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A B S T R A C T   

In this work, the magnetic field dependence of the inverse magnetocaloric (MC) effect is analyzed using a mean 
field approach for describing antiferromagnetic to ferromagnetic magnetoelastic transitions. The model is able to 
describe both second- and first-order transition through the introduction of a magnetovolume energy term. The 
power law dependence for the field dependence of the isothermal magnetic entropy change (ΔSiso∝ΔHn), has an 
exponent n with an overshoot above 2 for first-order transitions, while it is not present for the second-order case. 
This is in excellent agreement with previous phenomenological observations, supporting the validity of recently 
proposed criterion to distinguish between first- and second-order thermomagnetic transitions. A main difference 
with respect to direct MC effect is that negative values of the exponent n are obtained at temperatures close to the 
transition. This is ascribed to the reduction of the inverse MC response due to the influence of the unavoidable 
ferromagnetic to paramagnetic transition at higher temperatures. The obtained features are qualitatively 
compared to those of GdBaCo2O6 (antiferromagnetic to ferromagnetic magnetoelastic transition), showing a 
good agreement between both experiments and the model. The obtained information is extrapolated to under-
stand the behavior of the exponent n for a Ni49Mn36In15 sample (magnetostructural transition).   

Introduction 

Solid-state magnetic refrigerators attract the attention of the 
research community since G. V. Brown explored this technology as a real 
alternative to the conventional systems at room temperature [1], being 
more energy efficient and less-contaminant than its gas compression- 
expansion based counterpart [2,3]. This technology is based on the 
magnetocaloric (MC) effect, which is defined as the temperature (or 
magnetic entropy) change produced by the application or removal of a 
magnetic field in adiabatic (or isothermal) conditions, ΔTad (or ΔSiso) 
[4]. However, this technology is not only limited to room temperature 
applications being cryogenic applications still on demand (e.g. molec-
ular coolers [5] or rare earth based alloys and oxides [6–10]). Since the 
device of G. V. Brown, the interest on room temperature MC materials 
has evolved [11]: from Gd [12], which undergoes a second-order tran-
sition, to different families of materials as GdSiGe [13], LaFeSi [14], 
MnFeP [15], Heusler [16] undergoing first-order transitions. Classifying 
MC materials according to the order its thermomagnetic transition [17], 
first-order materials show larger MC values than typical second-order 

materials, however the response of these materials is reduced under 
cycling conditions due to the irreversibility of the response (while for 
second-order ones the response is fully reversible) [18]. Therefore, the 
appropriate knowledge of the order of the transition has not only 
importance from the fundamental point of view, but it is also needed in 
order to know to which extent the response of the materials can be 
optimized for device applications. 

The studies based on the analysis of the field dependence of the MC 
effect allow to obtain relevant and useful information from thermo-
magnetic transitions. First, these studies were applied in materials un-
dergoing second-order ferromagnetic (FM) to paramagnetic (PM) 
transitions [19]. In this type of transitions, the studies allow to extract 
information of the critical behavior in the region close to the transition 
(e.g. critical exponents of the transition [20], a master curve for ΔSiso 
[21], the Curie temperature [22] and many others). In recent works, the 
field dependence of the MC effect in materials undergoing first-order 
transitions has been explored, leading to a quantitative criterion that 
allows identifying first-order transitions through the existence of an 
overshoot of n > 2 in the field dependence exponent (ΔSiso∝ΔHn), while 
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the overshoot is not observed for second-order ones [23]. This 
phenomenological criterion has been successfully applied to different 
families of MC materials of both direct and inverse type (i.e. those with 
ΔSiso < 0 or ΔSiso > 0 upon magnetization, respectively). For direct MC 
effect, the overshoot feature for fingerprinting first-order transitions can 
be validated in the frame of the Bean-Rodbell model [24], obtaining an 
excellent agreement between experiments (materials that undergo a FM 
to PM magnetoelastic transition such as LaFeSi) and the model 
[23,25,26]. However, for inverse MC effect the validity of the proposed 
criterion and the characteristics of the field dependence have only been 
studied experimentally [23,27,28]. In order to extend the applicability 
of this phenomenological criterion beyond experimentation, its validity 
has to be further supported by a model that describes the features of 
inverse MC materials. This inverse effect is caused by an increment of 
the magnetization with temperature and it is typical of antiferromag-
netic (AF) to FM transitions (e.g. in AF superconductors [29,30], FeRh 
[31,32] or Mn3GaC [33] alloys) or magnetostructural transitions (e.g. in 
Heusler alloys [34]). 

In this work, we extend the field dependences studies to the case of 
magnetoelastic AF to FM transitions using a mean-field approach 
(Landau type). Although these approximations have been previously 
employed to qualitative illustrate the magnetic behavior of different 
systems (Heusler or FeRh alloys), the first-order character due to mag-
netovolume effects was not reported [35,36] and also the field depen-
dence character of the isothermal magnetic entropy change was not 
considered. To extend the models used in the literature, a magneto-
volume term is phenomenologically proposed to obtain a volume 
expression according to the Callen-Callen theory [37]. Using this model, 
we are able to reproduce the experimentally observed features for the 
exponent n, showing the existence of the characteristic overshoot for 
first-order transitions and its absence for second-order ones. This sup-
ports the extension of the quantitative criterion to AF-FM phase transi-
tions and set the basis for the analysis of the exponent n in these 
materials. It is shown that the model shows negative values for the 
exponent n at temperatures close to the transition temperatures, due to 
the influence of the FM to PM transition produced at higher tempera-
tures (which is unavoidable) which leads to a decrease of the ΔSiso values 
associated to the AF to FM transition. These features (overshoot and 
negative values close to the transition) have been compared to those of 
experimental measurements for GdBaCo2O6 [38] undergoing a magne-
toelastic first-order AF to FM transition, finding a good agreement be-
tween experiments and modeling. Moreover, the analysis can also be 
used to understand the field dependence characteristics for Ni49M-
n36In15 [39] alloy that shows an inverse MC effect associated to a 
martensitic transition. 

Model of a magnetoelastic AF to FM transition 

For modeling a magnetic material, the Gibbs free energy (G) is 
expressed as the sum of the different energy terms associated to the 
different subsystems of the material, mainly magnetic and lattice ones 
[40]: 

G = GM +GV +GMV , (1)  

where GM is the magnetic contribution, GV the volume contribution and 
GMV takes into account the cross effect between both subsystems (i.e. the 
magnetovolume term). 

First, we are going to focus on the magnetic contribution. For an AF 
material, in the mean field approach, the total magnetization (M) of the 
system is expressed as the sum of two equal magnetic subsystems with 
opposite directions (denoted as 1 and 2). With this, GM is formulated as 
[41]: 

GM =
W ’

2
(
M2

1 +M2
2

)
+WM1M2 − (M1 +M2)H

− TNkB

(∫ |M1 |/MS

0
B− 1(x)dx+

∫ |M2 |/MS

0
B− 1(x)dx

)

,

(2)  

where M1 and M2 are the magnetization vector of the magnetic sub-
lattices 1 and 2, Ms the saturation magnetization of each of the sub-
lattices, W’ the exchange constant between the moments of the same 
sublattice, W the exchange constant between the moments of the 
different sublattices, H the magnetic field, T the temperature, N the 
number of magnetic moments in each of the sublattices, kB the Boltz-
mann constant and B− 1 the inverse Brillouin function. Eq. (2) can be 
simplified considering that both sublattices have the same magnetiza-
tion modulus (|M1

⃒
⃒ = |M2

⃒
⃒ = M’) and that the magnetic field is applied 

perpendicular to both sublattices (following the symmetry of the GM 
term [41]). Then, the magnetization vectors of the different subsystems 
can be expressed as a function of the angle between the magnetization 
and field directions (π/2-θ), being: 

M1 = M’cosθ i→+ M’sinθ j→, (3)  

M2 = − M’cosθ i→+ M’sinθ j.→ (4) 

According to this, the total magnetization is M = 2M’sinθ j
→

. Intro-
ducing Eqs. (3) and (4) in Eq. (2), then GM is expressed as [41]: 

GM = W’M’2
− WM’2cos2θ − 2M’sinθH − 2TNkB

∫ M’/MS

0
B− 1(x)dx, (5)  

which is a function of both M’ and θ. 
Second, for the volume contribution to the Gibbs free energy, we 

assume an elastic approach as for other models like Bean-Rodbell [24]: 

GV =
ω2

2K
+ pω, (6)  

where ω is the relative volume change, K is the compressibility of the 
material and p the pressure. In this study we are not going to consider 
pressure effects and then p = 0 (the consideration of this pressure just 
would lead to the addition of p in Eq. (10), being just a shift in the case of 
constant pressure that would not affect the results). 

Third, for the magnetovolume term, it can be proposed that is pro-
portional to relative volume change times the total magnetization to the 
square power: 

GMV = −
β
4

ωM2 = − βωM’2
(sinθ)2

, (7)  

being β the magnetovolume coupling constant. 
Finally, according to the previous magnetic (Eq. (5)), volume (Eq. 

(6)) and magnetovolume terms (Eq. (7)), the Gibbs free energy 
becomes: 

G = W ’M’2
− WM’2cos2θ − 2M’sinθH

− 2TNkB

∫ M’
MS

0
B− 1(x)dx+

ω2

2K
− βωM’2

(sinθ)2
,

(8)  

being function of M’, θ and ω. These magnitudes can be obtained 
through the minimization of G. Minimizing G with respect to ω :

∂G
∂ω =

ω
K
− βM’2

(sinθ)2
= 0, (9)  

leads to: 

ω = KβM’2
(sinθ)2

= KβM2 (10) 

This dependence is similar to the one of the Callen-Callen theory [37] 
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though extended to the AF state. To obtain the other 2 magnitudes, Eq. 
(10) is introduced in Eq. (8), being the latter one dependent on M’ and θ: 

G=W ’M’2
− WM’2cos2θ− 2M’sinθH− 2TNkB

∫ M’
MS

0
B− 1(x)dx−

1
2

Kβ2M’4
(sinθ)4

.

(11) 

To obtain the equilibrium condition of our model system, we have to 
minimize with respect θ and M’ variables, however the solution becomes 
quite complicated. As an approximation, we can assume that the M’ 

value is the one obtained from the Brillouin solution. Then, we just have 
to find the solution for θ, minimizing G with respect θ we get: 

∂G
∂θ

= 4WM’2cosθsinθ − 2M’Hcosθ − 2Kβ2M’4
(sinθ)3cosθ = 0, (12)  

which after rearrangement, is expressed as: 

2M’cosθ(2WM’sinθ − H − Kβ2M’3
(sinθ)3

) = 0. (13) 

It is worth noting that, up to the moment, the material is in the AF 
state in the whole temperature range and the AF to FM transition is just 
caused by the application of a magnetic field. To introduce the AF to FM 
transition even in the absence of magnetic fields, a phenomenological 
equation for the exchange constant between the different subsystems is 
assumed: 

W = W0

(
T0 − T

T0

)

, (14)  

being W0 a constant and T0 the AF to FM transition temperature at 
0 field. This Eq. (14) is introduced in Eq. (13), having an equation to 
describe AF to FM magnetoelastic transitions. 

2M’cosθ(2W0

(
T0 − T

T0

)

M’sinθ − H − Kβ2M’3
(sinθ)3

) = 0. (15) 

From Eq. (15), the magnetization of the material can be obtained in 
both FM and AF states. It can be observed that θ = π/2 corresponds to 
the FM state, which leads to the total magnetization M = 2M’ j

→
for 

fields above the critical field (HC): 

HC = 2WM’ − Kβ2M’3
. (16) 

In the case of the AF state, which is obtained for fields below HC, the 
solution for θ (0 ≤ θ < π/2) is numerically obtained from: 

2WM’sinθ − Kβ2M’3
(sinθ)3

= H. (17) 

In this way we obtain the temperature and field dependence of 
magnetization and ΔSiso produced by the application of a magnetic field 
is calculated as: 

ΔSiso(0→H) = μ0

∫H

0

(
∂M
∂T

)

H’
dH’. (18) 

Alternatively, ΔSiso could also be derived from G, but the use of Eq. 
(18) is more appropriate for our purposes. For studying the field 
dependence of ΔSiso, a power law dependence (ΔSiso∝ΔHn) is typically 
assumed, where the exponent n is calculated according to: 

n(T ,ΔH) =
dln(|ΔSiso|)

dln(ΔH)
. (19)  

Experimental 

In order to check the features of the model on real materials, the field 
dependence of the MC effect of two types of samples were studied: a 
GdBaCo2O6 cobaltite oxide (GBCO) undergoing a first-order magne-
toelastic AF to FM transition and a Ni49Mn36In15 (NiMnIn) Heusler alloy 
that undergoes a magnetostructural transition from a low magnetization 

FM state to other FM state with higher magnetization (which also pre-
sent an inverse MC effect). ΔSiso and exponent n have been calculated 
according to Eqs. (18) and (19) from magnetization measurements 
using discontinuous protocols [42] performed in a Lakeshore 7407 
vibrating sample magnetometer with a maximum applied field of 1.5 T 
(cobaltite sample) and in a Quantum Design Physical Property Mea-
surement System (PPMS) with a vibrating sample magnetometer option 
with a maximum applied field of 90 T (Heusler sample). Further details 
of the sample synthesis and characterization can be found in [28] and 
[27]. 

Results and discussion 

Numerical calculations 

Our objective is to understand the main features associated to the AF 
to FM transition, without the fitting to a determined material. For the 
numerical analysis we used the following parameters: J = 1.5, g = 2, 
MS = 0.5⋅106 A/m ; density = 10000 kg/m3, T0 = 300 K; K =

10− 14 N/m2. These parameters have been chosen in order to reproduce a 
material with significant MC properties at room temperature with con-
ventional bulk magnetization values. In addition, W0 = 150 and TC =

600 K are also selected although these parameters will be further 
modified in order to explore its role on the properties. 

First, we will show the type of transition that we can reproduce with 
the used model. Taking into account that the total magnetization is M =

2M’sinθ, Eq. (17) can be written as: 

H
M

= W −
Kβ2

8
M2. (19) 

Applying the Banerjee’s criterion, for which negative slopes in the H/

M vs M2 representation implies a first-order transition (while the 
opposite indicated second-order type), we can infer that as long as the β 
parameters differs from zero, the order of the transition becomes of first- 
order. 

The effect of the magnetovolume β parameter on both magnetization 
and the relative volume change can be observed in Fig. 1(a) and (b), 

Fig. 1. Temperature dependence of the magnetization (a) and relative volume 
change (b) close to the transition temperature for different values of the mag-
netovolume coupling parameter β. 
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respectively, which shows the temperature dependence of both magni-
tudes for low magnetic field. It can be observed how the behavior of the 
transition is well described within the model used, with an increase in 
magnetization and relative volume as temperature increases above a 
certain transition temperature (Tt). This transition temperature is shif-
ted to lower temperatures as β parameter increases. This is the opposite 
behavior already observed for the Bean-Rodbell model, for which the 
magnetovolume coupling parameter trends to shift the transition to 
higher temperatures. The transition temperature is the same for both 
magnetization and relative volume change. Moreover, it can be 
observed that the discontinuous change occurring at the transition in-
creases with increasing β, being more significant for ω than for M. 
Experimentally, for magnetoelastic transitions the volume change 
around 1–2%, range that can be easily covered with the model presented 
here. 

For the following description we have chosen β = 40 as an example 
to illustrate the behavior of the first-order transition described with the 
model (other selection, as 20 or 80, would not alter the conclusions). The 
temperature dependence of both magnetization and relative volume 
change in the temperature range of the transition range are illustrated in 
Fig. 2(a) and (b), respectively. It can be observed how the transition 
temperature is linearly shifted to lower temperatures as the magnetic 
field increases (at a rate of 1.75 K/T for the parameters used). This rate 
can be tuned by the modification of W0. This behavior is in agreement 
with experimental results, in which the phase with higher magnetization 
(which correspond with higher volume one in the model) is stabilized 
with increasing magnetic field. The origin of this behavior is ascribed to 
the assumption made in Eq. (15), which implies a close to linear 
behavior for the critical field with the temperature, as shown in Fig. 2 
(c). The effect of the β parameter does not significantly modify the linear 
field dependence of the transition temperatures but just shift the tran-
sition temperatures to lower temperatures (see Eq. (14)). This relation 
can be tuned by assuming a different phenomenological W, however our 
approximation qualitatively reproduces the observed experimental 

behavior. 
Using the modeled magnetization data, ΔSiso is calculated according 

to Eq. (18). Fig. 3(a) shows the temperature dependence of ΔSiso at a 
magnetic field change of 2 T for different values of β. It can be observed 
that the AF to FM transition leads to an inverse MC effect (positive 
values of the ΔSiso when applying a magnetic field) for which the 
maximum value increases with increasing β. After the maximum of ΔSiso 
is reached, the values abruptly decrease to negative values associated to 
a direct MC effect due to the FM to PM transition. For temperatures 
lower than the peak, a decrease down to 0 is observed, which became 
more abrupt as β increases. The width of the transition is slightly 
reduced with increasing β; however, larger values of the refrigerant 
capacity can be obtained as β increases due to the larger value of the 
peak. It should be noted that the ΔSiso values are slightly higher than 
experimentally reported (as also happens in the Bean-Rodbell model); 
this can be ascribed to the artificially abrupt change produced at the 
transition within this model. This high value can be lowered, resembling 
experimental results, by considering a transition temperature distribu-
tion and a kinetic process for the AF to FM transition, as these two 
characteristics are inherent to real materials. 

In order to focus on the field dependence characteristics of the MC 
responses associated to the AF to FM transition, we calculated the 
exponent n according to Eq. (19). It is worth noting that this magnitude 
is, in general, a function of temperature and magnetic field. Fig. 3(b) 
shows the temperature dependence of the exponent n at a magnetic field 
change of 2 T for different values of β. To describe the different features, 
we can distinguish different temperature ranges. At temperatures above 
the transition, the material is in the FM state for any applied magnetic 
field change and, therefore, the exponent n corresponds to that of pure 

Fig. 2. Temperature dependence of the magnetization (a), relative volume 
change (b) and critical magnetic field (c) using β = 40 for different mag-
netic field. 

Fig. 3. Temperature dependence of ΔSiso (a) and n (b) for different values of the 
magnetovolume coupling parameter β. (c) Maximum value of the overshoot of 
exponent n above 2 as a function of the magnetovolume coupling parameter β. 
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FM materials (n = 1). At temperatures close but below the transition at 
0 T, a plateau of negative values rather close to 0 (≈ − 0.05) can be 
observed. At lower temperatures, the values of n rapidly increase up to 
values larger than 2 in the case of β = 0, while for β = 0 n does not reach 
values above 2. This agrees with the quantitative criterion recently 
proposed [23], indicating the existence of the overshoot for first-order 
transitions, while it is not present for second-order ones. This feature 
is illustrated in Fig. 3(c) for which the maximum values of n − 2 are 
represented as a function of β. It can be clearly observed how the 
maximum values increase as β increases beingn = 2 just for β = 0. For 
temperatures lower than the overshoot, n values tend to the limit of 2, 
which corresponds to the pure AF state. 

To understand the values of exponent n in the region close to the 
transition, we illustrate in Fig. 4 the temperature dependence of ΔSiso 
and n for different magnetic field changes keeping β = 40. For ΔSiso, it 
can be observed that the magnetic field trends to extend the magneto-
caloric peak to lower temperatures. This is ascribed to the evolution of 
the transition temperature with the magnetic field. However, this is not 
the only cause for the overshoot as it was mentioned that the existence of 
such shift is not affected by β (for second-order transitions there also 
exists a shift of the transition temperature). Together with this, a large 
evolution of the ΔSiso values at certain temperature with small variation 
of the magnetic field change should exist. This happens at the low 
temperature tail of ΔSiso and is in agreement with the position of the 
overshoot in Fig. 4(b), which follows the position of the low temperature 
tail of the ΔSiso curves, being shifted to lower temperatures as the 
magnetic field increases. The maximum values of n follow a non- 
monotonic trend with the magnetic field: increase at low magnetic 
fields up to a maximum value obtained at moderate fields, followed by a 
decrease from that maximum values. Ideally, for high enough magnetic 
fields the first-order characteristics are attenuated, behaving the mate-
rial as a second-order one and then the overshoot would not be 
observed. It should be mentioned that the scattered evolution of the 
maximum values with magnetic field is ascribed to the discretization of 
the temperature axis (which is chosen similar to those of fine experi-
mental measurements) and the narrow width of the overshoot curve. 
With respect to the plateau of n with negative values close to 0, it can be 
ascribed to the saturation of ΔSiso after the first-order transition is pro-
duced. The temperature range of the plateau is the same for which the 

ΔSiso response remains almost invariant with magnetic field. The nega-
tive values are ascribed to the direct MC effect of the FM to PM transition 
which is produced after the AF to FM transition and reduces the inverse 
response associated to the mentioned transition (opposite ΔSiso signs). 

The behavior of the exponent n can be also studied as a function of 
the magnetic field change. Fig. 5(a) and (b) illustrate the magnetic field 
dependence of the ΔSiso and n, respectively, using β = 40 for different 
temperatures below the transition temperature at 0 field. For ΔSiso, it can 
be observed that the magnetic field produces an evolution from small 
values that correspond to the AF state towards high values which are 
ascribed to the AF to FM transition. The magnetic field at which the 
abrupt increase of ΔSiso takes place is dependent on temperature, being 
the critical field larger as the temperature is lower (in agreement with 
the critical behavior shown in Fig. 2(c)). After that, the values slightly 
decrease when the material is in the FM state due to the direct MC effect 
associated to this phase. With respect to exponent n and its behavior in 
these different regions, when the material is in the pure AF state and 
ΔSiso values are small, n is equal to 2 (increasing slightly as the tem-
perature gets closer to the transition). After that, there is an abrupt in-
crease of n, which corresponds with the abrupt increment of ΔSiso. 
During the whole magnetic field range in which ΔSiso rapidly increases, 
the value of n remains above 2, being the previously mentioned over-
shoot produced by first-order transitions. When the material is in the FM 
state, the n decreases down to negative values (≅− 0.05) due to the small 
decrease of the ΔSiso values in that temperature range. Finally, it can be 
noted that the overshoot values decrease as the transition temperature 
becomes smaller, as previously observed in the temperature dependence 
analysis. 

In addition to the β parameter, another important parameter for the 
model is W0. This parameter is related to the temperature dependence of 
the AF to FM transition and strongly affects the critical field, HC, values 
(see Eq. (14)). Fig. 6(a) and (b) shows the temperature dependence of 
ΔSiso and n for 2 T, respectively, and Fig. 6(c) shows HC for different 
values of W0 (75, 150, 300 and 450) keeping β = 40. The maximum 
values of ΔSiso increase as W0 increases, but this is accompanied by a 
reduction of the width of the peak (changing the shape from squarish to 
caret-like). With respect to n, the maximum values of the overshoot 

Fig. 4. Temperature dependence of the isothermal magnetic entropy change 
(a) and the exponent n (b) using β = 40 for different magnetic field changes. 

Fig. 5. Field dependence of the isothermal magnetic entropy change (a) and 
the exponent n (b) for different temperatures close to the transition using β =

40. 
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become smaller as W0 increases. Moreover, the plateau region after the 
transition (n < 0) become narrower as W0 is increased. With respect to 
HC, it is observed that W0 is related with the slope and the intercept of 
HC vs T, being both variables larger as W0 increases. It is evident that W0 

strongly modifies ∂Tt
∂H magnitude, which has a relevant role on the MC 

properties. From these it can be concluded that, as ∂Tt
∂H becomes higher, 

ΔSiso becomes broader but also smaller. Moreover, the square-like shape 
leads to large overshoot values, as the ΔSiso variation is larger for tem-
peratures below the transition. At this point, it is worth mentioning that 
though the overshoot values depend on ∂Tt

∂H, the values remain above two 
in all the cases corresponding to a first order phase transition. The 
overshoot feature is only dependent on the β parameter. 

The effect of the unavoidable FM to PM transition after the AF to FM 
one on the different properties is analyzed in Fig. 7 for different values of 
the Curie temperature of the FM state (the AF to FM transition tem-
perature is kept constant at 300 K). It can be observed that the magne-
tization jump at the AF to FM transition is reduced as the Curie 
temperature becomes closer; moreover, the AF-FM transition tempera-
ture increases with decreasing Tc. This last feature is ascribed to a slower 
evolution of the critical field as the FM magnetization at the transition 
decreases (as the high temperature phase is less magnetic, the applied 
field necessary to stabilize the FM state has to be larger). The reduction 
in the magnetization change at the AF-FM transition leads to a reduction 
of ΔSiso values. In the case of the exponent n, the effect of the Curie 
temperature of the FM phase consists in a reduction of the overshoot 
values as TC becomes closer to the AF to FM transition. However, the 
overshoot is clearly present for all the first order phase transition cases. 

Experimental results 

Although the existence of the overshoot was already observed in 
experimental data, we will use some of them to illustrate the goodness of 
the model. First, we discuss the case of a GdBaCo2O6 sample. The first- 
order character in this material can be observed from its Arrott plot, for 
which negative values are observed for temperatures close to the tran-
sition. According to Banerjeés criterion, these negative slopes indicate 
the first-order character of the transition. This material transits from an 
AF state to a FM one with increasing temperature or magnetic field, 
without changing the crystal structure (undergoing a magnetoelastic 
transition, the same as in the model presented here). Fig. 8 shows the 
temperature and field dependence for ΔSiso (panels (a) and (c), 
respectively) and exponent n (panels (b) and (d), respectively) for the 
GdBaCo2O6 sample. Both inverse and direct MC responses can be 
observed, associated to the AF to FM and FM to PM transitions, 
respectively. Focusing on the inverse effect, ΔSiso increases and shifts to 
lower temperatures as the magnetic field increases. For the exponent n, 
the overshoot above 2 can be observed for all the studied fields, 
increasing as the field increases. This feature, together with the shift of 
the overshoot to lower temperatures with increasing magnetic field, are 
in excellent agreement with the model. The values of the overshoot are 
not so high as for other samples (the next studied sample) indicating a 
small β or large W0. Moreover, another feature that is in agreement with 
the new predictions of the model is the existence of negative values of n 
close to the transition temperature. The main difference is observed in 
the value of n in the AF state (around 1.5), which is slightly lower than 
the expected value of 2. At this point, it should be noted that the 
magnetization in the model was obtained for perpendicular fields along 
the easy axis and the effect of parallel fields is not included in this study 
(and can affect the exponent n in the AF state). Being a polycrystalline 

Fig. 6. Temperature dependence of the isothermal magnetic entropy change 
(a), the exponent n (b) and the critical field (c) for different values of the W0 

parameter using β = 40. 

Fig. 7. Temperature dependence of the magnetization (a), isothermal magnetic 
entropy change (b) and exponent n (c) using β = 40 for different values of the 
Curie temperature of the high temperature FM to PM transition. 
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sample, the direction of the field with respect to the crystal structure 
cannot be controlled. Studying the field dependence of both ΔSiso and n 
magnitudes, similar information can be obtained. For ΔSiso at temper-
atures below the transition temperature (at 0 field) the values increases 
as the magnetic field increases, but without reaching saturation (the 
maximum applied field of 1.5 T is not enough to complete the trans-
formation at that temperatures). For the exponent n, the overshoot is 
again observed, being shifted to higher magnetic fields as the temper-
ature decreases, in agreement with the model. As the sample does not 
reach a fully FM state (i.e. the transition is not complete), the negative 
values after the transition are not observed for those temperatures (see 
Fig. 8(d) and compare to Fig. 5(b)). According to this, we can conclude 
that the main field dependent features of the material can be explained 
in the frame of the model used. Finally, it should be noted that an extra 
spike is observed at around 245 K (green highlighted in Fig. 8(a) and 
(b)). That feature it is associated to the sign change of ΔSiso (and pre-
viously observed in inverse MC materials [27]) and should be neglected 
from the analysis as it is due to a numerical effect of Eq.(19). 

We can also compare the results of the model with those of other type 
of transition, still with an associated inverse MC effect, to see similarities 
and differences. For that, we selected a Ni49Mn36In15 Heusler alloy. This 
alloy undergoes a martensitic transformation (magnetostructural) from 
a low magnetization martensitic phase to a high magnetization austen-
itic one (FM to FM transition). Fig. 9 shows the temperature and field 
dependence for ΔSiso (panels (a) and (c), respectively) and exponent n 
(panels (b) and (d), respectively) for the Ni49Mn36In15 sample. For ΔSiso 
a step-like shape for the temperature dependence can be observed, being 
quite similar to those modeled in Fig. 4 and indicating low values for W0 

parameter (high values of ∂Tt
∂H). The main difference is the existence of 

negative values of ΔSiso well below the transition, which are ascribed to 
the FM character of the martensitic phase. For the exponent n (in which 

only one field is shown to enhance the visibility of the figure), we can 
clearly distinguish the overshoot characteristic and the existence of a 
plateau of negative values at higher temperatures than those of the 
overshoot associated to the martensitic transition, in agreement to the 
results of the model. The only difference is the value of n well below the 
transition which is the corresponding to the FM state (instead of the AF 
one). With respect to the previous sample, much higher values for the 
overshoot are obtained. This fact indicates a stronger first-order char-
acter in NiMnIn than in GBCO sample (the variation in ΔSiso with the 
magnetic field is much more pronounced in the former one, Fig. 9(c) vs. 
Fig. 8(c)). When analyzing the magnetic field dependence of both ΔSiso 
and n, again quite similar characteristics to those of the model are 
observed. This time we can see from ΔSiso that reaching 9 T is enough 
field to complete the martensitic transformation at the studied temper-
atures. According to this, it is possible to observe the drop down to 
negative values of the exponent n at fields above the critical field. This 
fact, as in the model, is ascribed to the contribution of the FM state after 
the transition, that has a direct MC response associated to the FM-PM 
transition that reduces the values of n. Another relevant feature of the 
martensitic transition at around 220 K (Fig. 9(b)), as it was previously 
observed in the GBCO sample, can be ascribed to a sign change of ΔSiso 
when the transition starts; this leads to a discontinuity in n from negative 
to positive values and appears before the overshoot. This discontinuity is 
more pronounced in the case of NiMnIn sample. Analyzing the field 
dependence of the exponent n it is evidenced that the discontinuity 
produces high negative values before the overshoot (Fig. 9(d)). This 
feature is due to the significant contribution of the low temperature 
(initial) FM phase which produces the change of sign in ΔSiso when the 
transformation starts (Fig. 9(c)). For the GBCO sample there is no sign 
change from the AF to FM transformation (Fig. 8(c)) and then no 
negative values for n have been observed before the overshoot (Fig. 8 

Fig. 8. Temperature dependence of the isothermal magnetic entropy change (a) and the exponent n (b) together with the field dependence of the isothermal 
magnetic entropy change (c) and the exponent n (d) for the GBCO sample. 
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(d)). It this GBCO sample, the negative values should appear after the 
overshoot as they are linked to the sign change that this time it is pro-
duced by the high temperature (transformed) FM phase (which appears 
around 245 K, after the overshot, in Fig. 8(b)). With this, we reinforce 
that it is important in experimental data to careful analyze the points 
where a transition from direct to inverse (or vice versa) response ap-
pears, not to misattribute them to an overshoot. 

Conclusions 

The characteristics of the magnetic field dependence of the 
isothermal magnetic entropy change ascribed to AF-FM transitions have 
been theoretically analyzed by means of a mean field approach which 
incorporates magnetovolume effects. This approach allows us to 
describe either second- or first-order AF to FM transitions by the 
modification the magnetovolume coupling parameter (β). In agreement 
with previous experimental results, the existence of an overshoot above 
the value of 2 (the one corresponding to a pure AF state) for the expo-
nent n for first-order AF-FM transitions is confirmed theoretically, while 
no overshoot is observed for second-order ones (no magnetovolume 
effect, β = 0). This overshoot is shown to be more prominent as the β 
parameter increases. For a non-null β parameter, the overshoot is shifted 
to lower temperatures as the magnetic field increases, and it is shown to 
be ascribed to the evolution of the transition temperature with the 
magnetic field and to the abrupt jump in ΔSiso magnitude at low tem-
peratures for first-order materials. Once the AF to FM transition is pro-
duced, the direct MC effect associated to the FM phase leads to a slight 
decrease of the ΔSiso values which produces negative values for the 
exponent n, never described previously in the literature but present in 
the experimental data. 

These features have been compared to those of experimental data of 
GdBaCo2O6, with a good agreement. The analysis can also be extended 

to Ni49Mn36In15 which undergoes a magnetostructural transition with 
associated inverse MC effect. 
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