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ABSTRACT: The first highly enantioselective intermolecular 

(4+2) cycloaddition between allenes and dienes is reported. 

The reaction provides good yields of optically active cyclo-

hexenes featuring diverse substitution patterns and up to three 

stereocenters. Key for the success of the process is the use of 

newly designed axially chiral N-heterocyclic carbene-gold 

catalysts. 

Catalytic asymmetric Diels-Alder (DA) cycloadditions are 

among the most effective strategies to construct optically 

active six-membered carbocycles.1 In the last decades there 

have been many reports on enantioselective intermolecular 

versions of these annulations, which are typically promoted by 

chiral Lewis acids or by organocatalysts.  In most of the cases, 

however, these transformations are circumscribed to alkenyl 

dienophiles equipped with carbonyl-activating groups (e.g. 

-unsaturated aldehydes, ketones, esters, amides).2,3 Enanti-

oselective intermolecular DA reactions involving other types 

of dienophiles are much less frequent and, particularly, those 

between allenes and dienes are virtually unexplored.4 

We have recently reported a gold–catalyzed intermolecular 

(4+2) cycloaddition between allenamides and dienes.5-7 The 

transformation provides a simple, versatile and stereoselective 

entry to a variety of cyclohexenyl products incorporating an 

exo enamide group and up to two new stereocenters. The 

reaction is better carried out using AuCl as catalyst, but can 

also be promoted by other gold (I) catalysts such as 

IPrAuCl/AgSbF6 (IPr=1,3-bis(diisopropyl-phenyl)imidazole-2-

ylidene), although in this case it is somewhat less selective 

with respect to a competitive (2+2) annulation that provides 

cyclobutane side adducts.5a,8  

On the above bases, we were challenged to explore the viabil-

ity of achieving this type of allene-diene cycloadditions in an 

enantioselective manner, using chiral NHC-gold catalysts. 

Curiously, despite the wide use of racemic NHC-gold cata-

lysts,9 applications of their chiral counterparts are very 

scarce;10 and only recently ee values above 90% have been 

reported for a couple of reactions, both of them promoted by 

chiral acyclic diaminocarbene gold complexes.10g,h Herein, we 

demonstrate that a newly designed chiral NHC-gold(I) com-

plex, Au8, in which the carbene gold ligand is embedded in 

the cyclic backbone of an axially chiral unit, is able to catalyze 

the (4+2) cycloaddition between allenamides and a large num-

ber of dienes with total regio- and stereo-selectivity, and ex-

cellent enantioselectivity. 

We initially focused on C2–symmetric dihydroimidazole 

NHC–gold complexes Au1-Au5, incorporating the 1,2-

diphenylethylene backbone.11,12 These complexes promoted 

the (4+2) cycloaddition between 1a and 2a to afford the de-

sired cycloadduct 3a in moderate to good yields and complete 

stereoselectivity;13 however, the enantioselectivity was con-

sistently poor (Table 1). We were then curious to know the 

performance of chiral triazolylidene-gold complexes. Triazole-

based NHCs have been successfully used in asymmetric oga-

nocatalysis,14 however, their organometallic complexes and, in 

particular, the gold counterparts, are essentially unexplored.15 

Interestingly, Au(I) complex Au6, prepared from Bode`s tria-

zolylidene ligand,16 promoted the cycloaddition in just 15 min 

at –50 °C, providing 3a in an excellent 91% yield, albeit with 

low ee. 

Table 1. Preliminary screening of chiral NHC-gold catalyst 

 

entry [Au] t (min) 3a, yield (%)a ee (%)b 

1 Au1 60 79 10 

2 Au2 60 88 4 



 

3 Au3 60 74 4 

4 Au4 60 76 23 

5 Au5 60 51 24 

6 Au6 15 91 16 

a Isolate yield. b Determined by HPLC on chiral stationary 
phases. 

In view of the good catalytic activity of Au6, we decided to ex-
plore other triazole-based NHC ligands that could generate a more 
effective chiral environment at the proximity of the gold center. 
Relying on our recent work on imidazo[1,5-a]pyridin-3-ylidene 

(A)17 and [1,2,4]triazolo[4,3-a]pyridin-3-ylidene (B)18 NHC 

architectures, we envisioned that gold complexes of type C (Fig-
ure 1) could be particularly well poised for this task. The rigid 
bicyclic structure of these NHC units should fix the relative orien-
tation of the C(carbene)-Au bond while forcing the C(5)-aryl 
substituent in close proximity to this reacting center, and therefore 

might favor an efficient transfer of axial chirality. Additionally, 
the asymmetric induction might be further tuned by modulating 
the steric demands of substituents R, and particularly R’.19  

 

Figure 1. Design of new chiral NHC ligands. 

To test the efficacy of these ligands we prepared the complexes 

of Au7 (R’ = Me) and Au8 (R’ = Cy), according to the reaction 
sequence indicated in the Scheme 1. The process involves a selec-

tive Suzuki coupling between 1,3-dichloroisoquinoline 4 and 

boronic acids 5a,b, (6a,b),20 followed by Buchwald-Hartwig 

amination with BocNHNHBoc (7a,b).21 After deprotection, 

formylation and cyclization (8a,b), the racemic mixtures were 
resolved by chiral HPLC.22 Ensuing alkylation with 1-adamantyl 

bromide [9a,b(Br)] and anion exchange23 gave the triazolium 

salts 9a(Cl) and 9b(Cl) and, finally, metallation with Ag2O 

(10a,b) followed by transmetallation with AuCl·Me2S gave the 

desired gold complexes Au7 and Au8.  

Scheme 1. Synthesis of Au7 and Au8a 

 

a Reagents and conditions: (a) Pd(PPh3)4, CsF, DME, Reflux, 15 
h; (b) BocNHNHBoc, Pd2(dba)3, dppf, CsCO3, toluene; (c) HCl 
4M dioxane; (d) HCOOH, reflux; (e) i) POCl3, toluene, reflux, ii) 
HPLC chiral resolution (f) 1-BrAd, AcOH, reflux; (g) Dowex 22 

(Cl); (h) Ag2O, CHCl3, MS 4Å; (i) AuCl·Me2S, toluene. 

The X-ray structure of complex (Ra)-Au8 (Figure 2) was used 
for the assignment of the absolute configuration of the chiral axis 
and for the quantification of the steric demand of the ligand, 
measured as percentage of buried volume (%Vbur) around the gold 
center. Using the SambVca software developed by Cavallo and 
co-workers,24 an extremely high %Vbur value of 46.2, among the 
highest described for monodentate NHCs,19b was calculated for 

the carbene ligand in (Ra)-Au8. Additionally, the analysis of this 
structure confirmed that there might be substantial differences in 
the accessibility of either prochiral face of the allyl-cation gold 
intermediate that is presumably formed by activation of the alle-
namide.5a,b 

 

Figure 2. X-ray structure of (Ra)-Au8. H atoms are omitted for 
clarity. Selected bond lengths (Å) and bond angles (deg): Au(1)-
C(1) 1.968(6), Au(1)-Cl(1) 2.2685(13), Au(1)-C(11) 3.026, C2-
N(3)-C(1)-Au(1) 10.9(8), N(3)-C(2)-C(11)-C(20) 84.9(6).  

Gratifyingly, complex Au7/AgSbF6 catalyzed the cycloaddi-

tion of 1a and 2a, providing the expected cycloadduct 3a in 

good yield and a promising 63% ee (Table 2, entry 1). Im-

portantly, the cyclohexyl-substituted derivative Au8, provided 

a similar yield but an excellent 90% ee (entry 2). This ee value 

could be improved by using AgNTf2 as silver salt (entry 3),25 

and further increased up to >99% by lowering the temperature 

(entry 4). As can be seen in entries 5 and 6, the presence of 

different types of substituents at the aryl group of the diene 

did not significantly affect the enantioselectivity of the pro-

cess, so 3b and 3c could be isolated with 94% and 96% ee, 

respectively.26 The presence of substituents at the internal 

position of the diene is well tolerated (entry 7) and, 1,4-

disubstituted dienes such as 2e and 2f also participate in the 

cycloaddition providing a direct and diastereoselective access 

to 1,4-cis disubstituted cyclohexenyl products (3e and 3f) with 

moderate to good yields, and excellent ee’s (entries 8 and 

9).27,28 Dienes lacking aryl substituents such as (E)-penta-1,3-

diene (2g) or (E)-3-methylpenta-1,3-diene (2h) are also suita-

ble substrates, providing the corresponding adducts with ee’s 

varying from 91 to 94% (entries 10 and 11). Even challenging 

1,4-dialkyl-substituted dienes (e.g. 2i, 2j) provided satisfactory 

results under the standard conditions (entries 12 and 13), 

producing the expected adducts with complete chemo-,29 re-

gio- and diastereo-selectivity, and ee’s close to 90%.30 Excel-

lent enantioselection was obtained in the cycloaddition of 

oxazolidinone-diene 2k, which provides a N-substituted chiral 

cyclohexene (entry 14). Other allenamides, like 1b (entry 15) 

or, more importantly, terminally substituted derivatives such 

as 1c, do also provide excellent results. For instance, cycload-

dition of 2d with allenamide 1c provided a 6:1 mixture of 

diastereisomeric cycloadducts 3dc and 3dc’ with 75% com-

bined yield and 96% ee (entry 16). Gratifyingly, the diastere-



 

oselectivity of this reaction could be increased by performing 

the reaction with catalyst Au7/AgSbF6 at –50 ºC, which pro-

vided exclusively 3dc, still with a good yield an excellent 93% 

ee (entry 17). Finally, the excellent performance and wide 

scope of this catalyst was again demonstrated in the cycloaddi-

tion of 2f to 1c, which provided the cyclohexenyl adduct 3fc, 

featuring three new stereogenic centers with complete regio- 

and diastereoselectivity as well as an excellent 91% ee (entry 

18).31 

Table 2. Catalyst identification and scope of the enantioselective (4+2) DA cycloaddition of allenamides and dienes.a 

 

entry Diene, 2 Cat Product, 3b T (°C) t (h) 3, yield (%)c ee (%)d 

1 

 

2a (Sa)-Au7/AgSbF6 (R)-3a 

 

–50 0.75 82 63 

2 2a (Ra)-Au8/AgSbF6 (S)-3a –50 1 81 90 

3 2a (Ra)-Au8/AgNTf2 (S)-3a –50 1 82 94 

4 2a (Ra)-Au8/AgNTf2 (S)-3a –78 3 88 >99 

5 

 

2b, Ar: 3,4,5-

(OMe)3C6H2 
(Ra)-Au8/AgNTf2 (S)-3b 

 

–50 1 58e 94 

6 2c, Ar: 4-Br-C6H4 (Ra)-Au8/AgNTf2 (S)-3c –50 1 55e 96 

7 

 

2d, R4 = Me; R2 = H,  (Ra)-Au8/AgNTf2 (S)-3d 

 

–50 1 88 95 

8f 2e, R4 = H; R2 = Ph (Sa)-Au8/AgNTf2 (2R,5S)-3eg   0 0.25 48 96 

9 2f, R4 = H; R2 = Me (Ra)-Au8/AgNTf2 (2S,5R)-3f –50 1 85 94 

10 

 

2g, R4 = H (Ra)-Au8/AgNTf2 (R)-3g 

 

–50 3 71 91 

11 2h, R4 = Me (Ra)-Au8/AgNTf2 (R)-3h –78 2 56 94 

12 

 

2i, R2 = Me (Ra)-Au8/AgNTf2 (2R,5R)-3i 

 

–50 12 56 87 

13 2j, R2 = CH2OTBS (Ra)-Au8/AgNTf2 (2R,5R)-3j –50 12 50 89 

14 

 

2k (Ra)-Au8/AgNTf2 (R)-3k 

 

–50 1 69 >99 

15h 

 

2d (Ra)-Au8/AgNTf2 (S)-3db 

 

–50  rt 3 50 90 

16i 2d (Ra)-Au8/AgNTf2 
(2S,6R)-3dc: 

(2S,6S)-3dc’ 

 

–50–15 2 75, (dr = 6:1)j 96k 

17i 2d (Sa)-Au7/AgSbF6 (2R,6S)-3dc –50 16 
64, (dr > 

20:1)l 
93 

18i  2f (Sa)-Au8/AgNTf2 (2R,5R,6S)-3fcg 

 

+10 3 51 91 

a Conditions: Diene (3 equiv) and allenamide (1 equiv) were added to a cooled solution of (Ra)-Au8 and AgX in CH2Cl2 (0.1 M) unless 

otherwise noted. Conv. > 99%. b N* = (2-oxo)oxazolidin-3-yl, N** = (2-oxo)pyrrolidin-1-yl. The absolute configuration of (S)-3c was 

determined by X-ray diffraction analysis, see the Supporting Information. The absolute configuration of all other products 3 was assigned 
by analogy. c Isolated yields. d Determined by HPLC on chiral stationary phases. e Unoptimized yield. f Carried out with 4 equiv of diene. g 

Carried out with (Sa)-Au8, instead of (Ra)-Au8.h Carried out with allenamide 1b. i Carried out with allenamide 1c. j Ratio of (2S,6R)-3dc: 

(2S,6S)-3dc’ (crude1H-NMR). k Same ee values (97%) were observed for both diastereoisomers, (2S,6R)-3dc and (2S,6S)-3dc’. l Ratio of 

(2R,6S)-3dc: (2R,6R)-3dc’ (crude1H-NMR). 

In summary, we described the first examples of a highly enan-

tioselective intermolecular (4+2) cycloaddition between al-

lenes and dienes, which also represents the first asymmetric 

intermolecular (4+2) cycloaddition promoted by a chiral car-

bophilic metal complex. The reaction provides a versatile and 

practical approach to a variety of optically active cyclohexene 

products which are not obviously accessible using alternative 

methodologies. The success in the asymmetric induction relies 



 

on the development of a novel class of designed ligands fea-

turing a triazole unit embedded in a rigid axially chiral cyclic 

frame. These ligands might find utility in other metal-

catalyzed asymmetric processes; in particular, the excellent 

results obtained with catalyst Au-8 augurs well for further 

applications in other gold-catalyzed transformations.  
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