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Abstract: This work introduces the tools used to teach the Kalman Filter (KF) to Aerospace
Engineering students in the University of Seville. In particular, an easy-to-set-up application
is introduced; based on the MATLAB framework on its 2020b (or newer versions), it is able to
display the attitude of a smart device in real time through a wireless connection to a computer.
This tool is a simple yet powerful educative resource when teaching about the KF, since it
showcases its performance while allowing the student to understand how a complex real-world
problem can be solved using a relatively simple implementation of the KF; in particular, the
Multiplicative Extended KF (MEKF) is chosen, but the framework can be easily adapted to
other versions such as the Extended or Unscented KF'. In addition, the tool allows the student to
be aware of the inner workings of the filter itself, learning about its advantages and limitations
compared with other attitude estimation algorithms. The student is also able to understand
how the filter needs to be tuned, and to observe the results of the experiments in a visual and

straightforward manner.
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1. INTRODUCTION

The Kalman Filter (KF) is a powerful tool for optimal
estimation of states using measurements coming from di-
verse sensors and corrupted by errors, and can be applied
to many fields. In the field of Aerospace Engineering, it
appears in many important applications, such as aircraft
navigation, orbit determination, or attitude estimation.
Thus, it is often included in Aerospace Engineering cur-
ricula, either on its own in a course on estimation theory,
taught along control theory, or included as an advanced
topic in a more applied class -for instance, in the University
of Seville it is taught in the Spacecraft Dynamics course
as an advanced tool for attitude estimation. Frequently,
in the academic setting, the KF is taught and exemplified
using fully determined models for the errors, thus resulting
in completely defined problems -where the real state is also
known. However, in real-world applications it is seldom the
case that this error -and logically the real state- is fully
known, and therefore the academic case may be deceitful
(the student falsely believes that in practice they will just
need to tweak some values to achieve a good result, but
in reality oftentimes it is impossible to determine what a
good result is, due to a lack of a reference), leaving the
student defenseless when encountering a real problem for
the first time. For this reason, it is desirable to provide
the student with real examples, or to propose scenarios of

experiments that emulate real world conditions, so that
they are forced to practice their critical thinking.

A prime example of a simple to understand and basic
KF application -and therefore educationally very valuable-
is the estimation of the attitude of a smart device (such
as a smartphone or a tablet), which also has the benefit
of being readily available for most students. The error
of the sensors that are going to be used is not known
a priori, and thus this error must be modelled in some
way, similarly to a real-world case. The key advantage
of this method is the ease of visualization of the results
and the simplicity of performing as many experiments as
necessary at any location, such as at the students’ home.
If done correctly, students will be able to improve their
understanding about the filter’s performance, by means
of direct visual interpretation of the results, and about
exactly how the tweaking of the different parameters of
the filter is affecting the results.

The idea of using an smartphone for this purpose is
not new. In Hendeby et al. (2017), a specific cell phone
application was developed to carry out experiments. In
this work, we follow the spirit of the latter work, but design
a tailored application based on the MATLAB framework,
and specifically oriented towards the 2020b or newer
version, where support for live data transfer from a remote
device has been reintroduced. The main advantage of using
MATLAB is its wide availability in academic environments
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and having both ends (smartphone end and computer end)
with cross-platforms applications already developed and
mantained by Mathworks; thus one can expect that the
developed application can be used in teaching for many
years to come. The Aerospace Engineering Department
from the University of Seville already has good experiences
in developing MATLAB-based educative applications, see
e.g. Lanagran-Soler et al. (2015).

The structure of this work is as follows. A basic review of
the Kalman Filter (KF) and the Extended Kalman Filter
(EKF) is presented on the second Section. On the third
Section, the problem of estimation of a smart device’s
attitude is proposed and the Multiplicative Extended
Kalman Filter (MEKF) is presented. In Section 4, the
solution to the problem and the different results that can
be obtained using the designed application are shown.
Finally, some concluding remarks are given in Section 5.

2. A REVIEW OF THE KALMAN FILTER AND
SOME OF ITS NON-LINEAR VARIATIONS

The problem of state estimation on a system arises in real-
world applications where measurements can be corrupted
by error and the reliability of the sensors, as well as the
presence of noise and bias and the imperfect modelling,
needs to be taken into account. In its most general sense,
the KF is a tool that provides estimations for the states
based on a model and the available data at a certain time
instant, combining measurements in such a way that the
error of the estimation with respect to the real state is
(hopefully) minimized.

The KF starts from a system’s dynamic model. The sys-
tem can have additional inputs as well. With information
about the initial conditions of the system and the input
function, it is possible to directly (by means of numer-
ical integration) solve the system’s model. However, the
initial conditions and measurements will probably have
some error, and the model will be imperfect. When nu-
merically integrating a system using measurements and
initial conditions that have uncertainty, these errors end
up accumulating with time, potentially causing a drift
from the correct state. After a certain time period, the
uncertainty of the estimation of the state may become
unacceptable.

An immediate solution for this problem is to introduce
measurements from external sensors that are able to detect
a magnitude related to the state, as a way of correcting
the estimation. However, these measurements may be
corrupted by error as well. The idea behind the KF is
to combine the propagation of the system (integrating
the system model) and the measurements from external
sensors in such a way that the estimation is better than the
estimate obtained by using only one measurement alone,
or direct integration. As such, it is a common sensor fusion
and data fusion algorithm.

Thus, one combines the estimation from the differential
equation of the system’s model (called the “a priori”
estimation obtained from a “propagation step”) with the
available external measurement or measurements in an
update step to obtain the best possible combination (called
the “a posteriori” estimation). The combination is “best”

in the sense that it minimizes the covariance of the error
(however this is not guaranteed at all in a nonlinear
setting).

Next, the KF formulation is briefly explained. There
are several possible choices to pose a KF depending on
whether the dynamics of the system and the measure-
ments are considered discrete or continuous. It is the au-
thors’ opinion that the continuous/discrete version, see e.g.
Jazwinski (2007), is the easiest to teach from a pedagogical
point of view, since students are more used to differential
equations as models. However, what follows can be also
adapted to a discrete/discrete version of the KF.

Starting with the linear case, consider thus the following
description of a system:

& =F(t)x + B(t)u+ G(t)w, (1)
where x is the state, u some input, assumed perfectly
known (it could be the value of some internal measure-
ment), and w models an unknown variable (which could
come from error, perturbations, or unmodelled terms),
assumed to be Gaussian white noise, this is: E[w(t)] = 0,
Elwt)w?(7)] = Q(t)6(t—7), where E[-] is the expectation
and ¢ is Dirac’s Delta function. In (1), the matrices F', B
and G are of adequate dimension. The (discrete) measure-
ment model is

yr = Hypxp + vy, (2)
where the subindex k refers to the discrete time instant
tr at which measurements are perfomed (this is, for ¢t €
(tk,tk+1) no external measurement is performed). The
value of yj represents the value of the measurement at ¢y,
xr = x(tg), Hi is a matrix of adequate dimension, and vy, is
discrete Gaussian white noise, this is E[v,] = 0, E[vgv] | =
Ry0y;. An additional hypothesis is that the noises in (1)
and (2) are independent, this is, Elvyw(t)] = 0, Vk,t, and
that an estimation of the initial condition of z at tg is
known, denoted by #g. The error of this initial condition
is assumed Gaussian, of zero mean, independent of noises,
and its initial covariance, Py = E[(x(0) — &¢)(x(0) — £0)7]
is assumed known.

The linear KF algorithm, which was shown optimal in R.
Kalman’s seminal paper (Kalman (1960)), is as follows:

e Initialization: Start from #j = #(0) and Py" =
P(0). Set k = 0.

e Propagation: For ¢t € [t,tx+1), since no measure-
ment is available, estimate Z(¢) by integrating (1)
without the unknown noise: Z(t) = F(t)& + B(t)u
from the i.c. £;. The covariance of the error P(t),
with the model being linear and all distributions
assumed Gaussian, is known to follow

P(t) = F(t)P(t) + P(F ()" + GH)QH)GT (1), (3)
a matrix differential equation with i.c. P,j .
e Update: When t = t;, a measurement vy, is obtained.
Denote the a priori estimation as Z;, = #(¢; ) and the
a priori covariance as P, = P(t, ). Then obtain the
a posteri estimation as

i;zu’%; +Kk(yk—Hk§;‘l;), (4)
where K}, the Kalman gain, is obtained as
_ _ -1

Ky, = Py H! (HyP; H! + Ry,) (5)

The a posteriori covariance is updated as
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Pl = (I - KyHy,)P, (I — KpHy,)" + Ky Ry KjL (6)
Set k =k + 1 and go back to the propagation step.

In the case of a nonlinear system, the following model is
used:

z = f(z,u,t) + G(t)w(t), (7)
where now f is a function, and the measurement model
becomes

Yk = h(wg, t) + vk, (8)
with noises and initial conditions as in the linear case.

The easiest KF algorithm (but not necessarily the best
performing one) is the Extended KF (EKF), see e.g.
Welch et al. (1995), that uses the linear KF by linearizing
the equations around the current estimation only for the
purposes of computing P(t) and the Kalman gain K. It
is summarized next:
e Initialization: Start from #J = #(0) and Py” =
P(0). Set k =0.
e Propagation: For t € [tg, tr11), estimate Z(t) by in-
tegrating (t) = f(&,u,t) from the i.c. #;. Compute
F(t) _ of(x,u,t)

ox

: and using this F integrate (3)
B (t

starting from P]j .
e Update: At t = t;, denote &, = &(t; ) and P, =

P(t, ). Then:

&f =2, + Kby, 9)
where oy, = yr — h(Z},,tx) and the Kalman gain is
obtained again from (5) with Hy = % ,

T=E,
and the a posteriori covariance from (6). Set k = k+1

and go back to the propagation step.

3. ATTITUDE ESTIMATION

One application of the KF that is paramount in aerospace,
easily understandable, and aids in visualizing its function-
ality and behavior, is the problem of attitude estimation
through the combination of measurements of the angular
velocity—from gyroscopes—and measurements provided
by additional sensors such as accelerometers or magne-
tometers.

3.1 Attitude estimation model for a smart device

The attitude of a device with respect to a reference
system needs to be estimated. For this, measurements of
the angular velocities can be obtained from gyroscopes,
whereas an accelerometer and a magnetometer can be used
to obtain measurements for the direction of the gravity
and of the magnetic field respectively. Note that for this
scenario, it has been assumed that accelerations different
from gravity are negligible, as well as perturbations to the
magnetic field.

Then, it is possible to use any version of KF to integrate
and combine, optimally, all measurements (or whichever
are available at a given time instant). Specifically, since the
problem is considered from the point of view of attitude
and quaternions will be used as the state to represent the
orientation, the Multiplicative EKF, see Markley (2003),

(1) (2)

Fig. 1. Visualization of the experiment to be carried
out. In the first step (1), measurements from the
smartphone’s sensors at rest are taken, and the initial
position—and reference system with respect to which
the attitude will be expressed—are established. Then,
the device is moved around (2), while the attitude
estimation is being carried out to observe the results

which contemplates a multiplicative definition of the error,
is used.

One needs to define the involved frames of reference, which
will be denoted by A and B. Frame A refers to an inertial
reference frame (as a first approximation, in fact, a local
frame where the smart device is initially placed can be
consider as “inertial” neglecting the extra inertial forces)
and B to the body axes frame (see Fig.1). The attitude
between the frames can be represented using several math-
ematical objects; of those, quaternions (¢) and the director
cosine matrix (denoted as C¥, representing the orthogonal
transformation matrix from A to B) will be used in this
work. Both frames are assumed initially aligned, thus the
initial condition is the identity. If starting in a different
orientation, the initial condition which can be obtained
using any of the (static) attitude determination methods
available such as TRIAD or Davenport’s Q method, see
e.g. Shuster and Oh (1981). The state can then be propa-
gated using the quaternion kinematic equation, and the
update step can be performed using the measurements
from the gravity g and the Earth’s magnetic field b using

9" =Clg" (10)
b? = cBp? (11)

First of all, the system would need to be calibrated so that
the characteristics of each sensor (mean and covariance)
can be estimated. The mean of the gyroscope will be taken
as its bias, whereas the mean of the accelerometer and
magnetometer measurements, as the reference g# and bA,
respectively. Readings from the sensors would be obtained
for a significant period of time so that the data obtained
from the device at rest (which in the ideal case should yield
that the device is indeed at rest) can be analyzed to extract
the bias and the noise estimated from the measured data.
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Of course it is possible to carry out the method without
either the accelerometer or the magnetometer (if both sen-
sors were left out, the procedure would no longer identify
as a KF, but rather a direct kinematic integration), but
the gravity measurement only yields high accuracy in de-
termining the “down” direction and the magnetometer in
determining the “North” direction, thus losing one sensor
the ability to compensate the estimation around the three
axis is lost.

MEKF equations for attitude estimation ~ This section
summarizes Markley (2003); a brief review of quaternions
and the associated error vector is provided.

Quaternions extend the concept of complex number to 4
dimensions, in such a way that a quaternion can be written
in the form ¢ = qo + iq1 + jg2 + kgz; where go denotes
the scalar part and ¢ = [¢1 ¢2 Q3]T denotes the vector
part. i, 7 and k are the basic quaternions, and the rules
for multiplication amongst the basic quaternions can be
defined as:

li=d 1j=j: 1k =k (12)
ixi=jxj=kxk=-1, (13)
ixj=k; kxi=7j; jxk=1; (14)
jri=—k;ixk=—jkxj=—i (15)

The most direct interpretation of quaternions as a means
of attitude representation is as follows:

B 0
qo = cos(2>
A
q= sm<2)e

where e and 6 are Euler’s axis and angle respectively. If an
original attitude is rotated said angle around the axis e,
one obtains the desired final attitude; thus, quaternions
can be used to represent attitudes with respect to a
determined reference system.

(16)

(17)

Quaternions are particularly well suited for numerical
computation of attitude and kinematics, since the com-
position of rotations using quaternions is by means of
direct component by component multiplication, eliminat-
ing the need for trigonometric functions, which are, in
general, difficult to work regarding numerical computation
of results. Also, even when numerical errors arise in the
propagation of quaternion kinematics, it is possible to take
advantage of one of the main property of quaternions -
they are unitary-, so that through renormalization of the
quaternions, numerical errors are contained.

Another property of quaternions is that the classical ad-
dition formulation used for description of errors and lin-
earization cannot be used, since the sum of two unitary
quaternions representing a reference and a slightly differ-
ent attitude, respectively, does not necessarily have uni-
tary modulus. Because of this, a multiplicative formulation
is introduced, where ¢ = @ * dq, with dq is the error
quaternion that should be close to the unit quaternion
g=11000 ]T. Note that since the error quaternion only

has 3 degrees of freedom, it can be codified using an error

vector s as:
1 [2]
2 |@

Which if a is sufficiently small can be approximated as

dq(a) = (18)

oq(a) = [a}Q} This small error vector can be shown to

be equivalent to the traditional small error vector that
is used to define the difference between two very similar
DCM matrices:

CE ~1d— 6" (19)

if frames B and A are sufficiently close.

For the computation of the attitude of a body using the
MEKF, the initial data required are ¢(0), initial attitude;
P(0), the initial covariance of the quaternion error vector
a; Q, the covariance of the gyroscopes; and R;, the
covariance of each of the external measurements (in this
case, the magnetometer and the accelerometers).

To begin with the estimation process, assuming that the
measurements of the angular velocity of the device & are
continuous, ¢ and P can be initialized for ¢ = 0 using
the initial conditions. Then, they are propagated until an
external measurement is available, as

;1
0= 50%a (20)
P=—-0"P+Po*+Q (21)

where ¢z refers to a quaternion with zero scalar part
and having @ as vector part, and * denotes quaternion
multiplication. The operator X transforms a vector into
the matrix that implements the vector product, such that
a*b = a x b, see e.g. Markley (2003).

Then, at a time instant ¢t = ¢, when a measurement is
received, the a priori estimation is computed as ¢~ = §(¢x)
and P~ = P(tr). Next, it is possible to compute the
discrepancy dz; between the external measurement and
the a priori estimation from the refrence value v through

6z =08 - C§ (@) v (22)

1
Where the index 7 refers to each of the n external sensors
(in this case, 2) and CF is the estimated Direction Cosine
Matrix (DCM) for the current estimated attitude obtained
through the Euler-Rodrigues formula for quaternions

C(9)= (42 —q'q)Id+2qq" — 2q0q"™

After computing 0z;, H; ~ (07

) and R;, these are joined
by blocks into the vector dz and matrices H and R, and
the Kalman gain and a posteriori quaternion error vector

a® can be calculated as
K=P HY'(HP HT + R)™! (24)
at =Kéz (25)

Finally, it is possible to update the estimation for the
attitude and its covaraince error using

(23)
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. e . 2 1
" =G x0qg=4g *Lﬁ}? (26)
A+ [la*|

Pt =P -~ KHP™ (27)
and then this point can be used as the initial condition for
the next propagation until an additional measurement ar-
rives. Note the algorithm is flexible enough to accomodate
for the presence of 1, 2 or more measurements, becoming
available at different times, individually or together.

4. IMPLEMENTATION OF THE ATTITUDE
ESTIMATION APPLICATION

In order to provide the student with a simple to work
with yet powerful and easy to understand tool, a MATLAB
based application with a graphical user interface has
been developed. This application allows the student to
tweak the parameters of the MEKF while being able to
gain insight about how the problem is being solved. For
the application, the class OrientationView from the app
described in Hendeby et al. (2017).

The application consists of a window with options that
automate the connection to a mobile device through the
MATLAB mobile app on a mobile device. For this, an
active Mathworks account is required, as well as MATLAB
r2020b (or newer) for live transmission of data from the
sensors. An active internet connection on both ends is also
necessary, but said devices can be on separate networks.

It is possible to access the workspace variables at anytime
during the exercise, and the MATLAB application code
is also provided, so that the students can tweak the
application even more, having a say on how the calibration
step is carried out, and if different models for the sensor
errors are to be considered, like a more complex approach
to determine their bias.

The workflow of the exercise would be to:

(1) Open up the MATLAB Application and the MATLAB
Mobile App
(2) Set up the experiment by placing the mobile device
on a flat surface that will serve as an initial reference
position and defines the reference frame A.
(3) Connect to the mobile device
) Once the connection is confirmed, select the duration
for the calibration step
(5) Perform the calibration step and observe the results,
with the device at rest conditions and away from
magnetic interference which may distort readings
from the magnetic sensor
(6) Establish the values for the matrices Q and R, which
roughly correspond to the weight given to the mea-
surements of the different sensors on the computation
of the attitude
) Determine a duration for the attitude estimation
experiment
) Perform the experiment (click start)
) Observe the results as the device is gently rotated
) Set the phone in the initial reference position before
the experiment ends
(11) Take note of the calculated error quaternion once the
experiment is over, and the estimated error, which
ideally should coincide

In the proposed application, it is possible to compare the
direct integration method with the MEKF, as well as with
the smart device’s own orientation readings.

In an academic setting, the values of @ and R should
be tweaked by the student to minimize the error, and to
reduce the discrepancy between the real and estimated
errors as much as possible. Note that in the application,
one unique value of R has been specified, but in the
code it is possible to determine a different weight for the
magnetometer and for the accelerometer. It is interesting
to study how different sensors found in different mobile
devices affect the quality of the results, and if it is possible
to mitigate this effect by taking it into account when
pondering each sensor differently in the MEKF. It is also
possible to remove measurements from one of the discrete
sensors, as to observe the effect on the results.

A lot of variables can affect the quality of the results of the
experiments. The duration and quality of the calibration
can be crucial in modelling correctly the characteristics
of the sensors that are being used, which also affects the
values of the Q and R matrices. The nature and duration
of the experiment itself, along with the selected refresh
rate, also have a significant contribution to the way the
algorithm behaves. If a low refresh rate or fast movements
are exerted on the mobile device, it is possible that the
hypothesis of continuous measurements of the angular
velocity is no longer valid. If significant accelerations are
exerted on the device, the readings of the accelerometer
will be unreliable.

The developed application runs in real-time, but requires
significant computing power, so if need be it is possible to
reduce the rate at which the representation is updated, so
that the attitude’s computation is not slowed down and
compromised due to the non-critical visualization phase.

The application is available under request to the authors.

5. CONCLUSION

A MATLAB GUI-based interactive application has been
developed, which will allow students to gain insight on how
quaternion kinematics and attitude estimation equations
can be implemented in an experimental environment, while
also providing an in-depth understanding of how a Kalman
Filter works, what its variants are and how to apply it
to more complex problems than what may be possible to
teach by traditional means.

The final objective of this application is integration inside
a dedicated lab session in the context of Kalman Filters
and attitude estimation. To design said activity, it would
be interesting to have the student recreate experiments
with variations in the different application parameters
and to have them identify what factors are relevant,
what configuration yields the best results for a set of
experiments and finally to determine the limitations of
such algorithm, all while interactively tampering with the
inner workings of the open-source application.

Future works also include implementing other KF' variants
(e.g. UKF) to compare between them and see the advan-
tages and drawbacks of each, or developing the application
in other frameworks such as Python.
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Fig. 2. General view of the tailored MATLAB application and of the results
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Fig. 3. Visualization of the device’s attitude and final errors
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