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Abstract. In this paper we study the asymptotic behavior of the solution of

an anisotropic, heterogeneous, linearized elasticity system in a thin cylinder (a

beam). The beam is fixed (homogeneous Dirichlet boundary condition) on the
whole of one of its extremities but only on several small fixing sets on the other

extremity; on the remainder of the boundary the Neumann boundary condition
holds. As far as the boundary conditions are concerned, the result depends on

the size and on the arrangement of the small fixing sets. In particular, we show

that it is equivalent to fix the beam at one of its extremities on 3 unaligned
small fixing sets or on 1 or 2 fixing set(s) of bigger size.

1. Introduction. The present paper is devoted to the study of the asymptotic
behavior of a thin beam Ωε of fixed length and of thickness ε, when ε tends to zero.
The deformation of the beam is assumed to be governed by the linear elasticity
system. This classical problem has been studied by many authors (see e.g. [10],
[12], [13], [14], [16]). The main novelty of the present paper is that in one of its
extremities, the beam is assumed to be fixed only on a finite number of small
sets of size εrε, where rε tends to zero with ε. To simplify, we assume that the
beam is completely fixed on the other extremity. On the rest of the boundary the
Neumann boundary condition holds, see Figure 1. Let us emphasize that neither
homogeneity nor isotropy or orthotropy is assumed on the elasticity tensor. However
due to its relevance, we devote a section to show how our results can be read in the
homogeneous and isotropic case.

The results presented in this paper where announced in [3] in the case where
only one small set is fixed. For the diffusion equation, a related problem has been
considered in [2] and [4] where instead of one bar, the structure is composed of
two or three bars of different lengths and thicknesses. Similarly, our results can
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be applied to the study of the asymptotic behavior of multistructures composed of
several bars of different thicknesses which are fixed on their bases. We refer to [1],
[6], [7], [8], [9], [11] for other results relative to the junction of beams or of beams
and plates.

As far as the results obtained in the present paper are concerned, we prove that
the asymptotic behavior of the deformation of the beam depends on the relative
size of the parameters rε and ε and also on the geometrical arrangement of the
small fixing sets. Indeed, if all the fixing sets are aligned, there exist 3 critical
regimes, namely rε ≈ ε3, rε ≈ ε, and rε ≈ ε1/3, and therefore 7 different regimes,
namely rε � ε3, rε ≈ ε3, ε3 � rε � ε, rε ≈ ε, ε � rε � ε1/3, rε ≈ ε1/3, and
ε1/3 � rε ≤ C, where we use the notation aε � bε to mean aε/bε → 0, and
aε ≈ bε to mean aε/bε → C with 0 < C < +∞. However in the case where at
least three small fixing sets are unaligned, there exist only two critical regimes,
namely rε ≈ ε3, and rε ≈ ε, and therefore only 5 different regimes, namely rε � ε3,
rε ≈ ε3, ε3 � rε � ε, rε ≈ ε, and ε � rε. Assuming that the beam is described
by Ωε = (0, 1) × εS, with S a bounded smooth domain of R2, we recall that the
results obtained in [13], [14] to describe the asymptotic behavior of an elastic beam
provide an asymptotic representation of the displacement Uε of the form

Uε1 (x) ∼ ζ1(x1)− dζ2
dy1

(x1)
x2

ε
− dζ3
dy1

(x1)
x3

ε
+ εv1(x1,

x2

ε
,
x3

ε
),

Uε2 (x) ∼ 1

ε
ζ2(x1) + c(x1)

x3

ε
+ εw2(x1,

x2

ε
,
x3

ε
),

Uε3 (x) ∼ 1

ε
ζ3(x1)− c(x1)

x2

ε
+ εw3(x1,

x2

ε
,
x3

ε
),

where the 6 functions ζ1, ζ2, ζ3,
dζ2
dy1

, dζ3dy1
, and c, which depend only on the longitu-

dinal variable x1, have traces at the extremities x1 = 0, and x1 = 1 of the beam,
while the functions v1, w2, w3 are only measurable in x1 and then do not have
traces at the extremities of the beam. If the small fixing sets are subsets of the ba-
sis {0}× εS, the number of these 6 functions which vanish at x1 = 0 increases with
rε after crossing each critical regime. When all the small fixing sets are aligned, our
results prove that it is necessary to have ε1/3 � rε in order to obtain that the 6
above mentioned functions vanish at x1 = 0, and therefore to obtain that the beam
behaves as if it is fixed on the whole basis {0} × εS. When the beam is fixed on
at least 3 unaligned sets, we just need to have ε � rε in order to obtain the same
result. That is, we show that it is equivalent to fix a beam on 3 small unaligned
sets or to fix it on 1 or 2 or even on a finite number of aligned sets of bigger size.

Our results not only provide a strong approximation of the displacement in L2

in all the different regimes, but also a strong approximation in L2 of the strain
tensor. This is a corrector result. In the non critical regimes this approximation
agrees with the corrector result given in [13], [14] when the thin beam is fixed only
on the whole basis {1}× εS. But in the critical regimes it is necessary to add some
boundary layer terms.

If we want to compare our results with the results obtained in diffusion (see [2],
[3]), we should recall that in this case there is only one critical regime, namely
rε ≈ ε. Moreover, the asymptotic behavior of the solution does not depend on the
number and arrangement of the small fixing sets.

As it usual when working with beams of small thickness ε, the proof of our results
uses the change of variables y1 = x1, y2 = x2/ε, y3 = x3/ε to transform the varying
domains Ωε = (0, 1) × εS into the fixed domain Ω = (0, 1) × S. This change of
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Figure 1. The thin beam Ωε and (in grey) the part Γε of its
boundary where it is fixed.

variables allows us to describe the behavior of the beam far away of the small fixing
sets. To study the behavior of the beam near the small fixing sets εyn+εrεS

n, where
for 1 ≤ n ≤ N , yn are points of {0} × S, and Sn are closed and bounded subsets
of R2, we need to use a different change of variables, namely z = (x − εyn)/(εrε),

which transforms the beam Ωε into the varying domain Zn,ε =
(

0, 1
εrε

)
× 1
rε

(
S−yn

)
,

which, as ε goes to zero, converges to the half space Z = (0,+∞)×R2. In the critical
regimes the limit equation describing the asymptotic behavior of the displacement
of the beam contains terms involving boundary conditions of Fourier type which
are obtained by solving elasticity problems in this half space.

Notation. We denote by {e1, e2, e3} the usual orthonormal basis of R3.
The elements of R3 are decomposed as x = (x1, x

′), with x1 ∈ R, x′ = (x2, x3) ∈
R2. We also denote by x′ a generic point of R3 whose first coordinate is zero.
Confusions are avoided by the context.

The ball of Rd, d = 2 or 3, of center x ∈ RN and radius R > 0 is denoted by
BN (x;R).

We denote by R3×3
s and R3×3

sk the space of 3× 3 symmetric and skew-symmetric
matrices respectively. We denote by L(R3×3

s ) the space of linear maps of R3×3
s into

itself.
For a given u ∈ H1(Θ)3, with Θ an open subset of R3, we denote by Du the

derivative of u, and by e(u) and sk(u) the symmetric and the skew-symmetric part
of Du respectively, namely

e(u) =
1

2

(
Du+DuT

)
, sk(u) =

1

2

(
Du−DuT

)
.

For a Lebesgue measurable subset O of Rd with positive measure and g ∈ L1(O),
we denote by

∫
O g dx the mean value of g on O, namely∫

O
g dx =

1

|O|

∫
g dx

where |O| is the d-dimensional Lebesgue measure of O.
We adopt Einsteins’s convention of sum of repeated indices. Greek indices (α

and β) take the values 2 and 3, while latin indices (i and j) take the values 1, 2 and
3.
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We denote by C a generic constant which can change from a line to another one,
and by Oε a generic sequence of real numbers, which can change from a line to
another one, and which tends to zero when ε tends to zero.

2. Setting of the problem and main result. For ε > 0, let rε be a positive
parameter which tends to zero as ε goes to zero. Let S be a bounded smooth domain
of R2, y1, · · · , yN be different points of {0}×S, with N a fixed positive integer, and
S1, · · · , SN be closed bounded sets of R2 such that the capacity in R3 of {0} × Sn,
n ∈ {1, · · · , N}, is strictly positive.

We define M by

M = 0 if N = 1, M = dim
(
Span{y2 − y1, · · · , yN − y1}

)
if N ≥ 2; (1)

this number M is the dimension of the affine subspace of R2 generated by the points
yn, n ∈ {1, . . . , N}; this dimension can be M = 0 (in the case where there is only
one point y1, and then N = 1), or M = 1 (in the case where N ≥ 2 and where all
the points yn, n ∈ {1, . . . , N}, are aligned), or M = 2 (in the case where N ≥ 3
and where at least three of the points yn, n ∈ {1, . . . , N}, are unaligned).

We consider the thin cylinder

Ωε = (0, 1)× εS ⊂ R3, (2)

and we denote

Γε = Γε0 ∪ Γε1, with Γε1 = {1} × εS, Γε0 =

N⋃
n=1

(
εyn + {0} × εrεSn

)
. (3)

The beam Ωε will be fixed (homogeneous Dirichlet boundary condition) on Γε (see
Figure 1).

Analogously, we denote

Ω = (0, 1)× S, Υ0 = {0} × S. (4)

We consider an elasticity tensor A ∈ C0(Ω;L(R3×3
s )) such that there exists m > 0

with

A(y)ξ : ξ ≥ m|ξ|2, ∀ξ ∈ R3×3
s , ∀y ∈ Ω, (5)

and we define Aε ∈ C0(Ωε;L(R3×3
s )) by

Aε(x) = A(x1,
x′

ε
), ∀x ∈ Ωε. (6)

We also consider “body forces”f ∈ L2(Ω)3 and h ∈ L2(Ω;R3×3
s ), and we define

F ε ∈ L2(Ωε)3 and Hε ∈ L2(Ωε;R3×3
s ) by

F ε(x) = f1(x1,
x′

ε
)e1 + εfα(x1,

x′

ε
)eα, Hε(x) = h(x1,

x′

ε
) a.e. x ∈ Ωε. (7)

In the thin domain Ωε we consider the elasticity problem
−divAεe(Uε) = F ε − divHε in Ωε,

(Aεe(Uε)−Hε)νε = 0 on ∂Ωε \ Γε,

uε = 0 on Γε,

(8)

where νε denotes the unit outward normal to Ωε. Setting

H1
Γε(Ω

ε) =
{
U ∈ H1(Ωε) : U = 0 on Γε

}
,
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this problem can be written in variational form as
Uε ∈ H1

Γε(Ω
ε)3,∫

Ωε
Aεe(Uε) : e(V )dx =

∫
Ωε
F εV dx+

∫
Ωε
Hε : e(V )dx, ∀V ∈ H1

Γε(Ω
ε)3.

(9)

It is well known (see e.g. [5], [15]) that problem (9) has a unique solution.
The aim of the present paper is to describe the asymptotic behavior of the solu-

tion Uε of (9) and to give a corrector result for e(Uε) as ε tends to zero. Observe
that Uε satisfies a non homogeneous Neumann boundary condition on ∂Ωε \ Γε,
which is the part of the boundary of the beam where the cylinder is not fixed.
Analogously to the body forces F ε we could have introduced explicit surface forces
Gε on ∂Ωε \Γε, but we have preferred not to include them for the sake of simplicity.

Remark 1. Hypothesis (7) asserts that F ε1 is of order 1 while F ε2 , F ε3 are of order
ε. Indeed, using the change of variables x1 = y1, x′ = εy′, one easily proves that
F ε and Hε satisfy∫

Ωε

(
|F ε1 |2 +

1

ε2
|F ε2 |2 +

1

ε2
|F ε3 |2

)
dx+

∫
Ωε

|Hε|2dx ≤ C, ∀ε > 0. (10)

Observe that thanks to the linearity of problem (9), if the assumption (7) is replaced
by

F ε(x) = ερ1f1(x1,
x′

ε
)e1 + εραfα(x1,

x′

ε
)eα, Hε(x) = εσh(x1,

x′

ε
) a.e. x ∈ Ωε,

for some given ρ1, ρ2, ρ3, σ ∈ R, our results continue to hold for some renormaliza-
tion ετUε of Uε.

In order to state the homogenization result for (8), we need the following defini-
tions.

We set

D = BNb(Ω)×Rb(Ω)×RD⊥2 (Ω), (11)

where the subscript b stands for the Dirichlet condition on the basis {1} × S, and
where the spaces BNb(Ω) (Bernouilli-Navier displacements), Rb(Ω) (rotation dis-
placements), and RD⊥2 (Ω) (orthogonal of the rigid displacements), see [8], [9], [13],
[14], are defined by

BNb(Ω) =
{
u : ∃ζ1 ∈ H1(0, 1), ζ1(1) = 0,

∃ζα ∈ H2(0, 1), ζα(1) =
dζα
dy1

(1) = 0, ∀α ∈ {2, 3},

u1(y) = ζ1(y1)− dζα
dy1

(y1)yα, uα(y) = ζα(y1), ∀α ∈ {2, 3}
}
,

Rb(Ω) =
{
v : v1 ∈ L2(0, 1;H1(S)),

∫
S

v1(y1, y
′)dy′ = 0 a.e. y1 ∈ (0, 1),

∃c ∈ H1(0, 1), c(1) = 0, v2(y) = c(y1)y3, v3(y) = −c(y1)y2

}
,

RD⊥2 (Ω) =
{
w : w1 = 0, wα ∈ L2(0, 1;H1(S)),∫

S

(−y3w2(y1, y
′) + y2w3(y1, y

′)) dy′ = 0,∫
S

wα(y1, y
′)dy′ = 0 a.e. y1 ∈ (0, 1), ∀α ∈ {2, 3}

}
.
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The spaces BNb(Ω), Rb(Ω), RD⊥2 (Ω), and D are Hilbert spaces (see e.g. [14]) for
the norms defined by

‖u‖2BNb(Ω) = ‖e11(u)‖2L2(Ω), ‖v‖2Rb(Ω) =

3∑
α=2

‖e1α(v)‖2L2(Ω),

‖w‖2
RD⊥2 (Ω)

=
∑3
α,β=2 ‖eαβ(w)‖2L2(Ω),

‖(u, v, w)‖2D = ‖u‖2BNb(Ω) + ‖v‖2Rb(Ω) + ‖w‖2RD⊥2 (Ω). (12)

Observe that for (u, v, w) in D, only u and v′ have traces on Υ0, which are given
by

u|Υ0
(y) =

(
ζ1(0)− dζα

dy1
(0)yα, ζ2(0), ζ3(0)

)
, v′|Υ0

(y) = (c(0)y3,−c(0)y2) , ∀y ∈ Υ0.

For every (u, v, w) in D, we set

(u, v′)0 = (u|Υ0
, v′|Υ0

), (13)

and we denote by (BNb(Ω)×Rb(Ω))0 the space of traces on Υ0

(BNb(Ω)×Rb(Ω))0 = {(u, v′)0 : (u, v) ∈ BNb(Ω)×Rb(Ω)} . (14)

Since the components of (u, v′)0 are polynomials of degree at most one, the dimen-
sion of the space (BNb(Ω)×Rb(Ω))0 is finite (and more precisely is 6).

Remark 2. Throughout this paper, we systematically associate every (u, v, w) ∈
D with the corresponding functions ζi, i ∈ {1, 2, 3}, and c which appear in the
definitions of BNb(Ω) and Rb(Ω). By means of these functions ζi, i ∈ {1, 2, 3},
and c, we will also associate every (u, v, w) ∈ D with a skew-symmetric matrix Q
defined by

Q1α = −Qα1 = −dζαdy1 (0), ∀α ∈ {2, 3}, Q23 = −Q32 = c(0),

Qii = 0, ∀i ∈ {1, . . . , N}.
(15)

Remark 3. In [13] and [14], the asymptotic behavior of the solution Uε of a
variational problem analogous to (9) but where Γε = Γε1 or Γε = ({0}×εS)∪Γε1 was
considered. In this setting, passing to the limit in (9) leads to a variational problem
posed on the space D whose solution (û, v̂, ŵ) is such that uε − (û + εv̂ + ε2ŵ)
converges to zero in the strong topology of some W 1,p(Ω)3 (actually this strong
convergence holds in H1(Ω)3 under some additional regularity hypotheses on v̂ and
ŵ).

For u ∈ H1(Ω) we denote by eε(u) the second order symmetric tensor given by

eε11(u) = e11(u), eε1β(u) =
1

ε
e1β(u), eεαβ(u) =

1

ε2
eαβ(u), ∀α, β ∈ {2, 3}, (16)

and for (u, v, w) ∈ D we denote by E(u, v, w) the second order symmetric tensor

E11(u, v, w) = e11(u), E1β(u, v, w) = e1β(v),

Eαβ(u, v, w) = eαβ(w), ∀α, β ∈ {2, 3}. (17)

We denote by Z the half-space of R3

Z = (0,+∞)× R2, (18)

and by D1,2(Z) the Deny space

D1,2(Z) =
{
ψ : ψ ∈ L6(Z), ∇ψ ∈ L2(Z)3

}
. (19)
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Thanks to Korn’s and Sobolev’s inequalities the space D1,2(Z)3 is a Hilbert space
for the norm defined by

‖ψ‖2D1,2(Z)3 = ‖e(ψ)‖2L2(Z)3×3 . (20)

We are now in a position to state the main result of this paper, which describes
the asymptotic behavior of the solution Uε of problem (9) and its corrector.

The problem satisfied by the limit of Uε and the corrector of Uε always have
the same structure (see formulas (21), (22) and (23)), but their exact forms depend
on the asymptotic behavior of rε (with 3 critical regimes, namely rε ≈ ε3, rε ≈ ε,
and rε ≈ ε1/3, and therefore 7 different regimes), and on the value of M defined
by (1), which can be M = 0, M = 1, or M = 2. There are therefore 7 × 3 = 21
different cases, which correspond to different spaces E , different bilinear forms B
and different boundary layers P ε in formulas (21) and (23).

The different spaces E , which are subspaces of the space D defined by (11), only
differ by the boundary conditions which are imposed on the traces of u and v′ on
Υ0. These boundary conditions are summarized in Table 1. Observe that in the 3
critical regimes the definition of each space E coincides with the definition of the
space E in the non critical regime which immediately precedes it, which means that
there are only 4× 3 = 12 different definitions of the space E . The different bilinear
forms B and boundary layers P ε are non trivial only in the 3 critical regimes rε ≈ ε3,
rε ≈ ε, and rε ≈ ε1/3; in those regimes they coincide for M = 0 and M = 1, which
means that there are only 3× 2 = 6 non trivial different cases for the definitions of
B and P ε. The corresponding results are summarized in Table 2.

The precise statements of all the cases are presented in the following theorem in
three sections:

– Section (i) is concerned with the 4 regimes rε � ε3, rε ≈ ε3, ε3 � rε � ε,
and rε ≈ ε, for which the spaces E , the bilinear forms B and the boundary
layers P ε do not depend on the values M = 0, M = 1, and M = 2, once the
regime is given.

– Section (ii) is concerned with the 2 regimes ε � rε � ε1/3 and rε ≈ ε1/3,
where the spaces E differ according to the values of M , namely M = 0,
M = 1, and M = 2, and where the bilinear forms B and the boundary layers
P ε differ according to the values of M (M = 0 or 1, and M = 2) in the regime
rε ≈ ε1/3 (in the non critical regime ε � rε � ε1/3, one has, as said before,
B = 0 and P ε = 0).

– Section (iii) is concerned with the regime ε1/3 � rε ≤ C, where the space E
does not depend on the values M = 0, M = 1, and M = 2, and where one
has, as said before, B = 0 and P ε = 0.

Theorem 4. Let Uε, ε > 0, be the solution of problem (9). Then, there exist a
closed linear subspace E of D, a function P ε ∈ L2(Ωε;R3×3

s ), and a nonnegative
continuous bilinear form B defined on

(
BNb(Ω) × Rb(Ω)

)
0
×
(
BNb(Ω) × Rb(Ω)

)
0

such that, defining (û, v̂, ŵ) as the unique solution of the variational problem
(û, v̂, ŵ) ∈ E ,∫

Ω

AE(û, v̂, ŵ) : E(u, v, w)dy + B((û, v̂′)0, (u, v
′)0) =

∫
Ω

fudy

+

∫
Ω

h : E(u, v, w)dy, ∀(u, v, w) ∈ E ,

(21)
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we have

lim
ε→0

∫
Ωε

(
|Uε1 (x)− û1

(
x1,

x′

ε

)
|2 +

3∑
α=2

|εUεα(x)− ûα(x1)|2
)
dx = 0, (22)

lim
ε→0

∫
Ωε
|e(Uε)(x)− E(û, v̂, ŵ)

(
x1,

x′

ε

)
− P ε(x)|2dx = 0. (23)

The definitions of E, B and P ε do not depend on the functions f and h which
define F ε and Hε, but only on the fourth order tensor A, on the set S, on the points
yn, on the sets Sn, on the value of M , and on the behavior of rε when ε tends to
zero. We have the following situations.

Section (i): the 4 regimes rε � ε3, rε ≈ ε3, ε3 � rε � ε, and rε ≈ ε.

• If rε � ε3, then
E = D, (24)

B = 0, P ε = 0. (25)

• If rε ≈ ε3 with rε/ε
3 → κ, 0 < κ < +∞, we define the function ϕn,i, n ∈

{1, . . . , N}, i ∈ {1, 2, 3}, as the solution of
ϕn,i ∈ D1,2(Z)3, ϕn,i = ei on {0} × Sn,∫
Z

A(yn)e(ϕn,i) : e(η)dz = 0, ∀η ∈ D1,2(Z)3, η = 0 on {0} × Sn,
(26)

and the function pn(u,v′)0 , n ∈ {1, . . . , N}, by

pn(u,v′)0 = uα(0)ϕn,α, ∀(u, v′)0 ∈ (BNb(Ω)×Rb(Ω))0; (27)

then E is again given by (24), namely

E = D, (28)

while B and P ε are given by B((u, v′)0, (u, v
′)0) = κ

N∑
n=1

∫
Z

A(yn)e(pn(u,v′)0) : e(pn(u,v′)0)dz,

∀(u, v′)0, (u, v
′)0 ∈ (BNb(Ω)×Rb(Ω))0,

(29)

P ε(x) = − 1√
κ ε2rε

N∑
n=1

e(pn(û,v̂′)0)

(
x− εyn

εrε

)
, a.e. x ∈ Ωε. (30)

• If ε3 � rε � ε, then

E =
{

(u, v, w) ∈ D : u′|Υ0
= 0
}
, (31)

B = 0, P ε = 0. (32)

• If rε ≈ ε with rε/ε → λ, 0 < λ < +∞, we define the function qn(u,v′)0 , n ∈
{1, . . . , N}, by

qn(u,v′)0 = u1(yn)ϕn,1+
(
aα+vα(yn)

)
ϕn,α, ∀(u, v′)0 ∈ (BNb(Ω)×Rb(Ω))0, (33)

where ϕn,i, n ∈ {1, . . . , N}, i ∈ {1, 2, 3}, is defined by (26) and where aα =
aα((u, v′)0) ∈ R, α ∈ {2, 3}, is defined by

N∑
n=1

∫
Z

A(yn)e(qn(u,v′)0) : e(ϕn,α)dz = 0, α ∈ {2, 3}; (34)
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then E is again given by (31), namely

E =
{

(u, v, w) ∈ D : u′|Υ0
= 0
}
, (35)

while B and P ε are given by B((u, v′)0, (u, v
′)0) = λ

N∑
n=1

∫
Z

A(yn)e(qn(u,v′)0) : e(qn(u,v′)0)dz,

∀(u, v′)0, (u, v
′)0 ∈ (BNb(Ω)×Rb(Ω))0,

(36)

P ε(x) = − 1√
λ εrε

N∑
n=1

e(qn(û,v̂′)0)

(
x− εyn

εrε

)
, a.e. x ∈ Ωε. (37)

Section (ii): the 2 regimes ε� rε � ε1/3, and rε ≈ ε1/3.

• If ε� rε � ε1/3, then
E=
{

(u, v, w) ∈ D : u1(y1) = 0, u′|Υ0
= 0
}

if M = 0,

E=
{

(u, v, w) ∈ D : u1(yn) = 0, 1 ≤ n ≤ N, u′|Υ0
= v′|Υ0

= 0
}

if M = 1,

E=
{

(u, v, w) ∈ D : u|Υ0
= 0, v′|Υ0

= 0
}

if M = 2,

(38)

B = 0, P ε = 0. (39)

• If rε ≈ ε1/3 with rε/ε
1/3 → µ, 0 < µ < +∞, we define the function ψn,α,

n ∈ {1, . . . , N}, α ∈ {2, 3}, as the solution of
ψn,α ∈ D1,2(Z)3, ψn,α(z) = z1e

α − zαe1 on {0} × Sn,∫
Z

A(yn)e(ψn,α) : e(η)dz = 0, ∀η ∈ D1,2(Z)3, η = 0 on {0} × Sn,
(40)

and the function φn, n ∈ {1, . . . , N}, as the solution of
φn ∈ D1,2(Z)3, φn = z3e

2 − z2e
3 on {0} × Sn,∫

Z

A(yn)e(φn) : e(η)dz = 0, ∀η ∈ D1,2(Z)3, η = 0 on {0} × Sn;
(41)

finally we define the function tn(u,v′)0 , n ∈ {1, . . . , N}, by

tn(u,v′)0 = c(0)φn +
dζα
dy1

(0)ψn,α + bn,iϕn,i, ∀(u, v′)0 ∈ (BNb(Ω)×Rb(Ω))0, (42)

where ϕn,i, n ∈ {1, . . . , N}, i ∈ {1, 2, 3}, is defined by (26), and where bn,i =
bn,i((u, v′)0) ∈ R, n ∈ {1, . . . , N}, i ∈ {1, 2, 3}, is defined by∫

Z

A(yn)e(tn(u,v′)0) : e(ϕn,l)dz = 0, l ∈ {1, 2, 3}; (43)

then E is again given by (38), namely
E=
{

(u, v, w) ∈ D : u1(y1) = 0, u′|Υ0
= 0
}

if M = 0,

E=
{

(u, v, w) ∈ D : u1(yn) = 0, 1 ≤ n ≤ N, u′|Υ0
= v′|Υ0

= 0
}

if M = 1,

E=
{

(u, v, w) ∈ D : u|Υ0
= 0, v′|Υ0

= 0
}

if M = 2,

(44)
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while B and P ε are given by B((u, v′)0, (u, v
′)0) = µ3

N∑
n=1

∫
Z

A(yn)e(tn(u,v′)0) : e(tn(u,v′)0)dz,

∀(u, v′)0, (u, v
′)0 ∈ (BNb(Ω)×Rb(Ω))0,

(45)

P ε(x) = − 1√
µ3 ε

N∑
n=1

e(tn(û,v̂′)0)

(
x− εyn

εrε

)
, a.e. x ∈ Ωε. (46)

Section (iii): the regime ε1/3 � rε ≤ C.

• If ε1/3 � rε ≤ C, then

E =
{

(u, v, w) ∈ D : u|Υ0
= 0, v′|Υ0

= 0
}
, (47)

B = 0, P ε = 0. (48)

Remark 5. Thanks to the facts that D is a Hilbert space for the norm defined by
(12), that the tensor A is coercive (see (5)), that E is a closed subspace of D, and
that B is a continuous bilinear form, the existence and uniqueness of the solution
(û, v̂, ŵ) of problem (21) is an immediate consequence of Lax-Milgram’s Theorem.

Remark 6. Various Dirichlet conditions appear in the statement of Theorem 4.
Since

u1(y) = ζ1(y1)− dζα
dy1

(y1)yα, u2(y) = ζ2(y1), u3(y) = ζ3(y1),

v2(y) = c(y1)y3, v3(y) = −c(y1)y2,

(49)

these Dirichlet conditions read in (31) as

u′|Υ0
= 0 ⇐⇒ ζ2(0) = ζ3(0) = 0,

in (38), and (47) as

u1(y1) = 0 ⇐⇒ ζ1(0)− dζα
dy1

(0)y1
α = 0,

u1(yn) = 0 ⇐⇒ ζ1(0)− dζα
dy1

(0)ynα = 0,

v′|Υ0
= 0 ⇐⇒ c(0) = 0,

u|Υ0
= 0 ⇐⇒ ζ1(0) = ζ2(0) = ζ3(0) =

dζ2
dy1

(0) =
dζ3
dy1

(0) = 0.

Moreover, as far as the functions pn(u,v′)0 defined by (27) and qn(u,v′)0 defined by (33)

are concerned, we have

pn(u,v′)0 = ζα(0)ϕn,α,

qn(u,v′)0 = (ζ1(0)− dζα
dy1

(0)ynα)ϕn,1 + (a2 + c(0)yn3 )ϕn,2 + (a3 − c(0)yn2 )ϕn,3,

where a2 ∈ R and a3 ∈ R are defined by (34) (see Remark 9 below).
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Remark 7. Observe that in Theorem 4, as rε increases (and therefore as the size
εrε of the fixing sets increases), the number of Dirichlet conditions on u|Υ0

and

v′|Υ0
(namely on the 6 values ζ1(0), dζ2

dy1
(0), dζ3

dy1
(0), c(0), ζ2(0), ζ3(0)) increases.

Indeed if rε � ε3 or if rε ≈ ε3, there is no Dirichlet condition on these 6 values. If
ε3 � rε � ε or if rε ≈ ε, the Dirichlet conditions ζ2(0) = ζ3(0) = 0 are enforced.

If rε � ε1/3, all the Dirichlet conditions (namely ζ1(0) = dζ2
dy1

(0) = dζ3
dy1

(0) = c(0) =

ζ2(0) = ζ3(0) = 0) are enforced. The cases where ε� rε � ε1/3 and rε ≈ ε1/3 are
more complicated and depend on the values of M (see Table 1).

Observe in particular that in order to have all the Dirichlet conditions on Υ0

(namely u|Υ0
= 0, v′|Υ0

= 0, or in other terms ζ1(0) = dζ2
dy1

(0) = dζ3
dy1

(0) = c(0) =

ζ2(0) = ζ3(0) = 0), one has to consider fixing sets of size εrε with rε � ε1/3 if
M = 0 or M = 1, but only with rε � ε if M = 2. This means that in order for the
beam to behave like if it is fixed on its whole extremity {0}× S, one can fix it on 3
(or N ≥ 3) nonaligned fixing sets of small (εrε � ε2) size, or on 1 (or 2, or N ≥ 2
aligned) fixing set(s) of bigger (εrε � ε4/3) size.

Remark 8. Except in the 3 regimes where the size of rε is critical (i.e. where
rε ≈ ε3, rε ≈ ε, or rε ≈ ε1/3), one always has B = 0 and P ε = 0. This is no more
the case in the three critical regimes, in which (except if rε ≈ ε1/3 and M = 2),
one has B 6= 0 (see Table 2). Observe that in each of the 3 critical regimes, B is
a bilinear form which acts on (u, v′)0 = (u|Υ0

, v′|Υ0
), which is a finite dimensional

space which can be parametrized by ζ1(0), dζ2
dy1

(0), dζ3
dy1

(0), c(0), ζ2(0), ζ3(0), and

which is at most of dimension 6.
In the critical case where rε ≈ ε3, with rε/ε

3 → κ, 0 < κ < +∞, one can prove
that for every (u, v, w) ∈ E = D, one has

B((u, v′)0, (u, v
′)0) ≥ κC

3∑
α=2

|ζα(0)|2,

where C is a constant which does not depend on κ. The bilinear form B is then
a penalization of the Dirichlet conditions of the non critical regime ε3 � rε � ε
which follows the critical regime rε ≈ ε3, namely the Dirichlet conditions u′|Υ0

= 0,

or in other terms ζ2(0) = ζ3(0) = 0.
In the 2 critical cases where rε ≈ ε and rε ≈ ε1/3, the situation is analogous, but

more complex, since it also depends on the value ofM (M = 0, orM = 1, orM = 2).
For example, in the (simplest) case where rε ≈ ε with rε/ε→ λ, 0 < λ < +∞, and

M = 2, one can prove that for every (u, v, w) ∈ E =
{

(u, v, w) ∈ D : u′|Υ0
= 0
}

=

{(u, v, w) ∈ D : ζ2(0) = ζ3(0) = 0}, one has

B((u, v′)0, (u, v
′)0) ≥ λC

(
|ζ1(0)|2 +

3∑
α=2

∣∣∣∣dζαdy1
(0)

∣∣∣∣2 + |c(0)|2
)
,

where C is a constant which does not depend on λ. The bilinear form B is then a
penalization of the Dirichlet conditions of the non critical regime ε� rε � C which
follows the critical regime rε ≈ ε when M = 2, namely the Dirichlet conditions
u1|Υ0

= 0, v′|Υ0
= 0.

In each of the 3 critical regimes, the bilinear form B is a penalization (with coeffi-
cient κ, or λ, or µ) of the new Dirichlet conditions which appear in the following non
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critical regime. This penalization takes the form of a Fourier (Robin) type bound-
ary condition. In Proposition 10 below we will describe explicitly these Fourier
type boundary conditions in the case where the elasticity tensor A is isotropic and
homogeneous.

Note finally that, for the 3 critical regimes, the functions ϕn,i, ψn, φn are in some
sense generalized capacitary potentials of {0} × Sn in Z, and the bilinear form B
corresponds to some type of capacity of Γε0 in Ωε for the energy∫

Ωε
A(x)e(η) : e(η)dx.

Remark 9. By Lax-Milgram’s Theorem, using the facts that (20) defines a norm in
D1,2(Z)3 and that the elasticity tensor A satisfies (5), problems (26), (40) and (41)
for ϕn,i, ψn,α, and φn respectively, with i ∈ {1, 2, 3}, α ∈ {2, 3}, n ∈ {1, . . . , N},
have unique solutions.

Problem (34), which defines aα, with α ∈ {2, 3}, is actually a two dimensional
problem which can be written as a system of two linear equations

Ξa′ = %′,

for the unknown a′ = (a2, a3) ∈ R2, with the matrix Ξ ∈ R2×2 given by Ξ =
N∑
n=1

Ξ(n), where Ξ(n) ∈ R2×2 is the matrix

Ξ(n)αβ =

∫
Z

A(yn)e(ϕn,β) : e(ϕn,α)dz, α, β ∈ {2, 3},

and with the right-hand side %′ = (%2, %3) ∈ R2 given by

%β = −
N∑
n=1

∫
Z

A(yn)e(u1(yn)ϕn,1 + vα(yn)ϕn,α) : e(ϕn,β)dz, β ∈ {2, 3}.

Since ϕn,2 and ϕn,3 are linearly independent, every matrix Ξ(n), and consequently
also the matrix Ξ, is a positive definite matrix. Hence, problem (34) correctly
defines aα, α ∈ {2, 3}.

Similarly, problem (43) correctly defines bn,i, i ∈ {1, 2, 3}, n ∈ {1, . . . , N}, since
for every n ∈ {1, . . . , N}, problem (43) is a three dimensional problem which can

be written as a system of three linear equations Ξ̃(n)bn = %̃(n), for the unknown

bn = (bn,1, bn,2, bn,3) ∈ R3, with the matrix Ξ̃(n) ∈ R3×3 given by

Ξ̃(n)ij =

∫
Z

A(yn)e(ϕn,j) : e(ϕn,i)dz, i, j ∈ {1, 2, 3},

and with the right-hand side %̃(n) = (%̃(n)1, %̃(n)2, %̃(n)3) ∈ R3 given by

%̃(n)i = −
∫
Z

A(yn)e(c(0)φn +
dζα
dy1

(0)ψn,α) : e(φn,i)dz, i ∈ {1, 2, 3};

again the matrix Ξ̃(n) is a positive definite matrix since ϕn,1, ϕn,2, and ϕn,3 are
linearly independent.



FIXING A BEAM ON SMALL SETS OF ONE OF ITS EXTREMITIES 4051

M = 0 M = 1 M = 2

rε � ε3

or
rε ≈ ε3

none

ε3 � rε � ε
or

rε ≈ ε
u′|Υ0

= 0

ε� rε � ε1/3

or
rε ≈ ε1/3

u1(y1) = 0

u′|Υ0
= 0

u1(yn) = 0

u′|Υ0
= 0

v′|Υ0
= 0

u|Υ0
= 0

v′|Υ0
= 0

ε1/3 � rε ≤ C u|Υ0
= 0, v′|Υ0

= 0

Table 1. The boundary conditions satisfied by u and v′ on Υ0.

M = 0 or M = 1 M = 2

rε ≈ ε3 B given by (29); P ε given by (30)

rε ≈ ε B given by (36); P ε given by (37)

rε ≈ ε1/3 B given by (45); P ε given by (46) B = 0; P ε = 0

Table 2. The bilinear forms B and the boundary layers P ε in the
3 critical regimes.

3. The case of an isotropic homogeneous elasticity tensor. A relevant par-
ticular case of Theorem 4 is the case where the elasticity tensor A is homoge-
neous and isotropic, i.e. where there exist two Lamé constants λ∗ and µ∗ with
3λ∗ + 2µ∗ > 0, µ∗ > 0, such that the tensor A is given by

Ae = λ∗tr(e)I + 2µ∗e, ∀ e ∈ R3×3
s , (50)

with I the identity matrix in R3. In this case the problem (21) can be explicitly
solved. This gives the classical system of ordinary differential equations in the
variable y1 which describes the behavior of a thin elastic beam. These equations are
completed with some Dirichlet conditions on y1 = 1 due to the Dirichlet boundary
condition imposed on Γε1, while on y1 = 0 we obtain Dirichlet, Fourier (Robin) or
Neumann conditions depending on the behavior of rε with respect to ε, and on the
value of M . The result is given in Proposition 10 below, which is easily deduced
from Theorem 4. Before, we observe that thanks to a translation and a rotation in
the coordinates (y2, y3) we can always assume that the following conditions hold∫

S

y′ dy′ = 0,

∫
S

y2y3 dy
′ = 0, (51)



4052 JUAN CASADO-DÍAZ, MANUEL LUNA-LAYNEZ AND FRANCOIS MURAT

i.e. that the center of mass of S is the point (0, 0) and the axes in the directions y2,
y3 agree with the main inertial axes of S.

Proposition 10. Assume there exist λ∗ ≥ 0, µ∗ > 0 such that the tensor A is given
by (50), for some λ∗ and µ∗ with 3λ∗+2µ∗ > 0, µ∗ > 0, that the functions f1, f2, f3

only depend on y1, that h = 0, and that conditions (51) are satisfied. Define the
Young modulus E and the inertial moduli I2, I3 by

E =
µ∗(3λ∗ + 2µ∗)

λ∗ + µ∗
, Iα =

∫
S

|yα|2dy′, α ∈ {2, 3}.

Then, the functions û, v̂, ŵ defined in Theorem 4 are given by

û(y) =

(
ζ̂1(y1)− dζ̂α

dy1
(y1)yα , ζ̂2(y1) , ζ̂3(y1)

)
,

v̂(y) = (v̂1(y) , ĉ(y1)y3 , −ĉ(y1)y2),

ŵ(y) = (0 , ŵ2(y) , ŵ3(y)),

where
– Up to a rigid displacement in the variables (y2, y3), the functions ŵ2, ŵ3 are given
by

ŵ2(y) = − λ∗

2(λ∗ + µ∗)

(
dζ̂1
dy1

(y1) y2 +
1

2

d2ζ̂2
dy2

1

(y1)
(
−y2

2 + y2
3

)
− d2ζ̂3
dy2

1

(y1) y2y3

)
,

ŵ3(y) = − λ∗

2(λ∗ + µ∗)

(
dζ̂1
dy1

(y1) y3 −
d2ζ̂2
dy2

1

(y1) y2y3 +
1

2

d2ζ̂3
dy2

1

(y1)
(
y2

2 − y2
3

))
.

– The function v̂1 is given by

v̂1(y) = −ĉ(0)ẑ(y′),

where ẑ ∈ H1(S) is the unique solution of
−∆ẑ = 0 in S,

∂ẑ

∂ν′
= −y3ν2 + y2ν3 on ∂S,∫

S

ẑ dy′ = 0,

(52)

where ν′ = (ν2, ν3) is the outward normal to ∂S.
– The function ĉ is given by

ĉ(y1) = ĉ(0)(1− y1).

– The functions ζ̂1, ζ̂2, ζ̂3 are solution of

−E d
2ζ̂1
dy2

1

= f1 in (0, 1), ζ̂1(1) = 0,

EIα
d4ζ̂α
dy2

1

= fα in (0, 1), ζ̂α(1) =
dζ̂α
dy1

(1) = 0, α ∈ {2, 3},

completed by boundary conditions on y1 = 0, which are described below; these con-
ditions depend on the set S, on the points yn, on the sets Sn, on the value of M ,
and on the behavior of rε when ε tends to zero. We have the following situations.
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Section (i): the 4 regimes rε � ε3, rε ≈ ε3, ε3 � rε � ε, and rε ≈ ε.

• If rε � ε3, then

dζ̂1
dy1

(0) = 0,
d2ζ̂α
dy2

1

(0) =
d3ζ̂α
dy3

1

(0) = 0, α ∈ {2, 3}, ĉ(0) = 0.

• If rε ≈ ε3 with rε/ε
3 → κ, 0 < κ < +∞, then

dζ̂1
dy1

(0) = 0,
d2ζ̂α
dy2

1

(0) = 0, α ∈ {2, 3}, ĉ(0) = 0,

EI2
d3ζ̂2
dy3

1

(0) +

(
κ

|S|

N∑
n=1

∫
Z

Ae(ϕn,α) : e(ϕn,2) dz

)
ζ̂α(0) = 0,

EI3
d3ζ̂3
dy3

1

(0) +

(
κ

|S|

N∑
n=1

∫
Z

Ae(ϕn,α) : e(ϕn,3) dz

)
ζ̂α(0) = 0,

where ϕn,α, n ∈ {1, . . . , N}, α ∈ {2, 3}, is defined by (26).
• If ε3 � rε � ε, then

dζ̂1
dy1

(0) = 0, ζ̂α(0) =
d2ζ̂α
dy2

1

(0) = 0, α ∈ {2, 3}, ĉ(0) = 0.

• If rε ≈ ε with rε/ε→ λ, 0 < λ < +∞, then

ζ̂α(0) = 0, α ∈ {2, 3},

−E dζ̂1
dy1

(0) +
λ

|S|

N∑
n=1

∫
Z

Ae(qn(û,v̂′)0) : e(ϕn,1)dz = 0,

EI2
d2ζ̂2
dy2

1

(0) +
λ

|S|

N∑
n=1

∫
Z

Ae(qn(û,v̂′)0) : e(yn2ϕ
n,1)dz = 0,

EI3
d2ζ̂3
dy2

1

(0) +
λ

|S|

N∑
n=1

∫
Z

Ae(qn(û,v̂′)0) : e(yn3ϕ
n,1)dz = 0,

ϑĉ(0) +
λ

|S|

N∑
n=1

∫
Z

Ae(qn(û,v̂′)0) : e(yn3ϕ
n,2 − yn2ϕn,3)dz = 0,

where qn(û,v̂′)0 is defined by (33)-(34), ϕn,i, n ∈ {1, . . . , N}, i ∈ {1, 2, 3}, is defined

by (26), and ϑ is given by

ϑ =

∫
S

(
|∂y2 ẑ + y3|2 + |∂y3 ẑ − y2|2

)
dy′,

with ẑ the solution of (52).

Section (ii): the 2 regimes ε� rε � ε1/3 and rε ≈ ε1/3.

• If ε� rε � ε1/3, according to the value of M we have
I If M = 0, then

ζ̂1(0)− dζ̂β
dy1

(0)y1
β = 0, ζ̂α(0) = 0, α ∈ {2, 3}, ĉ(0) = 0,

dζ̂1
dy1

(0)y1
2 + I2

d2ζ̂2
dy2

1

(0) = 0,
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dζ̂1
dy1

(0)y1
3 + I3

d2ζ̂3
dy2

1

(0) = 0.

I If M = 1, then

ζ̂1(0)− dζ̂β
dy1

(0)y1
β = 0,

dζ̂β
dy1

(0)(y2
β − y1

β) = 0, ζ̂α(0) = 0, α ∈ {2, 3}, ĉ(0) = 0,

dζ̂1
dy1

(0)
(
y1

2 y
2
3 − y1

3 y
2
2

)
+ I2

d2ζ̂2
dy2

1

(0)(y2
3 − y1

3)− I3
d2ζ̂3
dy2

1

(0)(y2
2 − y1

2) = 0.

I If M = 2, then

ζ̂1(0) = ζ̂2(0) = ζ̂3(0) =
dζ̂2
dy1

(0) =
dζ̂3
dy1

(0) = ĉ(0) = 0.

• If rε ≈ ε1/3 with rε/ε
1/3 → µ, 0 < µ < +∞, according to the value of M we have

I If M = 0, then

ζ̂1(0)− dζ̂β
dy1

(0)y1
β = 0, ζ̂α(0) = 0, α ∈ {2, 3}, ĉ(0) = 0,

−E

(
dζ̂1
dy1

(0)y1
2 + I2

d2ζ̂2
dy2

1

(0)

)
+
µ3

|S|

N∑
n=1

∫
Z

Ae(tn(û,v̂′)0) : e(ψn,2)dz = 0,

−E

(
dζ̂1
dy1

(0)y1
3 + I3

d2ζ̂3
dy2

1

(0)

)
+
µ3

|S|

N∑
n=1

∫
Z

Ae(tn(û,v̂′)0) : e(ψn,3)dz = 0,

where tn(û,v̂′)0 , n ∈ {1, . . . , N}, is defined by (42)-(43), and ψn,α, n ∈ {1, . . . , N},
α ∈ {2, 3}, is defined by (40).
I If M = 1, then

ζ̂1(0)− dζ̂β
dy1

(0)y1
β = 0,

dζ̂β
dy1

(0)(y2
β − y1

β) = 0, ζ̂α(0) = 0, α ∈ {2, 3}, ĉ(0) = 0,
−E

(
dζ̂1
dy1

(0)
(
y1

2 y
2
3 − y1

3 y
2
2

)
+ I2

d2ζ̂2
dy2

1

(0)(y2
3 − y1

3)− I3
d2ζ̂3
dy2

1

(0)(y2
2 − y1

2)

)
+

+
µ3

|S|

N∑
n=1

∫
Z

Ae(tn(û,v̂′)0) : e((y2
3 − y1

3)ψn,2 − (y2
2 − y1

2)ψn,3)dz = 0,

where tn(û,v̂′)0 , n ∈ {1, . . . , N}, is defined by (42)-(43), and ψn,α, n ∈ {1, . . . , N},
α ∈ {2, 3}, is defined by (40).
I If M = 2, then

ζ̂1(0) = ζ̂2(0) = ζ̂3(0) =
dζ̂2
dy1

(0) =
dζ̂3
dy1

(0) = ĉ(0) = 0.

Section (iii): the regime ε1/3 � rε ≤ C.

• If ε1/3 � rε ≤ C, then

ζ̂1(0) = ζ̂2(0) = ζ̂3(0) =
dζ̂2
dy1

(0) =
dζ̂3
dy1

(0) = ĉ(0) = 0.
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4. The asymptotic behavior of a sequence which is bounded in energy.
In order to study the asymptotic behavior of the solutions Uε of (9) we introduce
two changes of variables which allow us to obtain two compactness results, one in
the part of the beam far from Γε0 and the other one in the part close to Γε0.

The first change of variables is the usual one in the study of thin elastic beams
(see e.g. [12], [13], [14], [16]), i.e. the change of variables y = yε(x) defined by

y1 = x1, yα =
xα
ε
, ∀α ∈ {2, 3}, (53)

together with the change of unknown functions defined by

uε1(y1, y2, y3)=Uε1 (y1, εy2, εy3), uεα(y1, y2, y3)=εUεα(y1, εy2, εy3), ∀α ∈ {2, 3}. (54)

Using this change of variables one obtains the following a priori estimate.

Lemma 11. The solution Uε of (9) satisfies∫
Ωε
|e(Uε)|2dx ≤ C, ∀ε > 0. (55)

Proof. Taking Uε as test function in (9) and using the change of variables and
unknown functions (53) and (54), we get∫

Ω

Aeε(uε) : eε(uε)dy =
1

ε2

∫
Ωε
Aεe(Uε) : e(Uε)dx =

=
1

ε2

∫
Ωε

(F εUε +Hε : e(Uε)) dx =

∫
Ω

(fuε + h : eε(uε)) dy,
(56)

where eε(uε) is defined by (16). Since Uε = 0 on Γε1, we have uε = 0 on {1} × S,
and then Korn’s inequality in Ω combined to (5) allow us to deduce from (56) that∫

Ω

|eε(uε)|2dy ≤ C, ∀ε > 0, (57)

which, using again the change of variables (53)-(54) gives (55). �
From now on, our purpose in this section is to obtain some compactness lemmas

describing the limit behavior of a sequence Uε ∈ H1
Γε(Ω

ε)3 which satisfies estimate
(55), i.e. which is bounded in energy, but which is not necessarily the solution of
any equation.

We begin with the following result where we assume that, besides estimate (55),
Uε vanishes on the extremity Γ1

ε = {1} × εS (but only on this extremity). For the
proof we refer to [14] (see also [1]).

Lemma 12. Let Uε be a sequence in H1(Ωε)3 such that Uε = 0 on Γε1 and such
that estimate (55) holds. Define uε ∈ H1(Ω)3 by (54). Then, up to a subsequence,
there exists (û, v̂, ŵ) ∈ D such that

uε ⇀ û in H1(Ω)3, (58)

eε(uε) ⇀ E(û, v̂, ŵ) in L2(Ω;R3×3
s ). (59)

The following result characterizes the trace (û, v̂′)0 of (û, v̂, ŵ) given by Lemma
12.

Lemma 13. Let Uε be a sequence in H1(Ωε)3 such that Uε = 0 on Γε1 and such
that estimate (55) holds. Assume moreover that the sequence uε ∈ H1(Ω)3 defined
by (54) is such that there exists (û, v̂, ŵ) ∈ D such that (58) and (59) hold, and let
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ζ̂i, i ∈ {1, 2, 3}, and ĉ be the functions associated to (û, v̂, ŵ) by the definition of D.
Then we have

uε|Υ0
−→ û|Υ0

in L2(S)3, (60)∫ ε

0

sk1α(uε)dy1 ⇀ −
dζ̂α
dy1

(0) in H−1(S), ∀α ∈ {2, 3}, (61)

1

ε

∫ ε

0

skαβ(uε)dy1 ⇀ (−1)αĉ(0) in H−1(S), ∀α, β ∈ {2, 3}, α 6= β. (62)

Proof. Convergence (60) is an immediate consequence of (58). By (58) and the
definition of BNb(Ω), we have

∂uε1
∂yα

⇀
∂û1

∂yα
= −dζ̂α

dy1
in H1(0, 1;H−1(S)), ∀α ∈ {2, 3},

which implies that∫ ε

0

∂uε1
∂yα

dy1 ⇀
∂û1

∂yα
(0) = −dζ̂α

dy1
(0) in H−1(S), ∀α ∈ {2, 3}. (63)

On the other hand, it results from (55) that

eε1α(uε) =
1

2ε

(
∂uε1
∂yα

+
∂uεα
∂y1

)
is bounded in L2(Ω),

and then∫
S

∣∣∣∣∫ ε

0

1

2

(
∂uε1
∂yα

+
∂uεα
∂y1

)
dy1

∣∣∣∣2 dy′ ≤ ∫
S

∫ ε

0

∣∣∣∣12
(
∂uε1
∂yα

+
∂uεα
∂y1

)∣∣∣∣2 dy1dy
′ ≤ Cε.

Thus

1

2

∫ ε

0

(
∂uε1
∂yα

+
∂uεα
∂y1

)
dy1 → 0 in L2(S) (and consequently in H−1(S)). (64)

Subtracting (63) and (64) we deduce (61).
In order to obtain (62), we use that (59) implies

eε12(uε) =
1

2ε

(
∂uε1
∂y2

+
∂uε2
∂y1

)
⇀ e12(v̂) =

1

2

(
∂v̂1

∂y2
+

dĉ

dy1
y3

)
eε13(uε) =

1

2ε

(
∂uε1
∂y3

+
∂uε3
∂y1

)
⇀ e13(v̂) =

1

2

(
∂v̂1

∂y3
− dĉ

dy1
y2

) in L2(Ω).

Integrating these expressions with respect to the first variable over the interval
(y1, 1), and using uε = 0 on {1} × S, ĉ(1) = 0, we obtain

1

2ε

(∫ 1

y1

∂uε1
∂y2

(t1, y
′)dt1− uε2(y1, y

′)

)
⇀

1

2

(∫ 1

y1

∂v̂1

∂y2
(t1, y

′)dt1− ĉ(y1)y3

)
, (65)

1

2ε

(∫ 1

y1

∂uε1
∂y3

(t1, y
′)dt1− uε3(y1, y

′)

)
⇀

1

2

(∫ 1

y1

∂v̂1

∂y3
(t1, y

′)dt1+ ĉ(y1)y2

)
, (66)

in H1(0, 1;L2(S)). Subtracting the derivative of (66) with respect to y2 from the
derivative of (65) with respect to y3, it results that

1

2ε

(
∂uε2
∂y3
− ∂uε3
∂y2

)
⇀ ĉ in H1(0, 1;H−1(S)),

which, in particular, gives (62). �
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The next lemma will be useful later to compare the behavior of Uε around two
different fixing sets.

Lemma 14. Let ρ > 0 be such that B2((yn)′; ρ) is contained in S, for every n ∈
{1, . . . , N}, and let us define Jn,ε, Jn,ε0 ⊂ R3, n ∈ {1, . . . , N}, ε > 0, by

Jn,ε = (0, ε)×B2((yn)′; ερ),

Jn,ε0 = B3(yn; ερ) ∩ {x1 = 0} = {0} ×B2((yn)′; ερ).

(67)

For every sequence Uε in H1(Ωε)3 satisfying (55), it holds∣∣∣∣∫
Jl,ε

sk(Uε) dx−
∫
Jn,ε

sk(Uε) dx

∣∣∣∣ ≤ C√
ε
, (68)

∣∣∣∣∣
∫
Jl,ε0

Uεdx′ −
∫
Jn,ε0

Uεdx′ − ε
∫
Jn,ε

sk(Uε) dx (yn − yl)

∣∣∣∣∣ ≤ C√ε , (69)

for every l, n ∈ {1 . . . , N} and ε > 0.

Proof. We can assume N ≥ 2 since there is nothing to prove if N = 1.
We use (∫

(0,ε)×εS

∣∣∣∣∫
Jl,ε

sk(Uε) dτ −
∫
Jn,ε

sk(Uε) dτ

∣∣∣∣2 dx
) 1

2

≤

≤

(∫
(0,ε)×εS

∣∣∣∣DUε − ∫
Jl,ε

sk(Uε)dτ

∣∣∣∣2 dx
) 1

2

+

+

(∫
(0,ε)×εS

∣∣∣∣DUε − ∫
Jn,ε

sk(Uε)dτ

∣∣∣∣2 dx
) 1

2

.

(70)

The right hand side of this inequality can be easily estimated by using the change
of variables ξ = x/ε, which transforms (0, ε) × εS into (0, 1) × S, and then by a
simple application of Korn’s inequality. This together with (55) allow us to show∫

(0,ε)×εS

∣∣∣∣∫
Jl,ε
sk(Uε) dτ −

∫
Jn,ε
sk(Uε) dτ

∣∣∣∣2 dx ≤ C ∫
(0,ε)×εS

|e(Uε)|2dx ≤ Cε2, (71)

for every l, n ∈ {1, . . . , N} and ε > 0. Since |(0, ε)× εS| = ε3|S|, this proves (68).
On the other hand, since∫

Jn,ε0

(
Uε −

∫
Jn,ε0

Uεdτ ′ −
∫
Jn,ε

sk(Uε)dτ (x− εyn)

)
dx′ = 0,

we can use Poincaré’s inequality, then Korn’s inequality and then (55) to get∫
(0,ε)×εS

∣∣∣∣∣Uε −
∫
Jn,ε0

Uεdτ ′ −
∫
Jn,ε

sk(Uε)dτ (x− εyn)

∣∣∣∣∣
2

dx

≤ Cε2

∫
(0,ε)×εS

∣∣∣∣DUε − ∫
Jn,ε
sk(Uε)dτ

∣∣∣∣2 dx ≤ Cε2

∫
(0,ε)×εS

|e(Uε)|2dx ≤ Cε4,

(72)
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which, reasoning analogously as in (70)-(71), leads us to∫
(0,ε)×εS

∣∣∣∣∣
∫
Jl,ε0

Uεdτ ′ −
∫
Jl,ε

sk(Uε)dτ (x− εyl)−
∫
Jn,ε0

Uεdτ ′+

+

∫
Jn,ε

sk(Uε)dτ (x− εyn)

∣∣∣∣2 dx ≤ Cε4,

for every l, n ∈ {1, . . . , N} and ε > 0. Taking into account that (68) implies∫
(0,ε)×εS

∣∣∣∣(∫
Jn,ε

sk(Uε)dτ −
∫
Jl,ε

sk(Uε)dτ

)(
x− εyl

)∣∣∣∣2 dx ≤ Cε4,

it is then immediate to get (69). �

In order to study the behavior of Uε near Γε0, we introduce a family of new
changes of variables z = zn,ε(x), n ∈ {1, . . . , N}, defined by

z = zn,ε(x) =
x− εyn

εrε
. (73)

We denote by Zn,ε the image of Ωε by the change of variables zn,ε, n ∈ {1, . . . , N},
i.e.

Zn,ε =

(
0,

1

εrε

)
× 1

rε
(S − yn) .

Given Uε ∈ H1(Ω)3, we define new unknown functions pn,ε ∈ H1(Zn,ε)3, n ∈
{1, . . . , N}, by

pn,ε(z) = Uε(εyn + εrεz) a.e. z ∈ Zn,ε. (74)

With these definitions, we have the following result (see (19) for the definition of
the space D1,2(Z)) for a sequence which now belongs to H1

Γε(Ω
ε)3 and is bounded

in energy.

Lemma 15. Let Uε be a sequence in H1
Γε(Ω

ε)3 such that estimate (55) holds.
Assume moreover that the sequence uε ∈ H1(Ω)3 defined by (54) is such that there

exists (û, v̂, ŵ) ∈ D such that (58) and (59) hold, and let ζ̂i, i ∈ {1, 2, 3}, ĉ, and Q̂
be the functions and the skew-symmetric matrix function associated to (û, v̂, ŵ) by
the definition of D (see Remark 2). Then we have

1. If ε3 � rε, then ζ̂2(0) = ζ̂3(0) = 0.

2. If ε � rε, further to ζ̂2(0) = ζ̂3(0) = 0, and according to the value of M we
also have
2.1 If M = 0 (i.e. N = 1), then

ζ̂1(0)− dζ̂α
dy1

(0)y1
α = 0. (75)

2.2 If M = 1, then

ζ̂1(0)− dζ̂α
dy1

(0)ynα = 0, ∀n ∈ {1, . . . , N}, ĉ(0) = 0. (76)

2.3 If M = 2, then

ζ̂1(0) =
dζ̂2
dy1

(0) =
dζ̂3
dy1

(0) = ĉ(0) = 0. (77)
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3. If ε1/3 � rε, then ζ̂1(0) =
dζ̂2
dy1

(0) =
dζ̂3
dy1

(0) = ĉ(0) = ζ̂2(0) = ζ̂3(0) = 0.

4. If rε has a critical size (i.e. if rε ≈ ε3, rε ≈ ε, or rε ≈ ε1/3), and if we define
υ as 

υ = lim
ε→0

rε
ε3

if rε ≈ ε3,

υ = lim
ε→0

rε
ε

if rε ≈ ε,

υ = lim
ε→0

( rε
ε1/3

)3

if rε ≈ ε1/3,

(78)

then there exist â ∈ R3, B̂, Ĝ ∈ R3×3
sk , and q̂n ∈ D1,2(Z)3, n ∈ {1, . . . , N},

with

q̂n(z) =
√
υ
(
â+ B̂yn + Ĝz

)
for a.e. z ∈ {0} × Sn, (79)

such that, up to a subsequence, pn,ε defined by (74) satisfies√
rε
ε
e(pn,ε)1I

Zn,ε
⇀ −e(q̂n) in L2(Z;R3×3

s ). (80)

Moreover, depending on the critical size of rε we also have

4.1 If rε ≈ ε3, then â =
(
0, ζ̂2(0), ζ̂3(0)

)
, B̂ = Ĝ = 0.

4.2 If rε ≈ ε, then â1 = ζ̂1(0), B̂ = Q̂, Ĝ = 0.

4.3 If rε ≈ ε1/3, then Ĝ = Q̂.

Proof. We will use the following notation. We take ρ > 0 and define Jn,ε0 , Jn,ε

by (67). We also define Ln0 = B3(yn; ρ) ∩ {y1 = 0}, Ln,ε = (0, ε) × B2((yn)′; ρ),
Kε

0 = B3(0; ρ/rε) ∩ {z1 = 0}, Kε =
(
(0, 1)×B2(0; ρ)

)
/rε, for every n ∈ {1, . . . , N}

and ε > 0. Observe that Ln0 , Ln,ε are the transformed of Jn,ε0 , Jn,ε by the change
of variables (53), whereas Kε, Kε

0 are their transformed by the change (73).
We divide the proof in five steps.

Step 1. Let n be in {1, . . . , N}. Applying the change of variables (73) in (55), we
obtain

rε
ε|S|

∫
Zn,ε
|e(pn,ε)|2dz =

∫
Ωε
|e(Uε)|2dx ≤ C, ∀ε > 0. (81)

We define qn,ε : Zn,ε −→ R3 by

qn,ε(z) =

√
rε
ε

(∫
Kε

0

pn,εdτ ′ +

∫
Kε

sk(pn,ε)dτ z − pn,ε(z)

)
, for a.e. z ∈ Zn,ε.

This sequence satisfies∫
Kε

0

qn,εdz = 0,

∫
Kε

sk(qn,ε)dz = 0, e(qn,ε) = −
√
rε
ε
e(pn,ε) a.e. Zn,ε, (82)

for every ε > 0. Combined to (81), this enables us to use Korn’s and Sobolev’s
inequalities (which are invariant by dilatations) in Kε to deduce the existence of
a subsequence of ε, still denoted by ε, and a function q̂n ∈ D1,2(Z)3, for every
n ∈ {1, . . . , N}, such that√

rε
ε
e(pn,ε)1I

Zn,ε
= −e(qn,ε)1I

Zn,ε
⇀ −e(q̂n) in L2(Z)3×3

s , (83)

qn,ε1I
Zn,ε

⇀ q̂n in L6(Z)3, (84)
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qn,ε1I
Zn,ε

⇀ q̂n in H1(Z ∩B3(0;R))3, ∀R > 0. (85)

Since Uε = 0 on εyn + ({0} × εrεSn) implies pn,ε = 0 on {0} × Sn, we have

qn,ε(z) =

√
rε
ε

(∫
Kε

0

pn,εdτ ′ +

∫
Kε

sk(pn,ε)dτ z

)
, for a.e. z ∈ {0} × Sn. (86)

Therefore (85) and sk(pn,ε) skew-symmetric imply that the sequences√
rε
ε

∫
Kε

0

pn,εdτ ′,

√
rε
ε

∫
Kε

sk(pn,ε)dτ,

are bounded in R3 and R3×3
sk respectively. Extracting another subsequence if nec-

essary, we then have the existence of mn ∈ R3 and Gn ∈ R3×3
sk such that

mn = lim
ε→0

√
rε
ε

∫
Kε

0

pn,εdτ ′, Gn = lim
ε→0

√
rε
ε

∫
Kε

sk(pn,ε)dτ. (87)

From (86) , we get

q̂n(z) = mn +Gnz for a.e. z ∈ {0} × Sn, ∀n ∈ {1, . . . , N}. (88)

Step 2. Let us establish some relationships between mn and the trace of û at
y1 = 0.

From (87), by using the changes of variables (53)-(54) and (73), we obtain

∃ lim
ε→0

√
rε
ε

∫
Ln0

uε1 dy
′ = lim

ε→0

√
rε
ε

∫
Kε

0

pn,ε1 dz′ = mn
1 ∈ R,

∃ lim
ε→0

√
rε
ε3

∫
Ln0

uεα dy
′ = lim

ε→0

√
rε
ε

∫
Kε

0

pn,εα dz′ = mn
α ∈ R, ∀α ∈ {2, 3}.

These convergences combined with (60) and the definition of BNb(Ω) prove

mn
1 =
√
λ û1(yn) =

√
λ

(
ζ̂1(0)− dζ̂α

dy1
(0)ynα

)
if lim

ε→0

rε
ε

= λ < +∞ (89)

mn
α =
√
κ ûα(yn) =

√
κ ζ̂α(0) if lim

ε→0

rε
ε3

= κ ∈ [0,+∞), ∀α ∈ {2, 3}, (90)

and

û1(yn) = ζ̂1(0)− dζ̂α
dy1

(0)ynα = 0 if lim
ε→0

rε
ε

= +∞ (91)

ûα(yn) = ζ̂α(0) = 0 if lim
ε→0

rε
ε3

= +∞. (92)

Equality (92) proves statement 1 of Lemma 15 whereas (91) and (92) prove
statement 2.1.

Step 3. Let us now study the relationship between the different vectors mn, n ∈
{1, . . . , N}, when they are not explicitly characterized (see (89), (90)). We suppose
N ≥ 2, and then M ≥ 1.

Multiplying (69) by
√
rε/ε, we get∣∣∣∣∣

√
rε
ε

∫
Jn,ε0

Uεdx′ −
√
rε
ε

∫
J1,ε
0

Uεdx′ −
√
rεε

∫
J1,ε

sk(Uε) dx (yn − y1)

∣∣∣∣∣ ≤ C√rε , (93)
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for every n ∈ {1 . . . , N} and ε > 0. By definition (87) of mn and by using the
change of variables (73) we have

mn = lim
ε→0

√
rε
ε

∫
Kε

0

pn,ε dz′ = lim
ε→0

√
rε
ε

∫
Jn,ε0

Uεdx′, ∀n ∈ {1, . . . , N}.

Hence the two first addends in the right hand side of (93) are bounded, and conse-
quently there exists C > 0 such that∣∣∣∣√rεε∫

J1,ε

sk(Uε) dx (yn − y1)

∣∣∣∣ ≤ C, ∀n ∈ {1, . . . , N}, ∀ε > 0. (94)

Then, extracting a subsequence if necessary, we can assume the existence of the
limits

lim
ε→0

√
rεε

∫
J1,ε

sk(Uε) dx (yn − y1) = γn ∈ R3, ∀n ∈ {1, . . . , N}.

Since sk(Uε) is skew-symmetric, there exists B ∈ R3×3
sk , which is not unique if

M = 1, such that B(yn − y1) = γn, for every n ∈ {1, . . . , N}. Then, passing to the
limit in (93) we obtain

mn −m1 −B(yn − y1) = 0, ∀n ∈ {1, . . . , N}.
Defining a = m1 −By1, we can rewrite last equality as

mn = a+Byn, ∀n ∈ {1, . . . , N}. (95)

Although B is not unique for M = 1, using that the first component of y1, . . . , yN

vanishes, the entries Bαβ , α, β ∈ {2, 3}, of B are defined univocally for M ≥ 1 by

Bαβ = lim
ε→0

√
rεε

∫
J1,ε

skαβ(Uε) dx

= lim
ε→0

√
rε
ε3

∫
L1,ε

skαβ(uε) dy ∈ R, ∀α, β ∈ {2, 3}.

From the existence in R of this limit, by using the changes of variables (53)-(54),
(73), |Kε| = πρ2/r3

ε , Korn’s inequality and (81), we deduce

rε
ε3

∫
B2((y1)′;ρ)

∣∣∣∣∫ ε

0

skαβ(uε)dy1

∣∣∣∣2 dy′
≤ rε
ε3

∫
L1,ε

|skαβ(uε)|2 dy =
1

εrε

∫
Kε

∣∣skαβ(p1,ε)
∣∣2dz

≤ C

εrε

∫
Kε

∣∣∣∣skαβ(p1,ε)−
∫
Kε

skαβ(p1,ε)dτ

∣∣∣∣2dz+ C

εrε

∣∣∣∣∫
Kε

skαβ(p1,ε)dτ

∣∣∣∣2
≤ C r

2
ε

ε

∫
Kε

|e(p1,ε)|2dz + C
rε
ε3

∣∣∣∣∫
L1,ε

skαβ(uε)dτ

∣∣∣∣2 ≤ Crε + C ≤ C,

(96)

which proves √
rε
ε3

∫ ε

0

skαβ(uε) dy1 is bounded in L2(B2((y1)′; ρ)),

and then (62) holds not only in H−1(S) but also in L2(B2((y1)′; ρ)). Thus

lim
ε→0

√
rε
ε3

∫
L1,ε

skαβ(uε) dy = lim
ε→0

√
rε
ε

∫
B2((y1)′;ρ)

(√
1

ε

∫ ε

0

skαβ(uε) dy1

)
dy′

=
√
λ(−1)αĉ(0) if lim

ε→0

rε
ε

= λ ∈ [0,+∞), ∀α, β ∈ {2, 3}, α 6= β,
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i.e. we have proved

Bαβ =
√
λ(−1)αĉ(0) if lim

ε→0

rε
ε

= λ ∈ [0,+∞), ∀α, β ∈ {2, 3}, α 6= β, (97)

ĉ(0) = 0 if lim
ε→0

rε
ε

= +∞. (98)

From (91) (which, when M = 2, implies ζ̂1(0) = dζ̂α/dy1(0) = 0, α ∈ {2, 3})
together with (92) and (98) we deduce statements 2.2 and 2.3 of the result.

Step 4. Next we study the relationship between Gn defined by (87) and the values

in y1 = 0 of dζ̂α/dy1, α ∈ {2, 3}, and ĉ.
The changes of variables (53)-(54) and (73) applied to (87) lead us to

∃ lim
ε→0

√
r3
ε

ε

∫
Ln,ε

sk1α(uε) dy = lim
ε→0

√
rε
ε

∫
Kε

sk1α(pn,ε) dz = Gn1α ∈ R, (99)

∃ lim
ε→0

√
r3
ε

ε3

∫
Ln,ε

skαβ(uε) dy = lim
ε→0

√
rε
ε

∫
Kε

skαβ(pn,ε) dz = Gnαβ ∈ R, (100)

for every α, β ∈ {2, 3}. From the existence in R of these limits, reasoning as in (96),
we easily deduce that√

r3
ε

ε

∫ ε

0

sk1α(uε)dy1,

√
r3
ε

ε3

∫ ε

0

skαβ(uε)dy1 are bounded in L2(B2((yn)′; ρ)). (101)

Since B2((yn)′; ρ) ⊂ S, we deduce from (61), (62) and (101) that if limε→0(rε/ε
1/3)

= µ ∈ [0,+∞), then√
r3
ε

ε

∫ ε

0

sk1α(uε)dy1 ⇀ −µ3/2 dζ̂α
dy1

(0)√
r3
ε

ε3

∫ ε

0

skαβ(uε)dy1 ⇀ µ3/2(−1)αĉ(0)

 in L2(B2((yn)′; ρ)), (102)

α, β ∈ {2, 3}, α 6= β. These convergences, (99) and (100) imply that if
limε→0(rε/ε

1/3) = µ ∈ [0,+∞), then
Gn1α = lim

ε→0

√
r3
ε

ε

∫
B2(yn;ρ)

∫ ε

0

sk1α(uε)dy1dy
′ = −µ3/2 dζ̂α

dy1
(0),

Gnαβ = lim
ε→0

√
r3
ε

ε

∫
B2(yn;ρ)

1

ε

∫ ε

0

skαβ(uε)dy1dy
′ = µ3/2(−1)αĉ(0),

(103)

α, β ∈ {2, 3}, α 6= β, and (thanks to (61), (62))

dζ̂α
dy1

(0) = 0, ĉ(0) = 0 if lim
ε→0

r3
ε

ε
= +∞. (104)

Statement 3. of Lemma 15 follows from (91), (92) and (104).

Step 5. To finish the proof of Lemma 15, let us check that statement 4. holds.
By Step 1, there exists q̂n, n ∈ {1, . . . , N}, satisfying (83) and (88). Thanks to

(103), Gn is independent of n when limε→0(r3
ε/ε) ∈ [0,+∞). In fact, we have Gn =

G, n ∈ {1, . . . , N}, with G = 0 as rε � ε1/3 and G = µ3/2 Q̂ as rε ≈ ε1/3. Defining

ρ by (78), and using (89), (90) and (97), this proves that â = 1√
ρa, B̂ = 1√

ρB and

Ĝ = 1√
ρG satisfy (79) and statements 4.1, 4.2 and 4.3 of the result. �
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Remark 16. For Uε ∈ H1
Γε(Ω

ε)3 satisfying estimate (55), Lemma 12 suggests the
following antsatz

Uε1 (x) ∼ u1

(
x1,

x′

ε

)
+ εv1

(
x1,

x′

ε

)
,

Uεα(x) ∼ 1

ε
uα

(
x1,

x′

ε

)
+ vα

(
x1,

x′

ε

)
+ εwα

(
x1,

x′

ε

)
, α ∈ {2, 3},

when x ∈ Ωε is far of Γ0
ε; on the other hand, when x is close to εyn+({0} × εrεSn),

Lemma 15 suggests the antsatz

Uε(x) ∼
√

ε

rε

(
â+ B̂yn + Ĝz − q̂n

(
x− εyn

εrε

))
.

In the next section we shall show that when Uε is the solution of (9), the combina-
tion of both antsatz allows us to build approximations of Uε and e(Uε) in strong
topologies.

5. Proof of the main result. This section is devoted to prove Theorem 4. The
main tools will be Lemmas 12 and 15.

Proof of Theorem 4. By Lemmas 11 and 12, there exist a subsequence of ε and
(û, v̂, ŵ) ∈ D such that uε defined by (54) satisfies (58) and (59). From (58), by
using the change of variables (53)-(54) we get that this subsequence also satisfies∫

Ωε

(
|Uε1 (x)− u1(x1,

x′

ε
)|2 +

3∑
α=2

|εUεα(x)− uα(x1)|2
)
dx =

=

∫
Ω

(
|uε1(y)− u1(y)|2 +

3∑
α=2

|uεα(y)− uα(y1)|2
)
dy = Oε.

(105)

This is nothing but (22) for the subsequence.
From now on we divide the proof of Theorem 4 in two steps.
In the first one, we characterize (û, v̂, ŵ) as the solution of the variational problem

(21), with E and B defined in Theorem 4 according to the size of the parameters
ε, rε and to the value of M . The uniqueness of the solution of this variational
problem will imply that actually it was not necessary to extract any subsequence
to have (58), (59) and (105) (and that consequently (22) holds). To prove (21) we
use a suitable sequence of test functions V ε in (9) and then we pass to the limit
by using Lemmas 12 and 15. Since the reasoning is similar in all the cases (it is
simpler in the non critical cases), we just give a detailed proof of the case rε ≈ ε,
which is one of the most difficult cases, and only the definition of the corresponding
test functions V ε in other cases.

In the second step, we prove the corrector result (23). For that we use Uε as test
function in (9). Thanks to (21), this allows us to compute the limit of∫

Ωε
Aεe(Uε) : e(Uε) dx,

from which we will deduce that∫
Ωε
Aε
(
e(Uε)−E(û, v̂, ŵ)(x1,

x′

ε
)−P ε(x)

)
:

(
e(Uε)−E(û, v̂, ŵ)(x1,

x′

ε
)−P ε(x)

)
dx=Oε,

with P ε defined as in the statement of Theorem 4. By the uniform ellipticity of Aε,
this equality gives (23) and therefore finishes the proof of Theorem 4. Again, we
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will just give the proof of the second step in the case rε ≈ ε, the other cases being
completely analogous.

Step 1. We assume rε ≈ ε, with rε/ε → λ ∈ (0,+∞). By Lemma 12 there exist
(û, v̂, ŵ) in D and a subsequence of ε, still denoted by ε, such that (58), (59) hold,

with uε given by (54). Let ζ̂i, i ∈ {1, 2, 3}, ĉ, Q̂ be the functions and the skew-
symmetric matrix function associated to (û, v̂, ŵ) (see Remark 2). Since rε ≈ ε,

Lemma 15 gives ζ̂2(0) = ζ̂3(0) = 0, and therefore (û, v̂, ŵ) belongs to the space E
defined by (31).

On the other hand, Lemma 15 provides â ∈ R3, B̂, Ĝ ∈ R3×3
sk , q̂n ∈ D1,2(Z)3,

n ∈ {1, . . . , N}, and a new subsequence of ε, still denoted by ε, satisfying (79) and
(80), with pn,ε defined by (73). Since rε ≈ ε, Lemma 15 also gives

â = (ζ̂1(0), â2, â3) with â2, â3 ∈ R, B̂ = Q̂, Ĝ = 0.

We will now define a suitable sequence of test functions for (9). We take (u, v, w) ∈
E ∩

(
C∞(Ω)3

)3
such that there exists a positive δ satisfying

v1 = w2 = w3 = 0 in ([0, δ) ∪ (1− δ, 1])× S. (106)

We denote by ζi, i ∈ {1, 2, 3}, c and Q the functions and the skew-symmetric matrix
function associated to (u, v, w). We also consider qn ∈ C∞(Z̄)3, n ∈ {1, . . . , N},
such that

∃R > 0 with qn = 0 in Z \B3(0;R) (107)

qn =
√
λ
(
(ζ1(0), a2, a3) +Qyn

)
on {0} × Sn, for some a2, a3 ∈ R. (108)

From these functions, we define V ε ∈ H1
Γε(Ω

ε)3 by

V ε(x) =Wε(x)−
√

ε

rε

N∑
n=1

qn
(
x− εyn

εrε

)
+Rε(x) +

N∑
n=1

Rn,ε(x), (109)

where Wε, Rε and Rn,ε ∈ C∞(Ωε)3 are given by

Wε
1(x) = u1(x1,

x′

ε
) + εv1(x1,

x′

ε
)

= ζ1(x1)− dζα
dy1

(x1)
xα
ε

+ εv1(x1,
x′

ε
)

Wε
2(x) =

1

ε
u2(x1) + v2(x1,

x′

ε
) + εw2(x1,

x′

ε
)

=
1

ε
ζ2(x1) + c(x1)

x3

ε
+ εw2(x1,

x′

ε
)

Wε
3(x) =

1

ε
u3(x1) + v3(x1,

x′

ε
) + εw3(x1,

x′

ε
)

=
1

ε
ζ3(x1)− c(x1)

x2

ε
+ εw3(x1,

x′

ε
),

(110)

Rε(x) =

√
λε

rε

(
−2(1− x1)aαxαe

1 + (1− x1)2aαeα
)
,

Rn,ε(x) = −
((

1−
√
λε

rε

) (
ζ1(0)e1 +Qyn

)
−
√
λε

rε
2(1− x1)aαxαe

1

+Q
xαe

α − εyn

ε

)
Ψn

(
x− εyn

εrε

)
,
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with Ψn ∈ C∞(Z̄)3, n ∈ {1, . . . , N}, such that

Ψn = 1 a.e. {0} × Sn, ∃R̃ > 0 with Ψn = 0 in Z \B3(0; R̃). (111)

Functions Rε, Rn,ε, n ∈ {1, . . . , N}, have been introduced in the definition of V ε

to ensure the boundary condition V ε = 0 on Γε0, but we remark that their energies
are negligible. Namely,

e(Rε) = 0 in Ωε (112)

and thanks to supp(Rn,ε) ⊂ B3(εyn; εrεR̃) we have

lim
ε→0

∫
Ωε
|e(Rn,ε)|2dx = 0, ∀n ∈ {1, . . . , N}. (113)

Moreover, using rε ≈ ε, (107), |Rε1| ≤ Cε and |Rεα| ≤ C in Ωε, α ∈ {2, 3}, it is easy
to check that

lim
ε→0

∫
Ωε

(
|V ε1 − u1(x1,

x′

ε
)|2 +

3∑
α=2

|εV εα − uα(x1,
x′

ε
)|2
)
dx = 0. (114)

A simple calculation also proves

lim
ε→0

∫
Ωε

∣∣∣∣e(Wε)(x)− E(u, v, w)(x1,
x′

ε
)

∣∣∣∣2 dx = 0. (115)

Taking V ε as test function in (9), and using (10), e(Rε) = 0 in Ωε, (113), (114),
(115) and Cauchy-Schwarz’s inequality, we get

1

ε2

∫
Ωε

(Aεe(Uε)−Hε) : E(u, v, w)(x1,
x′

ε
)dx

−
√

ε

rε

N∑
n=1

1

ε3rε

∫
Ωε

(Aεe(Uε)−Hε) : e(qn)

(
x− εyn

εrε

)
dx

=
1

ε2

∫
Ωε
f(x1,

x′

ε
)u(x1,

x′

ε
)dx+Oε.

(116)

Let us estimate the three terms in (116).
First term. By using the change of variables (53) together with (6), (7), (10) and

(59) we obtain

1

ε2

∫
Ωε

(Aεe(Uε)−Hε) : E(u, v, w)(x1,
x′

ε
)dx =

∫
Ω

(Aeε(uε)− h) : E(u, v, w)dy

=

∫
Ω

(AE(û, v̂, ŵ)− h) : E(u, v, w)dy +Oε.

Second term. The change of variables (73) and (80) give√
ε/rε
ε3rε

∫
Ωε
Aεe(Uε) : e(qn)

(
x− εyn

εrε

)
dx

=

∫
Zε
A(εrεz1, y

n + rεz
′)e(pn,ε) :

√
rε
ε
e(qn)dz = −

∫
Z

A(yn)e(q̂n) : e(qn)dz +Oε,
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for every n ∈ {1, . . . , N}. On the other hand, Cauchy-Schwarz’s inequality, rε ≈ ε,
supp(qn) ⊂ B̄3(0;R) and (7) imply∣∣∣∣∣
√
ε/rε
ε3rε

∫
Ωε
Hε : e(qn)

(
x− εyn

εrε

)
dx

∣∣∣∣∣ ≤
(

1

ε2

∫
B3(εyn;εrεR)

|Hε|2dx

)1/2(
C
r2
ε

ε2

)1/2

≤ C

(∫
B3(yn;rεR)

|h|2dy

)1/2

= Oε, ∀n ∈ {1 . . . , N}.

Hence, we have√
ε

rε

N∑
n=1

1

ε3rε

∫
Ωε

(Aεe(Uε)−Hε) : e(qn)

(
x− εyn

εrε

)
dx

= −
N∑
n=1

∫
Z

A(yn)e(q̂n) : e(qn)dz +Oε.

Third term. Using the change of variables (53) we can rewrite the last term in
(116) as

1

ε2

∫
Ωε
f(x1,

x′

ε
)u(x1,

x′

ε
)dx =

∫
Ω

fu dy.

These estimates allow us to pass to the limit in (116) to get∫
Ω

(AE(û, v̂, ŵ)− h) : E(u, v, w)dy+

N∑
n=1

∫
Z

A(yn)e(q̂n) : e(qn)dz=

∫
Ω

fu dy. (117)

By density this equality holds true for every (u, v, w) ∈ E , and every qn ∈ D1,2(Z)3,
n ∈ {1, . . . , N}, satisfying (108) for some a2, a3 ∈ R independent of n. From Lax-
Milgram’s theorem, we deduce that there exists a unique solution (û, v̂, ŵ) ∈ E ,
q̂n ∈ D1,2(Z)3 satisfying (79), n ∈ {1, . . . , N}, of the variational problem (117).
Next we focus in eliminating q̂n, n ∈ {1, . . . , N}, from (117) in order to prove that
(û, v̂, ŵ) is solution of (21).

Taking in (117) as test functions (u, v, w) = (0, 0, 0) and qn = ηn, with ηn ∈
D1,2(Z)3, ηn = 0 on {0} × Sn, n ∈ {1, . . . , N}, we deduce that q̂n satisfies q̂n ∈ D1,2(Z)3, q̂n =

√
λ
(
(ζ̂1(0), â2, â3) + Q̂yn

)
on {0} × Sn,∫

Z

A(yn)e(q̂n) : e(η)dz = 0, ∀η ∈ D1,2(Z)3 such that η = 0 on {0} × Sn.

Thanks to the linearity of this problem, this proves that

q̂n =
√
λ
(
û1(yn)ϕn,1 +

(
âα + v̂α(yn)

)
ϕn,α

)
in Z,

where the functions ϕn,i, i ∈ {1, 2, 3} are the solutions of (26). It remains to
characterize the constants â2, â3. For this purpose we take in (117) (u, v, w) = 0
and qn = ϕn,α, α ∈ {2, 3}, which shows that the constants â2, â3 satisfy the system

N∑
n=1

∫
Z

A(yn)e(q̂n) : e(ϕn,α)dz = 0, α ∈ {2, 3}.

Taking into account the ellipticity of A and that the functions ϕn,2, ϕn,3 are linearly
independent, we deduce that this system has a unique solution and then gives â2, â3.
This proves that q̂n =

√
λ qn(û,v̂′)0 , n ∈ {1, . . . , N}, with qn(û,v̂′)0 given by (33).
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Taking in (117) as test function an arbitrary (u, v, w) in E , and qn =
√
λ qn(u,v′)0 ,

n ∈ {1, . . . , N}, we deduce that (û, v̂, ŵ) is the unique solution of (21), with B
defined by (36).

We have studied the case rε ≈ ε in detail. As said above, for the other cases we
only give the definition of the corresponding test functions V ε.

• Case rε � ε1/3. By Lemma 15, the function (û, v̂, ŵ) given by Lemma 12 belongs
to E defined by (47). Remark that all the functions ζi, i ∈ {1, 2, 3}, dζα/dy1,
α ∈ {2, 3}, and c associated to a given (u, v, w) ∈ E have null trace at y1 = 0.
This enables us to take as test functions V ε = Wε, with Wε defined by (110) for

(u, v, w) ∈ E ∩
(
C∞(Ω)3

)3
satisfying (106) for some δ > 0.

• Case rε ≈ ε1/3 with rε/ε
1/3 → µ ∈ (0,+∞). We define V ε according to the value

of M .
If M = 2, then Lemma 15 asserts that (û, v̂, ŵ) given by Lemma 12 belongs to E

given by (47). As in the case rε � ε1/3, it is enough to define V ε = Wε, with Wε

given by (110) for (u, v, w) ∈ E ∩
(
C∞(Ω)3

)3
satisfying (106).

Let us suppose M ∈ {0, 1}. Assertions 2.1 and 2.2 of Lemma 15 imply (û, v̂, ŵ)
belongs to E given by (38). Moreover, the functions q̂n given by Lemma 15 satisfy

(79) with Ĝ = Q̂.

We take (u, v, w) ∈ E ∩
(
C∞(Ω)3

)3
satisfying (106), with E defined according to

the value of M . Observe that there exist θ2, θ3 ∈ R, independent of n, such that

ζ1(0)e1 +Qyn = θ2e
2 + θ3e

3, ∀n ∈ {1, . . . , N}. (118)

In fact, if M = 0 then n only takes the value 1 and obviously the left hand side of
(118) can not change with n, and if M = 1 then (118) holds with θ2 = θ3 = 0.

We also take qn ∈ C∞(Z̄)3, n ∈ {1, . . . , N}, satisfying (107) and

qn(z) = µ3/2
(
a+Byn +Qz

)
for a.e. z ∈ {0} × Sn,

for some a ∈ R3, B ∈ R3×3
sk arbitrary.

Then we define V ε ∈ H1(Ωε)3
Γε by

V ε(x) =Wε(x)−
√

ε

rε

N∑
n=1

qn
(
x− εyn

εrε

)
+Rε(x) +

N∑
n=1

Rn,ε(x),

where Wε is given by (110), and Rε, Rn,ε ∈ C∞(Ωε)3 are given by
Rε(x) =

√
µ3ε

rε

(
(1− x1)a+B1α

dϕα
dy1

(x1)
xα
ε
e1 − B1α

ε
ϕα(x1)eα

+
B23

ε
(1− x1)(x3e

2 − x2e
3)

)
− 2(1− x1)θαxαe

1 + (1− x1)2θαe
α,


Rn,ε(x) = −

((
1−

√
µ3ε

r3
ε

)
Q
xαe

α − εyn

ε
+

√
µ3ε

rε
B
x− εyn

ε

−2(1− x1)θαxαe
1

)
Ψn

(
x− εyn

εrε

)
,
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with ϕα ∈ C∞(R) satisfying

ϕα(0) = ϕα(1) =
dϕα
dy1

(1) = 0,
dϕα
dy1

(0) = 1, ∀α ∈ {2, 3},

and Ψn ∈ C∞(Z̄)3 satisfying (111), n ∈ {1, . . . , N}.

• Case ε1/3 � rε � ε. The test functions V ε are defined as in the case rε ≈ ε1/3

with a = 0, B = 0 (when M ∈ {0, 1}). Remark that in this case the energy
corresponding to the second term in the definition of V ε tends to zero.

• Case ε � rε � ε3. The test functions V ε are defined as in the case rε ≈ ε with
a2 = a3 = 0, where as in the previous case, the energy corresponding to the second
term in the definition of V ε tends to zero.

• Case rε ≈ ε3, with rε/ε
3 → κ ∈ (0,+∞). By Lemma 12 and Lemma 15, there exist

a subsequence of ε, still denoted by ε, (û, v̂, ŵ) in E , with E = D, q̂n ∈ D1,2(Z)3,

n ∈ {1, . . . , N}, such that (58), (59), (79) and (80) hold, with â = (0, ζ̂2(0), ζ̂3(0)),

B̂ = Ĝ = 0.
To define the sequence of test functions V ε, we take (u, v, w) ∈ E ∩

(
C∞(Ω)3

)3
satisfying (106) for some δ > 0, and qn ∈ C∞(Z̄)3, n ∈ {1, . . . , N}, satisfying (107)
and

qn =
√
κ
(
0, ζ2(0), ζ3(0)

)
on {0} × Sn.

Then we define V ε ∈ H1(Ωε)3
Γε by

V ε(x) =Wε(x)−
√

ε

rε

N∑
n=1

qn
(
x− εyn

εrε

)
+

N∑
n=1

Rn,ε(x),

where Wε is given by (110), and Rn,ε ∈ C∞(Ωε)3 is given by

Rn,ε(x) = −

ζ1(0)e1 +Q
xα
ε
eα − 1

ε

1−

√
ε3κ

rε

 ζα(0)eα

Ψn

(
x− εyn

εrε

)
,

with Ψn ∈ C∞(Z̄)3, n ∈ {1, . . . , N}, satisfying (111).

• Case ε3 � rε. The test functions V ε are defined as in the case rε ≈ ε3 where now
the energy corresponding to the second term in the definition of V ε tends to zero..

Step 2. Now we focus our attention in proving the corrector result (23) when
rε ≈ ε, the other cases being analogous.

We fix a positive constant τ such that Sn ⊂ B2(0; τ), n ∈ {1, . . . , N}. We also
take δε > 0, for every ε > 0, satisfying

lim
ε→0

δε
εrε

= +∞, lim
ε→0

δε
ε

= 0,

and we set Qn,ε = Ωε ∩ B3(εyn; δετ), n ∈ {1, . . . , N}. Observe that yε(Qn,ε) ⊂
{y ∈ Ω : y1 < δε} and zn,ε(Qn,ε) = Zε ∩ B3(0; δε/(εrε)), and hence, thanks to the
choice of δε, we have

1I
yε(Qn,ε)

→ 0 a.e. Ω, 1I
Z\zε(Qn,ε) → 0 a.e. Z. (119)

Moreover, since rε � ε, if ε is small enough then

Qn,ε ∩Qm,ε = ∅, ∀n,m ∈ {1, . . . , N}, n 6= m. (120)
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We denote

T ε(x) = E(u, v, w)(x1,
x′

ε
)1I

Ωε\∪Nn=1Q
n,ε
− 1√

λ εrε

N∑
n=1

e(p̂n)(
x− εyn

εrε
)1I

Ωε\Qn,ε ,

for a.e. x ∈ Ωε. Thanks to (119) and taking into account the equality

P ε(x) =
1√
λ εrε

N∑
n=1

e(p̂n)(
x− εyn

εrε
), for a.e. x ∈ Ωε,

we have ∫
Ωε

∣∣∣∣e(T ε)(x)− E(û, v̂, ŵ)

(
x1,

x′

ε

)
− P ε(x)

∣∣∣∣2 dx = Oε,

hence, thanks to the uniform ellipticity of Aε to prove (23) it is enough to demon-
strate

1

ε2

∫
Ωε
Aεe(Uε) : e(Uε)dx− 1

ε2

∫
Ωε

(
Aε + (Aε)T

)
e(Uε) : T εdx

+
1

ε2

∫
Ωε
AεT ε : T εdx =

1

ε2

∫
Ωε
Aε (e(Uε)− T ε) : (e(Uε)− T ε) dx = Oε.

(121)

Let us study the limit of every term in the left hand side of last equality. Taking
Uε as test function in (9) and using the change of variables (53) together with (58),
(59), (21) and (36), it results that

1

ε2

∫
Ωε
Aεe(Uε) : e(Uε)dx =

1

ε2

∫
Ωε
F εUεdx+

1

ε2

∫
Ωε
Hε : e(Uε)dx

=

∫
Ω

fûdy +

∫
Ω

h : E(û, v̂, ŵ)dy +Oε

=

∫
Ω

AE(û, v̂, ŵ) : E(û, v̂, ŵ)dy + B ((û, v̂), (û, v̂)) +Oε

=

∫
Ω

AE(û, v̂, ŵ) : E(û, v̂, ŵ)dy +

N∑
n=1

∫
Z

A(yn)e(p̂n) : e(p̂n)dz +Oε.

(122)

For the second term in the left-hand side of (121), using the changes of variables
(53) and (73), by (59), (80) and (119) we get

1

ε2

∫
Ωε

(Aε + (Aε)T )e(Uε) : T εdx =

∫
Ω

(A+AT )eε(uε) : E(û, v̂, ŵ)dy

− rε√
λ, ε

N∑
i=1

∫
Zε

(A+AT )(εrεz1, y
n + rεz

′)e(pn,ε) : e(p̂n)dz +Oε

=

∫
Ω

(A+AT )E(û, v̂, ŵ) : E(û, v̂, ŵ)dy

+

N∑
n=1

∫
Z

(A(yn)+AT (yn))e(p̂n) : e(p̂n)dz +Oε.

(123)
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Finally, thanks to (119) and (120), the last term in the left-hand side of (121)
satisfies

1

ε2

∫
Ωε
AεT ε : T εdx =

∫
Ω

AE(û, v̂, ŵ) : E(û, v̂, ŵ)dy

+
rε√
λ ε

N∑
n=1

∫
Zε
A(εrεz1, y

n + rεz
′)e(p̂n) : e(p̂n)dz +Oε

=

∫
Ω

AE(û, v̂, ŵ) : E(û, v̂, ŵ)dy +

N∑
n=1

∫
Z

A(yn)e(p̂n) : e(p̂n)dz +Oε.

(124)

From (122), (123) and (124) we deduce (121). �

REFERENCES

[1] J. Casado-Dı́az and M. Luna-Laynez, Homogenization of the anisotropic heterogeneous lin-
earized elasticity system in thin reticulated structures, Proc. Roy. Soc. Edinburgh A, 134

(2004), 1041–1083.

[2] J. Casado-Dı́az, M. Luna-Laynez and F. Murat, Asymptotic behavior of diffusion problems
in a domain made of two cylinders of different diameters and lengths, C.R. Acad. Sci. Paris

Ser. I , 338 (2004), 133–138.

[3] J. Casado-Dı́az, M. Luna-Laynez and F. Murat, Asymptotic behavior of an elastic beam fixed
on a small part of one of its extremities, C. R. Acad. Sci. Paris, C. R. Acad. Sci. Paris Ser.

I , 338 (2004), 975–980.

[4] J. Casado-Dı́az, M. Luna-Laynez and F. Murat, The diffusion equation in a notched beam,
Calc. Var., 31 (2008), 297–323.

[5] P. G. Ciarlet, Mathematical Elasticity, Vol. I: Three-Dimensional Elasticity, Studies in Math.

and its Appl., 20, North-Holland, Amsterdam 1988.
[6] P. G. Ciarlet, Mathematical Elasticity, Vol. II: Theory of Plates, Studies in Math. and its

Appl., 27, North-Holland, Amsterdam, 1988.
[7] D. Cioranescu, J. Saint Jean Paulin, Homogenization of Reticulated Structures, Applied

Mathematical Sciences Series, 136, Springer-Verlag, Berlin 1999.

[8] A. Gaudiello, R. Monneau, J. Mossino, F. Murat and A. Sili, On the junction of elastic plates
and beams, C. R. Acad. Sci. Paris Ser. I , 335 (2002), 717–722.

[9] A. Gaudiello, R. Monneau, J. Mossino, F. Murat and A. Sili, Junction of elastic plates and

beams, ESAIM Control Optim. Calc. Var., 13 (2007), 419–457.
[10] G. Geymonat, F. Krasucki and J. J. Marigo, Stress distribution in anisotropic elastic com-

posite beams, in Applications of Multiple Scalings in Mechanics (eds. P. G. Ciarlet and E.

Sanchez Palencia), Masson, Paris, 1987, 118–133.
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