vector of high
frequency coefficients, where 𝑗 = 1,… , 𝑖. The equations defining the
energy ratios are the following (Ayrulu-Erdem and Barshan, 2011):

𝐸𝑇 = 𝐴𝑖𝐴
𝑇
𝑖 +

𝑖
∑

𝑗=1
𝐷𝑗𝐷

𝑇
𝑗 (11)

𝐸𝐷𝑅𝐴 =
𝐴𝑖𝐴𝑇

𝑖
𝐸𝑇

(12)

𝐸𝐷𝑅𝐷𝑗
=

𝐷𝑖𝐷𝑇
𝑗

𝐸𝑇
(13)

Combining these energy features with the normalized variances of
each wavelet coefficient vector can result in more information obtained
from the original data (Mitchell et al., 2013). Since the movement
of each participant is measured with a tri-axial accelerometer, the
third-order DWT is applied to each axis, obtaining one approximation
coefficient vector, 𝐴3, and three detail coefficient vectors, 𝐷1, 𝐷2, 𝐷3,
for every axis. Thus, the energy distribution and the normalized vari-
ance are calculated for each vector, having 24 frequency features ([4
energy distributions + 4 variances] 𝑥 3 axis).

As mentioned earlier, the frequency features are also combined
with time-domain features. The latter are obtained as statistical metrics
calculated for each accelerometer axis, 𝑥, 𝑦 and 𝑧. The metrics are
the mean (𝜇), variance (𝜎2), standard deviation (𝜎), root-mean-square
(𝑟𝑚𝑠), skewness (𝑠𝑘𝑒𝑤) and kurtosis (𝑘𝑢𝑟𝑡). They are given by the
following equations (Althobaiti et al., 2020):

𝜇(𝑎) = 1
𝑁

𝑁
∑

𝑖=1
𝑎𝑖 (14)

𝜎2(𝑎) = 1
𝑁

𝑁
∑

𝑖=1
(𝑎𝑖 − 𝜇(𝑎))2 (15)

(𝑎) =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝑎𝑖 − 𝜇(𝑎))2 (16)

𝑟𝑚𝑠(𝑎) =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
𝑎2𝑖 (17)

𝑠𝑘𝑒𝑤(𝑎) = 1
𝑁𝜎3

𝑁
∑

𝑖=1
(𝑎𝑖 − 𝜇(𝑎))3 (18)

𝑢𝑟𝑡(𝑎) = 1
𝑁𝜎4

𝑁
∑

𝑖=1
(𝑎𝑖 − 𝜇(𝑎))4 (19)

here 𝑎 = 𝑥, 𝑦, 𝑧 and 𝑁 is the number of samples. Finally, in the guided
xtraction process, we have extracted 18 temporal features (6 features
3 axis) and 24 frequency features, having a set of 42 features that
ill form the input data of the Machine Learning model.

The model implemented after the process of feature extraction is
oing to classify this input data into three possible classes: activities
f daily living (ADL), falling risk events, and fall events. Taking into
ccount the previous steps of data preprocessing and extraction, an
ccurate prediction can be made with a simpler classifier. In this work,
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Fig. 3. MLP architecture with (A) one hidden layer and (B) two hidden layers.
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we implemented a classical artificial neural network (ANN) based on a
multilayer perceptron neural network (MLP).

With this classifier, we can obtain great computational efficiency,
since it is simpler than other Machine Learning models, as well as a
good classification accuracy. For this purpose, the best MLP architec-
ture has to be implemented, but we need to search for the optimal
parameters. This process will be detailed in the next section. Intro-
ducing this step, the MLP will have some basic components. Firstly,
the architecture will be composed of one input layer, consisting of 42
frequency and temporal features; one output layer, with three neurons
that are the possible events to classify; and, finally, between both
layers, the hidden layer. In the latter, the number of neurons is variable,
looking for the best one, both for one hidden layer and two hidden
layers. The basic MLP architecture is shown in Fig. 3-A for one hidden
layer and 𝑛 possible neurons, and in Fig. 3-B for two possible neurons
and 𝑛 and 𝑚 number of neurons.

The MLP classifier also has fixed hyper-parameters and functions.
For the activation functions, a rectified linear function (ReLu) is applied
to both the input and hidden layers; while in the output layer a Softmax
function is used, which is usually applied for multi-class classification.

3.3. Evaluation

To evaluate the effectiveness in the classification results of a classi-
fier, the most common metrics are used: accuracy (most-used metric),
sensitivity (known as recall in other works), specificity, precision, and
F1𝑠𝑐𝑜𝑟𝑒 (Sokolova et al., 2009). To this end, the classification results
obtained for each class are tagged as ‘‘True Positive’’ (TP), ‘‘True Neg-
ative’’ (TN), ‘‘False Positive’’ (FP) or ‘‘False Negative’’ (FN). According
to them, the high-level metrics are presented in the next equations:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑

𝑐

𝑇𝑃𝑐 + 𝑇𝑁𝑐
𝑇𝑃𝑐 + 𝐹𝑃𝑐 + 𝑇𝑁𝑐 + 𝐹𝑁𝑐

, 𝑐 ∈ 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 (20)

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
∑

𝑐

𝑇𝑃𝑐
𝑇𝑃𝑐 + 𝐹𝑁𝑐

, 𝑐 ∈ 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 (21)

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 =
∑

𝑐

𝑇𝑁𝑐
𝑇𝑁𝑐 + 𝐹𝑃𝑐

, 𝑐 ∈ 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 (22)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
∑

𝑐

𝑇𝑃𝑐
𝑇𝑃𝑐 + 𝐹𝑃𝑐

, 𝑐 ∈ 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 (23)

𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

. (24)

About those metrics:

• Accuracy: all samples classified correctly compared to all samples
(see Eq. (20)).

• Sensitivity (or recall): proportion of values classified as ‘‘true
positive’’ that are correctly classified (see Eq. (21)).

• Specificity: proportion of values classified as ‘‘true negative’’ that
are correctly classified (see Eq. (22)).

• Precision: proportion of values classified as ‘‘true positive’’ in all
cases that have been classified as it (see Eq. (23)).
8

• F1𝑠𝑐𝑜𝑟𝑒: It considers two of the main metrics (precision and sen-
sitivity), calculating the harmonic mean of both parameters (see
Eq. (24)).

The above metrics are common to all ML/DL systems; but there are
ther commonly used metrics in diagnostic systems; this is the case of
he ROC curve (Receiver Operating Characteristic) (Hoo et al., 2017),
ecause it is the visual representation of the True Positives Rate (TPR)
ersus the False Positives Rate (FPR) as the discrimination threshold is
aried. Usually, when using the ROC curve, the area under the curve
AUC) is used as a value of the system’s goodness-of-fit.

Therefore, the classifier systems developed in this work will be
valuated according to all the metrics detailed in this subsection.
owever, for internal benchmarking, in addition to the classification
ccuracy and the various metrics derived from it, a comparative study
f execution times will be carried out. For this, both classifiers will
e run on the same machine for multiple iterations; and the average
esult will be denoted as the system runtime. Once these times have
een obtained, a comparison will be made based on the acceleration
btained:

𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇 𝑖𝑚𝑒𝑠𝑙𝑜𝑤𝑒𝑟
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇 𝑖𝑚𝑒𝑓𝑎𝑠𝑡𝑒𝑟

(25)

The acceleration result determines the execution speed of the faster
classifier with respect to the slower classifier. Subtracting 1 from the
acceleration result gives the exact percentage improvement.

4. Results and discussion

This section shows the results of designing and training both classi-
fiers following the three phases previously detailed. Then, the internal
comparison between both classifiers is presented, distinguishing be-
tween the classification results and the execution times achieved by
both systems. Finally, a comparison including the classifiers designed
in this work and the classifiers implemented in the works detailed in
Section 2 is shown and their results discussed.

4.1. Non-guided system

Starting with the classifiers developed in this work, we first present
the system with a non-guided feature extraction process (RNN) in all
its optimization phases.

4.1.1. Phase 1
The results obtained in this first phase with the RNN architectures

considered (see Tables 4–7) show a slight improvement in accuracy
with increasing the dropout value.

However, relating these results in combination with the variation of
other hyperparameters, there is no evidence that it is a very influential
factor in improving the model. On the other hand, small batch size
values seem to have a greater impact on obtaining a more accurate
value.
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Table 4
Non-guided system — Phase 1. Grid search results for architectures with 1 LSTM layer.

Nodes per layer Batch size Dropout

0.1 0.2 0.3

Train Test Train Test Train Test

Acc Loss Acc Loss Acc Loss Acc Loss Acc Loss Acc Loss

16 83.66 0.7180 86.74 1.2899 83.66 0.7473 88.40 1.2763 78.63 1.0785 89.40 0.9831
8 32 81.93 0.8727 88.53 1.0191 81.70 0.8289 88.96 0.8286 81.25 0.9087 90.13 0.8784

48 85.84 0.6608 86.66 1.2654 81.12 0.9031 87.79 1.0108 83.15 0.8399 88.57 0.8696

16 86.23 0.6210 87.92 1.1044 87.39 0.5802 88.74 1.1855 81.40 0.9415 89.14 1.0661
16 32 83.48 0.7075 89.92 1.4007 88.60 0.4920 90.13 0.8976 89.05 0.4930 88.83 1.1068

48 92.94 0.3228 88.35 0.9859 90.20 0.4405 88.27 1.5447 81.03 0.8949 87.92 0.8923

16 94.19 0.2539 90.70 1.8703 95.52 0.2092 90.35 1.7410 94.86 0.2169 90.44 1.5402
32 32 95.28 0.2089 90.44 1.8797 95.07 0.2017 89.74 1.5543 92.94 0.3150 89.96 1.5440

48 96.30 0.1483 89.79 2.2084 96.13 0.1734 90.09 1.9165 89.25 0.4597 90.00 0.9842
Table 5
Non-guided system — Phase 1. Grid search results for architectures with 1 GRU layer.

Nodes per layer Batch size Dropout

0.1 0.2 0.3

Train Test Train Test Train Test

Acc Loss Acc Loss Acc Loss Acc Loss Acc Loss Acc Loss

16 80.03 0.8148 88.40 1.1944 80.58 0.8758 89.44 0.9051 81.05 0.8531 88.09 1.3508
8 32 79.13 0.9975 87.79 1.0182 82.78 0.7946 87.96 1.0972 82.46 0.8136 88.66 1.4358

48 85.60 0.6742 86.53 1.0605 81.63 0.8544 89.44 0.9601 82.00 0.8429 89.05 0.9218

16 90.04 0.4304 88.61 1.1488 89.78 0.4304 86.57 1.3152 83.94 0.7528 87.05 1.2589
16 32 86.57 0.6021 89.00 1.0298 90.98 0.4012 89.31 1.5606 89.66 0.4682 90.57 1.1201

48 91.86 0.3680 87.87 1.2811 82.78 0.8071 87.96 0.8329 82.30 0.8034 89.14 0.9314

16 95.41 0.1995 90.40 1.6722 95.89 0.1847 90.48 2.2336 93.59 0.2776 89.74 1.4615
32 32 97.21 0.1238 89.66 2.0697 95.82 0.1930 88.14 1.9251 96.15 0.1803 89.66 1.8874

48 97.03 0.1293 89.66 2.7663 95.22 0.2086 87.48 1.8410 95.61 0.2305 90.05 1.8588
Table 6
Non-guided system — Phase 1. Grid search results for architectures with 2 LSTM layers.

Nodes per layer Batch size Dropout

0.1 0.2 0.3

Train Test Train Test Train Test

Acc Loss Acc Loss Acc Loss Acc Loss Acc Loss Acc Loss

16 86.20 0.6297 86.70 1.1100 82.54 0.8135 86.61 1.2958 78.63 0.9641 89.27 1.1179
8:4 32 88.69 0.5295 86.27 0.8911 87.32 0.6489 88.05 1.4167 78.00 1.0697 88.87 1.0304

48 81.81 0.8389 88.35 1.0920 86.36 0.5937 87.35 1.9222 80.60 0.9328 89.14 1.2458

16 92.16 0.3392 90.79 1.6025 87.35 0.5334 90.48 1.3837 91.74 0.3635 90.96 1.5639
16:8 32 90.13 0.3772 88.53 1.1690 89.42 0.4485 88.57 1.5561 89.01 0.5203 90.09 0.9423

48 92.01 0.3507 87.87 1.7677 87.32 0.5894 85.61 1.4187 92.70 0.3241 86.22 1.9310

16 96.71 0.1520 90.96 2.4734 96.59 0.1284 90.87 2.3486 96.19 0.1768 91.13 1.8252
32:16 32 97.52 0.0988 90.09 2.4961 96.21 0.1763 91.05 1.7024 96.03 0.1841 91.35 1.6952

48 96.47 0.1591 90.92 1.8892 96.19 0.1547 90.18 1.8858 98.15 0.0853 89.74 2.3558
Table 7
Non-guided system — Phase 1. Grid search results for architectures with 2 GRU layers.

Nodes per layer Batch size Dropout

0.1 0.2 0.3

Train Test Train Test Train Test

Acc Loss Acc Loss Acc Loss Acc Loss Acc Loss Acc Loss

16 84.85 0.6403 88.18 1.7039 83.51 0.8214 88.44 1.0786 78.58 1.0225 88.92 1.1955
8:4 32 86.14 0.6224 87.61 0.8836 81.31 0.7789 87.44 0.9486 82.15 0.8294 86.66 1.3443

48 84.48 0.6813 87.48 1.2833 83.53 0.7775 88.01 1.6160 80.28 0.9188 90.13 0.8892

16 89.02 0.4609 89.70 1.5183 90.19 0.4214 89.35 1.6453 86.15 0.6806 89.57 1.0542
16:8 32 86.93 0.5904 89.79 1.1317 90.58 0.4395 90.87 1.2282 89.78 0.4769 89.74 1.2994

48 83.66 0.7212 88.61 0.8340 94.31 0.2437 90.27 1.4280 92.74 0.3574 88.40 2.1374

16 96.15 0.1661 90.44 1.6046 95.80 0.1847 91.44 1.8753 95.89 0.1785 90.53 2.1071
32:16 32 97.85 0.1104 90.83 2.1141 96.19 0.1576 90.83 2.3292 96.34 0.1719 89.66 2.7514

48 98.10 0.0842 90.27 1.7973 97.34 0.1268 89.14 2.1646 96.19 0.1615 90.40 2.1886
The increase in the number of nodes is the factor that most pos-
tively affects the accuracy during training. This increase in accuracy
9

is less significant on the test set, although in general it still implies
an improvement. However, the value of the loss suffers an increase.
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Table 8
Non-guided system — Phase 2. Results obtained for the best candidates.

Model Nodes Batch size Dropout Train Test

Acc Loss Acc Loss

LSTM 1 layer 32 16 0.1 94.19 0.2539 90.70 1.8702
GRU 1 layer 16 32 0.3 89.66 0.4682 90.57 1.1201
LSTM 2 layers 32 32 0.3 96.03 0.1841 91.35 1.6952
GRU 2 layers 32 16 0.2 95.80 0.1847 91.44 1.8953

It is necessary to remember at this point that the loss function used in
these models is weighted to combat the tendency of these architectures
to focus on classifying the classes with the largest number of samples.
Therefore, the balanced accuracy of the model seems to decrease as the
number of nodes increases. Even so, given that the criterion established
in this study to select the best candidate model has been focusing on
the accuracy of the system, it was decided to investigate this aspect in
later stages.

Regarding the models with a single LSTM layer, those with only 8
nodes reach an accuracy greater than 86% on the training set. With 16
and 32 nodes, the accuracy does increase considerably, reaching values
above 96% in cases with 32 nodes. The increase in precision over the
test set is not so notable, however, in general terms, a greater inference
effectiveness is appreciated with the increase in the number of nodes.

The results obtained with models with a single GRU layer are similar
to the LSTM models. On the training set, a slightly greater gain in
precision is observed when increasing the number of nodes, but not on
the test set. Like the single-layer LSTM models, the highest accuracy
over the test set is over 90.5%.

Regarding the models consisting of two LSTM layers, those with the
lowest number of evaluated nodes have lower accuracy results on the
training set compared to the single-layer RNN models. However, more
complex models in terms of the number of neurons obtain a significant
improvement in accuracy, reaching values above 98%. The accuracy
achieved on the test set of the more complex models is also slightly
higher, exceeding 91%. As occurs with the set of previous models,
although the accuracy increases, there is also an increase in the value
of loss, which may lead to a reduction in the weighted accuracy.

Finally, the results obtained with models composed of two GRU
layers show precision and loss values very similar to the models that
consist of the other type of recurring nodes, the improvement in pre-
cision being again remarkable as the number of nodes increases but
increasing the loss.

4.1.2. Phase 2
Table 8 shows the best models obtained in terms of precision with

respect to the test set, which are used in the subsequent phases as
candidates for each non-guided architecture considered. As already
mentioned, in general, the number of nodes is the parameter that
most influences the improvement of the model’s accuracy. Except for
the one-layer GRU model, all other candidates have 32 nodes in their
first recurrent layer. Note that although this model has less precision
than the rest, it is also the one with the lowest loss value among all
candidates.

4.1.3. Phase 3
Cross-validation results. The results obtained when analyzing the ar-
hitectures with cross-validation with the parameters chosen in the
econd phase are illustrated in Table 9. In general terms, the average
recision obtained is less than that resulting from applying Hold-Out.
ith some folds, the accuracy obtained has improved, but with other

ombinations this metric has reduced its value considerably in relation
o the results of the first phase. As a whole, the results show a high
tandard deviation, revealing that the effectiveness of these models is
trongly influenced by the subset of data used for training. This result
10
is probably a consequence of the use of the loss function used to obtain
a better balanced precision on the classes.

Focusing on the results for each fold, we appreciate that on folds 3
and 6, greater precision is achieved on the test set than on the training
set. This seems to indicate that the training set has more complex
samples to be assimilated by this type of model, but it extracts common
key characteristics that manage to cover a greater number of events in
the test set. On fold 7, the worst results are obtained, more remarkable
in models with a single recurring layer. In these two models, it has been
observed that the number of true positives in the FALL and RISK classes
increases, but so does the number of false negatives in the ADL class,
in which there is a greater number of samples, which has a negative
impact on the accuracy of the model.

Focusing on the cross-validation results for each model, we observe
that those with two recurrent layers achieve a higher mean precision
and a lower standard deviation, which reveals greater independence
from the training data set used. The model composed of a single GRU
layer presents the lowest precision values on average, which is a con-
sequence of favoring the classification of the RISK and FALL samples,
less abundant, to the detriment of the ADL class, with a greater number
of samples. The model with one LSTM layer has an average precision
value close to that obtained with the models with two recurring layers,
but a standard deviation close to 10, which is mainly due to the low
precision resulting from fold 7, in which it has been obtained a high
number of False Negatives of the ADL class.

Metrics. Table 10 shows the effectiveness metrics of each candidate
model. It can be seen that the models with the highest number of neu-
rons and layers obtain the best performance in terms of effectiveness.
These results agree with the theoretical foundations, since a greater
complexity of the architecture is capable of extracting a greater number
of characteristics from the obtained dataset. However, an excessive
increase in complexity produces an overfitting of the model to the
particular characteristics of the samples that make up the training set.
The use of techniques that combat this overtraining favors performance.
It can be seen that three of the four best models obtained have the
highest dropout value used in the study, which agrees with what was
previously stated.

Focusing on metric results, with respect to sensitivity (recall), all
models present macro values around 0.79 and 0.81. We can see that this
metric has very high values by focusing on the ADL and FALL classes,
revealing that the models are effective in identifying these events and
produce few false negatives for each class. However, this same metric
presents very low values focusing on the RISK class, that is, the ratio
of identified risk events is very low, being classified instead as daily
life activity events or falls. This low value is responsible for reducing
the sensitivity of the model in macro terms. These results are similar
to those obtained in previous works (Luna-Perejón et al., 2019) and it
is mainly due to two reasons: firstly, some of these events exert little
acceleration and it is easily confused with ADL performed with greater
intensity during movement, and secondly, the short duration of these
events implies that segments corresponding to falls and ADL events
often appear in the time windows taken, which makes model training
more difficult.

Regarding the specificity measure, macro values above 0.93 are
obtained for all classes. The largest error in this metric is related to
the ADL class, which has values between 0.84 and 0.88 approximately,
which reveals that when these models fail to classify, they tend to
classify risky activities and falls as activities of daily living. On the
other hand, the values of this metric are very high for the RISK class,
indicating that these models do not tend to generate false positives
for this class. For the FALL class, this metric also has a high value,
indicating that few activities of daily living and risk events are classified
as fall events. These results are consistent taking into account that for
the training of this type of models a loss function has been used that
gives a higher value to the success in classes with fewer samples.
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Table 9
Non-guided system — Phase 3. Cross-validation study with the best candidates obtained from the previous phase: [Model1] LSTM 1 layer; [Model2] GRU 1 layer; [Model3] LSTM
2 layers; [Model4] GRU 2 layers.

fold1 fold2 fold3 fold4 fold5 fold6 fold7 TOTAL

Train Test Train Test Train Test Train Test Train Test Train Test Train Test Mean𝑡𝑟𝑎𝑖𝑛 Mean𝑡𝑒𝑠𝑡 STD𝑡𝑟𝑎𝑖𝑛 STD𝑡𝑒𝑠𝑡

Model1 94.88 84.31 92.90 88.42 93.56 92.63 93.17 91.00 92.57 90.26 88.08 93.16 83.79 63.07 91.28 86.12 3.63 9.80
Model2 80.62 79.77 80.71 84.19 87.49 92.48 84.51 83.36 89.23 87.55 82.57 90.85 82.29 76.56 83.92 84.97 3.09 5.32
Model3 95.49 83.52 93.63 84.54 91.40 93.46 93.99 91.64 93.73 89.13 93.91 94.18 79.71 88.02 91.69 89.21 5.02 3.86
Model4 96.87 84.39 92.96 85.58 93.66 94.44 95.28 91.16 95.19 89.74 91.81 94.18 80.70 84.63 92.35 89.16 5.00 4.03
Table 10
Non-guided system — Phase 3. Metrics for the best candidates (Hold- Out).
Model Params Metrics

Nodes Batch size Dropout Accuracy Class Specificity Precision Sensitivity f1-score

LSTM 1 layer 32 16 0.1 90.70

ADL 0.8414 0.9263 0.9547 0.9402
RISK 0.983 0.7806 0.5628 0.6541
FALL 0.9673 0.8919 0.9167 0.9041
macro 0.9306 0.8663 0.8114 0.8329

GRU 1 layer 32 16 0.3 90.57

ADL 0.8526 0.9306 0.948 0.9392
RISK 0.984 0.7852 0.5442 0.6429
FALL 0.9574 0.8653 0.9306 0.8967
macro 0.9313 0.8604 0.8076 0.8263

LSTM 2 layers 32:16 32 0.3 91.35

ADL 0.8776 0.9418 0.9493 0.9455
RISK 0.9870 0.8030 0.4930 0.6110
FALL 0.9399 0.8201 0.9365 0.8749
macro 0.9349 0.8552 0.7930 0.8105

GRU 2 layers 32:16 16 0.2 91.44

ADL 0.8484 0.9297 0.9607 0.9449
RISK 0.9905 0.8593 0.5395 0.6629
FALL 0.9569 0.8614 0.9127 0.8863
macro 0.9319 0.8835 0.8043 0.8314
Focusing on the results of the precision metric, the macro values are
round 0.85 and 0.88. The class with the highest value in this metric is
DL, which indicates that the number of risk and fall events classified
s ADL is very low in relation to the number of correctly classified daily
ife activity samples. This result is common when the dataset used for
raining is unbalanced. The larger number of samples of the ADL class
educes the influence of false positives in this class. For the RISK and
ALL classes, the values obtained in this metric are more varied, but
n general, better results are obtained with fall events than risk events.
he best precision value for fall events is obtained by the model of an
STM layer.

The f1-score metric is similar in all candidates, but the highest
alue is achieved with the one-layer LSTM model due to the fact that
t obtains the most balanced values of the sensitivity and precision
etrics.

The confusion matrices (Fig. 4) reveal the behavior of the trained
odels in more detail. As verified from the sensitivity results, the
odels have difficulty classifying fall risk events. However, the model
ith a single LSTM layer achieves a much higher success rate on risk
vents than other models, thus obtaining the most balanced results as
classifier of the three classes considered in the study. However, this
odel is also the one that obtained the lowest percentage of success in

he other two classes (ADL and FALL) among all non-guided training
odels.

Confusion matrices also reveal that the highest percentage of un-
dentified risk events are instead classified as activities of daily living.
n the other hand, it can be seen that there is a percentage of between
% and 8% of fall events mistakenly classified as daily life activity
vents.

ROC curves (Fig. 5) show AUC values greater than 0.90 for all mod-
ls and for all classes. The four candidate models exceed the AUC value
f 0.97 for the FALL class, revealing a high reliability in the models
lassifying fall events. For the ADL class, the AUC values exceed 0.94.
egarding the ROC curve of the ADL class, compared to the FALL one,
response is perceived in the sensitivity value that is more conditioned

o the increase in specificity, which may be due to the greater variety
f different events that exist in daily living activities, as opposed to
11
Table 11
Non-guided system — Phase 3. Execution times (in s).

Model CPU Intel i7-10700K @ 3.80GHz GPU
(GeForce GTX 1080Ti)

Mean SD Mean SD

LSTM 1 layer 2.34E−02 4.13E−04 3.51E−03 2.48E−04
GRU 1 layer 2.78E−02 3.17E−04 3.31E−03 9.73E−05
LSTM 2 layers 4.67E−02 7.45E−04 5.81E−03 1.34E−04
GRU 2 layer 5.52E−02 7.96E−04 5.28E−03 1.42E−04

fall events. Finally, the ROC curves of the RISK class are much less
pronounced, which reveals the greater difficulty in identifying these
events, discriminating them from events of the other two categories.
Even so, the reported AUC values are remarkably high.

Execution times per inference. Models with two recurring layers double
the execution times using CPU. This time difference is smaller using
GPU. The results obtained show that the models based on RNN take
advantage of the computational potential of the GPU to obtain shorter
execution times than using the CPU. With the hardware resources used,
times between five and nine times shorter are obtained and shown in
Table 11.

4.2. Guided system

After presenting results of non-guided models, in this section the
system with a guided feature extraction process (MLP) in all its phases
is shown.

4.2.1. Phase 1
For the guided system, the results obtained in the hyperparameters

adjustment phase are shown in Tables 12–13. In general, the variation
in the dropout value leads to significant changes in the accuracy: for
a small dropout value, more accurate results are reached, both for the
train set and the test set. The combination of this hyperparameter with

the number of neurons and the batch size will get higher values of
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Fig. 4. Confusion matrices for best RNN models obtained from Hold-Out.

Fig. 5. ROC curves for best RNN models obtained from Hold-Out.

12



E. Escobar-Linero, F. Luna-Perejón, L. Muñoz-Saavedra et al. Engineering Applications of Artificial Intelligence 114 (2022) 105170
Table 12
Guided system — Phase 1. Grid search results for architectures with 1 hidden layer.

Nodes per layer Batch size Dropout

0.1 0.2 0.3

Train Test Train Test Train Test

Acc Loss Acc Loss Acc Loss Acc Loss Acc Loss Acc Loss

16 89.84 0.2851 86.26 0.537 88.08 0.3364 87.79 0.3655 87.52 0.3602 87.56 0.4174
4 32 88.62 0.3257 86.84 0.4119 84.95 0.3874 87.2 0.4899 85.87 0.3833 85.53 0.4911

48 89.74 0.2812 86.48 0.4695 72.82 0.5896 83.73 0.5582 80.52 0.4478 83.82 0.4852

16 90.93 0.2398 86.21 0.498 89.07 0.2969 86.93 0.4857 89.21 0.2935 86.07 0.5054
8 32 91.84 0.2231 86.12 0.5328 89.82 0.2764 86.75 0.537 89.73 0.2776 86.48 0.4762

48 91.34 0.2498 87.11 0.4159 89.18 0.2905 86.53 0.4264 90.16 0.2713 86.84 0.4953

16 92.2 0.2111 87.52 0.4428 92.54 0.2051 87.07 0.5765 91.9 0.2298 86.84 0.5017
16 32 92.44 0.2085 87.7 0.4834 91.64 0.2244 87.29 0.4567 91.08 0.2388 86.57 0.4838

48 92.7 0.2074 87.34 0.4685 91.59 0.2324 86.3 0.486 91.45 0.2355 86.71 0.5117

16 91.84 0.2269 86.66 0.4504 91.79 0.2285 87.02 0.4449 92.39 0.2052 86.57 0.6301
32 32 92.56 0.2075 86.93 0.4386 92.84 0.1897 87.61 0.5279 93.27 0.1879 86.71 0.5743

48 93.63 0.1818 87.11 0.5358 91.77 0.2262 86.8 0.4184 93.0 0.2001 86.75 0.5376
Table 13
Guided system — Phase 1. Grid search results for architectures with 2 hidden layers.

Nodes per layer Batch size Dropout

0.1 0.2 0.3

Train Test Train Test Train Test

Acc Loss Acc Loss Acc Loss Acc Loss Acc Loss Acc Loss

16 84.07 0.4939 82.06 0.5306 82.47 0.5036 84.14 0.6034 79.31 0.5475 85.44 0.5122
4:2 32 83.67 0.4574 84.18 0.4352 72.02 0.603 84.32 0.5594 79.6 0.5695 84.45 0.5161

48 86.96 0.401 85.26 0.4746 82.73 0.4776 83.64 0.5014 78.55 0.5551 84.23 0.4752

16 90.97 0.2666 88.01 0.5673 86.49 0.3555 87.79 0.4072 88.99 0.3512 86.53 0.9313
8:4 32 89.87 0.2756 88.1 0.5573 89.82 0.2902 87.2 0.7472 86.09 0.4015 88.64 0.3482

48 90.24 0.2733 87.29 0.5533 89.19 0.335 86.66 0.5064 86.36 0.3972 86.03 0.7481

16 92.56 0.2033 88.1 0.5196 90.97 0.2437 87.97 0.6454 90.56 0.2647 87.43 0.6973
16:8 32 93.08 0.1882 87.25 0.6477 91.19 0.2423 87.43 0.553 90.11 0.2812 86.62 0.6724

48 92.1 0.2276 86.21 0.5664 90.53 0.2607 85.89 0.5202 90.76 0.2578 86.8 0.8694

16 95.22 0.1348 87.07 1.058 91.17 0.2492 86.16 0.4556 92.91 0.1987 87.47 0.8402
32:16 32 92.11 0.2236 87.2 0.4532 92.19 0.2135 87.25 0.4599 93.19 0.1886 87.07 0.7782

48 91.62 0.2423 85.76 0.43 91.42 0.241 85.53 0.5052 91.45 0.2357 87.74 0.4742
accuracy. This way, as the number of neurons in the hidden layers
increases, the accuracy improves. However, the batch size needs to be
smaller or of an intermediate value so that this hyperparameter can
have a positive impact on getting higher accuracy.

The influences of these hyperparameter values are much more
significant on the accuracy of the train set, while for the test set they
achieve much less changes. However, in both sets, a small dropout
value, a higher number of nodes, and a smaller batch size will affect
the increment of the accuracy.

On the other hand, the value of the loss on the training set tends to
decrease as the number of nodes gets higher and the dropout value gets
smaller. This is less remarkable on the test set, it even leads to higher
loss in some cases.

Regarding the MLP models with one hidden layer, the training
accuracy increases significantly as the number of nodes gets bigger,
obtaining a difference of more than 3% between the accuracy of the
models of lowest number of neurons and those with highest number of
nodes. In the case of the test set, this influence is less significant, and
in some cases this factor combined with the variation of other hyperpa-
rameters affects negatively the accuracy. However, for all single-layer
MLP models, the accuracy of the test set is always between 86% and
88%. The accuracy in both sets suffers a decrease when the dropout
value gets higher values. With batch sizes of 16 or 32, more accurate
results on the train set can be obtained. For the test set, depending
on the combination of batch size and nodes, the accuracy can improve
slightly. The highest accuracy value for the test set achieved in this case
is 87.7%.
13
Finally, the effects of increasing the number of nodes for MLP
models with two hidden layers are much more remarkable than in the
previous case. The training accuracy between models with the lowest
and the highest number of nodes increases by more than 8% in all cases
and reaches an accuracy value of 95%. The same influence occurs in the
test set. With 16 and 8 nodes in both hidden layers, the accuracy of the
test set is over 88%. In this MLP architecture with two hidden layers,
smaller batch sizes and dropout values have a positive impact on the
accuracy.

4.2.2. Phase 2
In the second phase of the guided system, the best candidates are

selected among all models of the previous phase (Table 14). For both
MLP models with one and two hidden layers, the best candidates have
the second highest number of nodes, emphasizing the importance of
more nodes on the increase of the accuracy. As explained before, the
increase of the accuracy mostly occurs for lower values of dropout. In
both MLP models, the Dropout value is 0.1. Note that even though they
have both similar accuracy and loss values, the two-layer MLP model
obtains better results.

4.2.3. Phase 3
Cross-validation results. Once the best parameters are chosen for MLP
models, the two architectures are analyzed with cross-validation.
Table 15 illustrates the results obtained. Unlike the non-guided system,
in this system, the test accuracy is higher than the accuracy obtained in
the Hold-Out. Only in one fold the accuracy in the training set is lower
than the one obtained in the previous phases.
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Table 14
Guided system — Phase 2. Results obtained for the best candidates.

Model Nodes Batch size Dropout Train Test

Acc Loss Acc Loss

MLP 1 layer 16 32 0.1 92.44 0.2085 87.7 0.4834
MLP 2 layers 16:8 16 0.1 92.56 0.2033 88.1 0.5196

In more detail, for fold 2, the precision obtained in the test set is the
owest. The reason of this result is probably because the RISK class has a
igher number of samples and the number of false negatives increases
ignificantly. It has been observed that for ADL class there is also a
igher number of false negatives compared to the other folds. These
wo increases affect negatively the accuracy of the model.

Focusing on the results for both models, in most cases the accuracy
ncreases for the two hidden layers. In very few results, the accuracy is
igher for the model with one hidden layer. In some folds, the accuracy
n the test set gets bigger values than for the training set. As mentioned
arlier, this could be an indicator of more complex samples in the
raining set.

On the other hand, the results show a very low standard deviation
oth for the test and train sets, demonstrating that the guided system
sed is very consistent when it classifies between all three events. For
he MLP model with two hidden layers, the average accuracy in both
ets is higher than the model with one hidden layer. Nonetheless, the
wo MLP models reach higher values than those obtained previously
or the Hold-Out. Moreover, the standard deviation is very low in both
ases, but smaller for the two-layer MLP, which indicates that, although
old 2 has the lowest accuracy results, in general, the guided system has
great uniformity and low dependence on the set used for training.

etrics. After evaluating the consistency of the MLP model through the
rocess of cross-validation, the metrics for the best candidates obtained
n phase 2 are calculated (see Table 16). It can be observed that, as
n the case of RNN models, higher number of hidden layers leads to
etter performance results. However, differences in evaluation metrics
etween both models are significantly low, with an accuracy of 0.4%
igher for two hidden layers’ model. This is due to the inclusion of the
uided process of extracting temporal and frequency variables, which
llows the complexity of MLP models to be reduced while still achieving
reat effectiveness results. On the other hand, the number of neurons is
he medium value of those tested in the optimization process, avoiding
n excessive complexity of the network and therefore an overfitted
odel, but also avoiding an underfitted model since the number of
eurons is not excessively low. Moreover, the number of neurons is
lightly lower than for RNN models, highlighting the simplification of
he MLP models by introducing the previous step of feature extraction
hich makes it easier for the algorithm to find learning patterns.

It can also be observed that, unlike the results of the optimal
yperparameters obtained in RNN models, in this case the dropout
alue is very low, both for one hidden layer and for two hidden layers.
hanks to the previous workload of extracting features, the model can
asily find patterns between the input data and the output, without the
eed of removing a higher ratio of random neurons to avoid overfitting.

The optimized batch sizes for both models also show that the
verfitting is avoided since the values are not excessively low, with
hich the model would perform too many times backpropagation and

t would be less generalized for new data.
In more detail, it can be observed that the macro sensitivity has

ower values than the rest of the metrics. This decrease is produced
ecause of the very low sensitivity in the RISK class, where the value is
ower than 0.5 in both cases. This indicates that there is a high number
f false negatives in this class or, in other words, that a high number
f RISK events are classified as ADL or FALL. Falling risk is the most
mbiguous event out of the three classes, being complicated to classify
s such, as the beginning of the stumble or the final cushioning after the
14
trip can easily be mistaken for a fall or ADL event. Moreover, because
of its short duration, the time window can be shared with falls or ADL,
thus making difficult the correct classification, as stated previously in
non-guided explanations. On the other hand, for ADL and FALL classes,
the value of sensitivity is higher, and for ADL class it achieves values of
around 0.94 in both models. These good results in sensitivity indicate
a high number of true positives versus a low number of false negatives.

On the other hand, the macro specificity is around 0.91, where the
highest value is obtained for RISK class, which indicates that there
is a low number of false positives for this class. However, the worst
specificity value is for ADL class, showing that there is a high rate of
false positives for this class, which means that a high number of FALL
and RISK events are misclassified as activities of daily living. According
to the sensitivity results, it is likely that most false positives come from
the RISK class. This possible case will be discussed and verified more
easily with the confusion matrices illustrated below.

Regarding the macro precision metric, 0.83 is obtained for both
architectures. In more detail, the lowest value of precision is 0.78
for FALL class in one-layer MLP model, and for RISK class in the
architecture of two hidden layers. This indicates that, in the first case,
the classifier predicts more falling events when they actually belong
to other events; while in the second model, the same case occurs but
for risk events. Nevertheless, the precision obtained in ADL class is the
highest in both cases and indicates that there is a high number of ADL
samples and most of them are classified correctly.

Finally, F1-score shows that the worst results are obtained for the
RISK class in both models, due to the poor sensitivity obtained for
this class. This lower value influences on the average results, which
is slightly above 0.78.

Fig. 6 illustrates the confusion matrices for one-layer MLP model
and for the MLP model with two hidden layers, respectively. In both
cases, the explanation above is reinforced as it can be observed that
RISK class obtains a high rate of false negatives, which directly influ-
ences negatively on the sensitivity for this class. The false negatives of
RISK class are at the same time false positives for ADL and FALL classes.
As in the case of non-guided systems, more than 30% of risk events are
classified as activities of daily living. For ADL class, more than a 40%
rate are false positives between RISK and FALL classes. This explains
the lower specificity value for ADL class.

On the other hand, falling events have a 20% rate of false positives
in the model of one layer and 18% for two layers. Although there is a
high value of false positives, the specificity of this class remains high
due to the high rate of true negatives. The same occurs for RISK fall,
where the rate of true negatives is very high compared to the small rate
of false positives.

In general, it can be concluded from the confusion matrices that the
rate of correctly identified risk events is very low, as verified from the
lower sensitivity values in the metrics values explained above.

Regarding the ROC curves of both systems (see Fig. 7), it can be
observed how both models have more difficulty classifying risk events.
For one hidden layer, the AUC value of RISK class is under 0.90, but for
two-layer model it increases to more than 0.91. On the other hand, for
the ADL class, the AUC value is over 0.94 for the two candidate models,
while for FALL class it exceeds 0.96 in all cases. The same appreciation
between sensitivity and specificity of ADL and FALL classes that occurs
in non-guided systems is observed in this case.

Execution times per inference. Table 17 illustrates the execution times
for the feature extraction process and for the total execution of the
model. For both models, the execution times of extracting features are
not very different using CPU and GPU. However, the total execution
time is shorter on CPU than GPU.
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Table 15
Guided system — Phase 3. Cross-validation study with the best candidates obtained from the previous phase: [Model1] 42:16:3, dropout 0.1, batch size 32; [Model2] 42:16:8:3,
dropout 0.1, batch size 16.

fold1 fold2 fold3 fold4 fold5 fold6 fold7 TOTAL

Train Test Train Test Train Test Train Test Train Test Train Test Train Test Mean𝑡𝑟𝑎𝑖𝑛 Mean𝑡𝑒𝑠𝑡 STD𝑡𝑟𝑎𝑖𝑛 STD𝑡𝑒𝑠𝑡

Model1 90.46 91.28 91.63 84.05 91.85 90.9 91.18 91.48 92.26 89.28 91.7 92.47 89.76 90.66 91.26 90.02 0.87 2.8
Model2 91.72 90.67 92.82 87.03 91.13 91.2 92.25 91.72 91.34 89.21 92.32 92.47 92.16 90.28 91.96 90.37 0.59 1.8
Table 16
Guided system — Phase 3. Metrics for the best candidates (Hold-Out).
Model Params Metrics

Nodes Batch size Dropout Accuracy Class Specificity Precision Sensitivity f1-score

MLP 1 layer 16 32 0.1 87.70

ADL 0.8164 0.9142 0.9374 0.9256
RISK 0.9885 0.816 0.4744 0.6
FALL 0.9312 0.7878 0.869 0.8264
macro 0.912 0.8393 0.7603 0.784

MLP 2 layers 16:8 16 0.1 88.1

ADL 0.8178 0.915 0.9407 0.9277
RISK 0.9855 0.7868 0.4977 0.6097
FALL 0.9394 0.8078 0.8671 0.8364
macro 0.9142 0.8365 0.7685 0.7912
Fig. 6. Confusion matrices for best MLP models obtained from Hold-Out.
Fig. 7. ROC curve for best MLP models obtained from Hold-Out.
Table 17
Guided system — Phase 3. Execution times.
Model CPU Intel i7-10700K CPU @ 3.80GHz GPU (GeForce GTX 1080Ti)

Feature extraction Total Feature extraction Total

Mean SD Mean SD Mean SD Mean SD

MLP 1 layer 1.93E−03 6.89E−05 2.68E−03 9.07E−05 1.96E−03 3.37E−05 3.11E−03 1.02E−04
MLP 2 layers 1.90E−03 7.69E−05 2.85E−03 9.64E−05 1.98E−03 3.43E−05 3.65E−03 7.87E−05
4.3. Inner comparison

Before going in depth into the comparison between the two systems,
it is worth noting that other Machine Learning models have been tested
15
in this study, using the same dataset described earlier, so that a more
comprehensive comparative can be done. For this purpose, two well-
known models have been implemented: Random Forest and Support
Vector Machines. A grid search was carried out for each of these
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Table 18
All systems. Summary of results for models of both systems and results of other models obtained after a grid search.
Model Accuracy Specificity Precision Sensitivity/recall F1-score

LSTM 1 layer 90.70 0.9306 0.8663 0.8114 0.8329
GRU 1 layer 90.57 0.9313 0.8604 0.8076 0.8263
LSTM 2 layers 91.35 0.9349 0.8552 0.7930 0.8105
GRU 2 layers 91.44 0.9319 0.8835 0.8043 0.8314
MLP 1 layer 87.70 0.912 0.8393 0.7603 0.784
MLP 2 layers 88.1 0.9142 0.8365 0.7685 0.7912

Random Forest 83.24 0.8875 0.8046 0.7153 0.734
Support Vector Machine 87.56 0.9003 0.8498 0.734 0.7689
Table 19
Non-guided system using different MLP models. Performance results obtained. The
codes in the ‘‘model’’ column indicate the number of nodes that each layer that makes
up the model has, where the first is the input layer.

Model Train Test

Acc Loss Acc Loss

192:16:3 82.93 0.4810 77.22 1.5574
192:48:3 88.62 0.3881 79.71 5.5508
192:16:8:3 79.25 0.5325 78.30 0.7408
192:48:24:3 86.54 0.3663 82.43 0.8870

models to obtain an optimization of the hyperparameters. Specifically,
more than 4000 parameter combinations have been analyzed for Ran-
dom Forest, while for Support Vector Machines the search was made
between 90 possible combinations of the hyperparameters.

The results of the evaluation metrics of the optimized models are
shown in Table 18, as well as the summary of the macro results of the
guided and non-guided systems presented and explained earlier.

The results of Random Forest and SVM models are lower than for
guided and non-guided systems, with an accuracy of 83% for Random
Forest and more than 87% for SVM. With Random Forest, results are the
worst and this can be the indicator that the samples are complex and
bigger models are needed to distinguish between all events successfully.
The metric values obtained for SVM are very similar to those obtained
for MLP model with one hidden layer. These two models are simpler
than those analyzed in depth in this work and obtain lower values,
so it may reinforce the fact that to achieve higher performance in fall
and risk classification, more complex models such as deep NN or RNN
should be used.

Moreover, to present a more reliable comparison, the MLP models
have also been trained without following a guided process. Thus, raw
information is passed as the input data of the neural network, which
substantially increases the number of nodes in the input layer (192).
Since the previous step of extracting features is now avoided, the
MLP requires more complexity to be able to extract learning patterns,
so four combinations of hidden layers have been tested: 192:16:3,
192:16:8:3, 192:48:3, and 192:48:24:3. Results of these tests using the
best hyperparameters obtained from the previous classifiers can be seen
in Table 19. It can be observed the same number of neurons in MLP
models that receive extracted features are not enough, obtaining the
worst data for the one-layer networks with 16 neurons, and two layers
with 16:8 neurons (not reaching 79% in any case for the test set).
Moreover, the loss value obtained is too large, which may denote an
overfitting given the percentage of accuracy achieved. With respect to
the new architectures with more neurons, a slight improvement can
be observed, reaching 82.4% with the most complex architecture. The
loss result is not good either, but no overfitting is observed in this case.
Although acceptable precision values are obtained, a drop of more than
6% in comparison with MLP guided models occurs.

In addition, by evaluating execution times in the same way as with
the initial classifiers, we obtained the results shown in Table 20. As
happened in the MLP included in the work, using GPU the time spent is
higher due to the transfer overhead. On the other hand, if we compare

these results with the ones obtained by the guided MLP-based system
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Table 20
Non-guided system using different MLP models. Execution times (in s).

Model CPU Intel i7-10700K @ 3.80GHz GPU
(GeForce GTX 1080Ti)

Mean SD Mean SD

192:16:3 3.38E−03 1.91E−04 7.51E−03 4.04E−04
192:48:3 3.37E−03 1.88E−04 7.59E−03 3.68E−04
192:16:8:3 4.79E−03 3.72E−04 1.10E−02 9.86E−04
192:48:24:3 4.73E−03 3.24E−04 1.34E−02 1.36E−03

Fig. 8. Accuracy results for both systems with Hold-Out and average accuracy with
standard deviation of cross-validation.

designed using CPU computing (see Table 17), it can be observed that
the neural network trained with the raw information is much more
complex and requires more time to perform the classification, while
the network with prior feature extraction requires less time. There is an
increase of more than 30% compared with the execution times obtained
for MLP guided models (reaching more than 800% in the worst case
with the more accurate classifier). Overall, by using an MLP with raw
information shows an increase in the complexity and therefore in the
execution times. Thus, the comparison of a non-guided RNN-based
system with a guided MLP-based system as it is done in this work is
a correct approach, since results between them are similar and higher
than more simple algorithms like SVM or Random Forest, and better
than training a classical MLP with raw data.

Regarding the inner comparison of both systems, Fig. 8 illustrates
the summary of the accuracy results for all models. Firstly, it can be
observed that the accuracy of the Hold-Out is higher for RNN models
than for MLP models. On the other hand, the average accuracy obtained
in the cross-validation process shows that the guided system achieves
higher values in comparison with the accuracy obtained with the Hold-
Out. Moreover, the average accuracy of MLP models is higher than the
average accuracy of RNN models. These results reveal a greater depen-
dence of the non-guided models on the train dataset. If the dataset used
does not contain enough characteristics and varied data that broadly
represents the problem itself (in this study, the identification of falls
and risk events), the tendency of this class of models to identify very
particular characteristics results in overtraining. This is a common

drawback of machine learning models that are delegated automated
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Fig. 9. Summary of evaluation metrics for all best models.

feature extraction (Mazurowski et al., 2019; Rizk et al., 2021). Another
factor that influences the training of RNN models is the need to use
a weighted loss function to avoid imbalance in accuracy between fall
and risk events. For certain training subsets, this fact has meant that
the model misses a large number of ADL events, which has had a
substantial impact on the overall accuracy.

The standard deviation of the average accuracy of the folds can be
observed in Fig. 8 too. As mentioned in the results section, the highest
deviation occurs for LSTM model of one layer. Moreover, for all RNN
models, the deviation is bigger than the one obtained for MLP models.

Summarizing, although the initial accuracy values for non-guided
systems are high, with cross-validation process, the average accuracy
of folds decreases, while for guided system the opposite occurs and
the average accuracy is centered in similar values for all folds. This
difference shows that the guided system is highly robust compared
to non-guided systems and that non-guided models require a larger
amount of data, more diversified, to obtain similar results.

Regarding the evaluation metrics, Fig. 9 illustrates graphically each
metric for all six models. Firstly, it can be observed that the highest
values are reached for the specificity metric, overcoming 0.91 in all
models. This shows the high number of true negatives versus a lower
rate of false positives.

Concerning the precision, more than 0.83 is achieved in all models.
This value is elevated but lower than specificity, and it is due to the fact
that for ADL class there is a high rate of false positives, with a rate of
more than 27% of cases classified as risk or fall instead of activities of
daily living. This rate is lower for FALL class but remains quite elevated,
which explains the lower values for all six models’ precision.

Finally, it can be observed that the results obtained for sensitivity
in all cases are the worst. This is mainly due to the lower sensitivity
values for risk class in all models. Fall risks occur in a short amount of
time compared to falls or ADLs, and they are less characteristic than a
fall event, where the acceleration peaks are very clear. Moreover, the
way of dealing with a stumble or fall resistance is very varied in each
risk event, and the frequency components can easily be mistaken for a
fall, if there is a high acceleration peak, or for an ADL event, such as
bending down.

As a result, the identification of fall risk is still an unsolved issue, so
it could be interesting to go deeper in this research, since fall prevention
implies high benefits.

In general, better results are obtained for the four RNN models of the
non-guided system, which indicates a better performance of the models
classifying between the three possible events than for the MLP models.

Regarding the execution times, Fig. 10 illustrates the summary of
the execution times of all models, both using a CPU and a GPU. For
MLP models, it can be observed that the execution times are very low
both using a CPU and a GPU. Moreover, there is almost no difference
between the use of a GPU or a CPU for these models, and the total
17
Fig. 10. Execution times for all best models. (A) Tests run without GPU optimizations,
(B) Tests run with GPU optimizations.

execution time (including the feature extraction process) is less than
4 ms in all cases.

The main difference occurs for RNN models. Firstly, the execution
time is higher when GPU and CPU than for MLP models. However,
using the GPU, RNN models can take benefit from the power of the
GPU and have a faster implementation, but with CPU this advantage is
taken off and the execution times are much higher.

In short, non-guided systems obtain higher results and classify better
the three possible events. Although, guided systems reflect higher
robustness and more independence on the dataset used. Moreover, this
one provides faster execution times with and without GPU optimiza-
tion.

Regarding future embedded implementations, the tests performed
without GPU optimization represent in a more reliable way the execu-
tion time difference between both methods, as embedded systems do
not include the GPU processing powerful.

4.4. Comparative with previous works

In this section, a deep comparison with the previous works ex-
plained in Section 2 is done. It is important to mention that the majority
of previous works obtained a classification between fall events and non-
fall or ADL events. However, the results of this study were focused on
the classification of three events (ADL, risk, and fall). Thus, to make
a comprehensive comparison, the results of the binary classification
between fall and ADL were obtained for all models of the non-guided
system and guided system, as well as for Random Forest and SVM

models (see Table 21).
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Table 21
ADL-FALL prediction. Performance comparison.
Model/ref Accuracy Specificity Precision Sensitivity/recall F1-score AUC

LSTM 1 layer 95.41 0.9667 0.9023 0.9167 0.9096 0.9814
GRU 1 layer 95.91 0.9773 0.9306 0.9047 0.9175 0.9804
LSTM 2 layers 95.36 0.9807 0.9382 0.873 0.9044 0.9782
GRU 2 layers 96.31 0.978 0.9335 0.9187 0.926 0.9870
MLP 1 layer 93.36 0.948 0.852 0.8901 0.871 0.9762
MLP 2 layers 92.91 0.9493 0.8521 0.8691 0.8605 0.9684

Random Forest 88.02 0.8907 0.723 0.8492 0.781 0.8699
Support Vector Machine 93.01 0.96 0.876 0.8413 0.8583 0.9001
Table 22
Comparison with non-guided systems’ works detailed in Section 2.

Work Classifier Sensor location Classes Dataset Activities Results

Yoo et al. (2018) ANN Wrist 2: fall, ADL Own (5 men) 7 (1-6) Ac: 96.9, Se: 94
Sp: 99.3

Santos et al. (2019) CNN Pocket 2: fall, ADL
URFD
SmartWatch
Notch

11 (5-6)
8 (4-4)
11 (4-7)

Ac: 85.7, 98.4, 86.7
Se: 83.3, 91.7, 22.7
Sp: 87.5, 99.5, 99.1
Pr: 83.3, 97, 83.3

Yu et al. (2020) CNN, RNN,
ConvLSTM Waist 3: fall, no fall,

pre-impact SisFall 34 (15-19)
Ac: 90, 91.6, 93.2
Se: 89.9, 91.5, 93.1
Sp: 91.5, 94, 94.5

Meyer et al. (2020) BiLSTM Chest, Thigh 2: fall, ADL Own (37 patients) 1
Ac: 86, Se: 88
Sp: 83, F1: 86
AUC: 88

Waheed et al. (2021) BiLSTM Waist 2: fall, ADL SisFall
UP-Fall

34 (15-19)
11 (5-6)

Ac: 97.2, Se: 96.9
Sp: 91.4

This work RNN Ankle 2: fall, ADL
3: fall, risk, ADL AnkFall 12 (4-3-5)

[2] Ac: 96.3, Se: 91.8
Sp: 97.8, Pr: 93.3
F1: 92.6, AUC: 98.7
[3] Ac: 91.4, Se: 80.4
Sp: 93.2, Pr: 88.3, F1: 83.1
AUC: (97.2, 91.5, 95.8)

ANN: Artificial Neural Network CNN: Convolutional Neural Network RNN: Recurrent Neural Network ConvLSTM: Combination of CNN + RNN (LSTM)
BiLSTM: Bidirectional RNN (LSTM).
In order to compare papers using the same feature extraction mech-
anism, the results are presented in two different tables. Table 22
illustrates the results of previous works of non-guided systems and
those of the best RNN model (GRU with two hidden layers), and
Table 23 shows the results of previous works of guided systems, as
well as the best NN model (MLP with two hidden layers), considering
for each study the classifiers used, the number of features extracted
for guided systems, the location of the accelerometer, the number and
names of the events that are classified, the dataset used, the number
and distribution of activities performed and finally the results obtained.

However, despite this division (which is merely organizational and
visual), explanations and comments will focus on specific works, so that
explanations of guided works can be mixed with non-guided works if
it is considered interesting for the reader and/or if they have similar
aspects that should be commented on.

Firstly, about non-guided systems studies, in Yoo et al. (2018) clas-
sification results were better than those achieved with our RNN model.
However, the ANN model used in that work consists of 525 nodes in
the input layer with three hidden layers of 500, 500 and 2000 neurons,
respectively, which can easily lead to an overfitting problem. Moreover,
it should be noted that the dataset contains information of only 5
participants, all of them male, and with one type of falling activity,
which reduces significantly the reliability of the results obtained.

The work of Santos et al. (2019) obtained high results, but only
higher than our guided and non-guided systems for their SmartWatch
dataset. Moreover, they carried out a data augmentation but without
using an optimal approach, since they duplicated more than 100 times
the URFD dataset and more than 10 times the remaining datasets.
Additionally, the samples were highly unbalanced, with less than 20%
of fall events.
18
On the other hand, by comparing the non-guided model of Yu et al.
(2020) with our RNN model for three classes, the results are lower in
their case for CNN model, but with their convolutional LSTM model and
RNN model, all results reach higher values than our system. However,
the detected classes consist of fall, non-fall, and pre-impact events,
where pre-impact is labeled manually and always leads to a fall event,
while our system can distinguish a falling risk event, which does not
always end in a fall. For that, it can be assumed that our model provides
an added value of risk detection.

In Meyer et al. (2020), it has to be noted that the classification is
made between fall and non-fall events, which come from one type of
activity, while we obtained a dataset with a distribution of 4 types of
ADL activities, 3 types of falling risks and 5 falls. This work applies
a non-guided process to a bidirectional LSTM model, which is a more
complex model of LSTM, so it explains the higher metrics obtained,
yet still lower in comparison with our models. Moreover, the fact that
only one activity is used to obtain the dataset and label the data as fall
and non-fall can show low variability and can be less reliable than a
classification made with different types of activities, more similar to a
real environment.

Finally for non-guided systems, the work of Waheed et al. (2021)
classified between fall and ADL events, obtaining higher accuracy and
sensitivity values than those of our two-class RNN model, but lower
specificity values. In addition, the bidirectional LSTM model used in
their work is more complex than the RNN model of our study.

About guided systems, the study made by Howcroft et al. (2018)
classifies between fall and non-fall events by extracting 87 features. It
is worth noting that in their work, besides acceleration data, they also
used a pressure-sensing insole and applied Naïve Bayesian algorithm
only to the insole, achieving higher results, but to compare properly
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Table 23
Comparison with guided systems’ works detailed in Section 2.

Work Classifier Features Sensor location Classes Dataset Activities Results

Howcroft et al. (2018) SVM, ANN 87 Head, Pelvis, Leg 2: fall, no fall Own (75 people) 1

Ac: 78.9, 77.8
Se: 100, 57.1
Sp: 63.6, 91.7
F1: 77.8, 66.7

Putra et al. (2018) kNN, LR, SVM 27 Chest, Waist 2: fall, ADL Cogent
SisFall

13 (6-7)
34 (15-19)

Se: 94.5, 94.6, 92.7
Pr: 87.5, 88.4, 90.3
F1: 90.7, 91.3, 91.1

Khojasteh et al. (2018) ANN, DT,
RBS, SVM 24 Wrist 2: fall, no fall UMAFall

DaLiac
11 (3-8)
13 (0-13)

Ac: 89, 87, 90, 92
Se: 87, 87, 88, 89
Sp: 92, 86, 91, 95
Pr: 94, 90, 93, 96

Chen et al. (2019) Ensemble
4xANN 4 × 30 Wrist 2: fall, ADL Own (11 people) 18 (3-15) Se: 99.1

Sp: 96.2

Rivolta et al. (2019) LRM, ANN 21 Chest 1: ADL Own (79 patients) 8 (0-8) Se: 71, 86
Sp: 81, 90

Hassan et al. (2019) ConvLSTM 58 Pocket
2: fall, no fall
3: fall, standing,
lying

MobiAct 13 (4-9)

[2]Ac: 97, Se: 97
Pr: 97, F1: 97
AUC: (97, 97)
[3] Ac: 96.7, Se: 97
Pr: 97, F1: 97
AUC: (96, 98, 95)

Wang et al. (2020) CNN 54 Waist 2: fall, ADL SisFall 34 (15-19) Ac: 99.1

Jansi et al. (2020) Threshold 5 Waist 2: fall, ADL URFD 11 (5-6) Ac: 84.2, Se: 100
Sp: 72.5, Pr: 73.1

Althobaiti et al. (2020) LDA, DT,
SVM, ANN 72 Chest 2: fall, ADL Own (35 people) 7 (1-6)

Ac: 98.3, 97.1,
98.4, 98.1
F1: 98.1, 97,
98.4, 98

Alarifi et al. (2021) CNN 1404 Chest, Waist, Head,
Both Wrists,
Both Ankles

2: fall, ADL Own (14 people) 36 (20-16) Se: 99.5, Pr: 99.4
F1: 99.5

Galvão et al. (2021) CNN, RNN 165 Waist 2: fall, ADL URFD
UP-Fall

11 (5-6)
11 (5-6) Ac: 93.2, 85.3

This work ANN 42 Ankle 2: fall, ADL
3: fall, risk, ADL AnkFall 12 (4-3-5)

[2] Ac: 93.4, Se: 89
Sp: 94.9, Pr: 85.2
F1: 87.1, AUC: 97.6
[3] Ac: 88.1, Se: 76.8
Sp: 91.4, Pr: 83.9, F1: 79.1
AUC: (96.4, 91.3, 94.6)

LR: Linear Regression DT: Decision Tree RBS: Rule-Based System LRM: Linear Regression Model kNN: k-Nearest Neighbors LDA: Linear Discriminant Analysis
SVM: Support Vector Machine.
with our work, only the results related to acceleration data are shown.
Comparing these results with our work, it can be observed that the
number of extracted features is more than twice as much as our guided
system, and they obtained data from three different locations while our
acceleration data is from only one location. Moreover, the dataset used
of falls and non-falls only have one type of activity, as was the case
in Meyer et al. (2020). According to the evaluation metrics, it can be
observed that their work achieves lower values than our guided and
non-guided models, except for the case of their SVM model where the
sensitivity achieves 100%.

Comparing the results of the guided model of Putra et al. (2018)
with our ANN model, their results reach higher values, although they
are lower than our RNN model. In addition to having better results than
our guided system, the number of extracted features is lower. However,
the dataset used in their work is highly unbalanced, with lower samples
for fall events.

Khojasteh et al. (2018) also used a guided system with lower
number of features than our model, obtaining higher precision values
for all their models in comparison with our ANN model. However, the
remaining metrics reach lower values than those obtained with our
system. Besides, the features extracted are spatial features, while our
work intends to demonstrate that the extraction of features in the time-
frequency domain combined with spatial features is more informative
and proves by comparing this study with our work that our approach
can reach better results.
19
Chen et al. (2019) implements a guided system extracting 24 spatial
features and 6 frequency-domain features from a dataset composed of
13 fall activities categorized as 3 types of fall events, and 16 ADLs.
Comparing the two metrics obtained with our results, they reach higher
values but with a smaller and more unbalanced dataset.

The study made by Rivolta et al. (2019) extracts a lower number
of features and used a bigger dataset than AnkFall dataset. However,
the metrics obtained show lower results for this approach in compar-
ison with our systems, even for the classification of our models for
three events results are better, which is a more reliable and accurate
classification.

The results obtained in Hassan et al. (2019) are higher than the
results reached in our models for two and three classes. However,
taking a closer look to their study, it can be observed that their model
classifies between falls, standing, and lying down events, which are
very distinguishable states compared to the difficulty to differentiate
fall from activities in constant motion like ADLs.

On the other hand, the results from Wang et al. (2020) reach
higher accuracy values than all of our models and by using a different
approach with statistical features.

The work of Jansi et al. (2020) applies a threshold algorithm to
detect fall events. Although they also use data from a Kinect sensor,
we only illustrated those results obtained with acceleration data. It
can be observed that all metrics are lower than the metrics of our
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models, except for the sensitivity value that reaches 100%. It has to
be noted that the dataset used in the study is formed by 30 different
falls and 40 ADLs, but in general very similar activities and with very
few participants, which does not provide highly reliable results.

The results of the work of Althobaiti et al. (2020) show much higher
values than those obtained with our systems. However, their metrics are
presented for the entire dataset, including training and testing results,
whereas all studies (including ours) illustrate only testing results. In
general terms, for machine learning models, the training results are
usually higher than the testing results, in addition to having a higher
train set than the test set. Thus, by joining both results, the final metrics
should be higher than those for the test set only.

The study of Alarifi et al. (2021) consists of a guided system with
a CNN model, extracting 1404 features and obtaining much higher
metric values compared to our guided model. However, our ANN
model has a very low number of features extracted in comparison with
this study, which should reduce significantly the complexity and the
computational load.

Finally, Galvão et al. (2021) used acceleration data to detect falls
but also data from other mechanisms with which they reached higher
values. In this comparison, as mentioned earlier and to relate all works
to acceleration data, the results from data obtained with mechanisms
other than accelerometers were discarded. It can be observed that the
results for the acceleration data only are lower than those obtained with
our guided model for the 2-class implementation, in addition to having
fewer features extracted in our model.

Overall, the majority of previous works used guided systems with
feature extraction process. However, none of them applied the same
approach as our study, in which frequency features from a DWT are
extracted and combined with temporal features. Some studies that
detected fall events with a guided system achieved better results than
those obtained with our models. However, those works usually used
a highly unbalanced dataset or contained few samples (Putra et al.,
2018), or used a more complex model with a higher number of ex-
tracted features (Chen et al., 2019; Hassan et al., 2019; Wang et al.,
2020; Althobaiti et al., 2020; Alarifi et al., 2021). Moreover, these
works do not present results related to execution times, as they do not
consider their integration in embedded systems to operate in real time;
but in our work, this premise is fundamental and, therefore, we try
to simplify the implemented models and perform a meticulous study
regarding its execution times.

On the other hand, other studies applied a non-guided system to
classify between fall and ADL events, and three of them reached higher
results than our non-guided RNN model. Nevertheless, the first best
model implemented a more complex model (Waheed et al., 2021);
the second best performed a less optimal data augmentation for the
dataset (Santos et al., 2019); and the third best used a small dataset
with very low diversity (only male) (Yoo et al., 2018).

It is clear in all previous works presented that with both types of
systems, guided or non-guided, high results can be achieved. However,
it remains unclear which system is the best option from these previous
results, in terms of accuracy and computational load. Our study intends
to resolve or further help the understanding of the differences between
both systems by making a more comprehensive and reliable comparison
since the same dataset and parameters are used for guided and non-
guided systems. It is important to note that for a FDS, it is necessary
that the system is integrated in a wearable device in order to obtain
a successful detection and, for this to be achieved, the classifier used
should have low computational load. From the comparison conducted
in this study, it is noted that the best option is the guided system
based on the MLP classifier,since the computational load is greatly
reduced, with which the response time of the alert system that can be
implemented is much faster, the performance of the system is reduced
and the autonomy of the system increases, while the drop in the value
of the accuracy is acceptable as it is very slight.

Finally, it is worth noting that, even though 9 out 16 previous works

exposed obtained higher results, our work also classifies the falling
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risk events, providing the benefit and novelty of preventing falls, while
other studies that classify between three classes do not detect falling
risk events.

5. Conclusions

The main objective of this work is to compare two types of ex-
isting systems and present a comprehensive assessment of which is
more appropriate to use in classification models. For that purpose, the
suitability of using a guided feature extraction pre-processing to reduce
the complexity of a classifier system with respect to a more complex
classifier with a non-guided feature extraction process is studied. To
carry out this study, the research process is applied to fall detection
systems (FDS) using a dataset that distinguishes between three types of
activities: ADL, falling risk and fall.

The two systems implemented are, on the one hand, a system
based on recurrent neural networks (non-guided system) and, on the
other hand, a system based on a classical multilayer perceptron-based
artificial neural network using temporal and frequency features (guided
model). Both systems have followed an identical design, implementa-
tion, and optimization process, in which a grid search with multiple
combinations of hyperparameters has been carried out, the best can-
didates have been selected and subjected to a third phase of cross-
validation and hold-out to obtain the final models used for the com-
parison.

Results have shown higher evaluation metrics for non-guided sys-
tems, where the accuracy reached more than 91% accuracy for the
best RNN model and more than 50% of risk samples were correctly
classified, which is high according to the difficulty of identifying falling
risks. On the other hand, for guided systems with lower metric values
(higher than 88% accuracy), we obtained a better performance in cross-
validation process, revealing that this approach has a higher robustness.
The guided models have also shown to have lower execution times in
non-GPU-powered systems (less than 10% of the time required for the
unguided system). These results show that, if the most useful features
of the signal are correctly extracted, the results are very similar to
those obtained in non-guided systems (and may even surpass them);
moreover, the robustness of the guided system has been shown to
be superior, as well as its suitability for use in systems with low
computational resources (such as embedded systems).

In addition, a literature review has been carried out on the most
relevant works in the field of FDS in recent years. It is shown that
the tendency is to mainly use guided systems; moreover, it is certified
that the greatest difficulty in these systems is to find the most useful
features, since there is a great variability in the number and type of
features used in previous works.

Finally, the results obtained in this work have been compared with
previous works, showing the benefits of the systems designed, provid-
ing a solution that is computationally lighter and can be integrated into
a real-time embedded system, in addition to the detection of falling risk
events, which are not commonly detected.

In future works, the integration of the guided model in embedded
systems will be studied. In this way, the performance of a less complex
classifier to detect fall events in real time can be evaluated and it can
be determined whether the loss of accuracy in real-time systems versus
a better execution time is worthwhile.
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