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Abstract

In this paper new div-curl results are derived. For any open set Ω of R
N , N � 2, we study the limit of the product vn · wn

where the sequences vn and wn are respectively bounded in Lp(Ω)N and Lq(Ω)N , while divvn and curlwn are compact in some
Sobolev spaces, under the condition 1 � 1

p + 1
q � 1 + 1

N
. Our approach is based on a suitable decomposition of the functions vn

and wn, combined with the concentration compactness of P.-L. Lions and a recent result of H. Brezis and J. Van Schaftingen. As a
consequence we obtain a new result of G-convergence for unbounded monotone operators of N -Laplacian type.
© 2009 Elsevier Masson SAS. All rights reserved.

Résumé

Dans cet article, on obtient de nouveaux résultats de type div-rot. Pour tout ouvert Ω de R
N , on étudie la limite du produit vn ·wn

où les suites vn et wn sont respectivement bornées dans Lp(Ω)N et Lq(Ω)N , alors que divvn et curlwn sont compactes dans
des espaces de Sobolev, sous la condition 1 � 1

p + 1
q � 1 + 1

N
. L’approche utilisée repose sur une décomposition convenable des

functions vn et wn, combinée avec la concentration-compacité de P.-L. Lions et un résultat récent de H. Brezis et J. Van Schaftingen.
Comme corollaire on déduit un nouveau résultat de G-convergence pour des opérateurs monotones non bornés de type N -laplacien.
© 2009 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The div-curl lemma is the emblematic result of the compensated compactness theory established by F. Murat and
L. Tartar in the end of the seventies (see [28–30,33–36]). The most classical version states that if Ω is an open set
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of R
N , and vn, wn are two sequences which weakly converge in L2(Ω)N and such that divvn, curlwn are respectively

compact in H−1(Ω) and H−1(Ω)N×N , then we have,

lim
n→∞vn · wn =

(
lim

n→∞vn
)

·
(

lim
n→∞wn

)
in D′(Ω), (1)

i.e. in the sense of distributions on Ω . The proof of this result was carried out using Fourier’s transform. Taking into
account representation results for functions with divergence or curl sufficiently smooth, this result was generalized to
the case where vn and wn converge respectively weakly in Lp(Ω)N and Lp′

(Ω)N×N , for p ∈ (1,∞) with conjugate
exponent p′, while divvn and curlwn are respectively compact in W−1,p(Ω) and W−1,p′

(Ω)N×N .
In the three last decades (as alluded to in our title, see also [15]), the div-curl lemma has become an essential tool

in the theory of partial differential equations. Between its main applications let us mention the following ones:

– Homogenization theory: The div-curl lemma is used to prove the compactness in the sense of the homogenization
(H - or G-convergence) of sequences of monotone operators of the type u �→ diva(·,∇u), which are uniformly
elliptic and bounded in the space W 1,p(Ω) (see e.g. [8,13,17,27,32,35,36]).

– Conservation laws: Using Young’s measures the div-curl lemma permits to obtain an entropy solution for the
scalar one-dimensional hyperbolic equations of Burger’s type and for the one-dimensional hyperbolic systems of
nonlinear elasticity as the limit of a sequence of solutions of parabolic problems (see [14,33]).

– Nonlinear elasticity: The existence of solutions of nonlinear elasticity problems with polyconvex energies
(see [1]) is based on the following ingredient (see [24,31]): For a sequence vn which weakly converges to a
function v in W 1,N (Ω)N , the determinant of any minor of the Jacobian matrix Dvn converges in the sense of
distributions to the determinant of the corresponding minor of Dv. This result can be deduced from the div-curl
lemma observing that for any vector-valued function v ∈ L1(Ω)N , the rows of the Jacobian matrix Dv and its
cofactors matrix are respectively curl free and divergence free.

In the classical div-curl lemma, the boundedness of vn in Lp(Ω)N and of wn in Lp′
(Ω)N ensure that the prod-

uct vn · wn is well defined as a function in L1(Ω). Hence, the limit which appears in (1) holds actually in the
weak-∗ topology of measures sense on Ω . Moreover, it was proved in [9] that if v ∈ Lp(RN)N is divergence free
and w ∈ Lp′

(RN)N is curl free, then v · w belongs to the Hardy space H1(RN). Therefore, it is not difficult to check
that the product vn · wn in (1) can be split (at least locally) as the sum of a compact sequence in L1(Ω) and of a
bounded sequence in H1(Ω).

On the other hand, several results show that the weak continuity of v �→ detDv in Sobolev spaces still holds under
assumptions which are less restrictive than the weak convergence in W 1,N (Ω). For example, it is enough to assume
the weak convergence in W 1,p(Ω)N , with p > N2/(N +1) (when p = N2/(N +1) the continuity is false in general).
In this case the determinant of Dv cannot be defined as a function in L1(Ω), but has to be defined as a distribution
on Ω by considering a weak notion of determinant. We refer to [2,7,10,11,16,19,25,26], for different results about the
weak continuity of the Jacobians.

In the present paper we prove some new versions of the div-curl lemma where the sequence vn · wn of (1) is not
well defined in L1(Ω)N but only as a distribution on Ω (and more precisely as the distributional divergence of a
sequence in L1(Ω)N ).

In Section 2 we consider the case where vn weakly converges to v in Lp(Ω)N and wn weakly converges to w in
Lq(Ω)N , with

1 < p,q < ∞ and 1 � 1

p
+ 1

q
� 1 + 1

N
. (2)

Assuming that divvn and curlwn are respectively compact in W−1,q ′
(Ω) and W−1,p′

(Ω)N
2
, where p′ and q ′ are

the conjugate exponents of p and q , we get that the div-curl lemma still holds if the last inequality of (2) is strict.
Otherwise, i.e. when 1

p
+ 1

q
= 1 + 1

N
, using the concentration compactness theory of P.-L. Lions [23], we obtain that

vn · wn ⇀ v · w + div

(∑
rkδxk

)
in D′(Ω), (3)
k�1
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where xk is a sequence in Ω and rk a sequence in R
N . A sufficient condition to recover the usual conclusion, i.e. rk = 0

for any k, is that the limits μ and ν in the weak-∗ topology of measures of respectively |vn − v|p and |wn − w|q ,
satisfy the condition

∀x ∈ Ω, μ
({x})ν({x}) = 0. (4)

An interesting example where 1
p

+ 1
q

= 1+ 1
N

in (2) is given by the convergence of detDvn, when vn weakly converges

in W 1,N2/(N+1)(Ω)N . Indeed, in this case the Jacobian matrix Dvn weakly converges in LN2/(N+1)(Ω)N×N , while
the cofactors matrix of Dvn is bounded in LN2/(N2−1)(Ω)N×N , with

N + 1

N2
+ N2 − 1

N2
= 1 + 1

N
.

In Sections 3 and 4 we extend the results of Section 2 to the two cases p = 1, q = N and p = N , q = 1. These
results are the most delicate and are partly based on the representation obtained recently by H. Brezis and J. Van
Schaftingen [4], of a divergence free function in L1(Ω)N as the Laplacian of a function in W 1,N ′

(Ω)N .
Finally, Section 5 is devoted to the application of the div-curl result in the case p = 1, q = N , to the homogenization

of monotone operators of N -Laplacian type in W 1,N (Ω), the coefficients of which are just bounded in L1(Ω). We
prove that the G-limit of local operators is still local in this case. Related results for two-dimensional linear operators,
with p = q = 2, can be found in [5] with a similar div-curl approach, and in [6] with a different approach under
the sole equicoercivity assumption. Contrary to [6] and to the case p = 1, q = N , the situation is quite different in
dimension three, when p = 1 and q � 2. We refer to [3] where suitable sequences of q-Laplacian type operators in
W 1,q(Ω), with 1 < q � 2, the coefficients of which are bounded in L1(Ω), induce nonlocal limit operators.

Notation. For any N -vector-valued field w = (w1, . . . ,wN), curlw denotes the N × N -matrix-valued field with
entries,

(curlw)ij := ∂wi

∂xj

− ∂wj

∂xi

, for i, j = 1, . . . ,N.

2. The case p,q > 1

Let us first recall the classical div-curl lemma due to F. Murat and L. Tartar [28]:

Theorem 2.1 (Murat–Tartar [28]). Let Ω be an open set of R
N , N � 2. Let p ∈ (1,∞) with the conjugate exponent p′.

Consider two sequences vn in Lp(Ω)N and wn in Lp′
(Ω)N , which satisfy the following conditions:{

vn ⇀ v weakly in Lp(Ω)N,

wn ⇀ w weakly in Lp′
(Ω)N,

(5)

{
divvn → divv strongly in W−1,p(Ω),

curlwn → curlw strongly in W−1,p′
(Ω)N×N.

(6)

Then, we have the convergence

vn · wn ⇀ v · w in D′(Ω). (7)

Remark 2.2. The original statement of Theorem 2.1 (i.e. Théorème 2 of [28]) assumes that divvn is bounded in
Lp(Ω) and curlvn is bounded in Lp′

(Ω)N×N . We state Theorem 2.1 with the slightly more general assumption (6)
to make easier the comparison with Theorem 2.3.

The new div-curl result is given by the following result:

Theorem 2.3. Let Ω be an open set of R
N , N � 2. Let p,q ∈ (1,∞) such that

1 � 1 + 1 � 1 + 1
. (8)
p q N
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Consider two sequences vn in Lp(Ω)N and wn in Lq(Ω)N , which satisfy the following conditions:{
vn ⇀ v weakly in Lp(Ω)N,

wn ⇀ w weakly in Lq(Ω)N,
(9)

{ |vn − v|p ⇀ μ weakly-∗ in M(Ω),

|wn − w|q ⇀ ν weakly-∗ in M(Ω),
(10)

{
divvn → divv strongly in W−1,q ′

(Ω),

curlwn → curlw strongly in W−1,p′
(Ω)N×N.

(11)

Then, there exist a subsequence of n, still denoted by n, and two sequences xk in Ω and rk in R
N , such that

vn · wn ⇀ v · w +
∞∑

k=1

div
(
rkδxk

)
in D′(Ω), (12)

with

∀k � 1,
∣∣rk

∣∣ � cμ
({xk}) 1

p ν
({xk}) 1

q , (13)

where c > 0 is a constant which only depends on p,q .
Moreover, if

1 � 1

p
+ 1

q
< 1 + 1

N
, (14)

then rk = 0 for any k, and the whole sequence vn · wn converges to v · w.

Since the convergences hold in the sense of distributions in Ω , there is no loss of generality in assuming that Ω is
bounded and regular. From now on, we will make this assumption.

Remark 2.4. Since the exponents p,q are not conjugate, the product vn · wn in Theorem 2.3 is not necessarily well
defined. However, the following representation result shows that vn · wn and v · w are well defined in the sense of
distributions on Ω (see formula (19) below). In formula (12) above, vn · wn and v · w have to be understood in the
sense of (19).

Proposition 2.5. Let Ω be a regular bounded open set of R
N , N � 2. Under the assumptions of Theorem 2.3, the

sequences vn and wn admit the following representation in Ω :

vn = ∇yn + ξn and wn = ∇zn + ηn a.e. in Ω, (15)

where

div ξn = divηn = 0 in D′(Ω), (16){
yn → y strongly in W 1,q ′

(Ω),

zn ⇀ z weakly in W 1,q (Ω),
(17)

{
ξn ⇀ ξ weakly in Lp(Ω)N,

ηn → η strongly in L
p′
loc(Ω)N .

(18)

Then, we define the product vn · wn in the sense of distributions by:

vn · wn := ∇yn · ∇zn + ∇yn · ηn + div
(
znξ

n
) + ξn · ηn ∈ D′(Ω), (19)

and similarly for the product v · w.

Remark 2.6. The crucial part of Proposition 2.5 is the existence of the decomposition (15) satisfying (16)–(18), which
will be proved below. For the moment let us assume that such a decomposition exists. Then, the new definition (19)
agrees with the usual definition of vn · wn whenever, in addition to (9)–(11) and (15)–(18), vn ∈ Lq ′

(Ω)N (hence
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ξn ∈ Lq ′
(Ω)N ) or wn ∈ Lp′

(Ω)N (hence ∇zn ∈ Lp′
(Ω)N ). Indeed, this set of conditions implies that div(zn ξn) =

ξn · ∇zn in the sense of distributions.
On the other hand, if the conditions (15)–(18) hold, each term of the right-hand side of (19) is a well-defined

distribution on Ω . More precisely, the first and fourth terms of the right-hand side of (19) clearly belong to L1(Ω)

and L1
loc(Ω). The second one also belongs to L1

loc(Ω), since p′ � q by the first inequality of (8). The third one is the
divergence of a function in L1(Ω)N , since the Sobolev embedding implies that zn belongs to Lq∗

(Ω), with q∗ � p′
by the second inequality of (8).

Note that definition (19) is independent of the choice of the representatives (yn, ξ
n, zn, η

n) in (15), which satisfy
the set of conditions (16)–(18). Let us now check this independence. To this end, for given functions v ∈ Lp(Ω)N and
w ∈ Lq(Ω)N , let us consider (y, ξ, z, η) and (ŷ, ξ̂ , ẑ, η̂) satisfying (16)–(18), such that

v = ∇y + ξ = ∇ŷ + ξ̂ and w = ∇z + η = ∇ ẑ + η̂ in Ω.

Since ξ − ξ̂ = ∇(ŷ − y) is divergence free, the function ŷ − y is harmonic and thus regular in Ω . Hence, the function
ξ − ξ̂ is regular in Ω , and(∇ŷ · ∇z + ∇ŷ · η + div(zξ̂ ) + ξ̂ · η) − (∇y · ∇z + ∇y · η + div(zξ) + ξ · η)

= ∇(ŷ − y) · w + div
(
z(ξ̂ − ξ)

) + (ξ̂ − ξ) · η
= ∇(ŷ − y) · w + ∇z · (ξ̂ − ξ) + (ξ̂ − ξ) · η
= ∇(ŷ − y) · w + (ξ̂ − ξ) · w = 0.

Similarly, using that η − η̂ = ∇(ẑ − z) is divergence free, we get that

∇ŷ · ∇ ẑ + ∇ŷ · η̂ + div(ẑξ̂ ) + ξ̂ · η̂ = ∇ŷ · ∇z + ∇ŷ · η + div(zξ̂ ) + ξ̂ · η.

Therefore, combining the two previous inequalities we obtain that

∇ŷ · ∇ ẑ + ∇ŷ · η̂ + div(ẑ ξ̂ ) + ξ̂ · η̂ = ∇y · ∇z + ∇y · η + div(zξ) + ξ · η,

which implies that the new definition (19) of v ·w does not depend on the choice of the representatives (y, ξ, z, η) and
(ŷ, ξ̂ , ẑ, η̂) which satisfy (16)–(18).

Remark 2.7. Using Hölder inequality with (13) we easily get that for s := ( 1
p

+ 1
q
)−1,

∞∑
k=1

∣∣rk
∣∣s � cs

∞∑
k=1

μ
({

xk
}) s

p ν
({

xk
}) s

q � cs

( ∞∑
k=1

μ
({

xk
})) s

p
( ∞∑

k=1

ν
({

xk
})) s

q

� csμ(Ω)
s
p ν(Ω)

s
q ,

which implies that, since s � 1,

∞∑
k=1

∣∣rk
∣∣ �

( ∞∑
k=1

∣∣rk
∣∣s)

1
s

� cμ(Ω)
1
p ν(Ω)

1
q < ∞.

Hence, the series in (12) is a distribution on Ω .

A trivial consequence of Theorem 2.3 is the following corollary. An analogous result holds in the cases given by
Theorems 3.1 and 4.1 below.

Corollary 2.8. In addition to the assumptions of Theorem 2.3, assume that μ and ν satisfy the condition,

∀x ∈ Ω, μ
({x})ν({x}) = 0. (20)

Then, without extracting any subsequence we get:

vn · wn ⇀ v · w in D′(Ω). (21)
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Remark 2.9. The last part of Theorem 2.3 implies that the result (12) differs from the convergence (7) of Theorem 2.1
only when

1

p
+ 1

q
= 1 + 1

N
, (22)

which permits concentration effects as shown by Example 2.10 below. In particular, when in contrast q = p′, then (14)
holds and the classical div-curl Theorem 2.1 is a by-product of the last part of Theorem 2.3. In the sequel we will
focus on the case (22) which is the most original one.

The following example shows that the second term which appears in the limit of vn · wn given by (12) can be
different of zero.

Example 2.10. Let Ω := B(0,1) be the open unit ball of R
N , and let p,q ∈ (1,∞) satisfying (22). Consider

Φ ∈ C1
c (Ω)N and ψ ∈ C1

c (Ω) such that

div(Φ) = 0 in Ω and r0 :=
∫
Ω

ψΦ dx 
= 0. (23)

Let vn and wn be the vector-valued functions defined by:

vn(x) := n
N
p Φ(nx) and wn := ∇zn where zn(x) := n

N
q

−1
ψ(nx).

Since these sequences concentrate at the point 0 (with support in Ω/n), it is easy to check that vn weakly converges
to 0 in Lp(Ω)N , wn weakly converges to 0 in Lq(Ω)N , and

∣∣vn
∣∣p ⇀ μ :=

( ∫
Ω

|Φ|p dx

)
δ,

∣∣wn
∣∣q ⇀ ν :=

( ∫
Ω

|∇ψ |q dx

)
δ weakly-∗ in M(Ω),

where δ denotes the Dirac mass at 0, so that condition (20) is not satisfied. Moreover, using the free divergence of vn

and integrating by parts, we have for ϕ ∈ C∞
0 (Ω),∫

Ω

vn · wnϕ dx = −
∫
Ω

vn · ∇ϕzn dx = −nN

∫
Ω/n

Φ(nx) · ∇ϕ(x)ψ(nx)dx.

Making the change of variables x′ = nx in the last integral we get:∫
Ω

vn · wnϕ dx = −
∫
Ω

Φ(x′) · ∇ϕ(x′/n)ψ(x′) dx′ −→
n→∞ −

∫
Ω

Φ · ∇ϕ(0)ψ dx′.

Therefore, with the definition (23) of r0 we obtain the convergence,

vn · wn ⇀ div(r0δ) in D′(Ω),

which provides a non-trivial example of convergence (12) with a concentration effect.

Proof of Theorem 2.3. Using Proposition 2.5 and a partition of the unity composed by regular functions with compact
support in balls, we are led to the case where Ω is a ball.

First note that we have 1 < p < q ′ and 1 < q < p′ as a consequence of (22). Then, the weak and the strong
convergences of (17), (18) clearly imply that

∇yn · ∇zn + ∇yn · ηn + ξn · ηn ⇀ ∇y · ∇z + ∇y · η + ξ · η weakly in L1
loc(Ω). (24)

It remains to compute the limit of znξ
n in D′(Ω). We have to distinguish the two following cases:

– If the strict inequality (14) holds, then p′ < q∗ and the compact embedding of W 1,q(Ω) in Lp′
(Ω) implies that

znξ
n weakly converges to zξ in L1(Ω)N .
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– Otherwise, we have the equality (22) and p′ = q∗. Then, since the embedding of W 1,q (Ω) in Lp′
is no longer

compact, the finer analysis below is needed.

Now, assume that (22) holds, which implies that 1 < q < N and q∗ = p′. Then, by virtue of the second concen-
tration compactness Lemma 1.1 of [23], there exist a subsequence of n, still denoted by n, a Radon measure ν̃ on Ω ,
two sequences xk in Ω and (ck)k�1 in [0,∞), and c > 0 which only depends on q,N , such that⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∣∣∇(zn − z)
∣∣q ⇀ ν̃ weakly-∗ in M(Ω),

|zn − z|p′
⇀ λ′ :=

∞∑
k=1

ckδxk weakly-∗ in M(Ω),

with ∀k � 1, c
q/p′
k � cν̃

({
xk

})
.

(25)

Moreover, by (15) and the strong convergence (18) of ηn to η in Lq(Ω)N (q < p′),

ν̃ = lim
n→∞

∣∣∇(zn − z)
∣∣q = lim

n→∞
∣∣wn − w

∣∣q = ν,

which combined with (25) implies that

∀k � 1, c
q/p′
k � cν

({xk}). (26)

Analogously the strong convergence of ∇yn in Lp(Ω) (p < q ′) yields,

lim
n→∞

∣∣ξn − ξ
∣∣p = lim

n→∞
∣∣vn − v

∣∣p = μ weakly-∗ in M(Ω).

Then, by Lemma 2.11 below we have:

znξ
n ⇀ zξ + γ weakly-∗ in M(Ω)N,

with

∀B Borel set of Ω, |γ |(B) � μ(B)
1
p λ′(B)

1
p′ = μ(B)

1
p

( ∑
xk∈B

ck

) 1
p′

,

which combined with (26) shows that

γ =
∞∑

k=1

rkδxk , with ∀k � 1,
∣∣rk

∣∣ � c
1
q μ

({
xk

}) 1
p ν

({
xk

}) 1
q .

Taking into account the new formulation (15) of vn · wn and convergence (24), we thus obtain:

vn · wn ⇀ ∇y · ∇z + ∇y · η + ξ · η + div

(
zξ +

∞∑
k=1

rkδxk

)
= v · w +

∞∑
k=1

div
(
rkδxk

)
in D′(Ω),

which concludes the proof. �
Lemma 2.11. Let r ∈ (1,∞) with conjugate exponent r ′. Consider two sequences un in Lr

loc(Ω) and u′
n in Lr ′

loc(Ω),
such that

|un − u|r ⇀ λ and
∣∣u′

n − u′∣∣r ′
⇀ λ′ weakly-∗ in M(Ω). (27)

Then, up to a subsequence, we have the convergence,

unu
′
n ⇀ uu′ + γ weakly-∗ in M(Ω), (28)

where γ ∈ M(Ω) satisfies

∀B Borel set of Ω, |γ |(B) � λ(B)
1
r λ′(B)

1
r′ . (29)
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Proof. Up to extracting a subsequence we can assume the existence of a measure γ in M(Ω) such that the weak-∗
convergence (28) holds. Then consider the decomposition:

unu
′
n = (un − u)u′

n + u
(
u′

n − u′) + uu′ = uu′ + u
(
u′

n − u′) + u′(un − u) + (un − u)
(
u′

n − u′). (30)

Since the weak convergences of un in Lr(Ω) and u′
n in Lr ′

(Ω) imply that the second and the third terms of the right-
hand side of (30) tend to zero in L1

loc(Ω), we get that γ is the weak-∗ limit in M(Ω) of (un −u)(u′
n −u′). Therefore,

for any compact set K of Ω and for any ϕ ∈ C0
c (Ω), with ϕ � 1K (the characteristic function of K), we have:∣∣γ ∣∣(K) � lim sup

n→∞

∫
Ω

|un − u|∣∣u′
n − u′∣∣ϕ dx

� lim
n→∞

( ∫
Ω

|un − u|rϕ dx

) 1
r
( ∫

Ω

∣∣u′
n − u′∣∣r ′

ϕ dx

) 1
r′

=
( ∫

Ω

ϕ dλ

) 1
r
( ∫

Ω

ϕ dλ′
) 1

r′
.

Taking in the previous inequality ϕ decreasing to 1K , we get:

∀K compact set of Ω, |γ |(K) � λ(K)
1
r λ′(K)

1
r′ ,

which combined with the inner regularity of the Radon measure |γ |, implies the desired inequalities (29). �
Proof of Proposition 2.5. Since Ω is a regular bounded open set and q ′ ∈ (1,∞), the Laplacian operator � is an

isomorphism from W
1,q ′
0 (Ω) onto W−1,q ′

(Ω). The representation of vn then follows by taking yn := �−1(divvn)

and ξn := vn − ∇yn.
On the other hand, the representation of wn follows from Lemma 2.12 by taking zn := S1w

n, ηn := S2w
n, with

r := q and s := p′. �
Lemma 2.12. Let Ω be a regular bounded open set of R

N , N � 2.
For r, s > 1, define the space,

W := {
w ∈ Lr(Ω)N : curlw ∈ W−1,s(Ω)N×N

}
, (31)

endowed with the norm:

‖w‖W := ‖w‖Lr(Ω)N + ‖curlw‖W−1,s (Ω)N×N . (32)

Then, there exist two continuous linear operators S1 :W → W 1,r (Ω), S2 :W → Ls
loc(Ω)N , such that

∀w ∈ W, w = ∇(S1w) + S2w and div(S2w) = 0 in Ω. (33)

Moreover, there exists a compact linear operator T :W → L1(Ω)N×N , such that for any open set Ω ′ with Ω̄ ′ ⊂ Ω ,
we have:

∀w ∈ W, ‖S2w‖Ls(Ω ′) � c
(‖curlw‖W−1,s (Ω)N×N + ‖T w‖L1(Ω)N×N

)
, (34)

where c > 0 is a constant only depending on Ω,Ω ′.
For r = 1 and s > 1, define the space,

W := {
w ∈ M(Ω)N : curlw ∈ W−1,s(Ω)N×N

}
, (35)

endowed with the norm:

‖w‖W := ‖w‖M(Ω)N + ‖curlw‖W−1,s (Ω)N×N . (36)

Then, there exist two continuous linear operators S1 :W → BV loc(Ω), with S1(W ∩ L1(Ω)N) ⊂ W
1,1
loc (Ω),

S2 :W → Ls
loc(Ω)N , and a compact linear operator T :W → L1(Ω)N×N , such that the decomposition (33) holds

and such that for any open set Ω ′ with Ω̄ ′ ⊂ Ω , we have (34).
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Proof. Let us prove the cases r > 1 and r = 1 simultaneously. We define the pair (u, z) as the solution of the Stokes
problem (see [20] for a similar use of the Stokes problem)⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−�u + ∇z = w in Ω,

divu = 0 in Ω,

u = 0 on ∂Ω,

1

|Ω|
∫
Ω

zdx = 0.

(37)

We have (see e.g. Theorem 2 of [21], p. 67) (u, z) ∈ W 2,r (Ω)N × W 1,r (Ω) if r > 1, while (u, z) ∈ W 1,t (Ω)N ×
Lt(Ω), for any t ∈ (1,N ′), if r = 1. Note that in the last case the mapping w �→ u is compact due to the compact
embedding of M(Ω) into W−1,t (Ω), for any t ∈ (1,N ′).

Taking the curl in the first equation of (37), we get:

−�(curlu) = curlw in D′(Ω).

Therefore, by virtue of Proposition A.1 (see Appendix A), for any open set Ω ′ with Ω̄ ′ ⊂ Ω , there exists a constant
c > 0 such that

‖curlu‖
W 1,s (Ω ′)N3 � c

(‖curlw‖W−1,s (Ω)N×N + ‖curlu‖L1(Ω)N×N

)
. (38)

On the other hand, since u is divergence free, so is �u and we have:

�u = div(curlu) in D′(Ω), (39)

where the divergence is taken by rows. From (37), (38) and (39), we deduce the thesis by taking:

S1w := z, S2w := −�u and T w := curlu. (40)

For r > 1, note that T is compact since the mapping w ∈ W �→ curlu ∈ W 1,r (Ω)N×N is continuous and the
embedding of W 1,r (Ω) into L1(Ω) is compact.

For r = 1, the equality,

∇z = w + �u in D′(Ω),

with w ∈ M(Ω)N , and �u ∈ Ls
loc(Ω)N hence �u ∈ M(Ω ′)N for any open set Ω ′ such that Ω̄ ′ ⊂ Ω . This implies

that ∇z ∈ M(Ω)N and thus z ∈ BV loc(Ω). This argument also shows that z ∈ W
1,1
loc (Ω) if w ∈ L1(Ω)N . �

3. The case p = 1, q = N

Here, we consider the case p = 1, q = N . We have the following result:

Theorem 3.1. Let Ω be an open set of R
N , N � 2. Consider two sequences vn in M(Ω)N and wn in LN(Ω)N , which

satisfy the following conditions: {
vn ⇀ v weakly-∗ in M(Ω)N,

wn ⇀ w weakly in LN(Ω)N,
(41)

{∣∣vn − v
∣∣ ⇀ μ weakly-∗ in M(Ω),∣∣wn − w
∣∣N ⇀ ν weakly-∗ in M(Ω),

(42)

{
divvn → divv strongly in W−1,N ′

(Ω),

curlwn → curlw strongly in LN(Ω)N×N,
(43)

where N ′ denotes the conjugate exponent of N . Then, up to a subsequence, there exist two sequences xk in Ω and rk

in R
N , such that

vn · wn ⇀ v · w +
∞∑

div
(
rkδxk

)
in D′(Ω), (44)
k=1



M. Briane et al. / J. Math. Pures Appl. 91 (2009) 476–494 485
with

∀k � 1,
∣∣rk

∣∣ � cμ
({

xk
})

ν
({

xk
}) 1

N , (45)

where c is a constant which only depends on N .

Remark 3.2. As in Remark 2.6 the meaning of vn ·wn has to be specified in the present case. Assume that Ω is regular.
Then, an easy extension of Proposition 2.5 shows that the representation (15) of vn and wn still holds with (16) and
with the new convergences {

yn → y strongly in W 1,N ′
(Ω),

zn ⇀ z weakly in W 1,N (Ω),
(46)

{
ξn ⇀ ξ weakly-∗ in M(Ω)N,

ηn → η strongly in W
1,N
loc (Ω)N,

(47)

in place of (17) and (18). Moreover, by virtue of the representation Theorem 3.1 of [4] for divergence free functions in
L1(Ω)N and its extension to measures (see Proposition B.1 of Appendix B below), the measure ξn belongs actually
to W

−1,N ′
loc (Ω)N , which implies that ξn ·ηn and znξ

n are distributions on Ω (more precisely, each of their components
is the sum of a L1(Ω)-function and of a divergence of a L1(Ω)N -function). Therefore, the new formulation (19) of
vn · wn remains valid in this case.

Remark 3.3. The natural extension of the second convergence of (11) would be the compactness of curlwn in
W−1,∞(Ω)N×N . For the proof we need the compactness of curlwn in LN(Ω)N×N (see (43)) which is slightly more
restrictive. Moreover, the following example shows that we cannot replace the compactness of curlwn in LN(Ω)N×N

by its boundedness in this space (recall that LN(Ω)N×N is not compactly embedded in W−1,∞(Ω)N×N ).

Example 3.4. Let Ω := B(0,1) be the open unit ball of R
N . Let Φ be a divergence free function in C1

c (Ω), with∫
Ω

|Φ|dx = 1. Define the sequences vn and wn by:

vn(x) := nNΦ(nx) and wn(x) := Φ(nx), for x ∈ Ω.

Then, vn is divergence free and |vn| converges weakly-∗ to δ in M(Ω). Moreover, wn strongly converges to zero in
LN(Ω)N and curlwn is bounded in LN(Ω)N×N . Therefore, the conditions (41), (42) and the first convergence of (43)
hold true. However, we obtain,

vn · wn = nN |Φ|2(nx) ⇀

( ∫
Ω

|Φ|2 dx

)
δ weakly-∗ in M(Ω),

which contradicts the conclusion of Theorem 3.1. This is due to the following loss of compactness

∣∣curlwn
∣∣N ⇀

( ∫
Ω

∣∣curl(Φ)
∣∣N dx

)
δ weakly-∗ in M(Ω).

Note that condition (20) is also satisfied in this case.

Remark 3.5. Similarly to the last part of Theorem 2.3, the proof of Theorem 3.1 shows that (44) holds with rk = 0 for
any k � 1, if the sequence wn weakly converges to w in Lq(Ω)N and divvn strongly converges to divv in W−1,q ′

(Ω),
with q > N .

Proof of Theorem 3.1. In the formulation (19) of vn · wn, the sequences ∇yn · ∇zn and ∇yn · ηn weakly converge to
∇y · ∇z and ∇y · η in L1(Ω) thanks to the strong convergences of (46) and (47). Moreover, the weak convergence of
ξn to ξ in W

−1,N ′
loc (Ω)N (see Remark 3.2) combined with the strong convergence (47) of ηn in W

1,N
loc (Ω)N , implies

that ξn · ηn converges to ξ · η in D′(Ω).
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It remains to compute the limit of znξ
n in D′(Ω)N . To this end, we consider un as the renormalized solution of{−�un = ξn in Ω,

un = 0 on ∂Ω,
(48)

which, by Proposition B.1, belongs to W
1,N ′
loc (Ω)N . For any Φ ∈ C∞

c (Ω)N , we have:

lim
n→∞

〈
ξn, znΦ

〉 = lim
n→∞

∫
Ω

∇un : (∇zn ⊗ Φ)dx + lim
n→∞

∫
Ω

∇un : (zn∇Φ)dx. (49)

Using that zn strongly converges to z in LN(Ω), we can pass to the limit in the second term of the right-hand side
of (49). Therefore, a simple application of Lemma 2.11 shows that, up to a subsequence, we have:

lim
n→∞

〈
ξn, znΦ

〉 = lim
n→∞

∫
Ω

∇un : (∇zn ⊗ Φ)dx +
∫
Ω

∇u : (z∇Φ)dx = 〈ξ, zΦ〉 +
∫
Ω

Φdγ, (50)

where γ ∈ M(Ω) satisfies (29) with r = N and (using (15), (46) and (47)),

λ := ν = lim
n→∞

∣∣∇(zn − z)
∣∣N and λ′ := lim

n→∞
∣∣∇(un − u)

∣∣N ′
weakly-∗ in M(Ω). (51)

Let us now characterize λ′ in (51) and then γ in (50). First of all, the strong convergence of ∇(yn − y) to zero in
LN ′

(Ω)N implies that∣∣�(
un − u

)∣∣ = ∣∣ξn − ξ
∣∣ = ∣∣vn − v − ∇(yn − y)

∣∣ ⇀ μ weakly-∗ in M(Ω).

This combined with the estimate (54) of Lemma 3.6 below yields:

∀ϕ ∈ C∞
c (Ω),

( ∫
Ω

|ϕ|N ′
dλ′

) 1
N ′

� c

∫
Ω

|ϕ|dμ. (52)

Thanks to Lemma 1.2 of [23] we thus deduce from (52) that there exist two sequences xk in Ω and (ck)k�1 in [0,∞),
and a constant c > 0 which only depends on N , such that

λ′ =
∞∑

k=1

ckδxk with
∞∑

k=1

c
1/N ′
k δxk � cμ. (53)

Then, inequality (29) shows that γ satisfies:

∀B Borel set of Ω, |γ |(B) � ν(B)
1
N λ′(B)

1
N ′ = ν(B)

1
N

( ∑
xk∈B

ck

) 1
N ′

.

Therefore, there exists a sequence rk in R
N , such that

γ =
∞∑

k=1

rkδxk with ∀k � 1,
∣∣rk

∣∣ � cμ
({xk})ν({xk}) 1

N .

This combined with (50) implies that

div
(
znξ

n
)
⇀ div(zξ) +

∞∑
k=1

div
(
rkδxk

)
in D′(Ω).

The proof of Theorem 3.1 is done. �
Lemma 3.6. Let Ω be an open set of R

N , N � 2. Let un be a sequence which weakly converges to u in W
1,N ′
loc (Ω)N ,

and such that �un is divergence free and bounded in M(Ω)N . Then, we have the following estimate:

∀ϕ ∈ C∞
c (Ω), lim sup

n→∞

( ∫
Ω

|ϕ|N ′ ∣∣∇(
un − u

)∣∣N ′
dx

) 1
N ′

� c lim sup
n→∞

∫
Ω

|ϕ|d(∣∣�(
un − u

)∣∣), (54)

where c > 0 is a constant only depending on N .
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Proof. Let ϕ ∈ C∞
c (Ω). Taking a locally finite covering of Ω by balls, and a partition of the unity by functions

ψk ∈ C∞
c (RN) relating to this covering, we have:

( ∫
Ω

|ϕ|N ′ ∣∣∇(
un − u

)∣∣N ′
dx

) 1
N ′

=
( ∫

Ω

∣∣∣∣∣
∞∑

k=1

ϕψk

∣∣∇(
un − u

)∣∣∣∣∣∣∣
N ′

dx

) 1
N ′

�
∞∑

k=1

( ∫
Ω

|ϕψk|N ′ ∣∣∇(
un − u

)∣∣N ′
dx

) 1
N ′

, (55)

in which the series is actually a finite sum due to the compact support of ϕ in Ω . Thanks to estimate (55) combined
with the sub-additivity (for a finite sum of sequences) of lim sup and − lim inf, it is enough to prove estimate (54)
when Ω is a ball B and un belongs to W 1,N ′

(B)N .
Let ϕ ∈ C∞

c (B). First of all, by the Rellich compactness theorem we have:

∇(
ϕ
(
un − u

)) − ϕ∇(
un − u

) = (
un − u

) ⊗ ∇ϕ → 0 strongly in LN ′
(B)N×N,

hence ( ∫
B

|ϕ|N ′ ∣∣∇(
un − u

)∣∣N ′
dx

) 1
N ′

=
( ∫

B

∣∣∇(
ϕ
(
un − u

))∣∣N ′
dx

) 1
N ′

+ o(1). (56)

Since the sequence ∇ϕ ·�(un −u) is bounded in W−1,N ′
(B) and in M(B), it converges to zero weakly in W−1,N ′

(B)

and strongly in W−1,s(B), for any s ∈ [1,N ′). Hence, there exists a sequence gn converging to zero weakly in
LN ′

(B)N and strongly in Ls(B)N , for any s ∈ [1,N ′), such that

divgn = ∇ϕ · �(
un − u

)
in D′(B).

Then, define ζ n ∈ W
1,N ′
0 (B)N as the solution of the equation:

−�ζn = gn + 2∇(
un − u

)
(∇ϕ) + �ϕ

(
un − u

)
in D′(B)N .

The sequence ζ n weakly converges to zero in W 2,N ′
(B)N and thus strongly in W 1,N ′

(B)N . Moreover, noting that

�
(
ϕ
(
un − u

) + ζ n
) = ϕ�

(
un − u

) − gn,

is a divergence free measure in M(B)N , by virtue of Proposition B.1 (see Appendix B) there exists a constant c > 0
which only depends on N , such that∥∥∇(

ϕ
(
un − u

) + ζ n
)∥∥

LN ′
(B)N×N � c

∥∥�
(
ϕ
(
un − u

)) + �ζn
∥∥

M(B)N

= c
∥∥ϕ�

(
un − u

) − gn
∥∥

M(B)N
. (57)

Since ζ n strongly converges to zero in W 1,N ′
(B)N and gn strongly converges to zero in L1(B)N , we thus deduce

from estimate (57) that

lim sup
n→∞

∥∥∇(
ϕ
(
un − u

))∥∥
LN ′

(B)N×N � c lim sup
n→∞

∥∥ϕ�
(
un − u

)∥∥
M(B)N

,

which implies the estimate (54) with Ω = B . �
4. The case p = N , q = 1

In this section we consider the case p = N , q = 1. Analogously to Theorems 2.3 and 3.1 we have the following
result:

Theorem 4.1. Let Ω be an open set of R
N , N � 2. Consider two sequences vn in LN(Ω)N and wn in M(Ω)N , which

satisfy the following conditions:
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{
vn ⇀ v weakly in LN(Ω)N,

wn ⇀ w weakly-∗ in M(Ω)N,
(58)

{∣∣vn − v
∣∣N ⇀ μ weakly-∗ in M(Ω),∣∣wn − w
∣∣ ⇀ ν weakly-∗ in M(Ω),

(59)

{
divvn → divv strongly in LN(Ω),

curlwn → curlw strongly in W−1,N ′
(Ω)N×N.

(60)

Then, up to a subsequence, there exist two sequences xk in Ω and rk in R
N , such that

vn · wn ⇀ v · w +
∞∑

k=1

div
(
rkδxk

)
in D′(Ω), (61)

with

∀k � 1,
∣∣rk

∣∣ � cμ
({xk}) 1

N ν
({xk}), (62)

where c is a constant which only depends on N .

Remark 4.2. As in Theorems 2.3 and 3.1 the product vn · wn has to be defined in a new sense. By the regularity of
the solutions of the Laplacian operator and the second case of Lemma 2.12 the representation (15) of vn and wn still
holds with (16) and with the new convergences:{

yn → y strongly in W 2,N (Ω),

zn ⇀ z weakly-∗ in BV loc(Ω),
(63)

div ξn = 0 in D′(Ω) and

{
ξn ⇀ ξ weakly in LN(Ω)N,

ηn → η strongly in LN ′
loc(Ω)N,

(64)

in place of (17) and (18). Using that �yn = divvn in Ω , we then define the product vn · wn by:

vn · wn := div(zn∇yn) − zn divvn + ∇yn · ηn + div
(
znξ

n
) + ξn · ηn. (65)

Since zn belongs to LN ′
loc(Ω), it is easy to check that the right-hand side of (65) is well defined as a distribution on Ω ,

and coincides with the usual definition of vn · wn whenever, in addition to (58)–(60) and (63), (64), wn ∈ LN ′
(Ω)N

(hence ∇zn ∈ LN ′
(Ω)N ).

Remark 4.3. Observe that similarly to the assumptions made in Theorem 3.1 the sequence divvn is assumed to
strongly converge in LN(Ω) and not only in W−1,∞(Ω). This permits to define the product zn divvn.

Alternatively, assume that wn weakly converges to w in L1(Ω)N . Then, in Theorem 4.1 we can only assume
that divvn strongly converges in W−1,∞(Ω). Indeed, this implies the existence of a sequence gn which strongly
converges to g in L∞(Ω)N , so that divvn = divgn in Ω . Therefore, using the decomposition vn = gn + ξn, with ξn

being divergence free, combined with the decomposition (15) of wn, where now zn weakly converges in W 1,1(Ω),
we can define the product vn · wn by,

vn · wn := gn · ∇zn + gn · ηn + ξn · ηn + div
(
znξ

n
)
, (66)

and to obtain that vn · wn converges to v · w in the sense of distributions in Ω (see the proof of Theorem 4.1 below).

Remark 4.4. Similarly to the last part of Theorem 2.3 the proof of Theorem 4.1 shows that (61) holds with
rk = 0 for any k, if the sequence vn weakly converges to v in Lq(Ω)N and curlwn strongly converges to curlw
in W−1,q ′

(Ω)N×N , with q > N .

Proof of Theorem 4.1. The strong convergences of ∇yn in LN(Ω)N , divvn in LN(Ω), and ηn in LN ′
loc(Ω)N ,

combined with the weak convergences of zn in LN ′
loc(Ω) and ξn in LN(Ω)N , imply that

div(zn∇yn) − zn divvn + ∇yn · ηn + ξn · ηn ⇀ div(z∇y) − zdivv + ∇y · η + ξ · η in D′(Ω).
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So, similarly to the proofs of Theorems 2.3 and 3.1 the main difficulty is to pass to the limit in the product znξ
n. This

can be carried out as in the proof of Theorem 2.3 using Lemma 1.1 of [23] applied to functions in BV(Ω). �
5. Application to the G-convergence of monotone operators of N -Laplacian type with unbounded coefficients

Let Ω be a bounded domain of R
N , N � 2. For α > 0 and β ∈ L∞(Ω), with β � 1 a.e. in Ω , we consider the class

M(α,β;Ω) of the Carathéodory functions a : Ω × R
N → R

N (i.e. a(·, ξ) is measurable for any ξ ∈ R
N , and a(x, ·)

is continuous for a.e. x ∈ Ω) which satisfy the following conditions: for a.e. x ∈ Ω and for any ξ, η ∈ R
N ,⎧⎨

⎩
a(x,0) = 0,

M(x, ξ, η) := (
a(x, ξ) − a(x, η)

) · (ξ − η) � α|ξ − η|N,∣∣a(x, ξ) − a(x, η)
∣∣ � β(x)

1
N M(x, ξ, η)

1
2
(
a(x, ξ) · ξ + a(x, η) · η)N−2

2N .

(67)

Refinements in the definition of the class M(α,β;Ω) can be introduced (see Section 7 of [8]), but we restrict ourselves
to the class defined by (67) in order to focus on the applications of the div-curl result of Theorem 3.1.

Example 5.1. The model example of functions in the class M(α,β;Ω) is given by:

a(x, ξ) := ∣∣A(x)ξ
∣∣N−2

AT (x)A(x)ξ, for (x, ξ) ∈ Ω × R
N,

where A is a matrix-valued function in L∞(Ω)N×N which satisfies the equicoercivity assumption AT A � IN a.e.
in Ω . Then, conditions (67) are fulfilled with the function β := γ |A|N , and suitable constants α,γ which only depend
on N .

We have the following G-convergence result:

Theorem 5.2. Let α > 0 and let βn be a sequence in L∞(Ω) such that

βn � 1 a.e. in Ω and βn ⇀ β weakly-∗ in M(Ω), with β ∈ L∞(Ω). (68)

Consider a sequence an in M(α,βn;Ω). Then, there exist an operator a ∈ M(α,β;Ω) and a subsequence of n, still
denoted by n, such that for any f ∈ W−1,N ′

(Ω), the solution un of the equation,

un ∈ W
1,N
0 (Ω), −div

(
an(x,∇un)

) = f in D′(Ω), (69)

satisfies the convergences

un ⇀ u weakly in W
1,N
0 (Ω), an(x,∇un) ⇀ a(x,∇u) weakly-∗ in M(Ω)N, (70)

where u is the solution of Eq. (69) with a.

Remark 5.3. The key ingredient of the proof of the previous G-convergence result is the div-curl result of Theo-
rem 3.1. So, Theorem 5.2 can be extended without restriction to the vectorial case.

Remark 5.4. Theorem 5.2 extends the classical H -convergence of Murat–Tartar [27] to monotone operators with
(N − 1)-growth, which are only equibounded in L1. It also extends to any dimension N � 2 the recent two-
dimensional compactness result of [5], where the sequence βn is only assumed to converge weakly-∗ to a measure.
Here, for the sake of simplicity we assume that the weak-∗ limit of βn is a bounded function.

Since it is concerned with equicoercive and strictly monotone operators with (N − 1)-growth, Theorem 5.2 can be
also regarded as an extension of the classical results [8,13] (in these works the sequence βn is uniformly bounded from
above and below). Moreover, it also extends the degenerate case [12] (in this paper the degeneracy is controlled by a
sequence βn weakly converging in L1(Ω)). Here, the sequence βn is bounded from below by 1 but only converges in
the weak-∗ sense of the measures, hence βn is not necessarily equiintegrable.

Remark 5.5. The G-convergence result of Theorem 5.2 is false in general for sequences of monotone operators
satisfying (67) with N replaced by q , 1 < q < N . Indeed, for a particular sequence of q-Laplacian operators based on
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a three-dimensional fibers reinforcement, M. Bellieud and G. Bouchitté [3] proved that nonlocal effects (and thus a
lack of compactness in G-convergence) appear in the limit operator when 1 < q � 2. On the contrary, with the same
geometry but for q > 2 (including the case q = N = 3) they proved that the limit behavior does not exhibit nonlocal
effects.

This suggests that there exists a critical number qN � 1 such that a G-convergence compactness result of the type
of Theorem 5.2 holds for any q > qN , for sequences of monotone operators satisfying (67), with N replaced by q ,
and (68). More precisely, the compactness of two-dimensional diffusions energies derived in [6] (based on the uniform
convergence of the solutions of the linear equations (69)) and the nonlinear three-dimensional model of [3] show that
a possible candidate is qN = N − 1. However, Theorem 5.2 is restricted to the single case q = N , since its proof is
essentially based on the div-curl result of Theorem 3.1.

The proof of Theorem 5.2 relies on the following result:

Lemma 5.6. Let un and vn be two sequences which weakly converge to u and v in W
1,N
0 (Ω), such that

an(x,∇un) · ∇un bounded in L1(Ω), div
(
an(x,∇un)

)
compact in W−1,N ′

(Ω). (71)

Then, up to a subsequence, the following convergences hold:{
an(x,∇un) ⇀ σ weakly-∗ in M(Ω)N, with σ ∈ LN ′

(Ω)N,

an(x,∇un) · ∇vn ⇀ σ · ∇v in D′(Ω)N .
(72)

Proof. By virtue of the first and third properties of (67) and by the Hölder inequality we have:∣∣∣∣
∫
Ω

∣∣an(x,∇un)
∣∣dx

∣∣∣∣ �
( ∫

Ω

βn dx

) 1
N

( ∫
Ω

an(x,∇un) · ∇un dx

) 1
N ′

� c, (73)

and for any ϕ ∈ C0(Ω),∣∣∣∣
∫
Ω

an(x,∇un)ϕ dx

∣∣∣∣ �
( ∫

Ω

βn|ϕ|N dx

) 1
N

( ∫
Ω

an(x,∇un) · ∇un dx

) 1
N ′

� c

( ∫
Ω

βn|ϕ|N dx

) 1
N

. (74)

Then, by (73) the sequence an(x,∇un) is bounded in L1(Ω)N , and thus, up to a subsequence, converges to some σ

weakly-∗ in M(Ω)N . Moreover, passing to the limit in estimate (74) with ϕ ∈ C0(Ω), and using the weak conver-
gence (68) we get: ∣∣∣∣

∫
Ω

σϕ dx

∣∣∣∣ � c‖β‖
1
N

L∞(Ω)‖ϕ‖LN(Ω),

which implies that σ ∈ LN ′
(Ω)N .

Similarly, the sequence |an(x,∇un)| converges weakly-∗ in M(Ω) to a function of LN ′
(Ω). Hence, taking

vn := an(x,∇un) and wn := ∇vn, the assumptions of Theorem 3.1 hold with μ ∈ LN ′
(Ω) in the first convergence

of (42). This combined with (45) implies that rk = 0 for any k in convergence (44). Therefore, the second convergence
of (72) is an immediate consequence of Theorem 3.1. �
Proof of Theorem 5.2. We adapt the seminal proof of L. Tartar [32] owing to the div-curl Lemma 5.6. We also refer
to [8] for the general case of monotone operators (see also [13] for the strictly monotonicity case), and to [12] for a
degenerate case. However, for the reader convenience we recall the main steps of the proof by focusing on the role of
the new assumption (68) without specifying the details.

Let An :W 1,N
0 (Ω) → W−1,N ′

(Ω) be the invertible operator defined by Anu := −div(an(x,∇u)), and let

Bn := A−1
n be its inverse. Let D be a countable dense subset of W−1,N ′

(Ω). From the α-equicoercivity of (67)
combined with the equality a(x,0) = 0, we easily deduce that Bnf is bounded in W

1,N
0 (Ω) for any f ∈ D. Then,

using a diagonal extraction there exists a subsequence of n, still denoted by n, such that

∀f ∈ D, Bnf ⇀ Bf weakly in W
1,N

(Ω), (75)
0
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which defines an operator in the set D. Again by the α-equicoercivity we get:

∀f,g ∈ D, ‖Bnf − Bng‖
W

1,N
0 (Ω)

� α
1

1−N ‖f − g‖
1

N−1

W−1,N ′
(Ω)

. (76)

This estimate allows us to extend B to a continuous operator, still denoted by B , from W−1,N ′
(Ω) into W

1,N
0 (Ω),

and which satisfies the Hölder estimate (76) (as a consequence of the lower semicontinuity of the W
1,N
0 (Ω)-norm).

Let us now prove that B is strictly monotone. Let ϕ ∈ C∞
c (Ω), let f,g ∈ W−1,N ′

(Ω), and set un := Bnf ,
vn := Bng. By the third condition of (67) and the Hölder inequality we have (denoting by 〈·,·〉 the duality W−1,N ′

(Ω)-
W

1,N
0 (Ω))

〈f − g,ϕ〉 =
∫
Ω

(
a(x,∇un) − a(x,∇vn)

) · ∇ϕ dx

�
( ∫

Ω

βn|∇ϕ|N dx

) 1
N

( ∫
Ω

(
an(x,∇un) · ∇un + an(x,∇vn) · ∇vn

)
dx

)N−2
2N

×
( ∫

Ω

(
an(x,∇un) − an(x,∇vn)

) · (∇un − ∇vn) dx

) 1
2

.

Hence, passing to the limit in the previous estimate owing to convergence (68), then maximizing over ϕ with
‖ϕ‖

W
1,N
0 (Ω)

= 1, we get:

∀f,g ∈ W−1,N ′
(Ω), ‖f − g‖

W−1,N ′
(Ω)

� ‖β‖
1
N

L∞(Ω)

(〈f,Bf 〉 + 〈g,Bg〉)N−2
2N

(〈f − g,Bf − Bg〉) 1
2 , (77)

which yields the strict monotonicity of B as well as its coercivity (by taking g = 0),

∀f ∈ W−1,N ′
(Ω), 〈f,Bf 〉 � ‖β‖

1
1−N

L∞(Ω)‖f ‖N ′
W−1,N ′

(Ω)
. (78)

Thanks to the Minty–Browder Theorem (see e.g. Theorem 2.1, p. 171 of [22]), the continuity of B (as a consequence
of (76)), the strict monotonicity (77) and the coercivity (78) imply that B is invertible.

Let us now determine the limit operator of the sequence an. Let Σn :W−1,N ′ → LN ′
(Ω)N be the operator defined

by Σnf := an(x,∇(Bnf )). On the one hand, by the third condition of (67) and proceeding as for the operator B , we
get up to a new subsequence,

∀f ∈ W−1,N ′
(Ω),

⎧⎪⎨
⎪⎩

Σnf ⇀ Σf weakly-∗ in M(Ω)N,

Σf ∈ LN ′
(Ω)N,

‖Σf ‖
LN ′

(Ω)N
� ‖β‖

1
N

L∞(Ω)〈f,Bf 〉 1
N ′ .

(79)

On the other hand, proceeding as in [12] owing to the div-curl Lemma 5.6 applied to the second estimate of (67), and

using the lower semicontinuity (for the distributional convergence) of the mapping (p, q, r, s) �→ s − p
1
N q

N−2
2N r

1
2 , for

p,q, r � 0 and s in L1(Ω), we obtain the pointwise estimate:

∀f,g ∈ W−1,N ′
(Ω), a.e. in Ω,

|Σf − Σg| � β
1
N (Σf · ∇Bf + Σg · ∇Bg)

N−2
2N

[
(Σf − Σg) · (∇Bf − ∇Bg)

] 1
2 . (80)

Let (Ωk)k�1 be an exhaustive sequence of open sets such that

∀k � 1, Ω̄k ⊂ Ωk+1 ⊂ Ω̄k+1 ⊂ Ω and
⋃
k�1

Ωk = Ω,

and let (ψ)k�1 be a sequence of functions in C∞
c (Ω) such that ψk = 1 in Ωk , for any k � 1. Then, we define the limit

operator a by

a(x, ξ) := (
Σ ◦ B−1)(ψk(x)ξ · x)

, a.e. x ∈ Ωk, k � 1, ∀ξ ∈ R
N. (81)
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Thanks to (80) the operator a is well defined in Ω × R
N and is a Carathéodory function. Moreover, passing to the

limit owing to the div-curl Lemma 5.6 in the inequality,(
an(x,∇Bnf ) − an(x,∇vn)

) · (∇Bnf − ∇vn) � 0, for f ∈ W−1,N ′
(Ω),

owing to suitable sequences vn, and using the Minty trick (see e.g. [13] for details), we obtain the equality
Σf = a(x,∇Bf ). Therefore, the second convergence of (70) is a straightforward consequence of (79).

Finally, the two estimates of (67) applied to suitable sequences of gradients locally converging to ξ, η ∈ R
N in Ω ,

combined with the div-curl Lemma 5.6, yield the estimates of (67) with the limit β . This shows that the limit operator a

belongs to the class M(α,β;Ω), and concludes the proof. �
Appendix A. A Calderon–Zygmund type estimate

We have the following result:

Proposition A.1. Let r ∈ (1,∞), and let Ω,Ω ′ be two bounded open sets of R
N , N � 2, with Ω̄ ′ ⊂ Ω . Then, there

exists a constant c > 0, such that for any u ∈ L1(Ω) and any f ∈ W−1,r (Ω) solving �u = f in D′(Ω), we have
u ∈ W 1,r (Ω ′), and

‖u‖W 1,r (Ω ′)N � c
(‖u‖L1(Ω) + ‖f ‖W−1,r (Ω)

)
. (A.1)

Proof. Let Ω be a bounded open set of R
N , and let f ∈ W−1,r (Ω). There exists F ∈ Lr(Ω)N such that

divF = f in D′(Ω), with ‖F‖Lr(Ω)N = ‖f ‖W−1,r (Ω).

The function F is extended by zero outside Ω . By the Calderon–Zygmund inequality (see e.g. Theorem 9.9 and
Lemma 7.12 of [18]) the (vector-valued) Newtonian potential W of F satisfies:

�W = F a.e. in Ω, with ‖W‖W 2,r (Ω) � C‖F‖Lr(Ω)N = C‖f ‖W−1,r (Ω),

where the constant C only depends on N,r . Hence, the function w := divW is solution of

�w = f in D′(Ω), with ‖w‖W 1,r (Ω)N � C′‖f ‖W−1,r (Ω), (A.2)

where the constant C only depends on N,r,Ω .
On the other hand, consider u ∈ L1(Ω) such that �u = f in D′(Ω). Let Ω ′ be an open set such that Ω̄ ′ ⊂ Ω , and

set δ := dist(Ω ′, ∂Ω)/2, so that B(x,2δ) ⊂ Ω for any x ∈ Ω ′. The function u − w being harmonic in Ω , the mean
value property applied to its gradient (which is also harmonic) and the divergence theorem yield for a.e. x ∈ Ω ′ and
any r ∈ (δ,2δ),

∣∣∇(u − w)(x)
∣∣ =

∣∣∣∣ 1

υNrN

∫
{|y−x|=r}

(u − w)ν ds(y)

∣∣∣∣ � 1

υNrN

∫
{|y−x|=r}

|u − w|ds(y),

where υN denotes the volume of the unit ball of R
N , and ν the outer normal to the sphere {|y − x| = r}. Hence,

integrating the previous inequality with respect to r ∈ (δ,2δ), we get for a.e. x ∈ Ω ′,
∣∣∇(u − w)(x)

∣∣ � 1

υNδN+1

∫
{δ<|y−x|<2δ}

|u − w|dy � 1

υNδN+1

∫
Ω

|u − w|dy.

Therefore, we obtain the estimate,

‖∇u − ∇w‖Lr(Ω ′)N � c‖u − w‖L1(Ω),

where the constant c only depends on N,r,Ω,Ω ′. This combined with (A.2) gives the desired estimate (A.1). �
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Appendix B. A representation result for divergence free measures

We have the following result:

Proposition B.1. Let B be a ball of R
N . Then, for any divergence free measure μ in M(B)N , there exists

u ∈ W
1,N ′
0 (B)N such that

�u = μ in D′(B), with ‖∇u‖
LN ′

(B)N×N � c‖μ‖M(B)N , (B.1)

where the constant c only depends on N .

Proof. Let B ′ be a ball such that B̄ ′ ⊂ B , and consider a sequence (ρk)k�1 of nonnegative mollifiers in C∞
c (RN),

with
∫

RN ρk dx = 1 for any k � 1. Extending the measure μ by zero outside B , the convolution ρk ∗ μ defines a
function in C∞(RN), which is divergence free in B ′ (for k large enough) and converges to μ weakly-∗ in M(RN).

On the one hand, by Theorem 3.1 of [4] there exists uk ∈ W
1,N ′
0 (B ′) such that

�uk = ρk ∗ μ in D′(B ′), with
∥∥∇uk

∥∥
LN ′

(B ′)N×N � c‖ρk ∗ μ‖L1(B ′)N . (B.2)

It is easy to check that the estimate of (B.2) is invariant by translations and dilatations, so that the constant c only
depends on N . On the other hand, by the Fubini theorem we have,

‖ρk ∗ μ‖L1(B ′)N �
∫

RN

( ∫
RN

ρk(x − y)d|μ|(y)

)
dx =

∫
RN

( ∫
RN

ρk(x − y)dx

)
d|μ|(y)

= |μ|(RN
) = ‖μ‖M(B)N ,

which by (B.2) yields:

∀k � 1,
∥∥∇uk

∥∥
LN ′

(B ′)N×N � c‖μ‖M(B)N .

This combined with the lower semicontinuity of the LN ′
-norm thus implies that the sequence uk converges weakly in

W
1,N ′
0 (B ′)N to a function u′ satisfying,

�u′ = μ in D′(B ′), with ‖∇u′‖
LN ′

(B)N×N = ‖∇u′‖
LN ′

(B ′)N×N � c‖μ‖M(B)N .

Finally, considering an increasing sequence of balls Bn the union of which is B , the function un ∈ W
1,N ′
0 (Bn)

defined by:

�un = μ in D′(Bn), with
∥∥∇un

∥∥
LN ′

(B)N×N � c‖μ‖M(B)N ,

converges weakly in W
1,N ′
0 (B) to a function u which clearly satisfies (B.1). �
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