OPBUS: Fault Tolerance Against Integrity
Attacks in Business Processes

Angel Jesus Varela Vaca and Rafael Martinez Gasca

Abstract. Management and automation of business processes have become essential
tasks within IT organizations. Nowadays, executable business processes are the most
extended kind of operational business processes. They usually use external services
which are not under our jurisdiction and an intrusion attack over them could be
not controlled, introducing unexpected fault in their execution. Organizations must
ensure that their business processes are as dependable as possible before automating
them. Fault tolerance techniques provide certain mechanisms to decrease the risk of
possible faults in systems. In this work, OPBUS framework is proposed as solution
for developing business processes with fault tolerance capabilities. Fault tolerance
techniques are applied to resist faults related with integrity attacks over services
involved in business processes. To the best of our knowledge, this work is the first
approach that achieves a fault tolerance solution over business processes based on
checkpoints and rollback using constraint programming.

1 Introduction

In the last years, a new paradigm has emerged in the scope of business IT: Busi-
ness Process Management (BPM). BPM is defined as a set of concepts, methods
and techniques to support the modeling, design, administration, configuration, en-
actment and analysis of business processes [19]. BPM has turned into an essential
tool in the current organizations. BPM aims at narrowing the gap between business
processes that a company performs and the implementation of these processes in

Angel Jesus Varela Vaca - Rafael Martnez Gasca
Departamento de Lenguajes y Sistemas Informaticos,
ETS. Ingenieria Informatica,

Avd. Reina Mercedes S/N,

Universidad de Sevilla,

Sevilla, Spain

e-mail: {ajvarela, gasca}@us.es

Business Process Management Systems (BPMS). BPMS is a set of software tools
to manage business processes.

BPM paradigm follows a life cycle which consists in several stages [[17]. During
some of these stages different kinds of faults can be introduced:

e In the design stage, business process models could present some design faults
(such as deadlock, livelock, starvation, and so on). Design problems are not taken
into account in this paper since these are a topic very discussed in various reviews
of the literature, [9]] [11]].

e In the run-time stage, output process faults could be located in the business pro-
cesses when they obtain unexpected outputs, unexpected messages, unexpected
events, or also unexpected performances. Executable business processes usually
use external services that are not under our jurisdiction. Thus, it cannot be pos-
sible to ensure that the functionality of a certain service changes during the busi-
ness process life cycle.

Dependability is a significant requirement for many types of companies, for in-
stance: electronic banking and commerce, automated manufacturing, and so on. A
failure in their business processes leads them to terrible consequences: lives lost,
systems destroyed, security breaches, and so on. Therefore, companies must ensure
that their business processes are as dependable as possible before automating them.
It must be mandatory to pay attention to the inclusion of measures that allows to
reduce the risk of possible faults in business processes from design stages.

In this work, we propose a framework, OPBUS. This framework holds different
capabilities but in this paper we only focus on the implementation of the fault to-
lerance techniques. The main objective of this work is to handle malicious attacks
during runtime of business processes. OPBUS enables to execute business processes
in an adaptive way by means of handling the security problems using fault tolerance
methods. OPBUS is able to modify business processes behavior during runtime
according to the actions based on fault-tolerance techniques (i.e., checkpointing and
recovery). For example, when a business process is being attacked, OPBUS may de-
termine what activity is under attack and will be able to migrate the running activity
another know with well behavior.

This paper is structured as follows: Section 2] presents the framework; in Section
an illustrative example is developed; Section B]shows experimental results that are
discussed; in Section[6lrelated works are discussed, and in the last section, different
conclusions and future works are provided.

2 OPBUS Framework Description

OPBUS has been developed based on the main ideas of Model-Driven Develop-
ment (MDD) [16] and Model-Driven Architecture (MDA) [12]. Model-Driven De-
velopment is a software engineering approach where models become key elements
in software development. One of the main goals of MDA is to improve the soft-
ware adaptation to several different technological scenarios, thereby providing a
structural separation in the architecture. The solution proposed is an architecture

{ Modeling Layer LE"-’_?E
¥
Application Layer
4
oA
Fault Tolerance Layer rfq
4
v
{ Services Layer @

Fig. 1 OPBUS framework

composed of various different levels of modeling. This separation enables the speci-
fication of models to a very high level for a particular domain but with non-specific
information about the platform where the model will be deployed. MDA introduces
the concept of transformation which allows one model to be obtained in one level
(target model) from another model or a set of models from another level (source
model). OPBUS is structured in several layers as shown in Fig.[I} presentation, ap-
plication, fault tolerance and services.

2.1 Modeling Layer

This layer is focused on the design of business processes. Business process model-
ing remains an important factor in the areas of information systems development and
business process management. Business process models are defined by graphical
models which consist of a set of activity models and execution constraints between
them. These models are the main artifact to implement and automatize business
processes. The most important and accepted standard is Business Process Model-
ing Notation (BPMN) by OMG [2]. Although there exist other used methodolo-
gies for business process design as Petri Nets, Event-driven Process Chain (EPC),
UML Activity Diagram. They are more useful in the academia for research areas but
not enough extended in the current industry. Although BPMN is a standard to de-
sign, developed models are not executed-oriented. Therefore, a transformation from
BPMN models to executable business process is mandatory. Business Process Exe-
cution Language (BPEL) [[] is a de facto standard language to implement service-
based business processes and lots of commercial tools support it. BPMN could be
automatically translated into executable process BPEL [13]], and some commercial
BPMS make translations from a BPMN diagrams to BPEL processes.

At the moment, in modeling layer, OPBUS provides a tool with BPMN design ca-
pabilities. This tool has been equipped with fault diagnosis capabilities using model
validation at design time. Likewise, thanks to OPBUS is MDA-based, the developed
BPMN models can be very easily transformed into BPEL.

2.2 Application Layer

In this layer, different technologies which are involved in the framework are pre-
sented. BPEL environment is necessary to deploy and execute operational business
processes. Some of the distinguished commercial tools of BPMS such as Intalio
BPM, Borland Together, Oracle BPMS; and other non-commercial such as Glass-
FishESB, Eclipse BPEL, jBPM, support BPEL. In our proposal, GlassFishESB has
been selected. It provides an integrated design environment and an business pro-
cesses engine for BPEL processes. Likewise, it contains several components to sup-
port functions of Enterprise Service Bus (ESB).

Model-based diagnosis has been integrated within the framework. For the diag-
nosis task, Constraint Programming is applied. Constraint programming is a pro-
gramming paradigm to solve Constraint Satisfaction Problems (CSPs) which are
an extended form to solve problems [[14]. ChocoSolver is a CSP solver which pro-
vides a constraint programming API to implement constraints models. Although the
model could be implemented standalone from other CSP solver tools. ChocoSolver
has been integrated within OPBUS. The utility of using CSP is explained in detail
in the next sections.

As summarization, application layer is composed of business process engine and
a CSP solver. As an assumption, we suppose that both work without faults.

2.3 Fault Tolerance Layer

Although in this section we focus on description of the fault tolerance technique
applied in OPBUS, the fault tolerance ideas have been taken into account in every
layers. In Fig. 2l different applied mechanism for layers are shown.

OPBUS has been built with a specific fault tolerance layer. This layer is devel-
oped with the intention of controlling possible integrity attacks over the tasks in-
volved in the business processes and making the corresponding corrective actions
to recover them. In our case, we have applied fault tolerance mechanism focus on
the simulation of checkpoint and recovery [10], but in this case oriented to business
processes. Although, other fault-tolerant mechanisms have been already equipped
successfully, [18]].

. . - e
Fault Diagnosis (Validation models) o
[[ee] B
A
\

A}
Business process Engine e Y
CSP solver Engine e N
A
~ -7 Fault Tolerance
Binders, Replication, NVP, rg, /
Checkpoint and recovery =) !

7
7
7
/
Services - Repository of backup !
services €

Fig. 2 Fault Tolerance within OPBUS

Checkpoint mechanism is based on the idea of saving the state of the system,
and in the case of the detection of a fault, recovering the execution of the system
in the checkpoint where the stated was saved. We propose to simulate a checkpoint
approach for determining faults of integrity in services and only in case of faults to
launch any recovery mechanism. The fault tolerance approach mechanism is com-
posed of two parts:

e Integrity sensors (Checkpoints). An integrity sensor has been modeled as a CSP.
Sensors takes data information about data inputs and outputs from the services,
with those the CSP is formed. The CSP resolutions help to identify and isolate
the services which are failing in run-time.

e Compensation handlers (Rollback). These are specific elements of business pro-
cesses which allow to limit the effects created by a process when faults or errors
occur. Compensate handlers allow to rollback the process execution from a spe-
cific point, executing a set of tasks to undo the transaction already initiated. We
are going to explain compensation handlers in Section]in more detail.

3 Illustrative Example

In this section, we present an example of business process, Fig. Bl The business
process uses services-based tasks. The process shows a procedure where at least
eight services with different functionalities are involved. Process receives a set of
data inputs and, at the end, a set of data outputs are achieved. Every service needs
a set of inputs and produces a set of outputs. The outputs of some services are
the inputs of other services. Thus, some services are dependant each other. Before
continuing, it is necessary to take for granted some assumptions in our proposal:

Modeling Layer i,?:.m Results
N A A

[Application Layer

(Fault Tolerance Layer

Services Layer

Fig. 3 Example of business process

the business process model has a start event, a single end event and every tasks
contribute to finish the process in a correct form, and there do not exist design faults.
The network environment where the example has been developed is controlled not
to introduce noise in the data. For this reason, we consider that the communications
always works without faults or attacks and the data cannot be modified. Therefore,
in our example we have simulated that the integrity attacks (faults) can occur in the
services.

4 Implementation Details

In this section, the applied solution is described in detail. Some questions has been
considered in the solution. One of them is how many integrity sensors to place and
where locate them. To find out the optimal number of sensors and where introduce
them is a very desirable requirement not to damage or complicate the business pro-
cess design. This problem has already been studied in the revised literature [3]. In
our example, the sensors have been located as shown in Fig. @ Integrity sensors
by means of a CSP resolution return if a service is behaving as it is expected. In
a checkpointing approach, the process state will be saved in this checkpoint, but
in our approach it is not necessary. Likewise, integrity sensors is able to determine
possible fault in a finite set of activities of the business process. In Fig. @ sensor
IS1 covers the services S1,S2 and S3, however IS2 covers the services from IS1
and IS2. To explain the functionality of a compensation handler the next example
is used: a bank has a business process which takes the data from the client to do a
transaction from the client’s account to his credit card to increase the credit of the
card. If a service takes a specific client’s data and return the amount of an account,
but for a fault of integrity this service returns the amount plus other data about an-
other account. This service is not working in compliance with the specification. If
this fault is determined, it could be possible to throw an fault exception and, using

Modeling Layer

3 ! :
I ! I .

[Application Layer | i 1 }
| ! |

[Fault Tolerance Layer

Integrity Sensor Integrity Sensor Integrity Sensor A
I1s2 153

151
(CSP-based) (CSP-based) (CSP-based)

|
== 5

Fig. 4 Location of sensors

compensation handlers, undo all transactions carried out from this moment. Com-
pensation handlers can only be launched when an internal business process fault is
catched. In described case, the services was working well but the fault came from
the functionality of the service.

Compensation is the really useful tool to undo transactions, but it will be applied
with another sense. In our case, when an integrity sensor determines any faults in
the execution of the business process a fault is launched at the end of the process.
After throwing the fault, it is catched by the process and the compensation handler is
invoked. Then within of the compensation, the services with failures are re-executed
from a backup with correct functionality already tested. This process is shown in
the Fig. [5 where the faulty activities has been marked with a red cross within the
activities. One consideration have been taken into account, for example if the service
M1 has a fault and the service S5 waits any data generated from MI, there is a
dependency between M1 and S5, therefore whether M1 has a fault S5 has to be
re-executed. In the scope of fault tolerance this solution is not purely a solution
based on checkpointing since the state of the process is not saved and the execution
continues from the checkpoint.

[Modeling Layer

Application Layer
(Run-time)

&

Fault Tolerance Layer 5 n s n “ &
I | I
I
!
== — =
Services Layer Service Service Service
Recovery Recovery Recovery @

53 M1 s5

Fig. 5 Recovery business process

5 Performance Evaluation

To test the fault tolerance of the business process, we have simulated the injection of
different integrity attack events to trigger the corresponding function on the services.
A set of test cases has been executed, they use different number of petitions of the
process. The parameter to measure in this case are: time of execution of a process
without faults, time of execution of a process with faults, and the number of service
with faults. The hardware used to execute the tests is a server Intel Xeon 2.4 GHz,
with 8GB RAM and a client Intel Core 2 Duo 2,5GHz with 4 GB RAM. We can

Table 1 Fault tolerance results with 400 petitions to the process

Time with fault [s] Recovery
N. fault services

1 0.12 100%
2 0.16 100%
3 0.15 100%
4 0.16 100%
5 0.16 100%

highlight that the execution time without fault has obtained the identical values in
all cases, about 0.12 seconds, but in case of fault our solution achieves a recovery
one hundred percent but at the expense of very low overhead of execution, as shown
in Table. [Tl

6 Related Work

The dependability has been studied in the context of business process management
in [4]. In this work, a framework is proposed, Dynamo. This framework provides
a run-time business process supervisor that guarantees that the requirements of de-
pendability are satisfied. The main contribution is the definition of two languages,
WSCoL and WSRS, although they are not a supported standard. Likewise, [4]
presents some remedial strategies that are mainly focused on the recovery context,
but these do not pay attention in the typical solutions in the fault tolerance scope.

In the scope of fault tolerance in BPEL processes there are some contributions,
[7108]. The feasibility of BPEL to implement fault tolerance techniques with BPEL
language is studied in [[7]. Another work is focused on the dynamic selection of Web
Services for the construction of optimal workflows, [8]. The selection of the optimal
service is based on searching services from different repositories and some stored
data from databases. Although it seems a fault tolerance solution, it is only because
they build the workflows on the fly selecting the best service each time, but it does
not take into account the unique point of fault in the proxy component.

In fault tolerance of distributed systems, checkpointing and rollback recovery ap-
proaches are popular [6] [3]. A well-designed checkpointing algorithm allows to
recover a faulty business process from the recently saved state. Other proposals have
been developed in other domains such as grid computing [15] and Web Services [4].
Previous works do not consider malicious attacks detection and are focused on find-
ing out what damages of these attacks are.

7 Conclusions and Future Work

This paper presents a framework, OPBUS. Main goals of the framework are: de-
sign, implementation, and evaluation of a fault tolerance mechanism in business

processes. We show how OPBUS provides different mechanisms, from model vali-
dation in modeling layer up to fault tolerance mechanism at run-time. In the fault to-
lerance topic, OPBUS control business process detecting possible integrity faults in
services and it makes corresponding actions according to the integrity attacks. The
experimental results show how the fault-tolerant mechanism handle the integrity
faults efficiently with low overheads and with a recovery index of the one hundred
percent. In the near future, we will add new policies to further improve performance,
for example, by adjusting sensors on-line according to different security situations.

Acknowledgements. This work has been partially funded by Consejeria de Economia, Inno-
vacion y Ciencia of Regional Government of Andalusia project under grant PO8-TIC-04095,
and by Spanish Ministerio de Ciencia e Innovacién project under grant TIN2009-13714, and
by FEDER (under ERDF Program).

References

1. Business process execution language (2008), http://docs.oasis-open.org/
wsbpel/2.0/0S/wsbpel-v2.0-0S.html

2. Business process model and notation (2009), http://www.omg.org/spec/
BPMN/1.2

3. Baldoni, R.: A communication-induced checkpointing protocol that ensures rollback-
dependency trackability. In: FTCS 1997: Proceedings of the 27th International Sympo-
sium on Fault-Tolerant Computing (FTCS 1997), Washington, DC, USA, p. 68. IEEE
Computer Society, Los Alamitos (1997) ISBN 0-8186-7831-3

4. Baresi, L., Guinea, S., Plebani, M.: Business process monitoring for dependability. In:
WADS, pp. 337-361 (2006)

5. Borrego, D., Gémez-Lépez, M.T., Gasca, R.M., Ceballos, R.: Determination of an
optimal test points allocation for business process analysis. In: IEEE/IFIP Net-
work Operations and Management Symposium Workshops, BDIM 2010 (2010)
ISBN 978-1-4244-6039-7

6. Cao, G., Singhal, M.: Checkpointing with mutable checkpoints. Theor. Comput.
Sci. 290(2), 1127-1148 (2003)

7. Dobson, G.: Using ws-bpel to implement software fault tolerance for web services. In:
EUROMICRO-SEAA, pp. 126-133 (2006)

8. Huang, L., Walker, D.W., Rana, O.F., Huang, Y.: Dynamic workflow management us-
ing performance data. In: IEEE International Symposium on Cluster, Cloud, and Grid
Computing, pp. 154-157 (2006)

9. Huang, S.-M., Chu, Y.-T., Li, S.-H., Yen, D.C.: Enhancing conflict detecting mechanism
for web services composition: A business process flow model transformation approach.
Inf. Softw. Technol. 50(11), 1069-1087 (2008)

10. Kim, J.L., Park, T.: An efficient protocol for checkpointing recovery in distributed sys-
tems. IEEE Trans. Parallel Distrib. Syst. 4(8), 955-960 (1993)

11. Mendling, J., Moser, M., Neumann, G., Verbeek, H.M.W., Vandongen, B.F.: Faulty epcs
in the sap reference model. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006.
LNCS, vol. 4102, pp. 451-457. Springer, Heidelberg (2006)

12. Miller, J., Mukerji, J.: Mda guide version 1.0.1. Technical report, Object Management
Group, OMG (2003)

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.omg.org/spec/BPMN/1.2
http://www.omg.org/spec/BPMN/1.2

13.

14.

15.

16.

17.

18.

19.

Ouyang, C., van der Alast, W.M.P., Dumas, M., ter Hofstede, A.H.M.: Translating bpmn
to bpel (2006)

Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming. Elsevier,
Amsterdam (2006)

Shi, X., Pazat, J.-L., Rodriguez, E., Jin, H., Jiang, H.: Adapting grid applications to safety
using fault-tolerant methods: Design, implementation and evaluations. Future Generation
Computer Systems 26(2), 236-244 (2010)

Stahl, T., Volter, M.: Model-Driven Software Development: Technology, Engineering,
Management. Wiley, Chichester (2006) ISBN 978-0-470-02570-3

van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M.: Business Process Management:
A Survey, pp. 1-12 (2003)

Varela-Vaca, A.J., Gasca, R.M., Borrego, D., Pozo, S.: Towards dependable business pro-
cesses with fault-tolerance approach. In: 3rd International Conference on Dependability,
DEPEND (2010)

Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer, Heidelberg (2007) ISBN 978-3-540-73521-2

	Chapter 7 Industrial and Commercial Applications of Intelligent Methods for Security
	OPBUS: Fault Tolerance Against Integrity Attacks in Business Processes
	Introduction
	OPBUS Framework Description
	Modeling Layer
	Application Layer
	Fault Tolerance Layer

	Illustrative Example
	Implementation Details
	Performance Evaluation
	Related Work
	Conclusions and Future Work
	References

