arXiv:1805.02439v1 [math.AP] 7 May 2018

Convergence to equilibrium of global weak solutions for a

()-tensor problem related to liquid crystals

*

Blanca Climent-Ezquerra and Francisco Guillén-Gonzalez

Abstract

We study a Q-tensor problem modeling the dynamic of nematic liquid crystals in 3D
domains. The system consists of the Navier-Stokes equations, with an extra stress tensor
depending on the elastic forces of the liquid crystal, coupled with an Allen-Cahn system fo
r the @-tensor variable. This problem has a dissipative in time free-energy which leads, in
particular, to prove the existence of global in time weak solutions. We analyze the large-
time behavior of the weak solutions. By using a Lojasiewicz-Simon’s result, we prove the

convergence as time goes to infinity of the whole trajectory to a single equilibrium.

Keywords: Liquid crystals; Allen-Cahn-Navier-Stokes system; Large-time behavior for dis-

sipative systems.

1 Introduction

We deal with a generic @-tensor model, following the theory of Landau-De Gennes, in a
smooth and bounded domain Q C R?, for the unknowns (u,p, Q) : (0,T)xQ — R3xRxR3*3,

satisfying the momentum and incompressibility equations
Diu—vAu+Vp=V - -7(Q)+V-0(H,Q)

V-u=0
and the @-tensor system:
D;Q - S(Vu, Q) = —vH(Q) (2)

in Qx (0,7).
In (@) and @), D; = 0 + (u- V) denotes the material time derivative, v > 0 is the

viscosity coefficient and v > 0 is a material-dependent elastic constant. Moreover,

S(Vu,Q) = VuQ' - Q' Vau (3)
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is the so-called stretching term.
In () the tensors 7 = 7(Q) € R3*3 and 0 = o(H, Q) € R3*3 are defined by

7;(Q) = —€(0;Q:0;Q) = —€0;Qri 0;Q,
U(HaQ) = HQ_QH7

where & > 0 and the tensor H = H(Q) is related to the variational derivative in L?() of a
free energy functional E(Q), in fact

BQ =5IVQP+FQ.  £Q= [ BQdn  H= "

Here, we denote A : B = A;; B;; the scalar product of matrices (using the Einstein

(4)

summation convention over repeated indices) and the potential function F(Q) is defined by

F(Q)=510P - 3 (@*: Q)+ 5 QI )

with a, b € R and ¢ > 0. We denote by |Q| = (Q : Q)*/? the matrix euclidean norm. Then,

from () and (B)
H=H(@Q)=-cAQ+ f(Q) 6)

where oF ;
f(Q)= %(Q) =aQ -5 (Q°+QQ"+Q'Q) +¢|Q” Q.
Finally, the system is completed with the following initial and boundary conditions over
I'=00Q:
ult=0 = Uo, Qli=0o = Qo in Q, (7)
ulr =0, OnQlr =0 1in (0,7), (8)

where n denotes the normal outwards vector on the boundary T'.
The system ()-8 is a simplified version of the following Q-tensor model studied by
Paicu & Zarnescu in [12] and Abels et al. in [1]:

Diu—vAu+Vp=V-7(Q)+ V- -0(Hp:, Q) inQx(0,T),
V-u=0 inQx(0,7), 9)

DtQ_(WQ_QW):_’Ysz(Q) inQX(OvT)v

complemented with the initial and boundary conditions ([@)-(8), where W is the antisym-
metric part of Vu, that is W:= (Vu+ (Vu)')/2, and
tr(Q?
1) = 280 +a@ -0 (@2 - " 1) 4 clope
The model ([{)-(8) was studied in [9], obtaining also the modifications needed to assure
symmetry and traceless of Q). In fact, it suffices to replace Vu by the antisymmetric part

W = (Vu+ Vu')/2 in the stretching term S(Vu, Q) defined in @) and the H(Q) function
given in (@) by H(Q) + a(Q)I where a(Q) is an appropriate scalar function [J].



These properties of symmetry and traceless are assumed (but not rigorously justified)
in [I2] and [I] for the model (@)). Since the model (@) is a particular case of the general
model studied in [9], then any weak solution (u,Q) of (@) satisfies that Q(¢) is a traceless
and symmetric tensor.

By simplicity, in this paper we consider the model ()-8, because it retains the essential
difficulties of a Q-tensor model like [@)). In fact, the results obtained here can be extended
to the Q-tensor model ().

The large-time behavior of some models for Nematic liquid crystals with unknown vector
director are studied in [I5], [§] (without stretching terms) and in [IT], [7], [I4] (with stretching
terms) and in [I3] (where different results are deduced depending on considering or not the
stretching terms).

On the other hand, the large-time behavior is also analyzed for others related models,
for example in [0] for a Cahn-Hilliard-Navier-Stokes system in 2D domains, in [5] for a
chemotaxis model, and in [4] and [3], where a Cahn-Hilliard-Navier-Stokes vesicle model and
a smectic-A liquid crystals model are studied respectively.

In [I0], some results of local in time regularity and uniqueness of the model ([)-(8) are
proved.

Sections 2 and 3 describe the model and the weak solution concept (more details can be
seen in [9]). The novelty of this paper is in the last two sections. In Section ] two precise
energy inequalities are proved via Galerkin Method, a time-integral version for all time ¢
and a time-differential version for almost every time. These inequalities will be essential
later and they have neither been proved in [13] nor in [2]. Section[Hlis devoted to the study
of convergence at infinite time for global weak solutions. In fact, we prove first that the
w-limit set for weak solutions consists of critical points of the free-energy. Finally, by using
a Lojasiewicz-Simon’s result, we demonstrate the convergence of the whole trajectory to a

single equilibrium as time goes to infinity.

Notations

The notation can be abridged. We set LP = LP(Q)), p > 1, H = H*(Q), etc. If X = X ()
is a space of functions defined in the open set Q, we denote by LP(0,7; X) the Banach
space LP(0,T; X(Q)). Also, boldface letters will be used for vectorial spaces, for instance
L? = L?(Q)", and the type L? = L2(Q)V*¥ for the tensors.

We set V the space formed by all fields u € C5°(Q)" satisfying Vu = 0. We denote H
(respectively V') the closure of V in L? (respectively H'). H and V are Hilbert spaces for

the norms | - |2 and || - ||1, respectively. Furthermore,
H={uecl® Vu=0,u-n=00n00}, V={ucH;Vu=0, u=0ondQ}.

From now on, C' > 0 will denote different constants, depending only on data of the

problem.



2 The Landau-De Gennes theory

Liquid crystals can be seen as an intermediate phase of matter between crystalline solids and
isotropic fluids. Nematic liquid crystals consist of molecules with, for instance, rod-like shape
whose center of mass is isotropically distributed and whose direction is anisotropic, almost
constant on average over small regions. In the Landau-De Gennes theory, the symmetric and
traceless matrix Q € R3*3, known as the Q-tensor order parameter, measures the deviation
of the second moment tensor from its isotropic value. A nematic liquid crystal is said to be
isotropic when @ = 0, uniaxial when the Q-tensor has two equal non-zero eigenvalues and

can be written in the special form:
1
Q:s<n®n—§ﬂ> with s € R\{0}, n € §?

and biaxial when @ has three different eigenvalues and can be represented as follows:

1 1
Q=s <n®n—§ﬂ>+r<m®m—§]l)

where s,7 € R; n,m € 2.

The definition of the Q-tensor is related to the second moment of a probability measure
p(z,-) : L(S?) — [0,1] for each = € Q, being £(S?) the family of Lebesgue measurable sets
on the unit sphere. For any A C S?, u(x, A) is the probability that the molecules with centre
of mass in a very small neighborhood of the point = € €2 are pointing in a direction contained
in A. This probability must satisfy p(x, A) = p(x, —A) in order to reproduce the so-called
“head-to-tail” symmetry. As a consequence, the first moment of the probability measure

vanishes, that is
W)@ = [ pidutap) o

Then, the main information on u comes from the second moment tensor

It is easy to see that M (u) = M(u)t and tr(M) = 1. If the orientation of the molecules
is equally distributed, then the distribution is isotropic and p = pg, duo(p) = ﬁ dA and
M(po) = % I. The deviation of the second moment tensor from its isotropic value is therefore

measured as: )
Q = M(p) — M(po) =/§2 <p®p— 511) dp(p).

From this equality, @ is symmetric and traceless.

3 Weak solutions
Definition 1 (Weak solution) It will be said that (u,Q) is a weak solution in (0,+00) of
problem ([)-(8) if:

u € L>(0,+o00; H) N L2(0, +00; V),

10
Q € L®(0, +00; HY(Q)) N L2(0; T; H2(Q)) VT > 0, "
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and satisfies the variational formulation (I1]) and [I3) (defined below), the initial conditions
(7)) and the boundary conditions (J).

Note that the regularity imposed in ([I0) is satisfied up to infinite time excepting the
H?(Q)-regularity for Q.

In [9] the following result is proved by means of a Galerkin approximation.

Theorem 2 (Existence of weak solutions) If (uy, Qo) € HxH! (), there exists a weak
solution (u, Q) of system [@)-({8) in (0, +00).
Variational formulation

Taking into account that 0,F(Q) = F'(Q) : 9;Q = f(Q) : 0;Q, the term of the symmetric

tensor 7(Q) can be rewritten as:
(V-r(@): = HQ): 5:Q - 0: (F(Q) + 5 IVQP) .

where |[VQ|? = 9;Q : 9;Q. Then, testing () by any % : Q — R? with u/sq =0and V-u =0

in Q, we arrive at the following variational formulation of (I):
(Dyu, u) +v(Vu, Va) = ((u- V)Q, H) + (0(H, Q), V) = 0. (11)

On the other hand, testing (2 by any H and the system —e AQ + f(Q) = H by any @,

we arrive at the variational formulation:

(0:Q. H) + (v V)Q, H) — (S(Vu,Q), H) +~ (H,H) = 0, )
e(VQ,VQ) + (f(Q).Q) — (H,Q) =0,

for any H, Q :  — R3*3. From (IZ), one has in particular:
(2Q.Q) + ((u- V)Q.Q) ~ (5(Vu. Q). H) — 7 (AQ, Q) +7 (f(Q).Q) =0.  (13)
On the other hand, by applying regularity (I0) to the systems ([Il) and (I3]), one has
drue LY3([0,400); V') and 9,Q € Li/3([0, +00); L3(2)),

hence, the following time-continuity can be deduced:
u € C([0, +00); V') N Oy ([0, +00); H), Q € C([0, +00); L*(2)) N Cu ([0, +00); HY).

In particular, the initial conditions ({]) have sense.

Dissipative energy law and global in time a priori estimates

Now, we argue in a formal manner, assuming a regular enough solution (u, p, @) of [I)-(8).
By taking % = w in (1) and (H,Q) = (H,8,Q) in () then the stretching term cancels
with the term dependent on the tensor o(H,Q), the term ((uw-V)Q, H) appearing in both



(1) and ([I2) also cancel and the convection term ((w- V)u, u) vanishes, hence the following

“energy equality” holds:

d

1
u <§||u||%2(9) + E(Q)dw) + vV ul + | H|E: =0, (14)

For the moment, bounds for (u, @) are not guaranteed from () because / E(Q)dxis
Q

not a positive term due to F'(Q). However, it is possible to find a large enough constant

i > 0 depending on parameters a, b and ¢ given in the definition of F(Q) in (), such that
c
Fu(Q)=F@)+p=g Q" (15)
By replacing E(Q) in ([Id) by
1
EH(Q) = §|VQ|2 + FM(Q) >0,

and denoting the kinetic and phase energies as

Suu(t) = gl ad &(Q) = [ Eu(Qda

Q

and the total energy as

g(ua Q) = gk(u) + gﬂ(Q)v
then ([4) implies
d
2 (®), Q) + V[ Vullt: + 7| H|Z: = 0. (16)

This energy equality shows the dissipative character of the model with respect to the total

free-energy €(u(t), Q(t)). In fact, assuming finite total energy of initial data, i.e.

| Bu@udo+ 3lwla <+,
then the following estimates hold:
u € L°(0,400; L2(Q)) N L2(0, +00; HY(Q)),
VQ € L>(0,4+00; L%(2)), F,(Q) € L>=(0,400; L'(9)), (17)
H € L*(0, +o0; L*(Q)).
In particular, from (3] and ([IT), we deduce the regularity:
Q € L*(0,+00;L4(Q)) and Q € L*(0,+o0; H(Q)),

hence, in particular
Q € L>(0, +00; LE()). (18)

Since f(Q) is a third order polynomial function,

IF(Q)] < Cla,b,0) (IQ+ QP +1Q)



which, together with ([I8]), gives f(Q) € L>(0,+o00;L%(Q2)). Then, using that H(Q) =
—e AQ + f(Q), we obtain:

AQ € L™=(0 4 o0; L3(Q)) + L*(0, +00; L%(2))

hence
AQ € L*(0,T;1L2(Q)) VT > 0.
Finally, by using the H2-regularity of the Poisson problem:

- AQ+Q
anC)|F

fQ)+@Q g,
0

we deduce that:
Q€ L*(0,T;H*(Q) VT >0.

4 Two improved energy inequalities

Now, we are in order to prove the following technical lemma.

Lemma 3 Let (u,Q) be a weak solution in (0,400) of problem (d)-(8) furnished by a
Galerkin approzimation. Then, (u,Q) satisfies the following energy inequality a.e. t1,to :
t1 >t 2 0:

& (u(t2). Q1) — E(ult). Q) + | (Va9 + A HIE) ds<0. (19

to

Moreover, there exists a special function E= g(t) € R defined for allt > 0, which satisfies
the following integral inequality for all t1,tg : t1 > tg > 0:

E(tr) - E(to) +/t IVals)]2 + A H(s)]22) ds <0, (20)

and the following differential version a.e. t > 0:
d ~
—E@) +VIIVu@lIE: + Il H B < 0. (21)

Proof: To prove (20) we start from the following energy equality satisfied by the Galerkin
approximate solutions (see [9]) for all ¢, ¢y with ¢ > ¢y > 0:

E(um(t), @m(t)) — E(um(to), Qm(to)) +/t WVt ()22 + A Him(5)[22) ds < 0. (22)

Moreover, u,,(t) and @, (t) have sufficient estimates to obtain
E(um(t), Qm () = E(u(t),Q(t)) in L'(0,T), and in particular a.e. t > 0. (23)

Since w,, — u weakly in L2(0,T; H') and H,, — H weakly in L?(0,T;L?),
t1

liminf/I(VI\V%(S)IIEz+”Y|\Hm(8)|\i2)d82/ WIIVu(s)|E> + I H(s)lE=) ds  (24)

m——+o00 to to



for all tl,to : tl Z to Z 0.
By taking lim inf,,—, 1o in [22), we obtain that for all t; > to > 0,

m——+o00o

t1
lim inf &t (t), Qum(t)) + glgiﬁg/ IV ()72 + VI Hm(s)|I2) ds
to (25)
< limsup &(um(to), @m(to))-

m——+oo

By using (23)) and (24) in (23]), we obtain (I9).

On the other hand, since the inequality (I9) is satisfied for all to, ¢1 € [0, +00)\ N, where
N is a set of null Lebesgue measure, then the map ¢ € [0,4+00)\N — E(u(t),Q(t)) € R is
a real decreasing (and bounded) function. The, we can define a special function £(t) for all
t € [0,+00) as:

£(0) :=E(up,Qo),  E):= lim  E(u(s),Q(s)).

s—t
s€[0,400)\N

This function & is “continuous from the left” and decreasing for all ¢ > 0. Indeed, for any
t1,t2 € [0,400), for instance t; < t2, we can choose sequences {s.}, {s2} C [0, +00)\N such
that sl — ¢, s2 — t; and, s} < s2 for all n > ng. Since s’ and s2 are not in N, we know
that £(u(sk),Q(sh)) > E(u(s?), Q(s2)). By taking limit as s} — ¢; and s? — t5, we obtain
that &(t1) > E(t2).

Since £(t) is decreasing for all ¢ € [0, +00), it is derivable (and absolutely continuous)
almost everywhere ¢ € (0, +00).

Since the inequality (3] is satisfied for all ¢g,t; € [0,400) \ N where the measure of N
is zero, given any tg < t1, we can take d,, > 0 and 7,, > 0 such that tg — d,, t1 —n,, € N and
On,Mn — 0, hence

- . t1—"n
E(tr =) — E(to — on) +/ WIIVu(s)|Z2 + I VH(s)|[72) ds < 0.
t

0_6n

By taking 6, — 0 and 7, — 0, we obtain (20)).
In particular, by choosing to =t and ¢; = ¢t 4+ h in (20)), we obtain

Et+h) —E@F) 1 [tth
% + E/ (W|Vu(s)||22 + 7| VH(s)||2:) ds <0, Yt h>0. (26)
t

Observe that
1 t+h

iy WIIVu(s)|[Z2 +AIIVH(s)72) ds = v|[Vu(®)||Z: + 7| VH (@),

a.e. t > 0 because the map, s € [0,+00) = v[|[Vu(s)||32 + 7|[VH(s)||7. € R, belongs to
LY(0,+00). Accordingly, by taking h — 0 in (26), we obtain ZI)) a.e. t > 0. O
5 Convergence at infinite time.

Let (u, Q) be a weak solution of (I)-(8) in (0, +00) associated to an initial data (ug, Qo) € HX
H(Q) (see Definition [) satisfying Lemma [Bl From the energy inequality (IJ), there exists



a real number Ey > 0 such that the total energy evaluated in the trajectory (u(t), Q(¢))
satisfies
E(u(t),Q(t)) \y Foo iIn R ast 1 4o0. (27)

Let us define the w-limit set of this global weak solution (u, Q) as follows:
w(u, Q) = { (U, Qoo) € Hx H' : I{t} T +00 s.t.
(w(tn), Q(tn)) = (thoo, Qo) weakly in L x H'}.

Let S be the set of critical points of the energy £(Q) defined in (), that is

S={QeH*: —eAQ + f(Q)=01in Q, 9,Q|r = 0}.

Theorem 4 Assume that (ug, Qo) € H x H'. Fized (u,Q) a weak solution of {d)-(3) in
(0, +00) satisfying Lemmal3, then w(u, Q) is nonempty and w(wu, Q) C {0} x S. Moreover,
for any Qe € S such that (0, Q) € w(u, Q), it holds

Eu(Qoo) = Eoo-
In particular, u(t) — 0 weakly in E* and £,(Q(t)) — £,(Qwo) in R as t 1 +oc.
Proof: Observe that since
(u, Q) € L=(0, +o0; H x H'),

for any sequence {t,} 1 +oo there exists a subsequence (equally denoted) and suitable limit
functions (e, Qo) € H x H!, such that

u(ty) = Uso weakly in H, Q(t,) = Qoo weakly in H'. (28)

We consider the initial and boundary-value problem associated to (d)-(8) restricted on the
time interval [t,,t, + 1] with initial values u(t,) and Q(t,). If we define

Up(8) == u(s +tn), Qn(s) == Q(s+tn), Hno(s) := H(s + t,)

for a.e. s € [0, 1], then, (u,,@,) is a weak solution to the problem (I)-(8) in the time interval
[0,1]. From the energy inequality (I9]), we have that

1 tn+1
/0 WV un(s)lE2 + v Ha(s)|E2) ds = / WIIVu(t)IL: +yIIH(®)]E2) dt

tn

<EQ(tn)) —Eu(Qtn +1)) — 0 asn — oo,

hence,
Vu, — 0 strongly in L*(0,1;L?)

and
H, — 0 strongly in L?(0,1;1?).



In particular, by using Poincaré inequality, one has
u, — 0 strongly in L?(0,1; V)

and
H, — 0 strongly in L?(0,1;1L%).

Moreover, since u,, and d;u,, are bounded in L>(0, 1; H) and L*/3(0, 1; V') respectively, then
u, — 0 in C([0,1]; V'). In particular, u(t,) = u,(0) — 0 in V', hence us = 0 (owing to
([28)). Consequently, the whole trajectory u(t) — 0 as t — +oc.

Furthermore, @,, is bounded in L?(0, 1; H?) () L>°(0, 1; H') and 8;Q,, is bounded in
L4/3(0,1;1L?). Therefore, there exists a subsequence of Q,, (equally denoted) and a limit func-
tion @ such that Q,, — @ strongly in C°([0,1] x Q)N L2(0, 1; H') and weakly in L?(0, 1; H?).

In particular, Q(t,) = Q,(0) — Q(0) in C°(Q2), hence Q(0) = Qo (owing to (@8)). On
the other hand, 9;Q,, converges weakly to 0;Q in L*/3(0,1;1L?), hence taking limits in the

variational formulation:

(0:Qn, Q) + ((un - V)Qn, Q) — (S(Vuy, Qn), Q)

7 (AQu, Q) +7 (f(Qn), Q) = 0.

for all Q € L2, we have that 9,Q,, — 0 in L*/3(0,1;1L?). Therefore, 3,Q = 0 and Q(t) is a

constant function of HI* for all ¢ € [0, 1], hence since Q(0) = Qo, we have
Q(t) = Qoo € H'  for all t € [0,1]. (29)

Finally, since f(Q,) converges weakly in L°°(0,1;1L?), by taking limit as n — 400 in the
variational formulation (Hy, Q) = € (VQn, VQ) + (f(Qn), Q) for all Q € H', we deduce

£(VQ,VQ) + (f(Q),Q) =0, VQeH', ae. te(0,1).

Then, from @3), Qs € H! and £ (VQuo, VQ) + (f(Qu), Q) = 0, VQ € H, a.e. t € (0,1).
Finally, by applying H?-regularity of the Poisson problem:

—£AQ+Q = f(Q)+Q inQ,
ath" =0
we deduce that Q. € H?, hence Q, € S and the proof is finished. ]

In the next theorem we apply the following Lojasiewicz-Simon’s result that can be found
in [13].

Lemma 5 (Lojasiewicz-Simon inequality) Let Q. € S and K > 0 fized. Then, there
exists positive constants (1, B2 and C and 0 € (0,1/2], such that for all Q € H? with

QI < K, |Q — QullLe < 81 and |E(Q) — £(Q.)| < Ba, it holds
E(Q) = E(Q)" < C | HI|zz—

where H = H(Q) 1s defined in (I2).

10



Theorem 6 Assume that g(t) belongs to the equivalence class of the energy function
E(u(t), Q(t)), that is, E(t) = E(u(t), Q(t)) almost everywhere t > 0. Then, under the hypothe-
ses of Theorem/[d], there exists a unique limit Qs € S such that Q(t) = Qoo in H'-weakly as

t 1400, i.e. w(u,@)={(0,Qx)}-

Proof: Let Qo € S such that (0,Qs) € w(u,Q), i.e. there exists ¢, 1 400 such that
u(t,) — 0 weakly in L? and Q(t,) — Qo weakly in H' (and strongly in L?).

Without loss of generality, it can be assumed that &(t) > E1(Qoo)(= Eo) for all t > 0,

because otherwise, if it exists some ¢ > 0 such that o (f) = F,, then the energy inequality

20) implies
E(t) = Euos, Vt>1,

IVu(®)Z: =0 and [H@)|Z =0, ¥i>T.
Therefore, u(t) = 0 and H(t) = 0 for all t > ¢, and by using the Q-equation @), 9,Q(t) = 0,
hence Q(t) = Qoo for all ¢ > t. In this setting the convergence of the whole Q-trajectory
towards Qo is trivial.

Therefore, we can assume that & (t) > Eo for all t > 0. Then, the proof will be divided

into three steps.

Step 1: Assuming that there exists t1 > 0 such that

||Q(t) - CQOOHIL2 < 61 and |SM(Q(t)) - gu(Qoo)' < 62

for all t > t; > 0, where 1 > 0,82 > 0 are the constants appearing in Lemma [d (of

Lojasiewicz-Simon’s type), then the following inequalities hold:

d

= (E® - BL)") + Co(IVu@)lee + [H ) <0, (30)

a.e.t € (tl, OO)

[ 10 < GEw) - By @1

t1
for all ty € (t1,00), where 6 € (0,1/2] is the constant appearing in Lemma[3

Since Fo, is constant, we can rewrite the energy inequality (2] as

d ~
(€)= Bxo) + C (IVult)||E2 + 1H (1)][2) <0,
almost everywhere ¢t > 0. By taking into account that
1 2
IVullEz + 1H®E: > 5 (IVut)lle + [1H®)]2)
and the inequality

%(IIVU(t)Ilu FIH®)le2) = Cllu®)ll + [[H@)|[a-1),

we obtain

d

a(g(t) — Eoo) + C(lul®)llL> + [ H(®)llz-1) (IVu(®)llL + [[H(E)][L2) <0, ae t=0.

11



By using this expression and the time derivative of the (strictly positive) function (£(t) —
EL.)?, we obtain a.e. t > 0 that

< (E0 - mey)

8 (32)
HO(E(t) — Eoo)* C([|u®) [z + [1H ) llu-1) (V) ez + [|1H (#)]|L2) < 0.

1
On the other hand, by taking into account that |E(wu(t))| = §||u(t)||i2 and ||u(t)|L: < K,
we have that

_ 1 —0 1 _
€)' = grgllut)lfs ™ = srg e ut) e < Cllu@)lle:  a.c.t>0.

This estimate together the Lojasiewicz-Simon inequality
1£.Q1) — Exo|' ™ < CO|H||lg-1, ae. t>t.
give
(E(u(t), Q1) = Boo)' % < |Ek(u®))]'~ + [£4(Q() — Exc|"™°
< C(u@®)lle + [H®)lg-1)  ace. t >t
Therefore,
(E(u®), Q) = Ex)*H(u®) |z + [H®)]u-1) = C (33)
almost every where t > ¢;. By applying (33)) in (32),

d

- (E(u(®), Q) - Ex)’) +CO(IVu®)lrz + [ H(®)]rz) <0, aet>t

hence (B0) is proved.
Here, the hypothesis €(u(t), Q(t)) = £(t) for almost every ¢ is a key point. In particular,

this hypothesis implies that the integral and differential versions of the energy law (20) and
@) are satisfied by E(u(t),Q(t)) a.c. in time. In fact, energy law [2I)), changing &£(t) by
E(u(t), Q()), is the crucial hypothesis imposed in Remark 2.4 of [13].

Fixed any to € (t1,+00), taking into account that (€(u(ts),Q(t2)) — Ex)? > 0 and,
integrating (B0)) into [t1,t2] we have

to
90/ (IVu)llee + [H(®)lle2)dt < (E(u(t), Q(tr)) — Bs)’. (34)
t1
From the equation (3], by using the weak regularity Q € L°((0, +00) x Q), then
10:Q() I+ < C(IVu(®)llz + [H(®)ll2)  a.e. t>0.

By using this inequality in [B4]), then (3II) is attained.

Step 2: There exists a sufficiently large ng such that ||Q(t) — QoollL2 < f1 and |E,(Q(t)) —
Eu(Qy)| < Bo for all t > ty,, (81, P2 given in Lemmal[H).

Since Q(t,) — Qoo strongly in L2 and E(u(ty), Q(tn)) ¢ Eoo = £4(Qso) in R (see (Z7)),
then for any § € (0, 81), there exists an integer N (J) such that, for all n > N(4),

1Q(tn) = Qoolliz <6 and  7(£.(Q(tn)) — Ex)’ < 6. (35)
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For each n > N(J), we define

T o= sup{t st > b, Q) ~ Quellie < B Vs € [ta, 1)},

It suffices to prove that ¢, = oo for some ny. Assume by contradiction that ¢, < £, < +oo

for all n, hence |Q(t,) — QwollLz = P1 and ||Q(t) — QoollLz < P1 for all ¢ € [t,,1,). By
applying Step 1 for all ¢ € [ty, ], from (BI) and (30) we obtain,

tn
/ [0:Qllg-— < C8, Yn > N().
t

n

Therefore,

T
Q) — Qoolla—1 < |Q(tn) — Qoollrn— +/ 10:Qll-+ < (1+C)3,

tn

which implies that lim,—, . [|Q(tn) — Qoollm-1 = 0.
On the other hand, Q(Z,) is bounded in H!. Indeed, from @27), &(u(%,), Q(,)) is bounded

in R, therefore in particular

| 8@ s = [ (519 + Fu(QE.)) da

is bounded. But, since F},(Q) is bounded in L*(L'), then VQ(%,) is bounded in L?(2),
therefore Q(%,,) is bounded in H*.

Consequently, Q(%,) is relatively compact in .2, hence there exists a subsequence of Q(%,,),
which is still denoted as Q(%,,), that converges to Qo in L?-strong. Hence ||Q(%,,) — Qool|L2 <

B1 for a sufficiently large n, which contradicts the definition of #,,.
Step 3: There exists a unique Q, such that Q(t) — Qs weakly in H! ast 1 +oo.

By using Steps 1 and 2, BI]) can be applied, for all ¢1,to : t1 > tg > ty,,, hence

t1
1Q(t) — Qto) s+ < / 10:Qllas = 0, as to, t1 — +oc.
to

Therefore, (Q(t))¢>t,, is a Cauchy sequence in H™! as ¢ T +00, hence, there exists a unique
Qoo € H! such that Q(t) — Qo in H™! as t 1 +oo. Finally, the convergence in H!-weak
by sequences of Q(t) proved in Theorem M yields to Q(¢t) — Qo in H'-weak, and the proof
is finished.
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