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Abstract— Automatic intrusion detection in unstructured and
complex environments using autonomous Unmanned Aerial
Systems (UAS) poses perception challenges in which traditional
techniques are severely constrained. Event cameras have high
temporal resolution and dynamic range, which make them
robust against motion blur and lighting conditions. This paper
presents an event-by-event processing scheme for detecting
human intrusion using UAS. It includes: 1) one method for
detecting clusters of events caused by moving objects in static
background; and 2) one method based on Convolutional Neural
Networks to compute the probability that a cluster corresponds
to a person. The proposed scheme has been implemented and
validated in challenging scenarios.

Index Terms— event camera, surveillance, aerial robots, deep
learning.

I. INTRODUCTION

Intrusion detection using autonomous Unmanned Aerial
Systems (UAS) in unstructured and complex environments
poses very challenging perception problems. The operation
of traditional sensors such as cameras and LIDARS are
usually constrained by the lack of structure in the scenario,
lighting conditions, or camera motion blur due to the robot
vibrations or movements. The advent of event cameras
opens new sensing possibilities of interest for aerial robot
surveillance. Event cameras have high temporal resolution,
and hence are not affected by motion blur. They have high
robustness to lighting conditions, being able to operate during
day and night, avoiding the need to install two cameras
as in traditional day/night configurations, which affect the
UAS payload, electrical consumption, and computational
requirements. Besides, event cameras have moderate weight
and low power consumption, which make them suitable for
installation on board of small aerial robots.

In previous works [1] we presented an event-based pro-
cessing scheme that detected intruders using aerial robots.
The method is capable of detecting moving objects, but
cannot determine the type of object that originated the
detection.

This paper presents a scheme for event-based human
intrusion detection for UAS. It is based on two main event-
based processing modules. The first module detects intru-
sions as clusters of events with consistent motion. The second
asynchronously analyzes the events of each of the detected
clusters (events not associated to a detected cluster are not
processed to save computational cost), and computes the
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Fig. 1: Experimentation of event-based human intrusion
detection using aerial robots.

probability that the cluster corresponds to a person. Each
event corresponding to a detected cluster is processed using
Deep Learning (DL) techniques (specifically, Convolutional
Neural Networks (CNN)) to compute the probability that
the event corresponds to a person. The computed event
probabilities are used to estimate the probability that a cluster
corresponds to a person. The main novelty of our method
resides on two facts. First, it is based purely on events
removing the need for other sensors on the UAS and resulting
in high robustness against motion blur and lighting condi-
tions. Second, the events are event-by-event processed by
both modules, fully exploiting the asynchronous capabilities
of event cameras. The proposed method was implemented
in an hexarotor and experimentally validated in challenging
scenarios, see Figure 1.

The rest of the paper is structured as follows. The main
related work is briefly summarized in Section II. Section
III presents the general scheme of the event-based aerial
robot surveillance system. Section IV presents the proposed
Deep Learning method for event-based people detection. The
validation experiments in challenging scenarios are presented
in Section V. The conclusions are summarized in Section VI.

II. RELATED WORK

The use of aerial robots for surveillance tasks have at-
tracted high R&D interest. Many techniques and systems
have been developed focusing on perception, planning, or
multi-robot coordination, among many others. One of the
most relevant functionalities in these systems is the au-
tomatic detection and tracking of intruders, which is of-
ten approached as the detection of moving objects. Many
techniques based on the processing of visual images for
automatic pedestrian detection, face recognition, motion seg-
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mentation, and target tracking, have been proposed. However,
the motion blur and lighting conditions sensitivity of tradi-
tional visual cameras constrain their efficacy in unstructured
outdoor scenarios.

The advantages of event cameras have motivated their use
in robotics and computer vision [2]. Event cameras provide
high dynamic range, low latency, low energy consumption,
and robustness to motion blur. A number of works have
explored human detection using event cameras. Most of them
rely on processing event images that accumulate the events
either by time or a fixed number of samples. The work
in [3] compared the performance of traditional and event
cameras for human faces detection, showing the viability
of using only events for face detection. Another work with
surveillance applications was presented in [4]. The output of
two YOLO object detectors were fused to detect pedestrians
using standard camera frames and event images from a fixed-
position DAVIS camera. Other works such as [5] and [6] used
event images to segment the scene through the motion of the
objects. Despite all of them providing interesting solutions
to surveillance related problems using event cameras, their
evaluation on real robots was not approached.

Recently, the use of event cameras for UAS perception
have been explored by the robotics community. A motion
segmentation method was implemented in [7] in order to
allow a multirotor UAS to perform collision avoidance using
an stereo set-up of event cameras, which was used to track
the moving objects thrown at it. The work in [8] presented
another method for tracking moving objects using event
images and compensating for the global motion of a Micro
Aerial Vehicle (MAV).

All the above methods use event images to transform group
of events into image-like representations and, therefore, they
do not fully exploit asynchronous, sparse, and sequential
nature of event data. In contrast, asynchronous event-by-
event processing methods consider the intrinsic nature of
event data. A number of works have explored event-by-event
processing for feature detection and tracking [9] [10], clus-
tering [11] [1], or localization [12]. However, few of them
have explored the application of event-by-event processing
on real robots as the computational requirements are often
too high to be computed on board.

A number of event-based methods for object classification
methods have been developed. Inspired by the success of
object detectors based on traditional visual images such as
[13]–[15], the first approach in object detection using events
relied on processing event images. Some works for object
detection and classification using event images have already
been mentioned [3], [4]. Others focus on novel image-like
representations to provide robust classification performance
[16]–[18]. In [16] they modify the local spatial descriptors
defined in [19] to take into account events occurring on the
same pixel, and then accumulate the histograms of events
in predefined zones of the image. Work [17] defined Event
Spike Tensors through kernel convolutions, quantizations,
and projections, and work [18] proposed the use of an
adaptive motion-agnostic encoder to integrate event signals

into frame-based representations. Most of the aforementioned
works relies on Support Vector Machines (SVM) and/or
CNN to perform the classification task. In [20] a hardware
implementation of a Binary Neural Network (BNN) is used
for pedestrian detection. The results were compared with
a standard CNN which overcome the BNN in terms of
accuracy. Despite of the promising results on these works,
they have not been tested on real robots.

Some efforts have been made to introduce event-based
object detection methods on ground robots. A CNN was
trained in [21] using event images and grayscale images
to guide a non-holonomic Unmanned Ground Vehicle in
a predator-prey experiment. An iCub robot was presented
in [22] where event images were used for object detection
using an off-the-shelf Deep Learning approach. However,
motion and location of aerial vehicles produce different event
streams than on ground vehicles. In the recent work of
[23] the first DL approach to dodge incoming objects was
proposed. They use a framework with three neural networks
combined for different tasks. However, they do not deal with
the classification of the detected object.

Event data is asynchronous and sparse. Merging asyn-
chronous and sparse data for their use as input of artificial
neural networks field, is a complex task. The works of
[24], [25] transformed traditional convolutional networks
in sparse structures to process events asynchronously. In
[24] they proposed the integration of YOLO and a leaky
surface to reformulate recursive update rules for convolution
and pooling operations. In [25] they define a rulebook
to perform Submanifold Sparse Convolution that updates
the network prediction according to new active or inactive
sites. However, these techniques are limited in the types of
representations that can be processed [24] or require very
high computational burden taking more than 80ms for the
processing of a single event [25]. Another strategy arises on
the use of Spiking Neural Networks (SNN). Although SNN
process data asynchronously, they are hard to train because
of the lack of a proper update rule in the learning stage.
For this reason, many works adopt first train a standard
convolutional networks and then transform them to SNN
[26], [27]. Moreover, results using CNN usually surpass their
SNN counterpart.

Event-by-event processing for object detection and classi-
fication on real aerial robots remains an understudied field.
A Field-Programmable Gate Array (FPGA) is used in [28] to
classify and detect objects based on events counts, Principal
Component Analysis (PCA) and SVM. The results obtained
surpass state-of-the-art methods for object classification in
benchmark datasets. However, the validation was made in
indoor scenarios where all objects were static and the drone
movement was slow. Moreover, specialized hardware is
required to replicate their work.

III. EVENT-BASED TARGET DETECTION AND TRACKING

A wide variety of sensors for aerial robot surveillance
have been used [29]. Traditional frame-based cameras are
small, lightweight, inexpensive, and provide texture and



Fig. 2: Architecture of the proposed scheme.

color, which are very valuable for object detection and
identification. However, they are sensitive to lighting con-
ditions and can suffer from motion blur, which severely
constrain their use in surveillance applications. Infrared cam-
eras are interesting in cases where the targets have different
temperature from the background. In the last years strong
reductions in their size, weight, and cost have motivated
their popularization in civilian surveillance applications [30].
However, the low sensitivity of infrared camera detectors
result in large exposure times, frequently causing motion
blur when operating on board aerial robots. Range sensors to
obtain distance measurements between the robot and radio
tags deployed in the scenario or installed on objects or
other robots, have been used for aerial robot navigation,
see e.g. [31], and some application-related perception tasks,
such as object search [32]. However, the radio tag should
be transported by the intruder, which is not a realistic
assumption in surveillance applications.

This work is based on event cameras, which capture
the visual information in the form of events. Events are
triggered asynchronously with high temporal resolution (µs),
and represent changes of illumination in the scene. Event
cameras have good properties for aerial robot perception in
unstructured scenarios. They can cope with robot motion and
vibrations due to their very low latency without motion blur
[10]. Their high dynamic range (> 100 dB) provide robust-
ness against changes in lighting conditions. Finally, they have
moderate size and weight, and low energy consumption.

Our surveillance system processes the events gathered by
an event camera on board a UAS to detect and identify
people. The surveillance scenarios are assumed static except
for the targets. This is the case of many scenarios in in-
dustrial, building, or home security surveillance applications.
Any object/person/animal in motion creates groups of events
close to corners with globally consistent motion. However,
considering all of them as intruders would result in a high
number of false alarms. Hence, a module is necessary to
confirm if the detection is actually originated by a person.

The presented event-based processing scheme for UAS-
based surveillance includes two main systems, see Figure 2.
First, Intrusion Detector processes the event stream to detect
intruders represented as clusters of events close to corners
with globally consistent motion in the scenario. It outputs
the events corresponding to the detected clusters. Second,
Human detector analyzes the events of the detected clusters
to determine the probability that they correspond to a person.

Intrusion Detector is based on the detection and tracking

Fig. 3: Scheme of Human Detector.

system we proposed in [1]. It includes several modules that
process the event stream received from the event camera. On
board aerial robots, triggered events can be caused by moving
objects (potential intruders) or by static background with
robot motion. First, an event filtering module differentiates
between both cases relying on the event spatio-temporal
information to capture the regions that trigger more events
within a time frame. The events falling out of these regions
are assigned as originated by static background and are
filtered out. Next, an event-based corner detection method is
applied. We selected *eFast [9] due to its trade-off between
accuracy, performance, and computational efficiency. Next,
the detected corners are tracked to remove inconsistencies
and noise. Intruders create groups of events close to corners
with consistent motion. The corners are useful to detect
objects but do not have sufficient information. Clusters with
close events and corners are created using criteria based on
distance on the image plane. Finally, the obtained clusters
represented by their centroid are tracked. Clusters are joined
if they satisfy distance and event-density criteria. If a cluster
is not updated consistently, it is filtered out. For further
details of the asynchronous event processing algorithms
implemented within Intrusion Detector refer to our previous
works [1] and [33].

IV. DEEP LEARNING METHOD FOR EVENT-BASED
PEOPLE IDENTIFICATION

Intrusion Detector detects clusters with corners and events
caused by moving objects that have consistent motion in the
scene, and outputs the events belonging to these clusters.
However, these clusters can correspond to objects, animals,
or people. Human Detector, Figure 3, analyzes the events
belonging to each detected cluster and determines the prob-
ability that it corresponds to a person. The clusters detected
by Intrusion Detector represent Regions of Interest (ROI).
Every event falling in a ROI is asynchronously processed.
First, a CNN analyzes a spatio-temporal descriptor of each
event ec and estimates the probability pe that ec corresponds
to a person. Second, the probability pc that the cluster
corresponds to a person is computed using the probability
values from all its events.

Our event classification method is based on Convolutional
Neural Networks. CNNs are bioinspired regularized versions
of multilayer perceptrons in which the connectivity pattern
between neurons resembles the organization of the animal vi-
sual cortex. They are maybe the type of deep neural networks
most widely used in vision applications, see e.g. [13]–[15],
[34], [35], and also in event-based perception [22], [36]–
[38]. Using CNNs for event classification requires a dense
representation of events, which generally are temporally and



spatially sparse. Hence, the first stage is building a dense
representation of events.

Several event dense representations have been reported,
such as [39], which groups events by polarity based on a
distance metric, or [40], which maps an event count matrix
in Cartesian coordinates to log polar coordinates. Work
[39] is too computationally intensive to be considered in
an on-time event-by-event processing while [40] does not
take into account the temporal information of the events.
The presented work uses time surfaces, which are spatio-
temporal representations of the events that have been trig-
gered in a region in a specified time [19]. Time surfaces
can be computed very efficiently and can also be used
as local descriptors of the events, and hence suitable for
classification of single events as in our problem. We adopt
an approach similar to [16], which proposed the use of
all events occurrences in a pixel during a time interval.
However, instead of using a fixed time window, our time
surfaces, called Motion Independent Time Surfaces (MITS),
are generated accumulating the last n events (without taking
into account the event polarity) to keep a representation that
is not dependent of the robot/camera velocity. For instance,
with fast camera motions the resulting time surface contains
the events triggered in smaller time windows than with slow
camera motions.

First, the most recent events received are stored in buffer
B of size n, which is updated with each new event following
a FIFO (First In First Out) policy. Every incoming event ei
at coordinates (ui, vi) generates a MITS descriptor, which
is a square local window of size MxM pixels, centered at
(ui, vi) computed from the contributions of the events in B.
The value of the MITS descriptor for event ei at coordinate
(u, v) within the MITS window (u, v ∈ [1,M ]), is computed
as follows:

MITSei(u, v) =
∑

∀ej∈B(u,v)

e−
ti−tj
τ , (1)

where ej refers to any of the events in B that occurred at
coordinates (ui−M/2+u, vi−M/2+ v), ti and tj are the
timestamps of events ei and ej respectively, and τ is a time
constant that extends the contribution of past events in the
exponential decay kernel also used in [19].

MITS are represented as gray level images of size MxM :
their values are scaled between 0 and 255, and rounded
to the closest integer. Hence, the MITS for event ei with
timestamp ti is a gray level MxM image with the spatio-
temporal representation at time ti of the events triggered
at the coordinates of event ei. Events generated by noise
will produce MITS descriptors with low values (close to
0). Object contours will generate events with spatial and
temporal consistency and will produce MITS descriptors with
high values (close to 255). Besides, the MITS of event ei
reflects the shape of the object contour that generated the
event, and hence can be used to classify it. The filtering effect
of MITS and its capability to represent objects is illustrated
in the example shown in Figure 4.

MITS originated by noise or spurious effects will contain
little information of the neighborhood of the event, and can
lead to wrong event probability outputs. The same can occur
with events triggered on low event-density regions of the
scene, hence not consistent with the presence of intruders.
If the MITS of event ei satisfies

∑
u,vMITSei(u, v) < η,

ei is not processed. This efficient filter preserves the shape
of the objects in motion while removing isolated events
caused by noise, involving two main positive consequences.
First, it avoids processing events unlikely to be caused by
intruders, saving computational burden, and favouring its
onboard execution. Second, it improves the robustness of the
method against noise.

Several CNN architectures were tested to find a trade-
off between the number of parameters of the network and
the classification accuracy. The adopted CNN is shown in
Figure 5. The input is the MITS of the event represented
as a 21x21 matrix. All layers (except for the last one) use
batch normalization and dropout as regularization techniques,
and the Rectified Linear Unit (ReLU) activation function;
additionally, a max pooling operation was used before the
first and after the last hidden layer in order to reduce the
computations and to extract the sharpest features of the image
[41]. Finally, in the output layer a convolutional operation
is performed to obtain a 1x1 matrix, where the number of
channels equals the number of classes, two in our problem.
The output are the probabilities that the event analyzed
corresponds to classes human and non-human. Regarding
the number of channels, we first make a huge increase to
allow expressiveness and then we divide it by half in each
subsequent layer to reduce the network parameters. Thus, fast
computation is obtained while keeping good generalization
capabilities.

The CNN was trained using the Adam optimizer [41]
with a loss function based on Cross-entropy but weighted
to consider the different a priori probabilities of the classes
adopted. The loss function is:

L(x) = −
∑
i

wipi(x) log qi(x),

where pi(x) is the probability of sample x of belonging to
the class i, qi(x) is the probability prediction of the CNN,
and wi is a weight to take into account the different a priori
probability of belonging to class i and is computed as:

wi = αi(1− Pi),

where Pi is the a priori probability of class i and it is
estimated as the percentage of samples of class i in the
training dataset, and αi is a parameter that highlights the
class relevance. wi is useful to compensate the differences
in the representation of each class and, at the same time, it
allows to push the network prediction in a specific direction
to reduce (increase) the false negatives (positives), even in
case of using the same value of αi for both classes. An
analysis of the effect of αi is shown in Section V-A.

The classification of cluster c is computed by simply
averaging the probabilities of the events belonging to it, and



(a) Conventional image (b) Event image (c) Aggregation of events MITS

Fig. 4: Filtering effect and capability to preserve events at dense areas of MITS in examples from the experiments: a) visual
conventional from the DAVIS APS sensor; b) event image from the DAVIS DVS obtained by accumulating events generated
for 20ms; and c) aggregation of the local MITS operators obtained in the aforementioned time interval.

Fig. 5: Architecture of the adopted CNN for asynchronous
event classification.

then assigning to c the class with the highest value. This is
the final output of our system.

V. EXPERIMENTS

The proposed surveillance system was validated in sets of
experiments in highly complex and unstructured scenarios.
The UAS used was a DJI Flamewheel F550 hexarotor
equipped with a DAVIS 346 and a low-cost ODROID-
XU3 board for data logging, see Figure 6. The method was
evaluated on an INTEL® NUC6i7KYK2, which has been
used on board similar UAS platforms in intrusion monitoring
applications, see e.g. [1]. The DAVIS346 embeds a 346x260
dynamic vision sensor (DVS) that outputs timestamped and
polarized events and a 346x260 active pixel sensor (APS)
that is coincident with the DVS and outputs grayscale images
at 40 Hz. Although the proposed scheme only uses events,
the visual images are also logged in the experiments for
visualization. The described event-based scheme was imple-
mented in ROS Kinetic.

Two sets of experiments were conducted. The first one
validates and evaluates the Human Detector module, whereas
the second, the full event-based surveillance system using
UAS. The same CNN structure and training parameters
were used in both experiments. The CNN was trained for
a maximum of 40 epochs using an Adam optimizer with
learning rate of 0.001 and a weight decay of 10−6. The

Fig. 6: The experimental platform: DJI Flamewheel F550
hexarotor equipped with an iniVation DAVIS346 camera.

datasets used where divided in 80% for training and 20% for
validation with a stratification technique to preserve the class
distribution in each subset. We stop training using the Early
Stop strategy, i.e., if the validation loss is not improved after
a given number of epochs, 6 in our case. Besides, we save
the CNN model with lower loss value in the validation set for
all epochs, because theoretically it is the model with better
generalization performance. To obtain the testing set metrics,
new data were processed. Thus, instead of splitting in 3 parts
our dataset, we test the network performance using totally
new data. This might reduce our final metrics results, but it
will show more robustness and the possibility of application
to different unseen data.

The scheme performance was evaluated by Accuracy,
Precision, and Recall, defined as:

Accuracy =
TP + FP

T +N
, (2)

Precision =
TP

TP + FP
, (3)

Recall =
TP

TP + FN
. (4)

where T is TP+TN , N is TN+FN and TP , TN , FP , and
FN stand for the true positive, true negative, false positive,
and false negative rates, respectively. As stated in [42],



using solely Accuracy can be misleading when evaluating
algorithms that output a probability class value. Receiver
Operator Characteristic (ROC) curves are not well suited for
datasets with high differences on class distribution. However,
performance analysis based on Accuracy, Precision, and
Recall have been widely adopted in this kind of problems.

A. Event-based people detection evaluation

First, the capability of the Human Detector module to
asynchronously classify events corresponding to humans is
evaluated. In this experiment all the events from the event
stream are used as input to Human Detector, i.e. without
using module Intrusion Detector in the event processing
pipeline.

For this experiment, we recorded training datasets with the
APS and DVS output from the DAVIS 346 and moved the
camera to generate events with different polarities. Besides
humans, the scene contained objects such as ceiling lamps,
windows, walls, or pillars. Events were labeled with a semi-
supervised method that uses YOLO [14] fed with visual
images from the DAVIS APS to detect the objects in the
scene. The detections from YOLO were corrected by a
human who resized, deleted, and added bounding boxes (i.e.
RoIs) when required. Let Bt and Bt+1 be the ROIs detected
by YOLO as class c (class human in our problem) in two
consecutive visual images at times t and t+ 1. All received
events with timestamps between t and t+1 which coordinates
lie within Bt ∪ Bt+1 are labeled as human. The events
out of Bt ∪ Bt+1 are labeled as non-human. A total of
4 videos of 38 seconds mean duration where labelled using
this approach, producing a total of more than 5.200 visual
images and 5 ∗ 106 events. Additionally, in order to increase
the number of objects in motion in the training dataset, we
added data from from the Extreme Event Dataset (EED)1.
The EED dataset contain multiple moving objects (people
are not included) in challenging conditions.

The training datasets contain significantly more events
labelled as non-human than, as human. To compensate for
that difference, we adopted α = 10 to give more weight to
the classes with lower representation in the training datasets.
The parameters used in the computation of MITS where
buffer size of |B|=1000, MITS size of M=21, and time
constant of τ=10−3. The MITS filtering threshold was η=30,
which removed 22% of the input events as noise.

Figure 7 shows the evolution of the loss metric of the
CNN for the training and validation dataset. The MITS has
low discrimination capabilities but the object is classified
using groups of nearby events with the same classification.
Hence, although the training of the CNN did not reach
full convergence, the proposed system obtains good object
classification, as is shown below. When the network reached
the maximum number of epochs, the error curve was already
in a near-to-flat situation.

Table I shows the performance obtained in the train-
ing, validation, and testing datasets. Training and validation

1http://prg.cs.umd.edu/software

Fig. 7: Loss during CNN training as a function of the epochs,
for the training and validation dataset. Green dots correspond
to Early Stop checkpoints.

Dataset Accuracy(%) Recall(%) Precision(%) # of events
training 87 89 70 ≈ 3.2∗106
validation 86 88 69 ≈ 6.4∗105
testing 93 90 91 ≈ 2.4∗105

TABLE I: CNN performance in the training, validation, and
testing datasets.

datasets give similar metrics results. The good values ob-
tained for the testing dataset highlights the CNN ability to
detect people. The testing dataset contained ∼ 4∗104 events
corresponding to people and ∼ 2 ∗ 105 events corresponding
to other objects. The adopted value α=10 succeeded in
compensating for this difference.

Figure 8 shows the results of the trained CNN in several
examples taken in complex scenarios different for those
considered in the training: one example where the person
is moving in outdoors (Figure 8-a); one example where the
person is partially occluded (Figure 8-b); one example where
the person is on a bike and the event camera had over-
exposed lighting conditions (Figure 8-c). For visualization,
the conventional visual image from the DAVIS APS in each
example is shown on the left. In each example the figure
on the center shows the events classified as human in green
color. The figures on the right show the events classified as
non-human in green color. The events of different polarity
provided by the DAVIS DVS that were removed as noise
by the MITS filter, and hence were not processed by the
CNN, are shown in blue and red. Also, the regions with high
density of events classified to the same class were clustered
and marked with a bounding box, and the probability of the
event clusters were computed and marked in the images.

It can be seen in Figure 8 that the MITS filter removed
a significant percentage of the events caused by noise, im-
proving robustness and reducing computational effort. Also,
the proposed CNN provided remarkable classification results
for human and non-human even with adverse lighting
conditions. The probability values provided by the CNN were
also satisfactory. Only in some occasional cases the CNN
made wrong classifications, see e.g. Figure 8-c, where two
persons were detected and only one was present. Some of
these errors were originated by performing event clustering
after event classification by the CNN. They can be solved
in schemes where events are clustered before classification.
This is the case when the CNN is used within the UAS-



(a)

(b)
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Fig. 8: Results of the trained CNN in some examples: a) moving person, b) person partially occluded, and c) person on a
bike with overexposed lighting conditions. Each example shows: left) visual image, center) event image with events classified
as human in green, right) event image with events classified as non-human in green. The events classified as the same
class were clustered.

based surveillance scheme in Figure 2, i.e. the full proposed
surveillance system, which is evaluated in Section V-B.

In our method α compensates for the differences in the
representation of the different classes in the training datasets.
Table II analyzes the influence of α on the CNN performance
in terms of the rate of false positives, true negatives, false
negatives, and true positives. Using wi=1 provides FP=4.2%,
TN=95.8%, FN=29.9%, and TP=70.1%. Although FP and
TN are correct, FN and TP are unsuitable for the envisioned
classification performance. It can observed that increasing
the value of α reduces FP and TN, but increases FN and TP.
A trade-off must be made to reduce FP but still maintaining
a high value for TP. In our problem we adopted α=10 to
have a low FP with a high TP.

B. People detection for UAS surveillance

The full intruder detection scheme shown in Figure 2 is
evaluated: Intrusion Detector analyzes the events from the
event camera and detects clusters with consistent motion
in the scene, while Human Detector processes solely the
events assigned to a cluster detected by Intrusion Detector.
This modified the percentages of events belonging to human

α value FP(%) TN(%) FN(%) TP(%)
1 16 84 10.3 89.7
5 14.3 85.7 11.6 88.4
10 13.9 86.1 12 88
20 10 90 15.1 84.9

TABLE II: Influence of α values in CNN performance. The
adopted α=10 represents a trade-off between false positives
(FP) and true positives (TP).

and non-human in the classification problem, and the CNN
had to be re-trained with the same training datasets but with
a different value of α, i.e. α=5. Also, on board the UAS
the objects appear on the event images with lower size. To
take into account this effect the values of τ and η were
reduced. The adopted values were τ=10−2 and η=18. The
change in these parameters required the re-training of the
CNN. Table III shows the performance of the re-trained CNN
in the training and validation datasets. Although there is a
little reduction in Accuracy and Precision, there is also an
improvement in the Recall.

Next, the system performance was evaluated in complex
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Fig. 9: Results of the full proposed detector in some examples: (a) daylight intrusion monitoring in a building area, (b)
open field daylight intrusion monitoring, (c) nighttime intrusion monitoring. Each example shows: left) visual image, center)
event image with green bounding box for human, right) event image with white bounding box for non-human.

Dataset Accuracy(%) Recall(%) Precision(%)
training 86 90 68
validation 86 89 67

TABLE III: CNN performance with the training and valida-
tion datasets.

scenarios with different lighting conditions (including pitch
dark conditions) and included cases with only one human
intruder and also cases with one human intruder and several
moving objects in the scene.

The validation results are analysed differently depending
on the module of the proposed system. First, we obtain the
metrics for the Intrusion Detector module, where TP, FP, TN
and FN will be computed using as reference the number of
clusters detected by Intrusion Detector, and the number of
clusters that should be detected on the full video sequence.
Then, we obtain the Human Detector module metrics using
as reference only the clusters filtered by Intrusion Detector.
Table IV shows the performance of each component, on the
testing dataset. The Accuracy and Recall values of Intrusion
Detector means that around 27% of clusters are mistakenly

discarded. However, as it can be seen in the video2, this have
low impact on the full detection system. On the other hand,
Human Detector performance is remarkable, obtaining more
than 90% in all of the evaluated metrics. This highlights
the benefits of mixing a proper pre-processing of the event
stream with a deep learning classifier.

Accuracy(%) Recall(%) Precision(%)
Intrusion Detector 72 73.1 90.6
Human Detector 93.4 95.9 92.7

TABLE IV: Performance of the testing dataset.

Next, we provide visual validation of our full system on
different scenarios, including: one example with daylight
intrusion monitoring in a building area (Figure 9-a); one
example with daylight intrusion monitoring in an open field
(Figure 9-b); one example of nighttime intrusion monitoring
with several intruders (Figure 9-c). For visualization each
example includes: the visual image from the DAVIS APS;
event image where the clusters classified as human are
surrounded by a green bounding box; and event image where

2https://youtu.be/Fc4X1TFmnVc



the clusters classified as non-human are surrounded by a
white bounding box. The event images shown in red and blue
colors the events of both polarities.

Figure 9 evidences the generalization capabilities of the
proposed system. Human Detector is able to correct cases
where Intrusion Detector creates clusters for non-moving
objects, as in the example of Figure 9-b. In scenarios with
more than one moving object, Human Detector outputs a
correct classification, as in the example of Figure 9-c.

VI. CONCLUSIONS

This paper proposes an event-based processing scheme
for human intrusion detection using UAS. It includes two
main event-based processing systems. The first one detects
intrusions as clusters of events with consistent motion. The
second analyzes the events of the detected clusters using
DL techniques (specifically, Convolutional Neural Networks)
to compute the probability that the cluster corresponds to
a person. Our method has two main novelties: 1) it is
based purely on events, removing the need for other sensors
onboard the UAS; and 2) the events are processed event-by-
event fully exploiting the asynchronous capabilities of event
cameras. The proposed scheme has been implemented and
experimentally validated in challenging cluttered scenarios
with different lighting conditions and different types of
objects. Its performance validation shows values surpassing
90% in Precision and 70% in Accuracy and Recall, confirm-
ing its envisioned capabilities.

The use of event cameras for UAS-based surveillance
applications is very promising. Enlarging the training dataset
with a larger variety of scenarios and problems is recom-
mended to enhance the system robustness. Besides, decreas-
ing the computational cost to enable its implementation on
low-cost hardware is object of current research. This can be
achieved by re-designing the CNN structure and by further
experimentally confirming the influence of the parameters
involved in the MITS computation.
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