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Abstract—One of the most interesting and still growing sci-
entific fields is neuromorphic engineering, which is focused on
studying and designing hardware and software with the purpose
of mimicking the basic principles of biological nervous systems.
Currently, there are many research groups developing practical
applications based on neuroscientific knowledge. This work pro-
vides researchers with a novel toolkit of building blocks based on
Spiking Neural Networks that emulate the behavior of different
logic gates. These could be very useful in many spike-based
applications, since logic gates are the basis of digital circuits.
The designs and models proposed are presented and implemented
on a SpiNNaker hardware platform. Different experiments were
performed in order to validate the expected behavior, and the
obtained results are discussed. The functionality of traditional
logic gates and the proposed blocks is studied, and the feasibility
of the presented approach is discussed.

Index Terms—Bio-inspired building blocks, Spiking logic gates,
Spiking Neural Networks, Neuromorphic engineering, SpiNNaker

I. INTRODUCTION

Over the last two decades, neuroscience has experienced
a major growth. This growth, along with a set of main
objectives of this field of knowledge, are presented in [1].
As a consequence, neuromorphic engineering, which was a
concept presented by Carver Mead in [2] that focuses on the
study, design and implementation of hardware and software
with the aim of mimicking the basic principles of biological
nervous systems, has become one of the most promising
scientific fields. Numerous works have studied the progress
of this research field, such as [3], which presents a graph
that collects the research activity focused on neuromorphic
engineering between the years 2005 and 2015.

In neuromorphic systems, the information is transmitted
using spikes, which are asynchronous electric pulses generated
by artificial neurons. This approach is very similar to the
biological model, where these spikes are large peaks in the
membrane potential of neurons that occur when the membrane
potential reaches the threshold potential. Representing infor-
mation with spikes has powerful advantages, such as lower
power consumption and better real-time capability than the
traditional methods [4] [5].

Processing spikes requires a bio-inspired computational ap-
proach, which implies the need to work with special hardware
and software. A specific type of biologically-plausible neural
networks called Spiking Neural Networks (SNNs) are com-
monly used for this purpose. These SNNs have two basic bio-
inspired elements: neurons and synapses, where analogizing
with the mathematical theory of graphs, neurons would be
nodes and synapses would be edges.

Some of the most striking applications in neuromorphic
engineering include the use of SNNs, such as speech recogni-
tion [6], [7], sensory fusion [8], [9], motor control [10], [11]
and bio-inspired locomotion [12], [13], which demonstrates its
importance.

Although SNNs are the basis for most neuromorphic en-
gineering applications, there are no rules on how to build
networks in order to achieve a specific behavior. In fact, the
process to perform one of these applications is as follows:
firstly, the whole biological mechanism must be understood
with neuroscientific knowledge; then, a bio-inspired system
is developed based on this biological mechanism. However,
although much is known about brain functions, this knowledge
is sometimes not advanced enough to determine the biological
basis of some of its parts, but its functionality. Therefore, many
works cannot be currently developed and are proposed to be
developed in the future.

A great solution to this type of problem is to design
functional blocks with specific behaviors that provide the
system with the missing functionality, completing it. These
functional blocks are built from so-called building blocks,
which are other functional blocks with basic functionality. In
digital circuits, these building blocks are logic gates, which
are made of transistors and are massively combined in order
to create complex digital systems. In this work we propose
the use of SNNs to make high-level designs using neurons
and synapses, in a biological approach. Nevertheless, these
neuron models are implemented in hardware using transistors
since they are essentially digital circuits.

The main objective of this work is to provide a toolkit of
bio-inspired logic gates. As in digital circuits, these logic gates



must carry out logical operations. Although these operations
are supposed to be based on Boolean logic, they are asyn-
chronous operations and much more punctual than their digital
equivalents, since the spikes are required to coincide at a given
point in time to perform the desired function. This is the
basic principle of low power consumption of these gates. The
operating frequency will depend on the speed with which it is
possible to generate spikes in each of the neurons that make
up the entire block, i.e., in their refractory period. Working
with small refractory periods should be sufficient to achieve
very high operating frequencies, although they are expected to
be on the order of milliseconds since a biological approach is
intended.

Since we want these spiking logic gates to be totally
deterministic, their operation must be completely independent
of the neuron parameters. To achieve this, their functionality
has to be based on the behavior of the network as a whole,
rather than on individual neurons. Static synapses play a
fundamental role here, as they allow modifying and creating
new behaviors thanks to their delays and weights.

As SNNs need to be used to create these building blocks,
there are currently different alternatives at both software and
hardware level to implement and simulate them. At software
level, some very popular simulators can be found, such as
NEST [14] and Brian [15]. At hardware level, some of the
most outstanding simulation platforms are SpiNNaker [16],
Loihi [17] and TrueNorth [18]. In this work, the SpiNNaker
hardware platform is used for running large-scale neural
network simulations in real time.

The developed spiking logic gates, which are deeply ex-
plained in this paper, are completely available on a public
GitHub repository1, allowing neuromorphic engineers to use
them in order to achieve the required functionalities. These
new blocks have been deeply tested to ensure that their
functionalities are as expected. This work paves the way for
higher-level spiking block design in order to achieve more
complex specific functionalities.

The rest of the paper is structured as follows: in Section II,
the software and hardware materials used is detailed in depth;
in Section III, a list of proposed building blocks and other
additional functional blocks with their corresponding designs
is presented; in Section IV, the results obtained from the tests
of some of the proposed functional blocks are discussed; and
finally, in Section V, the conclusions obtained from the results
of the experiments are presented.

II. MATERIAL AND METHODS

A. Spiking Neural Networks

As was mentioned in the introduction, SNNs are used in
order to design functional blocks. These SNNs are considered
the third generation of neural networks and consist in bio-
inspired neuron models and synapses. Thus, this is the closest
approach of neural networks to biological functioning [19].

1https://github.com/alvayus/sPyBlocks/

Information is transmitted across synapses in the form of
spikes, which are asynchronous electric pulses (large peaks
in the membrane potential of neurons that occur when the
membrane potential reaches the threshold potential) produced
by neurons. These output spikes reach other neurons of the
neural network as input spikes.

This biological approach of neural networks has powerful
advantages, such as low power consumption and a great real-
time capability.

B. SpiNNaker

SpiNNaker is a massively-parallel multi-core computing
system which was designed to allow modelling very large
SNNs in real time and whose interconnect architecture is
inspired by the connectivity characteristics of the mammalian
brain [16]. In this work, we use a SpiNN-3 machine to have a
limitation in the number of resources used and the obligation to
optimize the implemented designs, while also having a SpiNN-
5 machine available to test more complex designs.

In [20], the most important features of the SpiNN-3 and
the SpiNN-5 machines are detailed. The SpiNN-3 machine
has 4 chips, whereas the SpiNN-5 machine has 48 chips.
The SpiNN-5 machine additionally has 3 FPGAs, allowing the
machine to be connected to 6 other boards to make up a larger
SpiNNaker machine. Each of the chips has 18 ARM968E-S
processors/cores, operating at 200 MHz. A 100 Mbps Ethernet
connection is used as an I/O interface and to send scripts and
commands to the board.

C. PyNN

In order to develop the proposed public package of spiking
logic gates, PyNN was used, which is a Python package for
the simulator-independent specification of neuronal network
models [21]. Currently, PyNN supports NEURON [22], NEST
[14] and Brian [15] as software neural network simulators, and
the SpiNNaker [16] and BrainScaleS neuromorphic hardware
systems.

D. Neuron parameters

Although we want the behavior of the networks to be
independent of the neuron parameters, two details must be
taken into account. Firstly, it is necessary to ensure that
neurons will fire at most once when receiving the expected
input spikes to achieve the desired behavior of the functional
blocks. Secondly, it is necessary to ensure that, after firing,
these neurons will not receive any more input spikes until
they reach the resting potential.

Different sets of neuron parameters were used to test
the response of a single neuron. This way, the best set of
parameters for the designed SNNs was found, which is the
following: cm: 0.1 nF, taum: 0.1 ms, taurefrac: 1.0 ms,
tausyn E : 0.1 ms, tausyn I : 0.1 ms, vrest: -65.0 mV, vreset:
-65.0 mV, vthresh: -64.91 mV, where cm is the membrane
capacitance, taum is the time-constant of the RC circuit,
taurefrac is the refractory period, tausyn E and tausyn I are
the excitatory and inhibitory input current decay time-constant,



and vrest, vreset and vthresh are the resting, reset and threshold
membrane potentials, respectively.

To achieve a high operating frequency, and as was explained
in this subsection, it is necessary to quickly reach the resting
potential after firing a spike. The most important parameters
for this purpose are three of the four time-constants: taum,
tausyn E and tausyn I . The lower these values are, the faster
the resting potential is reached. The last of the time-constants,
taurefrac, is responsible for allowing or avoiding firing when
the threshold potential is reached, thus, varying the maximum
firing frequency of the neuron. To adjust the potential at which
the spike is fired, the membrane potential parameters, vrest,
vreset and vthresh, as well as the membrane capacitance, cm,
can be used.

III. DESIGNS

This section shows the architecture of the proposed building
blocks, which can be used to create more complex functional
blocks. The list of these building blocks is ordered from least
to greatest complexity and dependency. Thus, the simplest
block will be the first in the list, which is as follows: OR,
AND (Classic), SR Latch, Switch (Asynchronous oscillator),
XOR, Constant spike source, NOT, Synchronous oscillator,
AND (Fast), Flank detector.

The design of each implemented block can be found in
Fig. 1, together with a legend of the meaning of each color
and symbol used. Input neurons, colored in orange, are the
target of input connections, which generally come from the
output neurons of other functional blocks.

A. OR

The OR block (Fig. 1A) consists of a single neuron that
receives as many inputs as needed. Note that, as the number
of input spikes increases, the voltage of the output neuron
also increases, meaning that the neuron could fire more than
once. It is possible to prevent this behavior by decreasing the
time it takes to reach the resting potential, which can be done
as explained in Section II. This should lower the membrane
potential fast enough so that it does not fire again before the
end of the refractory period.

B. AND (Classic)

In this work, this is the first implementation of a block that
simulates the AND gate behavior. It consists of an OR block
that fires when it receives at least one input spike, producing
an inhibition with a weight of n− 1 (where n is the number
of inputs) in the output neuron, colored in green in Fig. 1B.
The output neuron receives the same inputs as the OR neuron
(delayed to match in time with the output of the OR gate).

Note that the output neuron will fire only when the number
of its input spikes is greater than the inhibition produced by
the OR neuron, i.e., when it receives n input spikes at the
same time.

C. SR Latch

The bistable circuit is the simplest memory unit. It can
be implemented with a single neuron holding or releasing a
spike (as can be seen in Fig. 1C). A self-excitatory connection
is used to keep the input spike received through the set
connection cycling around the neuron. This cycling spike is
released when the neuron receives an input spike through the
inhibitory reset connection.

Since the circuit is conceived as an asynchronous circuit,
this bistable circuit is called a latch. Having a set input and a
reset input, this block is called SR latch.

One problem to consider is that the spike cyclically con-
tained in the neuron seems to be violating the law of conser-
vation of energy, although there are biological evidences of
the existence of recurrent neural networks in the human brain
which use this same principle [23]. This is not an obvious
problem and would require a much deeper study of neurons
and spikes at the biological level.

D. Switch

This block (Fig. 1D) does not include set or reset connec-
tions, but a single input signal through which a spike causes
the switch to change its state depending on whether or not a
spike is being held.

If the inhibitory connections did not exist, the resulting
block would be very similar to the SR latch block. In fact,
the excitatory connections provide the switch with the same
behavior: the input spike causes the upper neuron to fire,
and the resulting spike activates the neuron below, which
essentially is the SR latch.

Thanks to the inhibitory connections, each spike produces
an inhibition in the upper neuron, and thus, the next input
spike will be suppressed at that neuron. At the same time, the
input spike produces and inhibition in the lower neuron, which
releases its held spike, causing the state to change. Making an
analogy with digital circuits, the logical one and logical zero
would mean whether or not there is a held spike, respectively.

Note that both neurons are half colored in green, which
means that both are output neurons. If the neuron below was
the only output neuron, the first output spike of the set state
of the switch would be missing.

This switch block is sometimes referred to as an asyn-
chronous oscillator.

E. XOR

This implementation (Fig. 1E) has as many input neurons as
input connections, which excite their associated output neuron
and inhibit the rest of output neurons when they fire. Thanks
to this architecture, there can only be one output neuron firing
at the same time, since an output neuron is excited only by its
associated input neuron and can be inhibited by the remaining
n − 1 input neurons. Note that if two or more input neurons
fire at the same time, output neurons will not fire.

This is one of the most expensive designs, since it needs
a large amount of connections between input and output



Fig. 1: Diagram showing the design of each implemented block. The legend on the right shows what each color and symbol
means. A) OR. B) Classic AND. C) SR Latch. D) Switch. E) XOR. F) Constant spike source. G) NOT. H) Synchronous
oscillator. I) Fast AND. J) Flank detector.

neurons. More specifically, the number of connections is
n2 + n, where n is the number of input connections.

F. Constant spike source

Despite the counterintuitive idea of having a constant source
of spikes, this is needed to implement some functional blocks,
especially one of them: the NOT gate.

As SNNs are being used, the only way to make a neuron fire
is providing it with spikes. There is no way to make a block
that generates spikes if it is not receiving them, which is the
behavior of the NOT gate. Therefore, we need to implement a
block that constantly provides spikes, although, in practice, it
could be replaced by a set of connections with other neurons
that ensure this constant rate of spikes.

This implementation (Fig. 1F) uses a spike source, which
is a spike generator and is frequently used in the testing of
SNNs. In this case, it generates only one spike at the beginning
of the simulation, which is used to set the SR latch and is also
used as the first output spike of the block. Thus, the output of

this block will be the output of the SR latch, except for the
first output spike, which will be generated by the source.

G. NOT

Once there is a constant source of input spikes, it is easy
to implement a block with the NOT gate behavior. In this
implementation (Fig. 1G), this constant spike source excites
the NOT output neuron, while the input connection provides
it with inhibition. Thus, the output will be a constant rate of
spikes if there is no input spike, and the output neuron will
not fire if there is an input spike.

Note that the constant spike source is not part of the NOT
block, since it has been externally defined.

H. Synchronous oscillator

This block (Fig. 1H) is closely related to the switch block, as
both could be considered oscillators. The difference between
the two is that, in the asynchronous oscillator (switch) block,
it is possible to decide when to change the value, which is not
possible in the synchronous model.



Since the information is being coded in spikes, this block
does not seem very useful, and it should be preferable to work
with the asynchronous model, although it could be considered
as a good tool for making analogies between digital circuits
and these ”circuits” based on SNN blocks. Despite this, we
will use this synchronous model to generate a spike train
with a specific length, which will be constantly appearing and
disappearing, as a clock signal, and which will be useful to
test the flank detector.

The number of spikes contained in the spike train mul-
tiplied by the interspike interval will be the half-period of
the ”signal”. To generate these spikes, a spike source object
was used. This spike train will be the input of a neuron that
will be cyclically connected to another one by two delayed
connections. Their delays will be the value of the half-period
of the ”signal”, causing the output neuron to fire only during
one half-period, not firing in the second half-period.

I. AND (Fast)

Despite the problems previously mentioned, it is possible to
use the constant spike source block in order to improve some
of the other implemented blocks.

One of the most interesting improvements would be on the
AND block (classic implementation), since it is expected to
be widely used for building more complex models. Using the
constant spike source block allows removing the OR block
and its input connections, thus also removing their delays. As
the OR block is removed, it is not necessary to make use of
delayed connections. This is why this implementation (Fig. 1I)
is called ”fast”.

J. Flank detector

This block (Fig. 1J) combines two of the ones that were
previously defined: NOT and AND blocks. It mainly allows
detecting rising and falling edges through an AND operation
with two spikes, combined with the NOT operation. Let the
value one be the existence of spike and the value zero the
opposite case, a rising edge is considered as the change from
zero to one, while a falling edge is considered as the change
from one to zero, in a short time interval. This interval will
be assumed to be equal to 1 ms at this time, which is also the
delay of the synapses.

In the case of rising edges (left AND), the previous value
(the value zero) will pass through the NOT gate and will arrive
at the AND gate after 2 ms, since the delay of the NOT gate is
0 ms. As the next value arrives 1 ms after the value zero, the
left connection will not need to be delayed. Thus, the value
one (the spike) will arrive at the same time as the NOT output.

In the case of falling edges (right AND) it is very similar,
but the right connection will be delayed 1 ms more than the
total delay of the NOT path, as the next value is being used.
As the delay of the NOT gate is 0 ms, an input spike will
arrive at the right AND gate through the NOT path 2 ms after
being fired. Thus, the next value synapse will be delayed 3
ms in order to coincide in time with the NOT output.

This flank detector block is not only useful to test the
synchronous oscillator, but it could be used to detect whether
there are two consecutive spikes or not, and whether the spike
has appeared (zero to one) or disappeared (one to zero) in any
block or connection.

IV. RESULTS

Different experiments were performed in order to prove the
correct operation of the proposed functional blocks. In this
section, some of the most interesting ones are shown. Since
there is a hierarchical dependency between these blocks, we
will focus on the most complex of them: AND, XOR, switch
and the flank detector blocks. In addition, the results obtained
with the classic and fast AND implementations are compared
in subsection IV-A. Finally, the resources needed to implement
the presented blocks are shown and discussed.

A. AND

One way to test the correct operation of these functional
blocks is creating arrays of spikes that will be fired at
discrete times and checking the associated output responses.
There will be as many arrays as input connections, thus each
array contains spikes that will be fired through each input
connection.

In the case of AND blocks, only when the number of
input spikes received by the output neuron at a specific
time is greater than the number of input connections minus
one, which is the inhibition generated by the OR neuron
(classic implementation) or the constant spike source block
(fast implementation), the output neuron will fire.

In this first test, four input connections were used. Fig. 2
shows the input spikes for each of them.

Fig. 2: Plot showing the input spikes for each input connection
used for testing the AND block.

As the AND block is intended to be one of the most widely
used blocks, it is interesting to analyze the potential responses
of the neurons involved, which, in the case of the classic



implementation, are the OR neuron and the output neuron, and,
only the output neuron in the case of the fast implementation.
Fig. 3 shows the potential responses and the spikes fired by the
OR and output neurons in the classic implementation, while
Fig. 4 shows the potential response and the spikes fired by the
output neuron in the fast implementation.

Fig. 3: Graphs showing the potential responses and the spikes
fired by the OR and output neurons of the AND block (classic
implementation). The negative peaks in the output neuron
response graph correspond to times when inhibition is greater
than excitation.

Fig. 4: Plot showing the potential responses and the spikes
fired by the output neuron of the AND block (fast imple-
mentation). In this case, there are positive peaks, since the
fast implementation make use of a constant inhibition and
occasional excitation.

To have greater control over the results obtained, we auto-
mated the generation of spike traces for each test. Fig. 5 shows
the trace obtained in the time range from 0 to 9 milliseconds.
In this trace, input signals refers to the spikes of each input
connection. Each row of the trace shows a ”1” only when there
is a spike fired at the millisecond indicated by the top row.

As is explained in Section III, and as shown in the test
trace, the output neuron of the AND block only fires when
the number of input spikes is n, which in this case is four.
Otherwise, no output spike is generated.

Fig. 5: Trace of the AND block test that shows the spikes fired
by each neuron of the classic and fast implementations.

When the number of input spikes is equal to n − 1, the
membrane potential of the output neuron is equal to the resting
potential, since the inhibition is as strong as the excitation for
both implementations.

In the classic implementation, when the number of inputs
is less than n − 1, the membrane potential of the output
neuron reaches negative peaks from the resting potential, as
the inhibition is greater than the excitation. On the other hand,
in the fast implementation, the membrane potential of the
output neuron reaches positive peaks from an ”inhibited resting
potential”, since the output neuron is constantly inhibited and
punctually excited. These positive peaks will not be higher
than the resting potential in this case, but equal in the case of
n− 1 input spikes or higher in the case of n input spikes.

In the fast implementation, note that the red spikes shown
always coincide with an increasing potential. This potential is
not accurate since we work with a ”high” firing rate and the
time resolution of SpiNNaker is limited to 1 ms. Therefore,
from now on we will be only working with spike traces.

Finally, note that in Fig. 5, the OR response of the classic
implementation is delayed 1 ms from the spike time, while
the output spike is delayed 2 ms. The latter delay is the delay
of the connection between input spikes and the output neuron,
which is 2 ms to match in time with the inhibition generated
by the OR neuron. As the time resolution cannot be decreased
from 1 ms, this is the lowest possible delay value.

The fast implementation reduces the number of connections
as much as possible, only using one set of connections (input
connections of the output neuron). As a result, it can be seen
that the output spike is delayed only 1 ms from the spike time,
which is the delay of these connections.

B. XOR

To prove the correct operation of the presented XOR block,
the proposed test consists in using four signals with different
periodicity, i.e., connections through which spikes pass at
different times, as input signals for an XOR block with four
inputs. The resulting trace is shown in Fig. 6.

In this figure, the periodicity of all input signals is a multiple
of the periodicity of input signal 0, which is constantly firing
spikes. As the XOR block outputs a new spike only when
one input signal is firing at the same time, this occurs when
only the input signal 0 is firing. Notice that there is a delay
between values in input signal 0 and the output values in the



Fig. 6: Trace of the XOR block test that shows the spikes fired
by each input and output neuron.

trace, which is related to the delay of the XOR block. The
output spikes of the block are the union of the output spikes
of each output neuron, which appears as X neuron.

C. Switch

In the same way as with the AND block, the obtained trace
for the switch block is shown in Fig. 7.

Fig. 7: Trace of the switch block test showing the spikes fired
by each neuron.

As is explained in Section III, the first input spike excites
the input neuron, making it fire and propagating the spike to
the cycle neuron, which holds it cyclically. Note that it takes
1 ms for the input neuron to fire and 1 ms more for the cycle
neuron to start firing due to the delay of the connection.

The spikes at milliseconds 6, 7 and 8 are used in order to
test how quickly the implemented switch is able to change its
state. At time 7 ms, the first of these three spikes inhibits the
cycle neuron, which releases the held spike. At time 8 ms,
the set up mechanism begins again. Finally, at time 9 ms, the
input neuron is inhibited. The cycle neuron has just received
the output spike from the input neuron, thus it cannot generate
inhibition over the input neuron. This justifies the existence of
a self-inhibitory connection in the input neuron.

D. Flank detector

As is mentioned in Section III, to prove the correct operation
of the flank detector block, a synchronous oscillator, which is
a clock generator, is used. Fig. 8 presents the results of one
of the experiments performed to test the functionality of this
module.

In this figure, the top subgraph shows the input spikes,
which is a spike train that is continuously oscillating. The
subgraph below shows the inverted response of the input
spikes, which is the behavior of the NOT block inside the flank

detector block. In the lower part of the graph, the detected
rising and falling edges are shown, which are the output spikes
of the left AND block (rising edge, in orange) and the right
AND block (falling edge, in teal blue). The original ”clock
signal” is shown in each subgraph with the corresponding
delay in opaque dark magenta and without delay in translucent
dark magenta.

Note that NOT responses are delayed by 1 ms, rising edges
are delayed by 2 ms and falling edges are delayed by 3 ms
from the input spike times. These delays are, as in other
experiments, due to connection delays.

Rising edges (from zero to one) are detected as the coinci-
dence between the last spike from the spike train of the NOT
response and the first spike from the spike train of the ”clock
signal”, as NOT responses are inherently delayed from the
spike time due to the connection delay. The spike of the NOT
response that coincides with the spike of the ”clock signal”
represents the previous value, i.e., the value zero. Rising edges
are delayed by 2 ms from the input spike times, since the
connection between the NOT block and the AND block adds
1 ms delay and the AND block adds 1 ms extra delay.

Falling edges (from one to zero) should be detected as the
coincidence between the last spike from the spike train of the
”clock signal” and the first spike from the spike train of the
NOT response. To make the two spikes coincide at the AND
gate, the first spike has to be delayed 3 ms (2 ms plus 1 ms
of connection delay between the NOT block and the AND
block). Since the AND block adds 1 ms extra delay, the time
interval between the first spike and the AND output is 4 ms,
but 3 ms from the original falling edge.

Fig. 9 shows an extract of the trace of the flank detector
test where both rising and falling edges can be seen.

This figure shows how the NOT block begins to fire at 2
ms, since its spike source fires at 1 ms. As there is a delay of
1 ms between the synchronous oscillator and the NOT block,
at 6 ms the ”clock signal” is set to one and this is reflected
as a value zero in the NOT block at millisecond 7. Since the
AND adds 1 ms extra delay, the rising edge is detected at
millisecond 8 (it should be detected at 7, 1 ms after the spike
of the ”clock signal” and the NOT block matches).

At millisecond 10, the ”clock signal” changes from one to
zero. This is reflected at millisecond 11 (1 ms later) in the
NOT block. As the last spike of the ”clock signal” (shown in
red) is delayed 3 ms, the falling edge should be detected at
millisecond 12. Due to the extra delay of the AND, the spike
is detected at millisecond 13.

E. Resources

Table I shows the resources needed for each block, which
include the number of expected inputs, the number of neurons
and connections and the latency. n value refers to the number
of inputs for one block. Note that the values in the table
include the total number of resources, including the resources
of the blocks it contains.

It is important to optimize the number of neurons and
synapses on these models, since each block can be used



Fig. 8: Plot showing the results of the flank detector test.

Fig. 9: Extract of the trace of the flank detector block test
showing the spikes fired by each neuron.

TABLE I: Table showing the resources needed to implement
each functional block.

Block Expected inputs Neurons Connections Latency (ms)
OR n 1 n 1

AND (classic) n 2 2n+ 1 2
SR Latch 1 1 2− 3 1

Switch 1 2 6 1
XOR n 2n n2 + n 2

Constant spike
source 0 2 2 1

NOT 1 3 4 1
Synchronous

oscillator 0 3 3 1∗

AND (fast) n 3 n+ 3 1
Flank detector 1 5 14 2/3

massively in the construction of more complex blocks. Note
that the number of connections in the SR latch depends on
the existence of set and reset connections. On the other hand,
as was previously mentioned, the XOR block is the most
expensive by far.

Constant spike sources and synchronous oscillators do not
expect any input. In addition, it is shown that synchronous

oscillators have a latency of 1 ms, which does not coincide
with the delays shown in Fig. 1. This is due to the fact that
the output is expected to be zero during the first half-period.

In the flank detector (Fig. 1J), rising edges (left AND) are
delayed 2 ms while falling edges (right AND) are delayed
3 ms.

V. CONCLUSIONS

In this paper, we proposed a list of different functional
blocks implemented using SNNs on SpiNNaker, which can
be used to implement desired functionalities.

Digital logic gates and the proposed building blocks are very
similar at a high level, since they have the same function.
Nevertheless, as the latter are built from SNNs, they can
be considered bio-inspired, including those with recurrent
connections which have an analogous biological counterpart
[23]. Thanks to information being coded using spikes, these
spiking logic gates have some advantages over digital logic
gates, such as lower power consumption and better real-time
capability. Generally, the simplicity of the functional blocks
directly affects their real-time capability. Thus, a simple block
is considered to be one that has few neurons and connections,
and also avoids making use of delayed connections. The
smaller the total delay, the better for being used in real time.

All the implemented modules were tested in a set of
experiments, demonstrating the expected behavior for each of
them and analyzing their requirements in terms of resources



needed. The number of neurons and connections of the im-
plemented blocks were optimized, since these modules could
be massively used to build higher-level blocks with a more
complex functionality.

Future works will focus on using the presented blocks
to build more complex functional blocks with higher-level
functionalities. Thus, building registers from latches, as well
as other components such as decoders or multiplexers using
these building blocks, would be straightforward. These new
functional blocks could be very useful to implement other
higher-level blocks, such as memories, or even a spiking
computer which could be the spiking equivalent to the tra-
ditional digital computer. In this regard, all the functionalities
of a digital computer could be performed with these new
architectures, benefiting from the low-power and low-latency
nature of spiking neural networks.

The code for the designs and tests of the proposed blocks
is available on GitHub. The link to the repository has been
attached in the Section I.
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