
Embedded Kernel customization to optimize
performance and power management. An

application to IoT

José Antonio Álvarez Bermejo1, Angel Jesús Varela Vaca2, Francisco G. Montoya3, Juan
Antonio López Ramos4 y Consolación Gil Montoya5

Resumen— Embedded systems are nowadays a cor-
ner stone in research for areas such as Internet of
Things. An interesting aspect regarding these sys-
tems is the fact that they are tied to strong restric-
tions (computing power and power source). The work
we present here is related on how to easily create
kernel images tailored to the architecture of our sys-
tem. Several conclusions are drawn on performance
and power consumption.

Palabras clave—Kernel customization, performance,
boot-up time, power consumption

I. Introduction

THE Embedded System consists of microproces-
sor and memory embedded at the hardware, it

has a limited missions. It is different from general-
purpose computer, and it is widely used in mobile
communications, intelligent robots, telematics and
home appliances. In the Embedded System, operat-
ing system is divided into various types to the pur-
pose, lets add an issue about the relationship be-
tween new or customized hardware and the need to
tailor a kernel for it. In particular, the Linux Sys-
tem is based on open-source and provides stability.
Hence it is widely applied to the Embedded Sytem.
Many information appliance companies participated
in establishing CELF (Consumer Electronics Linux
Forum) and announced CELF Specification 1.0 [1].
And it is an effort to apply Linux to home appliances
products. The specification is focused on such issues
as boot-up time, power-management, real-time and
kernel size. Packing the root filesystem is crucial in
order to make faster boot-up time in the Embedded
Linux [2]. Therefore, having the choice to select lay-
ers of funcionality, removing funcionality by layers
instead of manually, selecting versions of libraries,
compile them optimized for the processor-chipset
couple and choosing your root filesystem seems to
be mandatory.

Canonical, the lead commercial brand behind the
open-source Ubuntu Linux operating system, is get-
ting into the embedded device market in a bid to se-

1Dpto. de Informática, Universidad de Almeŕıa, e-mail:
jaberme@ual.es.

2Dpto. de Lenguajes y Sistemas Informáticos, Universidad
de Sevilla, e-mail: ajvarela@us.es.

3Dpto. de Ingenieŕıa, Universidad de Almeŕıa, e-mail:
pagilm@ual.es

4Dpto. de Matemáticas, Universidad de Almeŕıa, e-mail:
jlopez@ual.es.

5Dpto. de Informática, Universidad de Almeŕıa, e-mail:
cgilm@ual.es.

cure the Internet of Things (IoT, in advance). This
unveils how IoT boosts the research for embedded
systems. At this point, a key issue to focus is which
base software to upload into the board. Ubuntu, the
flaghsip of Canonical is understood as an operating
system for servers, cloud and desktops. Why we refer
to Canonical? Now Canonical is positioning Ubuntu
to be relevant for embedded devices and IoT. Strate-
gical moves in its kernels will make the whole board
of researchers take clues on what to focus on. It is
worth to note that they are working on Snappy, an
Ubuntu Core technology.

Snappy can be defined as a minimal version of
Ubuntu, it is not strange that one spend time un-
loading conventional kernels to later install them into
an embedded system. This is an error-prone prac-
tice, and also performance-aware as aspects as the
file systems, compilers used, etc. could harm perfor-
mance in the embedded core. On the other hand,
the compiled kernels were not usually fitted to the
architecture of the board where the embedded core
was installed into. These aspects are hot spots where
Canonical is working with the optimized Snappy sys-
tem that can improve security and application up-
dates. This is what we want to cover in this paper:
provide an efficient environment (kernel) with an ap-
propriate set of libraries (cryptographic) to secure
user data and communications. In order to achieve
that, it is important to (apart from the built-in secu-
rity) provide a fast mechanism where one can propa-
gate patches to all the nodes of the IoT network (for
example).

Taking into account the steps taken from Canoni-
cal, Snappy still depends on a third party. The rest
of the research vectors are in the right direction: try
to provide an efficient light-weight kernel, which is
not actually customizable at all. We identified some
time ago that for mobile devices we really had to
raise the boundaries on the reliability, efficiency and
security of the update mechanisms, as well as the
isolation of apps from one another. We also consider
that taking control on the update mechanism is cru-
cial. This is, actually, one of the keys we pursue
when seeking for a kernel customization: being able
to control the propagation of patches in our own em-
bedded systems. Snappy updates can be delivered as
smaller, more efficient transactional updates. Heart-
bleed and Shellshock are two open-source technology
vulnerabilities have been disclosed in 2014. Both is-



Fig. 1. Sensor network

sues left embedded devices running Linux exposed to
risk, as the impacted vendors had to roll out patches
for users. With IoT, anything and everything can be
connected to the Internet, even potentially a lawn-
mower, and it is usually up to the vendor to provide
patches for any security issues. This is a worrying
aspect that need also to be considered.

II. Internet of things

To help capitalize on the IoT opportunity, many
embedded based companies are putting effort into
the IoT, many of then by creating their own division
within the company. The embedded Linux market is
not new, and is one in which Cavium’s MontaVista
and Intel’s Wind River have led with their embedded
Linux technologies. If we go around oneself house
and look at all the devices that are still vulnerable
to Heartbleed or Shellshock, it’s embarrassing. The
problem is solved by properly customizing kernels
that operate them. Efficiency and power consump-
tion can be, therefore, partly achieved by means of a
customized and light-weight kernel.

A. Sensor networks

Sensor networks are composed of computational
devices provided with light computing resources, also
their batteries are an issue. Sensor networks are
starting to become a common factor in modern so-
ciety. They are the basis for the newly defined way
of interconnecting light processing nodes that scatter
sensor data (from sensor attached to them) to a cen-
tral node. This central node (also known as Minimal
Viable Device or MVD from now) is the responsible
of gathering information from these devices forming
a small network, as depicted in Figure 1. In addi-
tion, IoT is a central part of popular concepts such
as smart homes, smart transportation, and traffic
control. Sensor networks and IoT as its extension, is
therefore a core part of a concept that the society is
adopting in its day by day life. A big effort is pushed
into developing protocols to provide support to IoT
but little care is put in the assurance of the data in
the network is sent from an authorized and trusted
source and how efficient these protocols are run on
the MVDs.

Commonly, see Figure 1 the data produced by sen-
sors is sent to a central node (in the same network)
where some sort of processing is carried out. This
processing prepares the data to be sent to a cloud
where it is processed in order to get metainformation
that is provided to consumers (smartphones) or actu-
ators. Unfortunately, the whole process can be easily

Fig. 2. Minimum Viable Device for IoT

Fig. 3. Requesting federation

compromised whether the data is received from fake
sensors or it was corrupted. Figure 2 shows the de-
vice that is commonly used to gather data from sen-
sors. This device is an ARM based computing node
with an Android OS running on it, which caused it
not to perform efficiently (with no screen and dialer
modules). This node is connected to a cloud service
where data is distributed after being processed, to
customers.

Surprisingly, a vast effort in securing the process-
ing parts at the cloud has been put during last five
years. Nevertheless, the sensor network side has been
left aside.

The kernel customization presented in this paper
establishes a mean to create an efficient environ-
ment to federate sensors. Figure 3 shows three com-
puting ARM devices emulated: the MVD, and two
other boards where sensors were produced as soft-
ware threads on the board.

We provided three sensors. Sensor 1 and Sensor 2
are allowed to communicate. When the board boots
Sensor 1 asks MVD (Minimal Viable Device that acts
as a hub gathering data from the Sensors) to be fed-
erated, Sensor 2 does the same. Sensor 3 is treated
as an illegal sensor.

Fig. 4. Sending data



B. Group key agreement on elliptic curves

Since Diffie and Hellman proposed in [7] the first
protocol that provides a key exchange through an
insecure channel, many authors have introduced
schemes of this type, as [12], [13], or [16]. Many
of them base their fortress, as it is in Diffie and
Hellman’s original work, on the difficulty to solve
some problems on classical Number Theory. How-
ever, works as [14] or [9] where some vulnerabili-
ties of [7] and [12] respectively are shown, as well as
the constant advances in computing and capabilities
of modern computers has lead to consiider different
structures to develop such key exchange protocols.
Nowadays, the recommended standard is based in
the so-called Elliptic Curve Cryptography. based on
the set of points of an elliptic curve, [8] and [10].

Modern applications of communication systems al-
low communications among group of users instead of
restricting this to a pair of communicating parties.
In this sense, Steiner et al. extend in [15] the Diffie-
Hellman protocol over a finite field to a group of
users. They introduce a suite of three different pro-
tocols that generalize that of [7]. Recently, in [11],
the author uses one of the protocols to show its scala-
bility using the arithmetic in an elliptic curve. How-
ever, although some good results on several tests are
presented, no proof on the correctness of the protocol
is given in this work, as well as a formal study of its
security. Elliptic Curve Cryptography is applicable
for group key management and recommendable for
networks formed by light devices as a sensor network,
where usually, no security treatment of the transmit-
ted information is nowadays considered, although in
some situations this information could be of sensible
nature.

The sensor secured protocol [17], was coded in C
(arm-gcc, neither thumb nor thumb2 was used) and
linked with micro-ecc (http://kmackay.ca/micro-
ecc/) libraries. Figure 4 shows how the legal sen-
sors send data to the MVD and the data is accepted
whereas data from Sensor 3 is not considered as it
is not part of the federated network. Such proto-
cols need to run in efficient boards, with customized
kernels. Able to be updated for security patches as
soon as a fix is available. This paper is the basis to
create such an environment where security (or any
other networked protocol) can run safe.

C. Frameworks available for embedded systems

The field where Canonical is working is really in-
teresting, the need to customize kernels is real. Al-
though there are options much more reliable than
Snappy that is still too tied to a company, see Fig.5.
Another effort in the embedded Linux space is the
Yocto Project [3], [4] which is a Linux Foundation
Collaboration project. This project is largely leaded
by Intel and there is no relationship between Snappy
Ubuntu Core and Yocto. Yocto is aimed at the world
where people roll their own operating system. It pro-
vides tools that let us create an entire operating sys-
tem from scratch. Yocto is a way for a device vendor

to build a single operating system image for a de-
vice, while Snappy Ubuntu Core enables a vendor to
compose a device’s operating system out of a set of
images from different parties.

The Linux Foundation’s collaborative Yocto
Project is not about a single board, it is about cre-
ating a custom embedded Linux package for a board
of your choice (and of any architecture). It is a open
source embedded Linux build system, package meta-
data and SDK generator. Therefore optimized builds
of the libraries to use can be uploaded, leading to
gain in performance as the code is deployed together
with the image and after the observation all the de-
tails of the hardware.

Yocto uses the Poky build system at its core. In
Poky’s default configuration an initial image foot-
print, can be provided, that ranges from a shell-
accessible minimal image all the way up to a Linux
Standard Base-compliant image. From these base
image types, metadata layers can be added to ex-
tend functionalities; layers can provide an additional
software stack for an image type, add a board sup-
port package (BSP) for additional hardware, even
represent a new image type. The final output of the
Poky build system is usually an image that can be
flashed on your device. At the time of writing the
Yocto Project has BSPs for several boards like YP
Core’s Daisy, Dora and Dylan (and as exposed in
Fig. 5 it gets updated with a high frequency).

The point where it becomes interesting is the re-
lationship with Intel in the project. ARM is beyond
doubt the current emperor in embedded hardware
and Intel has to go a long way to beat them. ARM
has solidified its presence mostly by powering An-
droid devices, which is open source. Why not Intel
then? Yocto Linux product showcase includes Intel’s
meta-intel BSP layer.

D. Yocto

Yocto Project is a complex-to-use tool. At first,
it requires a lot of work, furthermore, because of
the nature of the open source, troubles may occur
with legal issues, lack of enterprise support, docu-
mentation quality, complexity of the software and
coding, and the compatibility between open source
and commercial components. The problem is solved
by means of HOB which has a graphical tool, here
the licence of the included components are controlled
easily.

Yocto Project includes Board Support Packages
(BSPs), compilers, layers, and additional tools. Al-
though the operating system, embedded Linux, is
built automatically, the actual coding of the appli-
cations and drivers related to the specific hardware
board is not directly related to the Yocto Project.
The concept of recipe to describe configurable things.
A recipe is a simple text document that contains a
set of instructions to build binary packages and im-
ages. In other words, they are configuration files
with predefined formats and semantics. Recipes can
be created for a certain purpose, for example prepare



Fig. 5. Available frameworks (see [3])

the needed software for the embedded system to run
ECDH security protocols. For example, a sample
recipe [5], depicted in Fig. 6, could include:

Fig. 6. Sample recipe

There are four different types of recipes according
to the purpose:

• application
• image
• image baseline
• image release

Latter recipe is determined in this work to remove
unuseful features and add libraries for cryptogra-
phy. One image recipe defines configurations, appli-
cations, Linux kernel versions, and boot loader ver-
sions for one specific product. In addition, creating
a new image recipe for the each release of the soft-
ware product, reproducibility and traceability of the
software product is enabled.

The work involved in creating the layer for our test
system is as following:

• General configuration : states general aspects.
• Machine configuration : related to the details of

the processor.
• Linux kernel recipes : related to which versions

and aspects of the kernel to include, enhance,
avoid.

• Boot loader recipes : rootfs (as said in section
1, boot-up time is improved).

• Recipes related to the HW platform.
• Application recipes : related to which libraries

are needed (i.e. micro-ecc libs for ECDH and
ECSA wich tcc compilation support).

• Image recipes.
• Scripts and templates.

Apart from this Yocto images are rarely over
2GB meanwhile others like Linaros’ or Snappy’s or
Ubuntu’s are over 3GB.

III. Architecture and tests

The tests were run using an emulated ARM based
architecture. The specs of the emulated ARM with
the following baseline configuration :

• Frequency 500MHz, McPAT is set to use 65nm
technology.

• L1 data and instruction cache: 8kB, latency 5ns,
2-way associative.

• L2 unify cache: 128kB, latency 12ns, 1-way as-
sociative

Only one core was used, then a simulation with four
cores was run. The testbed was run on a Virtual-
Box virtual machine that runs Ubuntu 12.04. For
the emulation of the processor, we used the Gem5
simulator [6]

A. Gem5 Simulator

Gem5 is a computer system simulation platform.
Unlike processor architecture simulator such as Sim-
pleScalar, Gem5 can perform a complete multi-core
platform. For processors, Gem5 is capable of sim-
ulating a number of ISAs, including Alpha, ARM,
MIPS and X86. There are two modes for Gem5 to
simulate a system:

• Syscall Emulation (SE): in this mode there is no
operation system (OS). All the system calls in
the application is emulated by Gem5.



• Full System (FS): in this mode a complete sys-
tem is simulated, including the OS and all pe-
ripherals.

In Gem5 SE mode, the support for multi-threaded
application is limited. In this paper, the FS mode is
used and ARM ISA is chosen as the target architec-
ture.

B. McPAT : power consumption analysis

McPAT is a framework for high-level area, timing
and power modeling developed by HP labs. Basi-
cally, McPAT reads in (micro-)architectural param-
eters and event statistics, and estimating the area,
timing and power figures for each component of the
system. It allows to model different technology nodes
from 90nm to 22nm. The accuracy depends on the
level of details provided by the input. For this paper
we used 65nm technology.

IV. Tests and results

For testing the kernel, we run our Yocto image
against the ARM runing an Ubuntu image. The code
run is a code to calculate elliptic curves for key agree-
ment protocols [17] (very popular in sensor and P2P
networks). We used the micro-ecc libraries. Dur-
ing the test, network connection has been skipped
thereby the processor was calculating curves with no
key exchange. Following table I shows that code :

TABLA I

Time and power wasted running the protocol.

kernel image time (secs) peak power (W)

Ubuntu * 3.871756 0.732842

Customized 3.028246 0.706757

* The ubuntu image was created with RootStock (as described in

http://www.m5sim.org/Ubuntu Disk Image for ARM Full System)

The simulation technology used was 65 nm. Us-
ing Long Channel Devices when Appropriate. Inter-
connect metal projection= conservative interconnect
technology projection. Core clock Rate(MHz) 500

• Processor running Ubuntu image
– Peak Power = 0.732842 W
– Total Leakage = 0.0295131 W
– Peak Dynamic = 0.703329 W
– Subthreshold Leakage = 0.0134206 W
– Gate Leakage = 0.0160925 W

• Processor running customized image
– Peak Power = 0.706757 W
– Total Leakage = 0.0245219 W
– Peak Dynamic = 0.682236 W
– Subthreshold Leakage = 0.0122036 W
– Gate Leakage = 0.0140292 W

V. Conclusions

Embedded systems are nowadays a corner stone
in research for areas such as Internet of Things. An
interesting aspect regarding these systems is the fact

that they are tied to strong restrictions (computing
power, power source) This paper has presented a
method to create kernels tailored for specific hard-
ware. Doing this, gains in performance, especially
when libraries can be run optimized for the target
hardware and intermediate layers are avoided. An in-
teresting upturn in power consumption is presented,
running kernel code and user code that fits the hard-
ware requirements results in power savings.

We intend to follow this research path in order
to commit our intention to create a lower substrate
layer that provides efficient and fast conditions for
sensor networks.

Agradecimientos

First author is supported by Junta de Andalucia
through grant P11-TIC-07176. Second and fourth
authors are supported through grant ”Análisis de
la calidad de la enerǵıa eléctrica empleando conta-
dores inteligentes. Optimización y ahorro en el sector
productivo y residencial de Andalućıa”.RNM-6349.
Third author is partially suppported by Ministerio
de Educacion, Cultura y Deporte grant Salvadorde
Madariaga PRX14/00121, Ministerio de Economia
y Competitividad grant MTM2014-54439 and Junta
de Andalucia (FQM0211).

Referencias

[1] CELF(Consumer Electronics Linux Forum),
http://tree.celinuxforum.org/CelfPubWiki/BootupTimeResources,
Online, Cited: June 7, 2015.

[2] J. Lombardo, Embedded Linux, New Riders, 2002.
[3] A. Leppakoski; E. Salminen; T.D. Hamalainen, Frame-

work for industrial embedded system product development
and management, System on Chip (SoC), 2013 Interna-
tional Symposium on , vol., no., pp.1,6, 23-24 Oct. 2013
.

[4] Linux Foundation, ”Yocto Project I Open Source
embedded Linux build system, package metadata and
SDK generator”, Online, Cited: June 7, 2015,
https://www.yoctoproject.org.

[5] O. Salvador; D. Angolini, Embedded Linux Development
with Yocto Project, Packt Publishing,2015 .

[6] Nathan Binkert, Bradford Beckmann et al., The
gem5 Simulator, Online, Cited: June 7, 2015,
http://research.cs.wisc.edu/multifacet/papers/can11 gem5.pdf.

[7] W.D. Diffie, M.E. Hellman, “New directions in cryptog-
raphy,” IEEE Transactions on Information Theory, vol.
22(6), pp. 644–654, 1976.

[8] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics
of Computation, vol. 48(177), pp. 203–209, 1987.

[9] A.J. Menezes, Y.H. Wu, “The discrete logarithm problem
in GL(n, q),” Ars Combinatoria, vol. 47, pp. 23–32, 1997.

[10] V. Miller, “Use of Elliptic curves in Cryptography,” Ad-
vances in Cryptography – CRYPTO’85, vol. 218, Lecture
Notes in Computer Science, pp. 417–426. Springer-Verlag,
New York, NY, 1986.

[11] Q. Niu, ECDH-based Scalable Distributed Key Manage-
ment Scheme for Secure Group Communication, J. Com-
puters. 9(1), 153–160, 2014.

[12] R.W.K. Odoni, V. Varadharajan, P.W. Sanders, “Public
key distribution in matrix rings,” Electronics Letters, vol.
20, pp. 386–387, 1984.

[13] T. Satoh, K. Araki, “On construction of signature scheme
over a certain non-commutative ring,” IEICE Transac-
tions on Fundamentals of Electronics, Communications
and Computer Sciences, 80(1), pp. 40–45, 1997.

[14] P. W. Shor, “Polynomial-time algorithms for prime fac-
torization and discrete logarithms on a quantum com-
puter,” SIAM Journal on Computing, 26(5), pp. 1484–
1509, 1997.

[15] M. Steiner, G. Tsudik, M. Waidner, Key agreement in
dynamic peer groups. IEEE Transactions of Parallel and
Distributed Systems, 11(8), 769-780, 2000.



[16] E. Stickel, “A new method for exchanging secret keys,”
Proceedings of the Third International Conference on In-
formation Technology and Applications (ICITA’05), Sid-
ney, 2005, pp. 426-430.

[17] J.A. Alvarez-Bermejo,M.A. Lodroman,J.A. Lopez-
Ramos. “Group key agreement on elliptic curves”
Proceedings of the 15th International Conference Com-
putational and Mathematical Methods in Science and
Engineering, Rota, Cádiz, 2015. In-press

View publication statsView publication stats

https://www.researchgate.net/publication/296678719

