
Model-Based Software Debugging

Rafael Ceballos, Rui Abreu, Ángel Jesús Varela-Vaca and Rafael M. Gasca

15.1 Introduction

The complexity and size of software systems have rapidly increased in recent years,
with software engineers facing ever-growing challenges in building and maintaining
such systems. In particular, testing and debugging, that is, finding, isolating, and
eliminating defects in software systems still constitute a major challenge in prac-
tice [47].

Debugging is an iterative process, where hypothesis generation, hypothesis selec-
tion, and hypothesis confirmation form the central tasks [7]. However, selection and
exploration of good hypotheses remain difficult, and programmers often rely on intu-
ition and spend considerable effort on pursuing seemingly promising hypotheses that
ultimately do not lead to the true fault [37]. Similar to physicians, who often apply
multiple tests to arrive at a diagnosis, software engineers have multiple debugging
tools to analyze a program failure at their hands. In the software domain, debugging
tools can leverage information obtained from (i) the execution of the program and
from (ii) formal analysis of the behavior of a program or its model. While a rich
set of tools has been developed to ease the burden of gathering information about
a program and its execution(s), complementary approaches to use and analyze this

R. Ceballos (B) · Á. J. Varela-Vaca · R. M. Gasca
University of Seville, Seville, Spain
e-mail: ceball@us.es

Á. J. Varela-Vaca
e-mail: ajvarela@us.es

R. M. Gasca
e-mail: gasca@us.es

R. Abreu
IST, University of Lisbon and INESC-ID, Lisbon, Portugal
e-mail: rui@computer.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17728-7_15&domain=pdf
mailto:ceball@us.es
mailto:ajvarela@us.es
mailto:gasca@us.es
mailto:rui@computer.org
https://doi.org/10.1007/978-3-030-17728-7_15

information must be leveraged to target a broader spectrum of faults and compensate
the limitations of individual techniques.

Model-Based SoftwareDebugging (MBSD) is a technique that leverages concepts
from program slicing. In MBSD, a diagnosis is obtained by the logical inference
from the static model of the system, combined with a set of run-time observations.
There are several types of models, derived from the source code and test cases
that are then used by the technique to reason about observed failures. Despite the
accuracy of this technique, in most cases, the computational effort required to create
a model of a large program forbids the use of model-based approaches in real-life
applications [29, 40, 42–44, 52]. Regardless of the complexity of the approach,
there have been developments into making the real-life applications more tractable
to model-based debugging:

• One option is the combination of MBSD with a more lightweight and accurate
technique that uses coverage to reason about observed failures [40] Yet another
field of application is end-user programming, such as spreadsheets, where pro-
grams tend to be smaller [31].

• Another option is based on the combination of different paradigms, such as Design
byContract. Thismethodology is named SoftwareDiagnosis Based onConstraints
Models [20, 54]. The goal is to isolate and identify faults in assertions (Design by
Contract) and/or in sentences (source code). Design by Contract was proposed in
[41], in order to improve the Object-Oriented software quality.

The remainder of this section elaborates on techniques to isolate software faults,
in particular, model-based approaches.

15.2 Background and Problem Statement

Improving software quality has been a long-standing issue in academia, leading
to considerable advances in automated fault detection, localization, and correction.
While fault detection strives to expose defects in a given program, fault localization
aims to identify particular program fragments that may be responsible for a failure,
and fault correction aims to repair the program.

Effective (automated) debugging assistance can be provided by supporting the
developer in one or more of the aforementioned tasks. Recent advances in program
analysis and verification techniques have led tomaturemathematical frameworks and
tools focused on specific purposes, but their individual utility for general debugging
remains limited to specific programs, execution environments, and problem contexts.
As a result, the overall debugging process remains complex andmuch time is devoted
to analyzing (possibly irrelevant) results gathered from different tools.

For example, techniques that are solely based on a program, such as slicing [49]
or invariant learning [28], are often ineffective in locating faults that stem from
functionality that has been “forgotten” in the implementation or that is not covered

by tests. Conversely, techniques based on abstract specifications (if available), such
as abstract state machines [56], can locate regions in a program where specification
and program show different behaviors but may suffer from difficulties obtaining
sufficiently detailed, correct specifications that would allow to confine the cause to a
specific small region. Only by a combination of complementary techniques can such
complex faults be located effectively.

However, many formal methods suffer from spurious explanations that are caused
by approximations and abstractions introduced by the formalism [13], while others
may return results that are too large to be useful [46]. Experience with automated
debugging and checking tools shows that the remaining results are often dismissed
if the fault has not been located after examining the first few candidate explana-
tions [36]. Therefore, discriminating between true explanations and those that are
caused by approximations in the analysis is essential. Statistics-based techniques
are among the more popular automated fault localization techniques. By correlating
information about which program fragments have been exercised in a set of multiple
program execution traces (also called program spectra) with information about suc-
cessful and failing executions, Spectrum-based Fault Localization (SFL) and other
statistics-based approaches yield a list of suspect program fragments sorted by their
likelihood to be at fault.

Since this technique is efficient in practice, this and other dynamic analysis tech-
niques are attractive for large modern software systems [52]. Overall, statistical
techniques are lightweight, but are rather dependent on the availability of a suitable
test suite.

Machine learning techniques also feature prominently among automated program
analysis tools. In this context, learning is applied to infer from execution traces
models that describe the program’s intended behavior. For example, Daikon [26] is
an invariant detection tool built with the intention of supporting program evolution
by helping programmers to better understand the code. It analyzes the values of
variables encountered in executions of the program and retains only those Boolean
expression over program variables that are satisfied in all executions. For example, if
in all observed executions, the value of variable x was less than a variable y at some
point in the execution, the invariant x < y will be reported. The same approach has
since been applied to debugging, where violations of inferred invariants are used to
detect errors [28]. However, existing work does little to help determine the origin of
the fault once a failure has been detected, and the learning algorithms may produce
results that are too numerous or too specific to be of value to the programmer.

Better results than those obtained from methods based on dynamic analysis alone
can often be achieved if a model of the correct program behavior is available [1].
Model-Based Software Debugging (MBSD) techniques have been advocated as
powerful debugging aid that isolate faults in complex programs [40]. By comparing
the execution of a program to what is anticipated by its programmer, model-based
reasoning techniques separate those parts of a program that may contain a fault from
those that cannot fully explain the observed symptoms. Compared to spectrum-based
localization, model-based analysis yields better accuracy due to precise reasoning
about the possible effects of each program fragment but suffers from poor scalability.

Better and precise results can be achieved if the model-based methodology for
diagnosing bugs takes into account Design by Contract (DbC) methodology because
the correct behavior is available for automatic reasoning [21]. DbC is themodel of the
correct behavior that the source code must satisfy. In [50], two measures in order to
validate the benefits of using DbC are proposed: robustness and diagnosability. The
robustness is the degree to which the software is able to recover from internal faults
that would otherwise have provoked a failure. DbC enables the development of more
reliable and robust software applications and the control of abnormal situations.
Diagnosability expresses the effort required in the localization of a fault as well
as the precision allowed by a test strategy on a given system. The results show
that the robustness improves rapidly with only a few contracts, and for improving
diagnosability the quantity of contracts is less important than their quality. In [14],
it is shown that contracts are useful for fault isolation if they are defined during
analysis. By using contracts, the fault isolation and diagnosability are significantly
improved in object-oriented code (it implies a wider distribution of functions).

In this chapter, we use the terminology introduced by Avizienis et al. [8]:

• A failure is an event that occurs when delivered service deviates from correct
service.

• An error is a system state that may cause a failure.
• A fault (defect/bug) is the cause of an error in the system.

In the context of this chapter, faults are bugs in the code of a software program.

Definition 15.1 A software program � is formed by a sequence M of one or more
components (e.g., statements). Components can be of several levels of granularities,
such as classes, methods, and statements.

Failures and errors are symptoms caused by faults in the program. Fault localiza-
tion aims at isolating the root cause of observed symptoms. The fault localization
techniques considered in this chapter consider the existence of a test suite revealing
the software faults.

Definition 15.2 A test case t is a (i, o) tuple, where i is a collection of input settings
or variables for determining whether a software system works as expected or not,
and o is the expected output. If �(i) = o the test case passes, otherwise fails.

Definition 15.3 A test suite T = {t1, . . . , tN } is a collection of test cases that are
intended to test whether the program follows the specified set of requirements. The
cardinality of T is the number of test cases in the set |T | = N .

15.3 Software Diagnosis Based on Constraints

Amethodology based on constraints for diagnosing software is proposed in [21]. The
main idea is the transformation of contracts and source code into a model based on
constraints for locating faults or defects in source code and assertions. These faults

arewrongly designed assertion or statements, for example, variations inBoolean con-
ditions or in assignment statements. Other types of errors, as syntax errors, memory
access violations, or infinite loops, could be considered in future work.

15.3.1 Constraints-Based Model

A diagnosis is a hypothesis about what are the changes to do in a program in order
to obtain a correct behavior. A component has an abnormal behavior [35] if the
outputs are different from the expected results. For example, a multiplier component
is abnormal if the output of themultiplier is different to themultiplication of its inputs.
For each component c, a Boolean variable AB(c) stores if c is abnormal or not, in
order to know whether a component is abnormal and can be a part of the minimal
diagnosis. The goal of this methodology is detecting semantic defects in source code
or assertions, and these defects are modeled as components with abnormal behavior.

In a software program, blocks of source code are linked in order to obtain the spec-
ified behavior. Each statement of a source code can be considered as a component,
with inputs and outputs (results). An executed program is a set of linked blocks of
code. The order of these blocks can be represented as a Control Flow Graph (CFG).
The CFG is a directed graph that represents a set of sequential blocks and decision
statements. A Path is a possible sequence of statements of the CFG. In order to detect
and isolate defects in the design of programs, the CFG and program contracts are
transformed into a model based on constraints. Testing techniques select the obser-
vational models which are most significant for detecting failures in programs. A test
case is designed for executing a particular program path and determining whether a
program works as expected or not.

When a program has executed the order of the assertions and statements is very
important. It is necessary to maintain this order when the source code and con-
tracts are transformed into constraints. For this reason, the statements of the CFG
are translated into a Static Single Assignment (SSA) form. This translation main-
tains the execution sequence when the program is transformed into constraints. In
SSA form, only one assignment is allowed for each variable in the whole program.
For example, the statements b=x*q;...b=b+3;... {Post:b =...} is transformed to
b1=x1*q1;...b2=b1+3;...{Post:b2 =...}.

The SystemModel (SM) is a finite set of constraints which determine the software
behavior. It will be obtained by transforming the set of statements and assertions of
a program to constraints (in SSA form). A test case is an Observational Model that
can be applied to an SM.

The subsetD⊆ SM is a diagnosis if SM ′ ∪ TC is satisfied, where SM ′ = SM −D.
The minimal diagnoses imply to modify the smallest number of program statements
or assertions. A diagnosis is a set of components with abnormal behavior and the
goal is to minimize this set. In order to maximize the number of components with
normal behavior, the idea is solving a MAX-CSP (CSP and MAX-CSP had been
introduced in Chap.14).

http://dx.doi.org/10.1007/978-3-030-17728-7_14

Fig. 15.1 Contract and source code for the bank account class example

The first goal is detecting the inconsistencies between test cases and contracts,
and then between test cases, contracts and source code. These inconsistencies are
detected, for example, if the SM does not satisfy a Test Case. If there are inconsisten-
cies, the second goal is isolating the inconsistencies between test cases and contracts,
and then between test cases, contracts, and source code. These are explained in more
detail in the sections below.

15.3.2 Diagnosing DbC Defects

In Fig. 15.1, the class AccountImp is shown. It is an example that simulates a bank
account. There are methods for depositing and withdrawing money. Assertions are
checked in two different ways: first without test cases, and then with test cases.

• Without test cases. Two kinds of checks are proposed:

– Checking if all the invariants of a class can be satisfied together.
– Checking if the precondition and postcondition of a method are feasible with
the invariants of its class.

• With test cases. The idea is applying test cases to the sequence {invariants +
precondition + postcondition + invariants} for each method.

Example 1 In Fig. 15.2, the checking of method withdraw is shown. The initial
balance must be 0 units and, when a nonnegative amount is withdrawn, the balance
must preserve the value 0. The balance must be equal or greater than zero when the
method finishes because of the invariant, but the postcondition implies that balance
= balance@pre – withdrawal, that is, 0 − withdrawal > 0, and this is impossible if
the withdrawal is positive. There is a problem with the precondition since it is not

DbC: CSP: Max-CSP:
Inv.: balance >= 0 C1: balance@pre >= 0 C1: AB(Inv) ∨ (balance@pre >= 0)
Pre.: withdrawal > 0 C2: withdrawal > 0 C2: AB(Pre) ∨ (withdrawal > 0)
Post.: balance = C3: balance = C3: AB(Post) ∨ (balance =

balance@pre - withdrawal balance@pre - withdrawal balance@pre - withdrawal)
Inv.: balance >= 0 C4: balance >= 0 C4: AB(Inv) ∨ (balance >= 0)

Var = {balance@pre, Var = {balance@pre,withdrawal,
withdrawal,balance} balance,AB(Inv),AB(Pre),AB(Post)}

Dom = {0,[0,100] ,0} Dom = {0,[0,100],0,[false, true] ,
[false, true] , ..., [false, true]}

Test case: Inputs={balance@pre = 0, withdrawal > 0} Outputs= {balance = 0}
Source code: Method Withdraw

Fig. 15.2 CSP for detecting and isolating defects by using a test case for method Withdraw

strong enough to stop the program execution when the withdrawal is not equal or
greater than the balance of the account.

15.3.3 Diagnosing Source Code Defects

After checking DbC, then the source code of the program is checked by using test
cases. A System Model is obtained by transforming DbC assertions (preconditions,
postconditions, invariants) and statements. DbC assertions are directly transformed
into constraints (into SSA form). The source code outputs must satisfy these con-
straints because they correspond to the correct behavior.

In order to transform the statements to constraints (System Model), the source
code is divided into basic blocks: sequential blocks (declarations, assignments, and
method calls), conditional blocks, and loop blocks. For example, an assignment Ident
= Exp; is transformed into an equality constraint in a CSP, and for the MAX-CSP the
abnormal behavior is added: AB(SAsig) ∨ Ident = Exp. After execution of SAsig , the
equality between the assigned variable and assigned expression must be satisfied, or
in another case, this statement (assignment) has an abnormal behavior (the statement
contains a defect).

In Fig. 15.3, the polybox example is transformed into five statements (source
code). Polybox example had been introduced in Chap. 2. The program cannot reach
the correct output because the second statement is an adder (bug) instead of a mul-
tiplier. By transforming the source code, a CSP and Max-CSP are obtained. For
checking if there are failures, a test case is applied to the CSP. The test case does not
satisfy the CSP. There is almost one semantic defect that generates an unexpected
output. In order to identify this defect, the same test case is applied to the Max-CSP.
By solving this Max-CSP, the obtained minimal diagnosis is {S2}. The diagnosis
is minimal because the goal of the MAX-CSP is to find an assignment of the AB
variables that enable the maximum number of components with normal behavior.

http://dx.doi.org/10.1007/978-3-030-17728-7_2

Source Code: CSP: Max-CSP:
S1: int x = a * c C1: x = a × c C1: AB(S1) ∨ (x = a × c)
S2: int y = b + d C2: y = b + d C2: AB(S2) ∨ (y = b + d)
S3: int z = c * e C3: z = c × e C3: AB(S3) ∨ (z = c × e)
S4: int f = x + y C4: f = x + y C4: AB(S4) ∨ (f = x + y)
S5: int g = y + z C5: g = y + z C5: AB(S5) ∨ (g = y + z)

Var = {a,b,c,d,e,f,g,x,y,z} Var = {a,b,c,d,e,f,g,x,y,z,AB(S1),AB(S2),...,
AB(S5)}

Dom = {2,3,3,2,2,12,12, Dom = {2,3,3,2,2,12,12,[0,100] , [0,100] , [0,100],
[0,100] , [0,100] , [0,100]} [false, true] , [false, true] , ..., [false, true]}

Test case: Inputs={a = 3, b = 2, c = 2, d = 3, e= 3} Outputs= {f = 12, g = 12}
Source code: S1 .. S5

Fig. 15.3 CSP for detecting and isolating defects by using a test case for the Toy Program.

Example 1 Example 2
{Pre: x> 0 ∧ y> 0} {Pre: i>= 0 ∧ i<= n ∧ p> 0}
public int dif(int x,int y){ public int rec(int n,

int max,min,s,z; int i,int p){
(S1) if (x>=y){ int s;
(S2) min=y; (S1) if (i==n)
(S3) max=x; (S2) s=1;

}else{ else{
(S4) min=x; (S3) p=2*p;
(S5) max=y;} (S4) s=this.rec(n,i+1,p);

{Assert: max>= min } (S5) s=s+p;}
(S6) z=max-min; (S6) return s; }
(S7) s=0; {Post:s = 1+ p

∑n−i
y=1 2y}

(S8) while (z>0){
(S9) s=s+z;
(S10) z=z-1;}
(S11) return s;

s = |x−y|
a=1 a

Fig. 15.4 Source code examples that include conditional statements, loops, and method calls

In Fig. 15.4 twomore examples are shown. For conditional statements, as in exam-
ple 1, the predicate P applied to each statement store if each statement is part of the
path or not. When we have a statement Sx, if P(Sx) is true then Sx belongs to the path
of the executed program; otherwise, it does not belong to the path. For a conditional
statement [22], generated constraints include the transformation of the condition and
the block of statements included in each case. Only one path is possible, and this path
will depend on the condition. The transformation to constraints of the conditional
statement allows to detect and isolate defects in conditions and to set the correct
path for obtaining the correct behavior. A loop statement can be transformed into
a sequence of conditional statements. The number of iterations depends on the test
case. For each iteration, the equivalent nested conditional statement is transformed
into constraints. Maintaining the order is important for obtaining the same result as

the loop statement. The invariant of the loop is also transformed into constraints of
the model.

For method calls and return statements, as in example 2 (Fig. 15.4), is possible
to substitute the method call by the precondition and postcondition of the called
method. The constraints obtained from the postcondition give us information about
the correct behavior. If there is no contract, another option is to substitute the method
call by the statements of the method [23].

15.4 Spectrum-Based Reasoning for Software Debugging

This section introduces a lightweight, reasoning technique that reasons over abstrac-
tions of program traces, called program spectra, to produce a diagnostic report for
observed failures in program executions. The technique is known as Spectrum-based
Fault Localization (SFL, for short), and is among the best fault localization tech-
niques [42, 52].

15.4.1 Program Spectra

A program spectrum, introduced by Reps et al. in 1997 to address the Year 2000
problem1 [32], is a characterization of the execution of a program execution on a set
of inputs. These set of inputs can be, for instance, test cases in a test suite. Note that
in the following execution, transaction, and test case are used interchangeably.

Program spectra are information collected at run-time, hence it provides a view
on the dynamic behavior of a program. A program spectrum is represented as a
vector of M counters or flags, where M is the number of software components.
Various different program spectra exist [30]; e.g., path-hit spectra, data-dependence-
hit spectra, and block-hit spectra are among the most common ones. The spectra
commonly used in spectrum-based fault localization is component-hit spectra, a
type of spectra that merely indicates whether a component was involved in program
execution.

Simlar to code coverage tools [55], the source code needs to be instrumented
to collect which components were covered in each execution. In addition to the
program spectra, information whether that particular spectra corresponds to a failing
or a passing execution is also collected in a so-called error vector. In the following,
we will refer to the collected information as the (A, e) tuple, where

• amn = 1 if component 1 ≤ m ≤ M was involved in transaction 1 ≤ n ≤ N , and 0
otherwise;

• en = 1 if transaction 1 ≤ n ≤ N failed, and 0 if passed.

1The Year 2000 problem is also known as Y2K problem, Y2K bug, or simply Y2K.

obs
c1 c2 c3 e

t1 1 1 0 1
t2 0 1 1 1
t3 1 0 0 1
t4 1 0 1 0

Fig. 15.5 Hit-spectra matrix

15.4.2 Modus Operandi of Fault Localization

Next, we will illustrate how spectrum-based reasoning to fault localization works
using a running example. Consider the hit-spectra matrix in Fig. 15.5 (containing a
set of component2 observations obs and transaction outcomes e), with 4 transactions
and 3 components.

Spectrum-based reasoning [4, 6, 25] consists on the following:

1. Generate sets of components (candidates) that would explain the observed erro-
neous behavior.

2. Rank the candidates according to their probability.

Candidate Generation

A diagnostic candidate d is a set of components that are said to be valid if at least
one component in d is exercised in all failed transactions. That is,

∀n∈0..N : en = 1 ⇒ ∃m∈0..M : amn = 1 ∧ dm ∈ d

We are only interested in minimal candidates,3 as they can subsume others of higher
cardinality. There may be several minimal candidates dk for a particular spectrum,
which constitutes a collection of minimal candidates D.

In our example, the collection of minimal diagnostic candidates that can explain
the erroneous behavior are

• d1 = {c1, c2}
• d2 = {c1, c3}

Note that the problem of computing the set of minimal candidates is equivalent
to computing minimal hitting sets [18].

Candidate Ranking

For each candidate d , the posterior probability is calculated using the naïve Bayes
rule4

2As said in the previous section, by component we mean the unit by which we gather coverage.
Basically, components are the columns in the hit-spectra matrix and can represent, e.g., every
statement in the source code.
3A candidate d is said to be minimal if no valid candidate d ′ is contained in d .
4Probabilities are calculated assuming conditional independence throughout the process.

Pr(d | (A, e)) = Pr(d) ·
N∏

n

Pr((Ai, ei) | d)

Pr(An)
, (15.1)

where Pr(obsi) is a normalizing term that is identical for all candidates; hence, this
term is not considered for ranking purposes.

In order to define Pr(d), let pj denote the prior probability that a component cj is
at fault.5 The prior probability for a candidate d is given by

Pr(d) =
∏

n∈d
pn ·

∏

n/∈d
(1 − pn). (15.2)

Pr(d) estimates the probability that a candidate, without further evidence, is respon-
sible for erroneous behavior—that is, the prior probability of being faulty. It is also
used to make to make larger candidates (in terms of cardinality) less probable. In
order to bias the prior probability taking observations into account, Pr(Ai, ei | d)

is used. Let gj (referred to as component goodness) denote the probability that a
component cj performs nominally

Pr((Ai, ei) | d) =

⎧
⎪⎪⎨

⎪⎪⎩

∏

j∈(d∩Ai)

gj if en = 0

1 −
∏

j∈(d∩Ai)

gj otherwise
(15.3)

In cases where values for gn are not available (which is the case for software
components), they can be estimated bymaximizing Pr((A, e) | d) (MaximumLikeli-
hoodEstimation (MLE) for the naïveBayes classifier) under parameters {gn | n ∈ d}.
This MLE-based approach is the Barinel approach and will be detailed in the next
section [6]).

Considering our example, the probabilities for both candidates are

Pr(d1 | (A, e)) =

Pr(d)
︷ ︸︸ ︷(

1

1000
· 1

1000
·
(
1 − 1

1000

))
×

Pr((A,e)|d)
︷ ︸︸ ︷
(1 − g1 · g2)︸ ︷︷ ︸

t1

× (1 − g2)︸ ︷︷ ︸
t2

× (1 − g1)︸ ︷︷ ︸
t3

× g1︸︷︷︸
t4

(15.4)

Pr(d2 | A, e) =

Pr(d)
︷ ︸︸ ︷(

1

1000
· 1

1000
·
(
1 − 1

1000

))
×

Pr((A,e)|d)
︷ ︸︸ ︷
(1 − g1)︸ ︷︷ ︸

t1

× (1 − g3)︸ ︷︷ ︸
t2

× (1 − g1)︸ ︷︷ ︸
t3

× g1 · g3︸ ︷︷ ︸
t4
(15.5)

By performing a MLE for both functions it follows that Pr(d1 | (A, e)) is max-
imized for g1 = 0.47 and g2 = 0.19, and Pr(d2 | A, e) is maximized for g1 = 0.41
and g3 = 0.50. Applying the goodness values to both expressions, it follows that

5In the context of development-time fault localization, we often approximate pj as 1/1000, i.e., 1
fault for each 1000 lines of code.

Pr(d1 | (A, e)) = 1.9 × 10−9 and Pr(d2 | A, e) = 4.0 × 10−10, entailing the ranking
(d1, d2).

15.4.3 The BARINEL Approach to Compute Goodness

In the previous section, we have described the modus operandi of spectrum-based
reasoning to fault localization. A key issue in the outlined approach is to compute the
component goodness gj of each component, as these values influence the posterior
probabilities of the diagnostic candidates (Pr(dk)). The approach was first introduced
in [6], as is named Barinel.

15.4.3.1 Component Goodness Estimation

As mentioned before, the key idea underlying the Barinel approach is that it com-
putes the gj for each candidate’s faulty components that maximizes the probabil-
ity Pr((A, e)|dk) of the observations (A, e) occurring, conditioned on candidate dk ,
yielding statistically perfect estimators for gj. Following equation (15.3), Barinel
bias the prior probability taking observations into account conditioned on a particular
diagnostic candidate dk using Pr(Ai, ei | dk):

Pr((Ai, ei) | dk) =

⎧
⎪⎪⎨

⎪⎪⎩

∏

n∈dk∧amn=1

gn if en = 0

1 −
∏

n∈dk∧amn=1

gn if en = 1

Hence, the component goodnesses (gn) are computed by maximizing Pr((Ai, ei)|dk)
according to

argmax
gj |j∈dk

Pr(e|dk).

Note that this approach impliesoptimum gn valuesmaydiffer per diagnostic candidate
for the exact same set of components. For instance, suppose a system with M = 4
components and the following double- and triple-fault candidates. Let the following
be the gn that optimally explain the observed failures and passes for the double and
triple fault {0.15, 0.8, 0.4, 1} and {0.7, 1, 1, 0.3}, respectively. Note that gn differ for
the same component n (e.g., 0.15 vs. 0.7).

The Barinel approach generalizes over both persistent and intermittent faults.
Each component n ∈ dk is associated with a component goodness gn ∈ [0, 1], which
represents a generalization over the classical “normal/abnormal” entries:

• 0 – persistently failing to
• 1 – healthy, i.e., faulty but not yielding observed failures.

15.4.3.2 Algorithm

The approach, namedBarinel, is described in detail in Algorithm 15.1 and has three
main phases [6]. Barinel, taking as input (A, e), starts to generate a set of diagnos-
tic candidates D = {d1, . . . dk , . . . , d|D|} using a low-cost, heuristic, and optimized
MHS algorithm called Staccato. The Staccato algorithm is guided to return a
set of limited diagnostic candidates that captures all significant probability mass6

[2, 19].

Algorithm 15.1: Diagnostic Algorithm: Barinel (© 2009 IEEE. Reprinted,
with permission, from [4]).
Inputs: Activity matrix A, error vector e,
Output: Diagnostic Report D

1: γ ← ε

2: D ← Staccato((A, e)) {Compute MHS}
3: for all dk ∈ D do
4: expr ← GeneratePr((A, e), dk)
5: i ← 0
6: Pr[dk]i ← 0
7: repeat
8: i ← i + 1
9: for all j ∈ dk do
10: gj ← gj + γ · ∇expr(gj)
11: Pr[dk]i ← evaluate(expr,∀j∈dk gj)
12: until |Pr[dk]i−1 − Pr[dk]i| ≤ ξ

13: return sort(D,Pr)

In the second phase, Pr(dk |(A, e)) is computed for each dk ∈ D (lines 3 to 14). The
function GeneratePr derives the symbolic formula for Pr((A, e)|dk). To illustrate
this function, suppose the following observations:

c1 c2 e Pr(ei|{1, 2})
1 0 1 1 − g1
1 1 1 1 − g1 · g2
0 1 0 g2
1 0 0 g1

According to the Barinel reasoning, the probability of obtaining (A, e) given dk =
{1, 2} equals

Pr((A, e)|dk) = g1 · g2 · (1 − g1) · (1 − g1 · g2)

6For an efficient implementation of Staccato, refer to https://github.com/npcardoso/MHS2 or
http://mhs2.algorun.org/.

https://github.com/npcardoso/MHS2
http://mhs2.algorun.org/

Next, the component goodness values are calculated such that they maximize
Pr((A, e)|dk). This is calculated by applying a gradient ascent procedure [9] (lines
9–11).

Finally, the diagnoses are ranked according to Pr(dk |(A, e)), which is computed
by Evaluate according to the posterior Bayes update (line 12):

Pr(dk |(A, e)) = Pr((A, e)|dk)
Pr(A)

· Pr(dk)

where Pr(dk) is the prior probability that dk is the true fault explanation, Pr(A) is
a normalization factor, and Pr((A, e)|dk) is the probability that (A, e) is observed
assuming dk correct.

Barinel’s MLE for single fault diagnostic candidates has been proven to be the
intuitive way to estimate the true intermittency parameter (i.e., component goodness
values) [6]. Consider the following (A, e) as well as the probability of that occurring
(Pr), being g1 the true intermittency parameter:

c1 e Pr(ei|dk)
1 0 g1
1 0 g1
1 1 1 − g1

MLE estimates g1 to be 2
3 . Showing that g1 maximizes the probability of this par-

ticular (A, e) to occur, proves that this is a perfect estimate. As Pr(e|{1}) is given
by Pr(e|{1}) = g21 · (1 − g1), the value of g1 that maximizes Pr(e|{1}) is indeed 2

3 .
Furthermore, it has also been shown that these estimators yield optimal diagnostic
reports, if considering single faults only [6, 42].

There are success stories of applying Barinel in practice [27, 57] and other
areas of research (e.g., [15, 16, 43–45]). This is the case because the time/space
complexity of our approach is low—hence, being amenable to large software systems.
The complexity is essentially the same as other lightweight approaches modulo a
constant factor on the account of the gradient ascent procedure, which exhibits rapid
convergence [6]. The approach is available within the GZoltar toolset at http://www.
gzoltar.com [17].

15.4.4 Results

To assess the performance improvement of our approach, we generate synthetic
observations based on sample (A, e) generated for various values of N ,M , and num-
ber of injected faults C (cardinality). Essentially, the simulator7 samples component
activity from a Bernoulli distribution with parameter r, i.e., the probability a compo-

7Simulator is available at https://github.com/SERG-Delft/sfl-simulator.

http://www.gzoltar.com
http://www.gzoltar.com
https://github.com/SERG-Delft/sfl-simulator

nent is involved in a row equals r. For the C faulty components cj ∈ C we also set gj.
Thus, the probability of a component being involved and generating a failure equals
r · (1 − g). A row i in A generates an error (ei = 1) if at least 1 of the C components
generates a failure (noisy-or model). Measurements for a specific (N ,M ,C, r, g)
scenario are averaged over 1, 000 sample matrices, yielding a coefficient of variance
of approximately 0.02.

We compare the accuracy of our Bayesian framework with the classical frame-
work [35] in terms of a diagnostic performance metric Cd , that denotes the cost of
diagnosis (that is, the percentage of statements that a developer needs to inspect
before finding finding the actual components at fault) [48]. Given a diagnosis D =
{d1, . . . , dk , . . . , dK }, the computation of Cd proceeds as follows: (i) the diagnostic
ranking is mapped into a component ranking according to Pr(j) = ∑K

k=1 Pr(dk) ·
hk [j]/∑K

k=1 Pr(dk), (ii) the ranking is traversed; inspected healthy components con-
tribute to Cd .

For instance, consider a 4-component program with a unique diagnosis d1 =
{c1, c2, c4} with an associated g = {0.70, 0.20, 1, 0.15}, and c1, c2 faulty. The first
component to be verified/ replaced is the non-faulty c4, as its goodness is the lowest.
Consequently, Cd is increased with 1

4 to reflect that it was inspected in vain.
Our experiments for the different (N ,M ,C, r, g) scenarios, lead us to conclude

the following:

• For a sufficient large number of executions (N), Barinel produces optimal diag-
nosis, being able to correctly pinpoint the true faulty components. One of the
reasons for this observation is that the chance that non-faulty components are still
within the MHS is low. Furthermore, for single faults (C = 1), Barinel yields
optimal diagnosis.

• For small gj (that is, faulty components are very likely to yield observed failures),
Cd converges more quickly than for large gj as executions involving faulty com-
ponents are much more likely to fail. For large gj, Barinel requires many more
observations (larger N) to rank the true faulty components higher.

• Moreobservations (N) are needed to pinpoint true faulty components as the number
of faults C increase. The reason is because failure behavior can be caused by
much more components, reducing the correlation between failure and a particular
component involvement.

• Barinel is superior to other related approaches for C ≥ 2. In particular, the other
approaches steadily deteriorate for increasing C.

We refrain from detailing the results obtained with Barinel in many different
contexts, instead we have decided to outline themain findings. A detailed description
of results—including simulator and real software systems results—can be found in
related research papers [3, 4, 6].

15.5 Software Configuration Errors Diagnosis

SoftwareProductLine (SPL) [10, 11, 34] is a newparadigm in theSoftwareEngineer-
ing field, which provides the basis for the development of products. This paradigm is
based on the identification of a set of core features and their relations in the develop-
ment of products. SPL methods consist of the process of analyzing related products
in order to identify their common and variable features. The main method for the
domain analysis of an SPL is based on feature models and Feature-Oriented Domain
Analysis [34] represents one of the most used techniques for the domain analysis of
feature models.

Feature models (hereinafter FM) describe a model that define features and their
relations. FMs enable to reason about certain properties, for instance, the potential
number of valid products (set of valid configurations as all valid combination of a
selection of features); and whether a particular configuration (selection of features)
constitutes a valid product. There are several types of models to design FMs [10].
Although the notation proposed by Czarnecki [24] is the most used in the literature,
an example of this notation is shown in the in Fig. 15.6. This notation enables four
type of relations between a parent and its child features:

• Mandatory relation indicates that a child feature is required as shown in Fig. 15.6
where computer feature requires the mandatory sub-feature of video, computer ↔
video.

• Optional relation indicates that a child feature is optional as shown in Fig. 15.6
where computer feature implies an optional sub-feature of audio, computer →
audio.

• Alternative relation indicates that one of the sub-features must be selected.
In general, a1, a2, . . . , an alternative sub-features of b, a1 ∧ a2 ∧ · · · ∧ an ↔
b∨

i<j(ai∨···∨aj). In Fig. 15.6 where the video feature implies the selection of one
VGA or HDMI feature, video ↔ VGA ∨ HDMI.

Fig. 15.6 Feature model example

• Or relation indicate that at least one of the sub-featuresmust be selected. In general,
a1, a2, . . . , an sub-features of b, a1 ∨ a2 ∧ · · · ∧ an ↔ b. In Fig. 15.6, audio ↔
(RCA ∨ optical ∨ HDMIAudio) ∧ ¬(RCA ∧ optical ∧ HDMIAudio)).

In addition, other relations called cross-tree constraints are allowed. These cross-
tree constraints enable to represent constraints that relate features without a direct
parent–child relation. The most common are the inclusion and exclusion relations:

• Feature A requires feature B, for instance, in Fig. 15.6, HDMI ↔ HDMIAudio.
• Feature A excludes feature B, for instance, ¬(A ∧ B)).

This graphical notation lacks mechanisms to define certain relations and infor-
mation of the features. There are some extensions such as proposed by [11, 24] that
enable the specification of attributes and extra-functionalities for features. These
extensions enable characteristics of features that can be measured to be provided
and to include the facility to express relations between these characteristics (extra-
functionalities).

In order to determine a software configuration, fault detection or diagnosis fea-
ture models can be transformed into formal models. The formal models can be also
used to extract information related to the product. This information can vary from:
number of configurations (number of all valid configurations), filters (selection of
specific characteristics for the features), all valid products (all valid products with
certain features), validation (check if a selection of characteristics represent a valid
configuration), optimum products (determine the best products according to a crite-
rion), variability (inspect the relation between a set of potential products and certain
products), commodity (the relation between certain products and the total of prod-
ucts).

SAT and constraint programming can be used as a formal model to perform fea-
ture model analysis since this approach handles integer domains that are used for
attributes and optimization functions. Featuremodelsmight be transformed intoCon-
straint Satisfaction Problem (CSP), SAT problem, Constraint Optimization Problem
(COP),MAX-SAT problem [12, 51] depending on the reasoning question to achieve.
Figure15.7 depicts a transformation example of a featuremodel to an SAT andMAX-
SAT problem.

As aforementioned, other information can be obtained such as the determination
whether a configuration is valid or invalid. For a better understanding of these two
example configurations related to Fig. 15.6 are given in next as follows:

C1 : {computer, video,HDMI , audio,HDMIAudio} (15.6)

C2 : {computer, video,HDMI , audio,RCA} (15.7)

The first example shows a valid configuration in so far as it has {computer, video,
HDMI,} HDMIAudio features and the values for CS , and Ck are valid values. In this
case, the configuration is valid since computer and video are mandatory and the alter-
native HDMI has been selected. Regarding audio, HDMIAudio is chosen as require-
ment ofHDMI video feature, thus the configuration is valid. Nevertheless, the second

Fig. 15.7 Transformation of a feature model to a SAT

configuration is invalid since theRCA feature is in the configuration, however,HDMI
feature requiresHDMIAudio feature to be chosen as a required constraint. This invalid
configurationmight be diagnosed in order to determinewhy andwhat are responsible
for this invalid configuration or to determine a faulty feature model composition.

From the point of view of model-based diagnosis, it can be applied in two differ-
ent ways: (1) diagnose (i.e., detection of faulty software configurations) the feature
model in order to identify malformed structures; thus no legal configurations can be
computed due to overconstrained structured or bad constructions; (2) given a config-
uration, diagnose why it is illegal with regard to the feature model. If we assume that
feature model is correct and represent a product line, the main problem of diagnosis
is in the second case.

Formally, in this context, the SystemModel (SM) is defined as a featuremodelFMi

and a specific configurationC as anObservationalModel (OM)which is unsatisfiable.
These two components define the System Configuration Error (SCE) problem to
be diagnosed. The diagnosis strives toward the identification of inconsistencies in
the configuration, and specifically the set of features and attributes that produce the
inconsistency. This identification might be solved bymeans of fault diagnosis theory.
Following the theory of consistency-based diagnosis proposed in [35] and given in
previous chapters, the problem has been formalized as the fault diagnosis of a SCE
problem in the following definitions.

Fig. 15.8 MAX-SAT to diagnose the a problem

Definition 15.4 (Fault Diagnosis of an SCE). A fault diagnosis of an SCE is a set
of features and attributes � ⊆ C such that � = {�Fj ∪ �Fl ∪ · · · ∪ �Fm}.

FMi ∪ (C − �) � � (15.8)

At this point, the system has been diagnosed by identifying the � as responsible
for the inconsistency in the SCE.

In order to do the diagnosis, constraint suspension can be applied. In this case, the
problem is translated into aMAX-SATproblem inwhich SM where all the constraints
from the original problem are reified, thus is translated to a Boolean constraint; the
variables from the configuration, C, are established as a part of the model, and the
objective function is established to the satisfaction of the maximum number of the
reified constraints. An example of MAX-SAT is shown in Fig. 15.8, it is important
to highlight that features that are unestablished in the model are assumed false by
default.

TheMAX-SAT can be solved and it retrieves the information about fault diagnosis
as the minimal number of constraints that cannot be satisfied. The solution of this
programme is the fault diagnosis, and therefore � as defined previously. In the
particulars of the example, the fault diagnosis is� = R5 whichmeans that R5 cannot
be satisfied. The explanation of the fault diagnosis is also obtained for the solver in
so far as HDMI feature is true but HDMIAudio is false since it is not within the
configuration but RCA.

Although a very simple problemhas been used as a proof of concept, the real utility
of fault detection and diagnosis in software product configuration is demonstrated
when the configurations of the system is too complex and these reasoning techniques
help to easily and automatically determine the errors made in the configurations.

15.6 Conclusions

In this chapter, we have presented a model-based diagnosis approach to software
debugging.We have introduced three different approaches. Amodel-based diagnosis
approach which uses dynamic information, namely abstraction of program traces,
to generate a (dynamic, sub-) model of the program under analysis. The model,
along with the set of traces for pass/fail executions is used to reason about the
observed failures. In contrast to most approaches to software fault diagnosis, which
present diagnosis candidates as single explanations [5, 33, 38], our approach also
containsmultiple fault explanations in the diagnostic ranking (typical ofmodel-based
approaches [39, 53]).

A constraint model-based diagnosis approach is also proposed. The source code,
test cases, and contracts (assertions, precondition, and postcondition) are taken into
account in order to obtain amore precise diagnosis. The approachdiagnoses defects in
contracts and source code. And finally, an approach for diagnosing a feature model
in order to identify malformed structures is proposed. Given a configuration, this
methodology is able to diagnose why it is illegal with regard to the feature model.

Acknowledgements This work has been partially funded by the Ministry of Science and Tech-
nology of Spain (TIN2015-63502-C3-2-R) and the European Regional Development Fund (ERDF/
FEDER). This material is based upon work supported by the ERDF’s COMPETE 2020 Programme
under project No. POCI-01-0145-FEDER-006961 and FCT under project No. UID/EEA/50014/
2013.

References

1. Abreu, R., Mayer, W., Stumptner, M., van Gemund, A.J.: Refining spectrum-based fault local-
ization rankings. In: Proceedings of the 2009 ACM symposium on Applied Computing, pp.
409–414. ACM (2009)

2. Abreu, R., Van Gemund, A.J.: A low-cost approximate minimal hitting set algorithm and its
application to model-based diagnosis. SARA 9, 2–9 (2009)

3. Abreu, R., Zoeteweij, P., Van Gemund, A.J.: An observation-based model for fault localization.
In: Proceedings of the 2008 InternationalWorkshop onDynamicAnalysis: Held inConjunction
with the ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA
2008), pp. 64–70. ACM (2008)

4. Abreu, R., Zoeteweij, P., Van Gemund, A.J.: Spectrum-based multiple fault localization. In:
Proceedings of the 2009 IEEE/ACM International Conference on Automated Software Engi-
neering, pp. 88–99. IEEE Computer Society (2009)

5. Abreu, R., Zoeteweij, P., van Gemund, A.J.C.: On the accuracy of spectrum-based fault local-
ization. In: TAICPART-MUTATION ’07: Proceedings of the Testing: Academic and Industrial
Conference Practice and Research Techniques - MUTATION, pp. 89–98. IEEE Computer
Society, Washington, DC, USA (2007)

6. Abreu, R., Zoeteweij, P., Van Gemund, A.J.C.: A new bayesian approach to multiple intermit-
tent fault diagnosis. In: Proceedings of the 21st International Joint Conference on Artificial
Intelligence, IJCAI’09, pp. 653–658 (2009)

7. Araki, K., Furukawa, Z., Cheng, J.: A general framework for debugging. IEEE Softw. 8(3),
14–20 (1991)

8. Avižienis, A., Laprie, J.C., Randell, B., Landwehr, C.E.: Basic concepts and taxonomy of
dependable and secure computing. IEEETrans. Dependable Secur. Comput. 1(1), 11–33 (2004)

9. Avriel, M.: Nonlinear Programming: Analysis and Methods. Courier Corporation, North
Chelmsford (2003)

10. Batory, D.: Feature models, grammars, and propositional formulas. In: Proceedings of the
9th international conference on Software Product Lines, SPLC’05, pp. 7–20. Springer, Berlin
(2005)

11. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models 20 years
later: a literature review. Inf. Syst. 35(6), 615–636 (2010)

12. Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated reasoning on feature models. In:
LNCS, Advanced Information Systems Engineering: 17th International Conference, CAISE
2005, p. 2005. Springer (2005)

13. Brat, G., Drusinsky, D., Giannakopoulou, D., Goldberg, A., Havelund, K., Lowry, M., Pasare-
anu, C., Venet, A., Visser, W., Washington, R.: Experimental evaluation of verification and
validation tools on martian rover software. Form.Methods Syst. Des. 25(2–3), 167–198 (2004)

14. Briand, L.C., Labiche, Y., Sun, H.: Investigating the use of analysis contracts to support fault
isolation in object oriented code. In: Proceedings of the International Symposium on Software
Testing and Analysis, ISSTA 2002, Roma, Italy, 22–24 July 2002, pp. 70–80 (2002)

15. Campos, J., Abreu, R., Fraser, G., d’Amorim, M.: Entropy-based test generation for improved
fault localization. In: Proceedings of the 28th IEEE/ACM International Conference on Auto-
mated Software Engineering, pp. 257–267. IEEE Press (2013)

16. Campos, J., Arcuri, A., Fraser, G., Abreu, R.: Continuous test generation: enhancing continuous
integrationwith automated test generation. In: Proceedings of the 29thACM/IEEE international
conference on Automated Software Engineering, pp. 55–66. ACM (2014)

17. Campos, J., Riboira, A., Perez, A., Abreu, R.: Gzoltar: an eclipse plug-in for testing and
debugging. In: Proceedings of the 27th IEEE/ACM International Conference on Automated
Software Engineering, pp. 378–381. ACM (2012)

18. Cardoso, N., Abreu, R.: A distributed approach to diagnosis candidate generation. In: Por-
tuguese Conference on Artificial Intelligence, pp. 175–186. Springer (2013)

19. Cardoso, N., Abreu, R.: An efficient distributed algorithm for computing minimal hitting sets.
In: Proceedings of the 25th International Workshop on Principles of Diagnosis, DX, vol. 14,
p. 23 (2014)

20. Ceballos, R., Gasca, R.M., Borrego,D.: Constraint satisfaction techniques for diagnosing errors
in design by contract software. ACM SIGSOFT Softw. Eng. Notes 31(2) (2006)

21. Ceballos, R., Gasca, R.M., Valle, C.D., Borrego, D.: Diagnosing errors in dbc programs using
constraint programming. In: Current Topics in Artificial Intelligence, 11th Conference of the
Spanish Association for Artificial Intelligence, CAEPIA 2005, Santiago de Compostela, Spain,
Revised Selected Papers, pp. 200–210 (2005)

22. Ceballos, R., Gasca, R.M., Valle, C.D., Rosa, F.D.L.: A constraint programming approach
for software diagnosis. In: Proceedings of the Fifth International Workshop on Automated
Debugging, AADEBUG 2003, pp. 187–197 (2003)

23. Ceballos, R., Gasca, R.M., Valle, C.D., Toro, M.: Max-csp approach for software diagnosis.
In: Advances in Artificial Intelligence - IBERAMIA 2002, 8th Ibero-American Conference on
AI, pp. 172–181 (2002)

24. Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing cardinality-based feature models and
their specialization. In: Software Process: Improvement and Practice, p. 2005 (2005)

25. De Kleer, J.: Diagnosing multiple persistent and intermittent faults. In: Proceedings of the 21st
International Joint Conference on Artificial Intelligence, IJCAI’09, pp. 733–738 (2009)

26. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S., Xiao, C.:
The daikon system for dynamic detection of likely invariants. Sci. Comput. Program. 69(1–3),
35–45 (2007)

27. Gouveia, C., Campos, J., Abreu, R.: UsingHTML5 visualizations in software fault localization.
In: 2013 First IEEE Working Conference on Software Visualization (VISSOFT), pp. 1–10.
IEEE (2013)

28. Hangal, S., Lam, M.S.: Tracking down software bugs using automatic anomaly detection. In:
Proceedings of the 24th International Conference on Software Engineering, ICSE 2002, pp.
291–301. IEEE (2002)

29. Hao, D., Zhang, L., Zhang, L., Sun, J., Mei, H.: Vida: Visual interactive debugging. In: IEEE
31st International Conference on Software Engineering, ICSE 2009, pp. 583–586. IEEE (2009)

30. Harrold, M.J., Rothermel, G., Sayre, K., Wu, R., Yi, L.: An empirical investigation of the
relationship between fault-revealing test behavior and differences in program spectra. STVR
J. Softw. Test., Verif., Reliab. 3, 171–194 (2000)

31. Hofer, B., Riboira, A., Wotawa, F., Abreu, R., Getzner, E.: On the empirical evaluation of fault
localization techniques for spreadsheets. In: ICSE ’13: Proceedings of the 2013 International
Conference on Software Engineering, pp. 68–82. Springer (2013)

32. Jones, C.: The Year 2000 Software Problem: Quantifying the Costs and Assessing the Conse-
quences. ACM Press/Addison-Wesley Publishing Co, Boston (1997)

33. Jones, J.A.,Harrold,M.J., Stasko, J.:Visualization of test information to assist fault localization.
In: ICSE ’02: Proceedings of the 24th International Conference on Software Engineering, pp.
467–477. IEEE (2002)

34. Kang, K.: Feature-oriented domain analysis (FODA): feasibility study. Technical Report
CMU/SEI-90-TR-21 - ESD-90-TR-222, Carnegie Mellon University, Software Engineering
Institute (1990)

35. de Kleer, J., Mackworth, A.K., Reiter, R.: Characterizing diagnoses and systems. Artif. Intell.
56(2–3), 197–222 (1992)

36. Kremenek, T., Ashcraft, K., Yang, J., Engler, D.: Correlation exploitation in error ranking. In:
ACM SIGSOFT Software Engineering Notes, vol. 29, pp. 83–93. ACM (2004)

37. Lieberman, H.: The debugging scandal and what to do about it. Commun. ACM 40(4), 26–30
(1997)

38. Liu, C., Yan, X., Fei, L., Han, J., Midkiff, S.P.: Sober: Statistical model-based bug localization.
In: Proceeding of the ESEC/FSE-13. ACM, Lisbon, Portugal (2005)

39. Mayer, W., Stumptner, M.: Models and tradeoffs in model-based debugging. In: 18th Interna-
tional Workshop on Principles of Diagnosis. Nashville, TN, USA (2007)

40. Mayer, W., Stumptner, M.: Evaluating models for model-based debugging. In: Proceedings of
the 2008 23rd IEEE/ACM International Conference on Automated Software Engineering, pp.
128–137. IEEE Computer Society (2008)

41. Meyer, B.: Applying design by contract. IEEE Comput. 25(10), 40–51 (1992)
42. Pearson, S., Campos, J., Just, R., Fraser, G., Abreu, R., Ernst, M.D., Pang, D., Keller, B.:

Evaluating and improving fault localization. In: ICSE ’17: Proceedings of the 39th International
Conference on Software Engineering, pp. 609–620. IEEE Press (2017)

43. Perez, A., Abreu, R., D’Amorim, M.: Prevalence of single-fault fixes and its impact on fault
localization. In: 2017 IEEE International Conference on Software Testing, Verification and
Validation (ICST), pp. 12–22. IEEE (2017)

44. Perez, A., Abreu, R., van Deursen, A.: A test-suite diagnosability metric for spectrum-based
fault localization approaches. In: Proceedings of the 39th International Conference on Software
Engineering, pp. 654–664. IEEE Press (2017)

45. Perez, A., Abreu, R., HASLab, I.T.: Leveraging qualitative reasoning to improve SFL. In:
IJCAI, pp. 1935–1941 (2018)

46. Renieres, M., Reiss, S.P.: Fault localization with nearest neighbor queries. In: Proceedings of
the 18th IEEE International Conference on Automated Software Engineering, 2003, pp. 30–39.
IEEE (2003)

47. Shepard, T., Lamb, M., Kelly, D.: More testing should be taught. Commun. ACM 44(6), 103–
108 (2001)

48. Steimann, F., Frenkel, M., Abreu, R.: Threats to the validity and value of empirical assessments
of the accuracy of coverage-based fault locators. In: Proceedings of the 2013 International
Symposium on Software Testing and Analysis, pp. 314–324. ACM (2013)

49. Tip, F.: A Survey of Program Slicing Techniques. Centrum voor Wiskunde en Informatica,
Amsterdam (1994)

50. Traon, Y.L., Ouabdesselam, F., Robach, C., Baudry, B.: From diagnosis to diagnosability:
axiomatization, measurement and application. J. Syst. Softw. 65(1), 31–50 (2003)

51. Varela-Vaca, Á.J., Gasca, R.M.: Towards the automatic and optimal selection of risk treatments
for business processes using a constraint programming approach. Inf. Softw. Technol. 55(11),
1948–1973 (2013)

52. Wong, W.E., Gao, R., Li, Y., Abreu, R., Wotawa, F.: A survey on software fault localization.
IEEE Trans. Softw. Eng. 42(8), 707–740 (2016)

53. Wotawa, F., Stumptner, M., Mayer, W.: Model-based debugging or how to diagnose programs
automatically. In: Hendtlass, T., Ali, M. (eds.) Developments in Applied Artificial Intelligence,
pp. 746–757. Springer, Berlin (2002)

54. Wotawa, F., Weber, J., Nica, M., Ceballos, R.: On the complexity of program debugging using
constraints for modeling the program’s syntax and semantics. In: Current Topics in Artificial
Intelligence, 13th Conference of the Spanish Association for Artificial Intelligence, CAEPIA.
Selected Papers, pp. 22–31 (2009)

55. Yang, Q., Li, J.J., Weiss, D.: A survey of coverage based testing tools. In: Proceedings of the
2006 International Workshop on Automation of software test, AST ’06, pp. 99–103. ACM,
New York, NY, USA (2006)

56. Yilmaz, C., Williams, C.: An automated model-based debugging approach. In: ASE ’07: Pro-
ceedings of the Twenty-Second IEEE/ACM International Conference on Automated Software
Engineering, pp. 174–183. ACM (2007)

57. Zoeteweij, P., Abreu, R., Golsteijn, R., Van Gemund, A.J.: Diagnosis of embedded software
using program spectra. In: 14th Annual IEEE International Conference and Workshops on the
Engineering of Computer-Based Systems (ECBS’07), pp. 213–220. IEEE (2007)

	15 Model-Based Software Debugging
	15.1 Introduction
	15.2 Background and Problem Statement
	15.3 Software Diagnosis Based on Constraints
	15.3.1 Constraints-Based Model
	15.3.2 Diagnosing DbC Defects
	15.3.3 Diagnosing Source Code Defects

	15.4 Spectrum-Based Reasoning for Software Debugging
	15.4.1 Program Spectra
	15.4.2 Modus Operandi of Fault Localization
	15.4.3 The Barinel Approach to Compute Goodness
	15.4.4 Results

	15.5 Software Configuration Errors Diagnosis
	15.6 Conclusions
	References

