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Convergence to equilibrium of global weak solutions for a

Q-tensor problem related to liquid crystals

Blanca Climent-Ezquerra and Francisco Guillén-González∗

Abstract

We study a Q-tensor problem modeling the dynamic of nematic liquid crystals in 3D

domains. The system consists of the Navier-Stokes equations, with an extra stress tensor

depending on the elastic forces of the liquid crystal, coupled with an Allen-Cahn system fo

r the Q-tensor variable. This problem has a dissipative in time free-energy which leads, in

particular, to prove the existence of global in time weak solutions. We analyze the large-

time behavior of the weak solutions. By using a Lojasiewicz-Simon’s result, we prove the

convergence as time goes to infinity of the whole trajectory to a single equilibrium.

Keywords: Liquid crystals; Allen-Cahn-Navier-Stokes system; Large-time behavior for dis-

sipative systems.

1 Introduction

We deal with a generic Q-tensor model, following the theory of Landau-De Gennes, in a

smooth and bounded domain Ω ⊂ R
3, for the unknowns (u, p, Q) : (0, T )×Ω → R

3×R×R
3×3,

satisfying the momentum and incompressibility equations





Dtu− ν∆u + ∇p = ∇ · τ(Q) + ∇ · σ(H,Q)

∇ · u = 0

(1)

and the Q-tensor system:

DtQ− S(∇u, Q) = −γ H(Q) (2)

in Ω × (0, T ).

In (1) and (2), Dt = ∂t + (u · ∇) denotes the material time derivative, ν > 0 is the

viscosity coefficient and γ > 0 is a material-dependent elastic constant. Moreover,

S(∇u, Q) = ∇uQt −Qt ∇u (3)
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is the so-called stretching term.

In (1) the tensors τ = τ(Q) ∈ R
3×3 and σ = σ(H,Q) ∈ R

3×3 are defined by





τij(Q) := −ε (∂jQ : ∂iQ) = −ε ∂jQkl ∂iQkl,

σ(H,Q) := H Q−QH,

where ε > 0 and the tensor H = H(Q) is related to the variational derivative in L2(Ω) of a

free energy functional E(Q), in fact

E(Q) :=
ε

2
|∇Q|2 + F (Q), E(Q) :=

∫

Ω

E(Q) dx, H :=
δE(Q)

δQ
. (4)

Here, we denote A : B = Aij Bij the scalar product of matrices (using the Einstein

summation convention over repeated indices) and the potential function F (Q) is defined by

F (Q) :=
a

2
|Q|2 −

b

3
(Q2 : Q) +

c

4
|Q|4, (5)

with a, b ∈ R and c > 0. We denote by |Q| = (Q : Q)1/2 the matrix euclidean norm. Then,

from (4) and (5)

H = H(Q) = −ε∆Q + f(Q) (6)

where

f(Q) =
∂F

∂Q
(Q) = aQ−

b

3

(
Q2 + QQt + QtQ

)
+ c |Q|2 Q.

Finally, the system is completed with the following initial and boundary conditions over

Γ = ∂Ω:

u|t=0 = u0, Q|t=0 = Q0 in Ω, (7)

u|Γ = 0, ∂nQ|Γ = 0 in (0, T ), (8)

where n denotes the normal outwards vector on the boundary Γ.

The system (1)-(8) is a simplified version of the following Q-tensor model studied by

Paicu & Zarnescu in [12] and Abels et al. in [1]:






Dtu− ν∆u + ∇p = ∇ · τ(Q) + ∇ · σ(Hpz , Q) in Ω × (0, T ),

∇ · u = 0 in Ω × (0, T ),

DtQ− (WQ−QW) = −γ Hpz(Q) in Ω × (0, T ),

(9)

complemented with the initial and boundary conditions (7)-(8), where W is the antisym-

metric part of ∇u, that is W := (∇u + (∇u)t)/2, and

Hpz(Q) := −ε∆Q + aQ− b

(
Q2 −

tr(Q2)

3
I

)
+ c |Q|2Q.

The model (1)-(8) was studied in [9], obtaining also the modifications needed to assure

symmetry and traceless of Q. In fact, it suffices to replace ∇u by the antisymmetric part

W = (∇u + ∇u
t)/2 in the stretching term S(∇u, Q) defined in (3) and the H(Q) function

given in (6) by H(Q) + α(Q)I where α(Q) is an appropriate scalar function [9].
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These properties of symmetry and traceless are assumed (but not rigorously justified)

in [12] and [1] for the model (9). Since the model (9) is a particular case of the general

model studied in [9], then any weak solution (u, Q) of (9) satisfies that Q(t) is a traceless

and symmetric tensor.

By simplicity, in this paper we consider the model (1)-(8), because it retains the essential

difficulties of a Q-tensor model like (9). In fact, the results obtained here can be extended

to the Q-tensor model (9).

The large-time behavior of some models for Nematic liquid crystals with unknown vector

director are studied in [15], [8] (without stretching terms) and in [11], [7], [14] (with stretching

terms) and in [13] (where different results are deduced depending on considering or not the

stretching terms).

On the other hand, the large-time behavior is also analyzed for others related models,

for example in [6] for a Cahn-Hilliard-Navier-Stokes system in 2D domains, in [5] for a

chemotaxis model, and in [4] and [3], where a Cahn-Hilliard-Navier-Stokes vesicle model and

a smectic-A liquid crystals model are studied respectively.

In [10], some results of local in time regularity and uniqueness of the model (1)-(8) are

proved.

Sections 2 and 3 describe the model and the weak solution concept (more details can be

seen in [9]). The novelty of this paper is in the last two sections. In Section 4, two precise

energy inequalities are proved via Galerkin Method, a time-integral version for all time t

and a time-differential version for almost every time. These inequalities will be essential

later and they have neither been proved in [13] nor in [2]. Section 5 is devoted to the study

of convergence at infinite time for global weak solutions. In fact, we prove first that the

ω-limit set for weak solutions consists of critical points of the free-energy. Finally, by using

a Lojasiewicz-Simon’s result, we demonstrate the convergence of the whole trajectory to a

single equilibrium as time goes to infinity.

Notations

The notation can be abridged. We set Lp = Lp(Ω), p ≥ 1, H1 = H1(Ω), etc. If X = X(Ω)

is a space of functions defined in the open set Ω, we denote by Lp(0, T ;X) the Banach

space Lp(0, T ;X(Ω)). Also, boldface letters will be used for vectorial spaces, for instance

L2 = L2(Ω)N , and the type L
2 = L

2(Ω)N×N for the tensors.

We set V the space formed by all fields u ∈ C∞
0 (Ω)N satisfying ∇u = 0. We denote H

(respectively V ) the closure of V in  L2 (respectively H
1). H and V are Hilbert spaces for

the norms | · |2 and ‖ · ‖1, respectively. Furthermore,

H = {u ∈  L2; ∇u = 0, u · n = 0 on ∂Ω}, V = {u ∈ H
1; ∇u = 0, u = 0 on ∂Ω}.

From now on, C > 0 will denote different constants, depending only on data of the

problem.
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2 The Landau-De Gennes theory

Liquid crystals can be seen as an intermediate phase of matter between crystalline solids and

isotropic fluids. Nematic liquid crystals consist of molecules with, for instance, rod-like shape

whose center of mass is isotropically distributed and whose direction is anisotropic, almost

constant on average over small regions. In the Landau-De Gennes theory, the symmetric and

traceless matrix Q ∈ R
3×3, known as the Q-tensor order parameter, measures the deviation

of the second moment tensor from its isotropic value. A nematic liquid crystal is said to be

isotropic when Q = 0, uniaxial when the Q-tensor has two equal non-zero eigenvalues and

can be written in the special form:

Q = s

(
n⊗ n−

1

3
I

)
with s ∈ R\{0}, n ∈ S

2

and biaxial when Q has three different eigenvalues and can be represented as follows:

Q = s

(
n⊗ n−

1

3
I

)
+ r

(
m⊗m−

1

3
I

)

where s, r ∈ R; n,m ∈ S
2.

The definition of the Q-tensor is related to the second moment of a probability measure

µ(x, ·) : L(S2) → [0, 1] for each x ∈ Ω, being L(S2) the family of Lebesgue measurable sets

on the unit sphere. For any A ⊂ S
2, µ(x, A) is the probability that the molecules with centre

of mass in a very small neighborhood of the point x ∈ Ω are pointing in a direction contained

in A. This probability must satisfy µ(x, A) = µ(x,−A) in order to reproduce the so-called

“head-to-tail” symmetry. As a consequence, the first moment of the probability measure

vanishes, that is

〈p〉(x) =

∫

S2

pi dµ(x, p) = 0.

Then, the main information on µ comes from the second moment tensor

M(µ)ij =

∫

S2

pi pj dµ(p), i, j = 1, 2, 3.

It is easy to see that M(µ) = M(µ)t and tr(M) = 1. If the orientation of the molecules

is equally distributed, then the distribution is isotropic and µ = µ0, dµ0(p) = 1
4π dA and

M(µ0) = 1
3 I. The deviation of the second moment tensor from its isotropic value is therefore

measured as:

Q = M(µ) −M(µ0) =

∫

S2

(
p⊗ p−

1

3
I

)
dµ(p).

From this equality, Q is symmetric and traceless.

3 Weak solutions

Definition 1 (Weak solution) It will be said that (u, Q) is a weak solution in (0,+∞) of

problem (1)-(8) if:




u ∈ L∞(0,+∞;H) ∩ L2(0,+∞;V),

Q ∈ L∞(0,+∞;H1(Ω)) ∩ L2(0;T ;H2(Ω)) ∀T > 0,
(10)
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and satisfies the variational formulation (11) and (12) (defined below), the initial conditions

(7) and the boundary conditions (8).

Note that the regularity imposed in (10) is satisfied up to infinite time excepting the

H
2(Ω)-regularity for Q.

In [9] the following result is proved by means of a Galerkin approximation.

Theorem 2 (Existence of weak solutions) If (u0, Q0) ∈ H×H
1(Ω), there exists a weak

solution (u, Q) of system (1)-(8) in (0,+∞).

Variational formulation

Taking into account that ∂iF (Q) = F ′(Q) : ∂iQ = f(Q) : ∂iQ, the term of the symmetric

tensor τ(Q) can be rewritten as:

(∇ · τ(Q))i = H(Q) : ∂iQ− ∂i

(
F (Q) +

ε

2
|∇Q|2

)
,

where |∇Q|2 = ∂jQ : ∂jQ. Then, testing (1) by any ũ : Ω → R
3 with ũ|∂Ω = 0 and ∇· ũ = 0

in Ω, we arrive at the following variational formulation of (1):

(Dtu, ũ) + ν(∇u,∇ũ) − ((ũ · ∇)Q,H) + (σ(H,Q),∇ũ) = 0. (11)

On the other hand, testing (2) by any H̃ and the system −ε∆Q + f(Q) = H by any Q̃,

we arrive at the variational formulation:





(∂tQ, H̃) + ((u · ∇)Q, H̃) − (S(∇u, Q), H̃) + γ (H, H̃) = 0,

ε (∇Q,∇Q̃) + (f(Q), Q̃) − (H, Q̃) = 0,

(12)

for any H̃ , Q̃ : Ω → R
3×3. From (12), one has in particular:

(∂tQ, Q̃) + ((u · ∇)Q, Q̃) − (S(∇u, Q), H̃) − ε γ (∆Q, Q̃) + γ (f(Q), Q̃) = 0. (13)

On the other hand, by applying regularity (10) to the systems (11) and (13), one has

∂tu ∈ L
4/3
loc ([0,+∞);V′) and ∂tQ ∈ L

4/3
loc ([0,+∞);L2(Ω)),

hence, the following time-continuity can be deduced:

u ∈ C([0,+∞);V′) ∩ Cw([0,+∞);H), Q ∈ C([0,+∞);L2(Ω)) ∩ Cw([0,+∞);H1).

In particular, the initial conditions (7) have sense.

Dissipative energy law and global in time a priori estimates

Now, we argue in a formal manner, assuming a regular enough solution (u, p, Q) of (1)-(8).

By taking ũ = u in (11) and (H̃, Q̃) = (H, ∂tQ) in (12) then the stretching term cancels

with the term dependent on the tensor σ(H,Q), the term ((u · ∇)Q,H) appearing in both
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(11) and (12) also cancel and the convection term ((u · ∇)u,u) vanishes, hence the following

“energy equality” holds:

d

dt

(
1

2
‖u‖2

L2(Ω) +

∫

Ω

E(Q) dx

)
+ ν‖∇u‖2

L2 + γ‖H‖2
L2 = 0. (14)

For the moment, bounds for (u, Q) are not guaranteed from (16) because

∫

Ω

E(Q) dx is

not a positive term due to F (Q). However, it is possible to find a large enough constant

µ > 0 depending on parameters a, b and c given in the definition of F (Q) in (5), such that

Fµ(Q) := F (Q) + µ ≥
c

8
|Q|4. (15)

By replacing E(Q) in (14) by

Eµ(Q) :=
1

2
|∇Q|2 + Fµ(Q) ≥ 0,

and denoting the kinetic and phase energies as

Ek(u(t)) :=
1

2
‖u‖2

L2 and Eµ(Q) :=

∫

Ω

Eµ(Q) dx

and the total energy as

E(u, Q) := Ek(u) + Eµ(Q),

then (14) implies
d

dt
E(u(t), Q(t)) + ν‖∇u‖2

L2 + γ‖H‖2
L2 = 0. (16)

This energy equality shows the dissipative character of the model with respect to the total

free-energy E(u(t), Q(t)). In fact, assuming finite total energy of initial data, i.e.

∫

Ω

Eµ(Q0) dx +
1

2
‖u0‖

2
L2(Ω) < +∞,

then the following estimates hold:

u ∈ L∞(0,+∞;  L2(Ω)) ∩ L2(0,+∞;H1(Ω)),

∇Q ∈ L∞(0,+∞;L2(Ω)), Fµ(Q) ∈ L∞(0,+∞;L1(Ω)),

H ∈ L2(0,+∞;L2(Ω)).

(17)

In particular, from (15) and (17), we deduce the regularity:

Q ∈ L∞(0,+∞;L4(Ω)) and Q ∈ L∞(0,+∞;H1(Ω)),

hence, in particular

Q ∈ L∞(0,+∞;L6(Ω)). (18)

Since f(Q) is a third order polynomial function,

|f(Q)| ≤ C(a, b, c)
(
|Q| + |Q|2 + |Q|3

)
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which, together with (18), gives f(Q) ∈ L∞(0,+∞;L2(Ω)). Then, using that H(Q) =

−ε∆Q + f(Q), we obtain:

∆Q ∈ L∞(0 + ∞;L2(Ω)) + L2(0,+∞;L2(Ω))

hence

∆Q ∈ L2(0, T ;L2(Ω)) ∀T > 0.

Finally, by using the H2-regularity of the Poisson problem:





−ε∆Q + Q = f(Q) + Q in Ω,

∂nQ|Γ = 0

we deduce that:

Q ∈ L2(0, T ;H2(Ω)) ∀T > 0.

4 Two improved energy inequalities

Now, we are in order to prove the following technical lemma.

Lemma 3 Let (u, Q) be a weak solution in (0,+∞) of problem (1)-(8) furnished by a

Galerkin approximation. Then, (u, Q) satisfies the following energy inequality a.e. t1, t0 :

t1 ≥ t0 ≥ 0:

E(u(t1), Q(t1)) − E(u(t0), Q(t0)) +

∫ t1

t0

(ν‖∇u(s)‖2
L2 + γ‖H(s)‖2

L2) ds ≤ 0. (19)

Moreover, there exists a special function Ẽ = Ẽ(t) ∈ R defined for all t ≥ 0, which satisfies

the following integral inequality for all t1, t0 : t1 ≥ t0 ≥ 0:

Ẽ(t1) − Ẽ(t0) +

∫ t1

t0

(ν‖∇u(s)‖2
L2 + γ‖H(s)‖2

L2) ds ≤ 0, (20)

and the following differential version a.e. t ≥ 0:

d

dt
Ẽ(t) + ν‖∇u(t)‖2

L2 + γ‖H(t)‖2
L2 ≤ 0. (21)

Proof : To prove (20) we start from the following energy equality satisfied by the Galerkin

approximate solutions (see [9]) for all t, t0 with t ≥ t0 ≥ 0:

E(um(t), Qm(t)) − E(um(t0), Qm(t0)) +

∫ t

t0

(ν‖∇um(s)‖2L2 + γ‖Hm(s)‖2
L2) ds ≤ 0. (22)

Moreover, um(t) and Qm(t) have sufficient estimates to obtain

E(um(t), Qm(t)) → E(u(t), Q(t)) in L1(0, T ), and in particular a.e. t ≥ 0. (23)

Since um → u weakly in L2(0, T ;H1) and Hm → H weakly in L2(0, T ;L2),

lim inf
m→+∞

∫ t1

t0

(ν‖∇um(s)‖2
L2 + γ‖Hm(s)‖2

L2) ds ≥

∫ t1

t0

(ν‖∇u(s)‖2
L2 + γ‖H(s)‖2

L2) ds (24)
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for all t1, t0 : t1 ≥ t0 ≥ 0.

By taking lim infm→+∞ in (22), we obtain that for all t1 ≥ t0 ≥ 0,

lim inf
m→+∞

E(um(t), Qm(t)) + lim inf
m→+∞

∫ t1

t0

(ν‖∇um(s)‖2L2 + γ‖Hm(s)‖2
L2) ds

≤ lim sup
m→+∞

E(um(t0), Qm(t0)).

(25)

By using (23) and (24) in (25), we obtain (19).

On the other hand, since the inequality (19) is satisfied for all t0, t1 ∈ [0,+∞)\N , where

N is a set of null Lebesgue measure, then the map t ∈ [0,+∞)\N → E(u(t), Q(t)) ∈ R is

a real decreasing (and bounded) function. The, we can define a special function Ẽ(t) for all

t ∈ [0,+∞) as:

Ẽ(0) := E(u0, Q0), Ẽ(t) := lim
s→t−

s∈[0,+∞)\N

E(u(s), Q(s)).

This function Ẽ is “continuous from the left” and decreasing for all t ≥ 0. Indeed, for any

t1, t2 ∈ [0,+∞), for instance t1 < t2, we can choose sequences {s1n}, {s
2
n} ⊂ [0,+∞)\N such

that s1n → t−1 , s2n → t−2 and, s1n ≤ s2n for all n ≥ n0. Since s1n and s2n are not in N , we know

that E(u(s1n), Q(s1n)) ≥ E(u(s2n), Q(s2n)). By taking limit as s1n → t−1 and s2n → t−2 , we obtain

that Ẽ(t1) ≥ Ẽ(t2).

Since Ẽ(t) is decreasing for all t ∈ [0,+∞), it is derivable (and absolutely continuous)

almost everywhere t ∈ (0,+∞).

Since the inequality (19) is satisfied for all t0, t1 ∈ [0,+∞) \N where the measure of N

is zero, given any t0 < t1, we can take δn > 0 and ηn > 0 such that t0 − δn, t1 − ηn 6∈ N and

δn, ηn → 0, hence

Ẽ(t1 − ηn) − Ẽ(t0 − δn) +

∫ t1−ηn

t0−δn

(ν‖∇u(s)‖2L2 + γ‖∇H(s)‖2L2) ds ≤ 0.

By taking δn → 0 and ηn → 0, we obtain (20).

In particular, by choosing t0 = t and t1 = t + h in (20), we obtain

Ẽ(t + h) − Ẽ(t)

h
+

1

h

∫ t+h

t

(ν‖∇u(s)‖2L2 + γ‖∇H(s)‖2L2) ds ≤ 0, ∀ t, h ≥ 0. (26)

Observe that

lim
h→0

1

h

∫ t+h

t

(ν‖∇u(s)‖2L2 + γ‖∇H(s)‖2L2) ds = ν‖∇u(t)‖2L2 + γ‖∇H(t)‖2L2,

a.e. t ≥ 0 because the map, s ∈ [0,+∞) → ν‖∇u(s)‖2L2 + γ‖∇H(s)‖2L2 ∈ R, belongs to

L1(0,+∞). Accordingly, by taking h → 0 in (26), we obtain (21) a.e. t ≥ 0. �

5 Convergence at infinite time.

Let (u, Q) be a weak solution of (1)-(8) in (0,+∞) associated to an initial data (u0, Q0) ∈ H×

H
1(Ω) (see Definition 1) satisfying Lemma 3. From the energy inequality (19), there exists
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a real number E∞ ≥ 0 such that the total energy evaluated in the trajectory (u(t), Q(t))

satisfies

E(u(t), Q(t)) ց E∞ in R as t ↑ +∞. (27)

Let us define the ω-limit set of this global weak solution (u, Q) as follows:

ω(u, Q) = {(u∞, Q∞) ∈ H×H
1 : ∃{tn} ↑ +∞ s.t.

(u(tn), Q(tn)) → (u∞, Q∞) weakly in  L2 ×H
1}.

Let S be the set of critical points of the energy E(Q) defined in (4), that is

S = {Q ∈ H
2 : −ε∆Q + f(Q) = 0 in Ω, ∂nQ|Γ = 0}.

Theorem 4 Assume that (u0, Q0) ∈ H × H
1. Fixed (u, Q) a weak solution of (1)-(8) in

(0,+∞) satisfying Lemma 3, then ω(u, Q) is nonempty and ω(u, Q) ⊂ {0} × S. Moreover,

for any Q∞ ∈ S such that (0, Q∞) ∈ ω(u, Q), it holds

Eµ(Q∞) = E∞.

In particular, u(t) → 0 weakly in  L2 and Eµ(Q(t)) → Eµ(Q∞) in R as t ↑ +∞.

Proof: Observe that since

(u, Q) ∈ L∞(0,+∞;H×H
1),

for any sequence {tn} ↑ +∞ there exists a subsequence (equally denoted) and suitable limit

functions (u∞, Q∞) ∈ H×H
1, such that

u(tn) → u∞ weakly in H, Q(tn) → Q∞ weakly in H
1. (28)

We consider the initial and boundary-value problem associated to (1)-(8) restricted on the

time interval [tn, tn + 1] with initial values u(tn) and Q(tn). If we define

un(s) := u(s + tn), Qn(s) := Q(s + tn), Hn(s) := H(s + tn)

for a.e. s ∈ [0, 1], then, (un, Qn) is a weak solution to the problem (1)-(8) in the time interval

[0, 1]. From the energy inequality (19), we have that

∫ 1

0

(ν‖∇un(s)‖2
L2 + γ‖Hn(s)‖2

L2) ds =

∫ tn+1

tn

(ν|‖∇u(t)‖2
L2 + γ‖H(t)‖2

L2) dt

≤ Eµ(Q(tn)) − Eµ(Q(tn + 1)) −→ 0 as n → ∞,

hence,

∇un → 0 strongly in L2(0, 1;  L2)

and

Hn → 0 strongly in L2(0, 1;L2).
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In particular, by using Poincaré inequality, one has

un → 0 strongly in L2(0, 1;V)

and

Hn → 0 strongly in L2(0, 1;L2).

Moreover, since un and ∂tun are bounded in L∞(0, 1;H) and L4/3(0, 1;V′) respectively, then

un → 0 in C([0, 1];V′). In particular, u(tn) = un(0) → 0 in V
′, hence u∞ = 0 (owing to

(28)). Consequently, the whole trajectory u(t) → 0 as t → +∞.

Furthermore, Qn is bounded in L2(0, 1;H2)
⋂
L∞(0, 1;H1) and ∂tQn is bounded in

L4/3(0, 1;L2). Therefore, there exists a subsequence of Qn (equally denoted) and a limit func-

tion Q such that Qn → Q strongly in C0([0, 1]×Ω)∩L2(0, 1;H1) and weakly in L2(0, 1;H2).

In particular, Q(tn) = Qn(0) → Q(0) in C0(Ω), hence Q(0) = Q∞ (owing to (28)). On

the other hand, ∂tQn converges weakly to ∂tQ in L4/3(0, 1;L2), hence taking limits in the

variational formulation:

(∂tQn, Q̃) + ((un · ∇)Qn, Q̃) − (S(∇un, Qn), Q̃)

−ε γ (∆Qn, Q̃) + γ (f(Qn), Q̃) = 0.

for all Q̃ ∈ L
2, we have that ∂tQn → 0 in L4/3(0, 1;L2). Therefore, ∂tQ = 0 and Q(t) is a

constant function of H1 for all t ∈ [0, 1], hence since Q(0) = Q∞, we have

Q(t) = Q∞ ∈ H
1 for all t ∈ [0, 1]. (29)

Finally, since f(Qn) converges weakly in L∞(0, 1;L2), by taking limit as n → +∞ in the

variational formulation (Hn, Q̃) = ε (∇Qn,∇Q̃) + (f(Qn), Q̃) for all Q̃ ∈ H
1, we deduce

ε (∇Q,∇Q̃) + (f(Q), Q̃) = 0, ∀ Q̃ ∈ H
1, a.e. t ∈ (0, 1).

Then, from (29), Q∞ ∈ H
1 and ε (∇Q∞,∇Q̃) + (f(Q∞), Q̃) = 0, ∀ Q̃ ∈ H

1, a.e. t ∈ (0, 1).

Finally, by applying H
2-regularity of the Poisson problem:





−ε∆Q + Q = f(Q) + Q in Ω,

∂nQ|Γ = 0

we deduce that Q∞ ∈ H
2, hence Q∞ ∈ S and the proof is finished. �

In the next theorem we apply the following Lojasiewicz-Simon’s result that can be found

in [13].

Lemma 5 (Lojasiewicz-Simon inequality) Let Q∗ ∈ S and K > 0 fixed. Then, there

exists positive constants β1, β2 and C and θ ∈ (0, 1/2], such that for all Q ∈ H
2 with

‖Q‖H1 ≤ K, ‖Q−Q∗‖L2 ≤ β1 and |E(Q) − E(Q∗)| ≤ β2, it holds

|E(Q) − E(Q∗)|1−θ ≤ C ‖H‖H−1

where H = H(Q) is defined in (12).
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Theorem 6 Assume that Ẽ(t) belongs to the equivalence class of the energy function

E(u(t), Q(t)), that is, Ẽ(t) = E(u(t), Q(t)) almost everywhere t ≥ 0. Then, under the hypothe-

ses of Theorem 4, there exists a unique limit Q∞ ∈ S such that Q(t) → Q∞ in H
1-weakly as

t ↑ +∞, i.e. ω(u, Q) = {(0, Q∞)}.

Proof: Let Q∞ ∈ S such that (0, Q∞) ∈ ω(u, Q), i.e. there exists tn ↑ +∞ such that

u(tn) → 0 weakly in  L2 and Q(tn) → Q∞ weakly in H
1 (and strongly in L

2).

Without loss of generality, it can be assumed that Ẽ(t) > Eµ(Q∞)(= E∞) for all t > 0,

because otherwise, if it exists some t̃ > 0 such that Ẽ(t̃) = E∞, then the energy inequality

(20) implies

Ẽ(t) = E∞, ∀ t ≥ t̃,

‖∇u(t)‖2
L2 = 0 and ‖H(t)‖2

L2 = 0, ∀ t ≥ t̃.

Therefore, u(t) = 0 and H(t) = 0 for all t ≥ t̃, and by using the Q-equation (2), ∂tQ(t) = 0,

hence Q(t) = Q∞ for all t ≥ t̃. In this setting the convergence of the whole Q-trajectory

towards Q∞ is trivial.

Therefore, we can assume that Ẽ(t) > E∞ for all t ≥ 0. Then, the proof will be divided

into three steps.

Step 1: Assuming that there exists t1 > 0 such that

‖Q(t) −Q∞‖L2 ≤ β1 and |Eµ(Q(t)) − Eµ(Q∞)| ≤ β2

for all t ≥ t1 ≥ 0, where β1 > 0, β2 > 0 are the constants appearing in Lemma 5 (of

Lojasiewicz-Simon’s type), then the following inequalities hold:

d

dt

(
(Ẽ(t) − E∞)θ

)
+ C θ (‖∇u(t)‖L2 + ‖H(t)‖L2) ≤ 0, (30)

a.e. t ∈ (t1,∞). ∫ t2

t1

‖∂tQ‖H−1 ≤
C

θ
(Ẽ(t1) − E∞)θ, (31)

for all t2 ∈ (t1,∞), where θ ∈ (0, 1/2] is the constant appearing in Lemma 5.

Since E∞ is constant, we can rewrite the energy inequality (21) as

d

dt
(Ẽ(t) − E∞) + C

(
‖∇u(t)‖2

L2 + ‖H(t)‖2
L2

)
≤ 0,

almost everywhere t ≥ 0. By taking into account that

‖∇u(t)‖2
L2 + ‖H(t)‖2

L2 ≥
1

2
(‖∇u(t)‖L2 + ‖H(t)‖L2)

2

and the inequality

1

2
(‖∇u(t)‖L2 + ‖H(t)‖L2) ≥ C(‖u(t)‖L2 + ‖H(t)‖H−1),

we obtain

d

dt
(Ẽ(t) − E∞) + C(‖u(t)‖L2 + ‖H(t)‖H−1) (‖∇u(t)‖L2 + ‖H(t)‖L2) ≤ 0, a.e. t ≥ 0.
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By using this expression and the time derivative of the (strictly positive) function (Ẽ(t) −

E∞)θ, we obtain a.e. t ≥ 0 that

d

dt

(
(Ẽ(t) − E∞)θ

)

+θ(Ẽ(t) − E∞)θ−1C(‖u(t)‖L2 + ‖H(t)‖H−1) (‖∇u(t)‖L2 + ‖H(t)‖L2) ≤ 0.
(32)

On the other hand, by taking into account that |Ek(u(t))| =
1

2
‖u(t)‖2

L2 and ‖u(t)‖L2 ≤ K,

we have that

|Ek(u(t))|1−θ =
1

21−θ
‖u(t)‖

2(1−θ)
L2 =

1

21−θ
‖u(t)‖1−2θ

L2 ‖u(t)‖L2 ≤ C‖u(t)‖L2 a.e. t ≥ 0.

This estimate together the Lojasiewicz-Simon inequality

|Eµ(Q(t)) − E∞|1−θ ≤ C‖H‖H−1 , a.e. t ≥ t1.

give

(E(u(t), Q(t)) − E∞)1−θ ≤ |Ek(u(t))|1−θ + |Eµ(Q(t)) − E∞|1−θ

≤ C(‖u(t)‖L2 + ‖H(t)‖H−1) a.e. t ≥ t1.

Therefore,

(E(u(t), Q(t)) − E∞)θ−1(‖u(t)‖L2 + ‖H(t)‖H−1) ≥ C (33)

almost every where t ≥ t1. By applying (33) in (32),

d

dt

(
(E(u(t), Q(t)) − E∞)θ

)
+ C θ (‖∇u(t)‖L2 + ‖H(t)‖L2) ≤ 0, a.e. t ≥ t1

hence (30) is proved.

Here, the hypothesis E(u(t), Q(t)) = Ẽ(t) for almost every t is a key point. In particular,

this hypothesis implies that the integral and differential versions of the energy law (20) and

(21) are satisfied by E(u(t), Q(t)) a.e. in time. In fact, energy law (21), changing Ẽ(t) by

E(u(t), Q(t)), is the crucial hypothesis imposed in Remark 2.4 of [13].

Fixed any t2 ∈ (t1,+∞), taking into account that (E(u(t2), Q(t2)) − E∞)θ > 0 and,

integrating (30) into [t1, t2] we have

θ C

∫ t2

t1

(‖∇u(t)‖L2 + ‖H(t)‖L2)dt ≤ (E(u(t1), Q(t1)) − E∞)θ. (34)

From the equation (13), by using the weak regularity Q ∈ L∞((0,+∞) × Ω), then

‖∂tQ(t)‖H−1 ≤ C(‖∇u(t)‖L2 + ‖H(t)‖L2) a.e. t ≥ 0.

By using this inequality in (34), then (31) is attained.

Step 2: There exists a sufficiently large n0 such that ‖Q(t) −Q∞‖L2 ≤ β1 and |Eµ(Q(t)) −

Eµ(Q∗)| ≤ β2 for all t ≥ tn0
(β1, β2 given in Lemma 5).

Since Q(tn) → Q∞ strongly in L
2 and E(u(tn), Q(tn)) ց E∞ = Eµ(Q∞) in R (see (27)),

then for any δ ∈ (0, β1), there exists an integer N(δ) such that, for all n ≥ N(δ),

‖Q(tn) −Q∞‖L2 ≤ δ and
1

θ
(Eµ(Q(tn)) − E∞)θ ≤ δ. (35)
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For each n ≥ N(δ), we define

tn := sup{t : t > tn, ‖Q(s) −Q∞‖L2 < β1 ∀s ∈ [tn, t)}.

It suffices to prove that tn0
= +∞ for some n0. Assume by contradiction that tn < tn < +∞

for all n, hence ‖Q(tn) − Q∞‖L2 = β1 and ‖Q(t) − Q∞‖L2 < β1 for all t ∈ [tn, tn). By

applying Step 1 for all t ∈ [tn, tn], from (31) and (35) we obtain,

∫ tn

tn

‖∂tQ‖H−1 ≤ Cδ, ∀n ≥ N(δ).

Therefore,

‖Q(tn) −Q∞‖H−1 ≤ ‖Q(tn) −Q∞‖H−1 +

∫ tn

tn

‖∂tQ‖H−1 ≤ (1 + C)δ,

which implies that limn→+∞ ‖Q(tn) −Q∞‖H−1 = 0.

On the other hand, Q(tn) is bounded in H
1. Indeed, from (27), Ẽ(u(tn), Q(tn)) is bounded

in R, therefore in particular
∫

Ω

Eµ(Q(tn)) dx =

∫ (ε
2
|∇Q(tn)|2 + Fµ(Q(tn))

)
dx

is bounded. But, since Fµ(Q) is bounded in L∞(L1), then ∇Q(tn) is bounded in L
2(Ω),

therefore Q(tn) is bounded in H
1.

Consequently, Q(tn) is relatively compact in L
2, hence there exists a subsequence of Q(tn),

which is still denoted as Q(tn), that converges to Q∞ in L
2-strong. Hence ‖Q(tn)−Q∞‖L2 <

β1 for a sufficiently large n, which contradicts the definition of tn.

Step 3: There exists a unique Q∞ such that Q(t) → Q∞ weakly in H
1 as t ↑ +∞.

By using Steps 1 and 2, (31) can be applied, for all t1, t0 : t1 > t0 ≥ tn0
, hence

‖Q(t1) −Q(t0)‖H−1 ≤

∫ t1

t0

‖∂tQ‖H−1 → 0, as t0, t1 → +∞.

Therefore, (Q(t))t≥tn0
is a Cauchy sequence in H

−1 as t ↑ +∞, hence, there exists a unique

Q∞ ∈ H
−1 such that Q(t) → Q∞ in H

−1 as t ↑ +∞. Finally, the convergence in H
1-weak

by sequences of Q(t) proved in Theorem 4, yields to Q(t) → Q∞ in H
1-weak, and the proof

is finished.
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