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Abstract
Neuromorphic computation processes sensors output in the spiking domain, which presents 
constraints in many cases when converting information to spikes, loosing, as example, tem-
poral accuracy. This paper presents a spike-based system to adapt audio information from 
low-power pulse-density modulation (PDM) microelectromechanical systems microphones 
into rate coded spike frequencies. These spikes could be directly used by the neuromorphic 
auditory sensor (NAS) for frequency decomposition in different bands, avoiding the analog 
or digital conversion to spike streams. This improves the time response of the NAS, 
allowing its use in more time restrictive applications. This adaptation was conducted in 
VHDL as an interface for PDM microphones, converting their pulses into temporal 
distributed spikes following a pulse-frequency modulation scheme with an accurate inter-
spike-interval, known as PDM to spikes interface (PSI). We introduce a new architecture of 
spike-based band-pass filter to reject DC components and distribute spikes in time. This 
was tested in two scenar-ios, first as a stand-alone circuit for its characterization, and then 
integrated with a NAS for
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verification. The PSI achieves a total harmonic distortion of −46.18 dB and a signal-to-noise 
ratio of 63.47 dB, demands less than 1% of the resources of a Spartan-6 FPGA and its power 
consumption is around 7 mW.

Keywords Neuromorphic engineering · FPGA · Address-event · Pulse frequency 
modulation · Pulse density modulation · Neuromorphic auditory sensor

1 Introduction

Pulse-Density Modulation (PDM) is a sigma-delta modulation technique used to digitize 
an analog signal with a 1-bit data stream and a high sample rate. In recent years, many 
low-power microelectromechanical systems (MEMS) [1] microphones designed for mobile 
applications, such as tablets, laptops and cell phones, among others, have appeared in the 
market. In PDM data streams, a logic ‘1’ corresponds to a pulse of the maximum positive 
polarity (+A), and a logic ‘0’represents the maximum negative polarity (−A). A signal value 
of 0 is codified by an alternation of ‘1’ and ‘0’. Commonly, this type of modulation is 
associated with neuromorphic information codification, in the sense of being a rate-coded 
signal [2].

Neuromorphic computation allows processing Pulse-Frequency Modulation (PFM) infor-
mation only when it is needed, avoiding periodic or redundant data processing, which is 
present in Pulse-Coded Modulation (PCM) signals, thus saving power and computational 
resources [3]. A similar approach can be found in [4], where the authors use the PDM micro-
phones to encode the input sound direclty into a spike train, thus having the information 
ready to be processed using Spiking Neural Networks (SNNs). In addition, a PDM coding 
strategy is used in [5] for the communication between neurons when sound information is 
used.

Currently, we can find diverse neuromorphic cochleae, both analog [6–10] and digital [11, 
12], inspired by Lyon’s cascade model [13] modeling the Inner Hair Cells (IHC). In [14], 
a Neuromorphic Auditory Sensor (NAS) is presented, based on on spike signal processing 
(SSP) techniques [15].

Figure 1 shows a global scheme of the NAS architecture. First, the audio information is 
provided by a digital audio codec, whose discrete audio samples output is converted into 
spike (1-clock cycle width pulses inside the FPGA) streams, following the Pulse-Frequency 
Modulation (PFM). The NAS filters these spikes directly, spike after spike, using a set of 
Spike-based Low-Pass Filter (SLPF) connected in a cascade fashion. Finally, spikes are 
transmitted to the next layers using the Address-Event Representation (AER) protocol.

NAS has been currently used for many practical applications, such as sound source local-
ization [16], heart murmur diagnosis [17], and speech recognition [18, 19], among others. 
Great effort has been dedicated to improve NAS features, as it is the input layer of all these 
systems, improving responses and spreading for new applications of this technology.

The circuit proposed in this paper provides a novel interface with PDM microphones 
which output a rate-coded signal with a higher sampling rate than audio codecs (3.125 MHz 
in this case), and a time resolution of 320 ns, while audio codecs have a sampling period from 
22.67 µs to 10.41 µs, limiting the temporal capabilities for some applications, e.g., sound 
localization systems [20]. The output of the proposed circuit supplies a spike stream which 
can be directly processed by the NAS’ filter banks [14], avoiding the use of discrete audio 
codecs. We also introduce a new Spike-based Band-Pass Filter (SBPF) for spikes distribution.



Fig. 1 NAS architecture: audio to spikes, spikes processing banks, and AER output interface

The main contributions of this paper include the following:

• A novel interface for PDM to rate-coded spikes conversion is presented.
• The proposed interface have been simulated in software and implemented in reconfig-

urable hardware.
• The hardware resources and power consumption needed have been analyzed.
• The proposed interface is capable of working in real time and could be used for a wide

range of neuromorphic applications.

The rest of the paper is structured as follows. In Sect. 2 an interface to convert PDM into rate-
coded spikes is presented,which is divided in twomain blocks: the front-end circuit (Sect. 2.1)
and a spike-based second-order band-pass filter (Sect. 2.2). The hardware resources and
power consumption of the presented interface are analyzed in Sect. 2.3. In Sect. 3, the exper-
imental results are presented, including hardware simulation (Sect. 3.1) and implementation
(Sect. 3.2). Finally, in Sect. 4, the conclusions of this paper are presented.

2 PDM to Spikes Interface (PSI)

PDM information codification technique is substantially different from rate-coded spike-
based signals. In rate-coded spike-based signals, the information is given by the spikes
frequency, which means that the information is inversely proportional to the temporal Inter-
Spike Interval (ISI). Spike-based systems use PFM to distribute the spikes in time properly, in
order to accurately represent the signal’s information. On the other hand, in PDM signals the
information is contained in the density of pulses, and one pulse is generated every clock cycle,
where a logic ‘1’ represents a positive value, and a logic ‘0’ a negative one. For example,
when there are more ‘1’s than ‘0’s the information is positive, and the more ‘1’s, the greater
the amplitude. Thus, to reconstruct the signal’s amplitude, it is necessary to collect PDM
pulses during a temporal window, performing a downsampling operation, obtaining discrete
samples with a fixed period. However, using PFM spike-based signals, with only two spikes,
it is possible to reconstruct the amplitude of the original signal if the ISI is accurate enough,
allowing it to process information spike-by-spike, and only performing computation when
a spike is fired. Consequently, when there are no audio stimuli, spikes are not fired, and no
computation is performed, thus saving power.

Digital systems convert PDM signals to digital values using the PCM. PCM is recon-
structed from PDM with a digital decimation stage, commonly performing a downsampling
by a factor of 64, and providing amultiple-bitword (e.g., 16 bits@48.8 kSamples/s)with high
frequency noise added. After this stage, an infnite impulse response (IIR) filter is commonly



Fig. 2 PDM to spikes interface circuit

Fig. 3 Filtered spikes evolving from an increasing PDM audio signal

used as a band- pass filter (BPF) to remove DC component and high frequency quantization 
noise.

The main goal of PSI is to read PDM pulses and redistribute them in time as rate-coded 
spikes, with an ISI proportional to the sound pressure, performing the similar operations of 
digital systems but in the context of spike-based signals.

To convert PDM information into rate-coded spikes, a two stages circuit (see Fig. 2) is pro-
posed. The first stage is a Finite State Machine (FSM) circuit for PDM MEMS microphones 
interfacing, that generates a spike of a single clock cycle for each PDM pulse, detailed in 
Sect. 2.1. The next stage consists of one (monaural) or two (binaural) banks of SBPF (depend-
ing on target applicaction requirements), which process raw spikes from the previous stage, 
to give a temporal distributed spikes stream, detailed and analyzed in Sect. 2.2.

Since spikes can be both positive and negative, we use different wires to represent signed 
spikes. The FSM output generates a stream of signed spikes that are still not distributed in 
time, with the ISI being constant and equal to the PDM clock period. Figure 3 presents an 
example of a positive increasing audio signal, and how spikes evolve. PDM DATA represents 
the increasing input signal amplitude which is captured by PDM edge detector using the 
PDM CLK. This stage generates PFC OUT which are processed by SBPF using Eq. (1).

2.1 PDM Front-End Circuit

The PDM front-end circuit (PFC) has two main functionalities: to generate the PDM clock 
and to convert long PDM pulses into one clock cycle spikes (PFC OUT (P) and (N) in Fig. 3). 
The hardware platform used to implement these blocks is called AER-Node [21] and it has a 
base clock frequency of 50 MHz. Dividing this clock by a factor of 16, we get a PDM clock 
of 3.125 MHz, which is the maximum value commonly allowed by MEMS microphones. In 
every PDM clock cycle (PDM CLK signal in Fig. 3) there is a MEMS pulse in the PDM DAT 
signal. If PDM DAT has a value of ‘1’ then a positive spike is transmitted to the next stage, 
and if there is a ‘0’ it will be a negative spike (PFC OUT (P) and PFC OUT (N), respectively, 
in Fig. 3).



Fig. 4 Spike-based band-pass filter (SBPF) internal blocks with cascade topology

2.2 Second-Order Spikes Band-Pass Filter (SBPF)

The next stage is a Spike-basedBand-Pass Filter (SBPF), which has been designed combining
neurons for SSP. Two different kinds of neurons were used: Spikes Hold and Fire (SHF)
and Spikes Integrate and Generate (SIG). SHF is used to subtract two input spike streams,
generating a new stream of spikes with a frequency equivalent to the difference between
input frequencies. SIG works like a spikes integrator. Internally, it consists of an up/down
counter and a Synthetic Spikes Generator (SSG), with the output of the counter being the
SSG’s input. Input spikes increase or decrease the counter value according to their polarity,
thus performing the integration operation. Finally, the SSG provides an output spiking rate
proportional to the counter’s value (i.e., integrated value). We can build frequency filters
in the context of PFM spikes connecting these neuron models with different typologies.
For example, from the point of view of ISI, a Spike-based High-Pass Filter (SHPF) only
allows propagating spike rate changes, while a Spike-based Low-Pass Filter (SLPF) rejects
high-frequency changes in spike rate.

Figure 4 shows the SBPF architecture, which is composed of two stages. Both stages
are closed-loops with a SIG, although with a different SIG placement. These neurons are
connected with 2-bit buses to propagate positive and negative spikes between them, in order
to represent the bipolar nature of audio.

On the first stage, the SIG is placed in the feedback, while in the second stage it is placed
in the main loop. Making an analogy to Laplace Transform, as was done in [14], with kSIG1

being the gain of the SIG in the first stage, and kSIG2 the one in the second stage, the
full transfer function is presented in Eq. (1). It consists of one zero, which rejects the DC
component, and two negative poles to filter quantification noise, implemented in the same
way as for sampled digital systems, but in the context of PFM spike-coded signals.

SBPF(s) = 1

1 + kSIG1
s

∗
kSIG2

s
kSIG1

s + 1

= kSIG2s

(s + kSIG1)(s + kSIG2)
(1)

2.3 Hardware Resources and Power Consumption

ThePSI designwas synthesized and implemented on aXilinxSpartan 6FPGA(XC6LX150T)
to measure the required resources and its power consumption. Table 1 presents the resources
that are needed to implement PSI in FPGA. As can be seen, the amount of resources needed



Table 1 PSI hardware requirements

Post-implementation results (Spartan 6-XC6SLX150T)

Slices registers (%) Slices LUT (%) Max Clock Freq.

173 / 184.304 (0.094%) 409 / 92.152 (0.38%) 148.34 MHz

Fig. 5 Test scenario. Sound is played by a response speaker, exciting the PDM microphones. Finally, the 
information is sent to a computer through an AER-to-USB interface

is under 0.1% of the total slice registers and logic (LUT) of the FPGA. The PSI can operate at 
a clock frequency of up to 148.34 MHz. To measure real power consumption, a 64-channel 
binaural NAS, was deployed on an AER-Node working at 50 MHZ [21]. We made two 
power consumption measurements to isolate the PSI module consumption. The first is the 
power consumption of the entire system, and the second is the power consumption of the 
entire system at reset without the PSI module. The difference between both measurements, 
7 mW, corresponds to the real dynamic power consumption of the PSI module. This power 
consumption is significantly lower than that of similar works [22], which consumes around 
33.78 mW. The AER-Node platform with the 64-channel binaural NAS deployed on the 
FPGA consumes 1.33 W, to which the power consumption of the microphones used should 
be added.

3 Experimental Results

For testing purposes, a scenario was built to analyze the PSI’s standalone behavior. Fig-
ure 5 presents the testing setup, where two PDM microphones from ST Microelectronics 
(MP34DT02) were connected to an AER-Node board, which was in turn connected to an 
USB-AERmini2 board. MP34DT02 are omnidirectional MEMS microphones with PDM 
interfaces, with an acoustic overload point of 120 dBSPL, an SNR of 60 dBm, a dynamic 
range of 86 dB, and a maximum power consumption of 0.98 mW.

The AER-Node board holds the PSI, a 128-channel binaural NAS, and a set of AER 
interfaces. Its parallel AER output was connected to the USB-AERmini2 board [23], which 
works like a bridge between AER buses and USB ports, allowing the AER events to be sent 
from the AER-Node board to a host computer. In the computer, two software tools were 
running: jAER [24], to visualize and log AER information; and MATLAB, to analyze and



Fig. 6 Spikes from PSI: PDM front-end output (3-2) (top), and PSI’s output (1-0) after filtering (bottom).
A section where spikes from the input of the SBPF overlap between the positive and the negative address is
highlighted in red

process the events. The sound used to excite the system was played using a flat response
audio speaker, in this case a BEHRITONE C5A from Behringer, placed at a 1-meter distance
from the PDM microphones and at a fixed gain in order to have an audio level of 65 dBSPL

on the microphones’ side. This kind of equipment was used to avoid the influence of audio
equalizers and the compensation of domestic Hi-Fi equipment. Thus, no prepossessed sounds
were used and, instead, we tried to reproduce sound waves in the most ideal way possible.
This will potentially open our system to many stand-alone applications, such as robotics.

3.1 PSI Experimental Results

For the first experiment, the systemwas stimulated with a clear 500 Hz pure tone audio signal
played by the flat response speaker. Figure 6 represents the spikes from each stage of the PSI.
Higher addresses (3 and 2) correspond to the spikes fired by the PDM front-end circuit, and
lower addresses (1 and 0) to the SBPF output. Spike addresses 3 and 1 are positive, while 2
and 0 are negative.

Figure 6 depicts how the addresses that contain the output of the PDM front-end over-
lap the information between positive and negative, which does not happen after filtering
it with the PSI. In PDM, information makes sense for the average activity of a temporal
window. However, in the spikes domain, the information is coded with the time between
two consecutive spikes. From the signal sign point of view, we can say that zero-crossing is
performed when the polarity of the spikes changes (i.e., after a positive spike, a negative one
is produced). In the case of the PDM front-end output, there are several spikes overlapping
positive (address 3) and negative activity (address 2). From the point of view of ISI, this
represents a considerable amount of high-frequency noise. However, if we check the SBPF
output spikes, there is no overlapping between positive (address 1) and negative (address 0)
activity, rejecting high frequency noise.

Figure 7 shows the reconstruction of the original signal using the spikes’ ISI. First, the
green signal represents the reconstruction fromPDM front-end’s output. This is a noisy signal
with ameasured Total Harmonic Distortion (THD) of−38.11 dB and a Signal-to-Noise Ratio
(SNR) of 51.31 dB, with an offset of −487 kSpikes/s introduced by the PDM microphones.



Fig. 7 Temporal reconstruction of a 500 Hz tone. Green: PDM front-end’s output. Blue: SBPF’s output

Fig. 8 Bode plots of the PDM2Spikes module

On the other hand, the blue signal is the reconstruction from SBPF’s output. A tone with 
less noise and offset can be seen, improving the previous audio signal quality. Analyzing this 
response, we achieve a THD of −46.18 dB and a SNR of 63.47 dB.

To measure the number of zero-crossings, a one second recording was analyzed and the 
amount of changes from positive spike to negative and vice versa were counted. In the PDM 
front-end’s output, more than 80k zero-crossings were found. However, in SBPF’s output, 
1k zero-crossings were found, which exactly matches a 500 Hz signal.

Our second experiment consisted in a frequency sweep from 20 Hz to 20 kHz to analyze 
the behavior of the system with different frequencies. For this experiment we have generated



Fig. 9 Spikegram (top) and sonogram (bottom) obtained with NAVIS from a speaker saying “Si vis pacem
para bellum”

a set of sinusoidal signals with 1V peak-to-peak amplituded using a Realtek ALC1150 audio
codec in a computer. ALC1150 has an SNR of 115 dB and a THD of−88 dB. Figure 8 shows
the frequency sweep results as a bode plot. The top curve in Fig. 8 presents the gain for diverse
frequencies. PSI gain starts to increase from 70 Hz to 12 kHz, and then decreases, rejecting
higher frequencies. This bandwidth is enough for many applications related to speech and
speakers recognition. The spike-based filters in the PSI introduce a temporal deviation. It
was measured as signal phase (in rads) and the results are included in Fig. 8 bottom. PSI has



a mean phase of −4.5 rads, approximately, increasing when frequency is close to the cut-off
frequency, as expected from a low-pass filter.

3.2 NAS Integration

In order to validate the PSI on a real scenario, it was integrated in a 128-channel binaural
NAS.1 This NAS was fed with a male voice saying: “Si vis pacem, para bellum”, and the
output activity was recorded using an USB-AERMini2 board as an AER-DATA file. Figure 9
contains the spikegram and the sonogram of this recording, respectively. Each word is clearly
distinguishable, and activatesmiddle channels between 200Hz and 5 kHz. These figureswere
obtained by using NAVIS software [25].

4 Conclusions

In this paper, a PDM to PFM Spikes circuit is presented. PDM MEMS microphones are
useful for low-power, stand-alone, embedded applications. Their output is based on spike
density, and it needs to be adapted in order to be used as input to the NAS. A two-stage
circuit for FPGA was designed, which is able to convert PDM information to PFM spikes
with a consistent ISI. The PSI was synthesized for a Spartan 6 FPGA with low resources
and power requirements. It was then tested with real audio stimuli, analyzing its behavior in
terms of temporal response and zero-crossings. The PSI was also integrated in a full NAS
to demonstrate the viability of the combination of this kind of systems. The use of PDM
microphones with NAS considerably simplifies the system, enabling the development of
compact and portable spike-based auditory systemswith lower power consumption.However,
this approach could have some limitations in very specific applications. For instance, the use
of PDM microphones limits the preprocessing steps before the digitalization of the sound,
like the automatic gain control, amplification, and other analog-based processing, due to the
direct conversion from sound to digital pulses. Future work aims at developing adaptative
capabilities in real time, as human ear does. Current research is focused on implementing
a local automatic gain control [10] for input sound, and SBPF parameters (central pass
frequency and Q factor) according to sound features performing an adaptation task in real
time.
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