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Abstract
The paper deals with the homogenization of a magneto-elastodynamics equation satisfied by
the displacement uε of an elastic body which is subjected to an oscillating magnetic field Bε

generating theLorentz force ∂t uε×Bε .When themagnetic field Bε only depends on timeor on
space, the oscillations of Bε induce an increase of mass in the homogenized equation. More
generally, when the magnetic field is time-space dependent through a uniformly bounded
component Gε(t, x) of Bε , besides the increase of mass the homogenized equation involves
the more intricate limit g of ∂t uε × Gε which turns out to be decomposed in two terms. The
first term of g can be regarded as a nonlocal Lorentz force the range of which is limited to a
light cone at each point (t, x). The cone angle is determined by the maximal velocity defined
as the square root of the ratio between the elasticity tensor spectral radius and the body mass.
Otherwise, the second term of g is locally controlled in L2-norm by the compactness default
measure of the oscillating initial energy.

Mathematics Subject Classification 74Q10 · 74Q15 · 35B27 · 35L05

1 Introduction

In a insulating (vacuum-like) environment, an elastic three-dimensional body placed in an
electric field E and a magnetic B is subjected to the Lorentz force (see, e.g., [2, Sect. 9.3])

fL = ρe(E + v × B) + σ(E + v × B) × B, (1.1)
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where v is the velocity, σ the conductivity of the body and ρe is the density of free electrical
charges, while E and B satisfy Maxwell’s system. In particular, the fields E and B are
connected by the equation

curl E + ∂t B = 0.

In the present paper we focus on the magnetic Lorentz force ∂tv × B rather than on the
electrical force. We assume that

• the elastic body is a poor conductor, i.e. σ ≈ 0,
• the electrical Lorentz force ρeE is negligible compared to the magnetic Lorentz force

ρe(v × B),

which yields

fL ≈ ρe(v × B). (1.2)

The second assumption holds in particular if E(t, x) = ε e(t, x/ε) with 0 < ε � 1, since
then

O(ε) = E(t, x) � B(t, x) = B(0, x) −
∫ t

0
(curl e)(s, x/ε) ds = O(1).

Under these assumptions and setting ρe = 1, the displacement u of the body with velocity
v = ∂t u, satisfies the “simplified” magneto-elastodynamics equation

ρ ∂2t t u − Divx
(
Ae(u)

)+ ∂t u × B = f , (1.3)

where ρ is the mass density, A is the elasticity tensor of the body and e(u) is the symmetric
strain tensor. The right-hand side f encompasses all other body forces. Equation (1.3) can
be extended to any dimension N ≥ 2, replacing the three-dimensional Lorentz force ∂t u× B
by B∂t u, where B is now a N × N skew-symmetric matrix-valued function.

In the framework of homogenization theory, our aim is to study the effect of a time-space
oscillating magnetic field Bε(t, x) on the magneto-elastodynamics equation (1.3).

Let T > 0, let � be a bounded open set of RN and Q := (0, T ) × �. Consider the
magneto-elastodynamics problem⎧⎨

⎩
ρ ∂2t t uε − Divx

(
Ae(uε)

)+ Bε∂t uε = fε in Q
uε = 0 on (0, T ) × ∂�

uε(0, .) = u0ε, ∂t uε(0, .) = u1ε in �,

(1.4)

where Bε is a skew-symmetric matrix-valued function in L∞(Q)N×N decomposed as

Bε(t, x)=Fε(x)+Gε(t, x)+Hε(t, x), with Bε(0, x)=Fε(x), Gε(0, x)=Hε(0, x)=0, (1.5)

fε ∈ L1(0, T ; L2(�))N , u0ε ∈ H1
0 (�)N , u1ε ∈ L2(�)N . Contrary to Fε(x) the component

Gε(t, x) is assumed to be uniformly bounded with respect to t and x , but the time-space
oscillations ofGε(t, x)may produce a nonlocal effect. The component Hε(t, x) is a compact
perturbation of Bε(t, x). Under suitable oscillations of the sequences Bε, fε , u0ε , u

1
ε , we can

pass to the limit as ε tends to zero in (1.4) in order to derive the homogenized problem.
Homogenization of pde’s with variable coefficients has been the subject of numerous stud-

ies for bounded coefficients in the books [5,10,12,23] and the references therein, [1,3,19] for
periodically oscillating coefficients, as well as for non-uniformly bounded coefficients (from
above or below) in the survey article [14]. Here, the asymptotic analysis of equation (1.4)
involving the general sequence Bε is in line with homogenization of pde’s with non-periodic
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coefficients which was initiated by Spagnolo [20] and Murat, Tartar [18]. More specifically,
in the stationary case Tartar [21,22] (see also [7] for an alternative approach) has studied the
homogenization of the three-dimensional Stokes equation

− �uε + bε × uε + ∇ pε = f in �, (1.6)

perturbed by the oscillating drift term bε × uε representing the Coriolis force which plays an
analogous role to the Lorentz force (1.2) in equation (1.3). To that end Tartar developed his
celebrated “oscillating test functions method” at the end of the Seventies, and he obtained a
homogenized Brinkman [8] type equation

− �u + b × u + ∇ p + M∗u = f in �, (1.7)

where M∗ is a non-negative symmetric matrix-valued function. If the magnetic field Bε(x)
is independent on time and T = ∞, a time Laplace transform of equation (1.4) leads us to
an equation which is similar to (1.6). Therefore, Tartar’s homogenization result combined
with an inverse Laplace transform should at the least modify the mass ρ in the homogenized
equation of (1.4). Considering the dynamical system of thermoelasticity with space vary-
ing coefficients Brahim-Otsmane, Francfort and Murat [4] obtained a similar homogenized
dynamical system of thermoelasticity involving an increase of the heat capacity.

Alternatively, nonlocal effects without change of mass have been obtained in [9] for
the homogenization of a scalar wave equation with a periodically oscillating matrix-valued
function Bε(t, x) = B(t, x, t/ε, x/ε), where B(t, x, s, y) is bounded with respect to the
variables (t, x) and periodically continuous with respect to the variables (s, y), using a two-
scale analysis method.

In our non-periodic and vectorial setting we show that the time-space oscillations of the
magnetic field Bε(t, x) produce both an increase of mass and nonlocal effects through an
abstract representation formula arising in the homogenized equation.

On the one hand, the first result of the paper is the derivation of an anisotropic effective
mass �∗ which is greater (in the sense of the quadratic forms) than the startingmass ρ IN . This
increase of mass in the homogenization process is due to the oscillations of the magnetic field
at the microscopic scale, which modify the linear momentum through the magnetic Lorentz
force. At this point Milton and Willis [17] have explained the macroscopic change of mass
obtained in composite elastic bodies at fixed frequency, by the existence of a hidden mass
at the microscopic scale, which modifies Newton’s second law. From this observation, when
the magnetic field Bε is only time dependent, we can build an anisotropic internal massmε(t)
such that in a multiplicative way

mε(t) ∂t uε ≈ m∗(t) ∂t u. (1.8)

In contrast, when the magnetic field is independent of time, i.e. Bε = Fε which is assumed to
converge weakly to zero inW−1,p(�)N×N for some p > N ∨3, we can build an anisotropic
internal mass Mε(x) = Fε(x)Wε(x) such that in an additive way

∂t uε ≈ ∂t u + Wε ∂2t t u. (1.9)

The harmonic limit of mε(t) (due to the multiplicativity of (1.8)) or the arithmetic limit of
Mε(x) (due to the additivity of (1.9)) leads us to the anisotropic effective mass �∗.

On the other hand, the second result of the paper shows that both time and space oscillations
of the magnetic field Bε(t, x) may also induce nonlocal effects which are absent if the
magnetic field is only time dependent or only space dependent. Assuming that the component
Gε of the magnetic field (see (1.5)) weakly converges to zero in L∞(Q)N×N and that Hε is

123



163 Page 4 of 36 M. Briane, J. Casado-díaz

a compact perturbation, we prove (see Theorem 4.1, Theorem 5.10 and Theorem 5.15) that
the limit g of the magnetic Lorentz force Gε∂t uε admits the following decomposition

g =
∫
Q
d	(s, y) ∂t u(s, y) − h0, in Q. (1.10)

First, the matrix-valued measure 	 in (1.10) can be regarded as the kernel of a nonlocal
Lorentz force arising in the homogenized problem. The range of this nonlocal term is limited
to each light cone of Q, the angle of which is equal to 2 arctan cwith c = √‖A‖/ρ (‖A‖ is the
Frobenius norm of tensor A). A particular nonlocal term with some light cone range has been
obtained in the periodically oscillating case of [9]. The general nonlocal term (1.10) with
the specific light cone range is thus substantial to the homogenization process in the present
non-periodic setting. Next, we show (see Theorem 5.10, Corollary 5.12 and Corollary 5.13)
that the second term h0 in (1.10) is locally controlled in L2-norm by the compactness default
measure μ0 of the oscillating initial energy. The function h0 acts as a new exterior force in
the homogenized problem.

Therefore, collecting the two previous results we get that the homogenized problem
of (1.4) can be written as⎧⎨

⎩
�∗∂2t t u − Divx

(
Ae(u)

)+ H∂t u + g = f in Q
u = 0 on (0, T ) × ∂�

u(0, .) = u0 in �,

(1.11)

and the initial velocity ∂t u(0, .) actually depends on the effective mass �∗. As a by-product of
the energy estimate satisfied by the limit g, we obtain a corrector result for the homogenization
problem (1.4) if the compactness default measure μ0 vanishes (see Remark 5.4). This holds
in particular when the initial conditions are “well-prepared” (see Remark 5.1) in the spirit of
the classical homogenization result [13] for the wave equation.

The paper is organized as follows:
In Sect. 2 we study the case where the magnetic field Bε only depends on time. We derive

(see Theorem 2.3) the homogenized problem (1.11) with the sole increase of mass (g = 0).
Section 3 is devoted to a stationary problem (see Theorem 3.1) which prepares the main

homogenization result of the paper in Sect. 4. It is partly based on Tartar’s works [21,22].
In Sect. 4 we consider a more general magnetic field Bε satisfying (1.5). We prove (see

Theorem 4.1) that the homogenized magneto-elastodynamics problem of (1.4) is (1.11).
Section 5 deals with several estimates of the limit g (see Theorem 5.3 and Theorem 5.10)

and an abstract representation (see Theorem 5.15) which allow us to prove that the function g
admits the decomposition (1.10). In some specific cases we get a complete representation of
the function g and the uniqueness of a solution to the limit problem (1.11) (see Corollary 5.12
and Corollary 5.13).
Notation

• (e1, . . . , eN ) denotes the canonical basis of RN .
• For any ξ, η ∈ R

N , ξ � η denotes the symmetric matrix in R
N×N the entries of which

are 1/2 (ξi η j + ξ j ηi ), i, j ∈ {1, . . . , N }.
• Ȳ denotes the closure of a subset Y of a topological set X .
• A ∈ L (RN×N

s ;RN×N
s ) is a positive definite symmetric fourth-order tensor, and ‖A‖

denotes its Frobenius norm.
• |E | denotes the Lebesgue measure of a measurable set E of RN .
• L (X; Y ) denotes the space of continuous linear functions from the normed space X into

the normed space Y .
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• · denotes the scalar product inRN , : denotes the scalar product inRN×N , and | · | denotes
the associated norm in both cases.

• B(x, r) denotes the euclidean ball of center x ∈ R
N and of radius r > 0, and Br simply

denotes the ball B(0, r) centered at the origin.
• IN denotes the unit matrix of RN×N , and Mt denotes the transposed of a matrix of M .
• R

N×N
s denotes the space of symmetric matrices of order N .

• � denotes a bounded open set of RN for N ≥ 2, T > 0, and Q the cylinder (0, T ) × �.
• Div denotes the vector-valued divergence operator taking the divergence of each row of

a matrix-valued function.
• e(u) denotes the symmetrized gradient of a vector-valued function u.
• M (X) denotes the space of the Radon measures on a locally compact set X .
• C∞

c (U ) denotes the set of the smooth functions with compact support in an open subset
U of RN .

• D ′(U ) denotes the space of the distributions on an open subset U of RN .

• → denotes a strong convergence, ⇀ a weak convergence, and
∗
⇀ a weak-∗ convergence

• ↪→ denotes a continuous embedding between two topological spaces.
• Oε denotes a sequence of ε which converges to zero as ε tends to zero, and which may

vary from line to line.
• C denotes a positive constant which may vary from line to line.

2 Homogenization of an elastodynamics problemwith a strong
magnetic field only depending on time

Let � be a bounded open set of RN with N ≥ 2, T > 0, Q = (0, T ) × �, ρ > 0 and let
A ∈ L (RN×N

s ;RN×N
s ) be a positive definite symmetric tensor. Let f ∈ L1(0, T ; L2(�))N .

For a given function bε ∈ C1([0, T ]) and for a constant skew-symmetric matrix ß ∈ R
N×N ,

let ßε ∈ C1([0, T ])N×N be the skew-symmetric matrix-valued function defined by

ßε(t) = bε(t) ß for t ∈ [0, T ], bε(0) = 0, (2.1)

and satisfying

exp(−ρ−1ßε)
∗
⇀ M−1 in L∞(0, T )N×N , (2.2)

where M is an invertible matrix-valued function in C1([0, T ])N×N .

Remark 2.1 Actually we can extend condition (2.1) to

ßtε = − ßε and ß′
εßε = ßεß

′
ε in [0, T ], ßε(0) = 0, (2.3)

where ß′
ε denotes the time derivative of ßε. It is clear that condition (2.1) is a particular case

of condition (2.3).
In dimension 2 conditions (2.1) and (2.3) are clearly equivalent, since any skew-symmetric

matrix in R
2×2 is proportional to the 90◦ rotation matrix.

In dimension 3 the situation is more intricate. Assume that condition (2.3) holds. Then,
there exists a vector-valued function xε ∈ C1([0, T ])N such that

ßε y = xε × y for y ∈ R
3, (2.4)

which implies that condition (2.3) is equivalent to the system of ODE’s

∀ y ∈ R
3, (xε · y) x ′

ε = (x ′
ε · y) xε in (0, T ), xε(0) = 0.
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On the one hand, if xε does not vanish in (0, T ), then using the previous equation with y = xε

we get that
(

xε

|xε|
)′

= x ′
ε

|xε| − (x ′
ε · xε) xε

|xε|3 = 0 in (0, T ), xε(0) = 0.

Hence, there exist a function bε = |xε| ∈ C1([0, T ]) and a constant unit vector ξ ∈ R
3 such

that

xε(t) = bε(t) ξ for t ∈ [0, T ], bε(0) = 0,

which combined with (2.4) yields condition (2.1) with ß y = ξ × y.
On the other hand, consider two functionsαε, βε ∈ C1([0, T ]) such that for some t0 ∈ (0, T ),{

αε(t) > 0 and βε(t) = 0 if t ∈ (0, t0)
αε(t) = 0 and βε(t) > 0 if t ∈ (t0, T ).

Then, for any independent vectors ξ, η ∈ R
3, the skew-symmetric matrix-valued function ßε

defined by

ßε y := (αε ξ + βε η) × y for y ∈ R
3,

satisfies condition (2.3) but not condition (2.1). Therefore, conditions (2.1) and (2.3) are not
generally equivalent in dimension 3.

Under condition (2.1) or (2.3) we need to assume that the weak limit of exp(−ρ−1ßε) is an
invertible matrix-valued function. This is not automatically fulfilled as shows the following
example.

Example 2.2 Let N = 2 and ρ = 1. Consider the function bε defined by bε(t) = t/ε+b(t/ε)
for t ∈ R, where b is a 2π -periodic function inC1(R), and the skew-symmetricmatrix-valued
function

ßε :=
(
0 −bε

bε 0

)
∈ C1(R)2×2.

We have

exp(−ρ−1ßε) =
(
cos(bε) − sin(bε)

sin(bε) cos(bε)

)
⇀

1

2π

∫ 2π

0

(
cos(t) cos(b(t)) − sin(t) sin(b(t)) − cos(t) sin(b(t)) − sin(t) cos(b(t))
cos(t) sin(b(t)) + sin(t) cos(b(t)) cos(t) cos(b(t)) − sin(t) sin(b(t))

)
dt .

Hence, if b = 0 then the weak limit of exp(−ρ−1ßε) is the nul matrix. Otherwise, if b is
closed to the 2π-periodic function which agrees in [0, 2π] with π

2 1[0,π ], then the weak limit
of exp(−ρ−1ßε) is closed to the matrix

− 1

π

(
1 −1
1 1

)
,

and is thus invertible.

We consider the solution uε to the wave equation⎧⎨
⎩

ρ ∂2t t uε − Divx
(
Ae(uε)

)+ ß′
ε∂t uε = f in Q

uε = 0 on (0, T ) × ∂�

uε(0, .) = u0ε, ∂t uε(0, .) = u1ε in �,

(2.5)
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where

u0ε⇀u0 in H1
0 (�)N , u1ε⇀u1 in L2(�)N . (2.6)

We have the following homogenization result.

Theorem 2.3 Assume that conditions (2.3), (2.2), (2.6) hold true. Then, we have

uε

∗
⇀ u in L∞(0, T ; H1

0 (�))N ∩ W 1,∞(0, T ; L2(�)))N , (2.7)

where u is the solution to the equation
⎧⎨
⎩

ρ MtM ∂2t t u − Divx
(
Ae(u)

)+ ρ MtM′ ∂t u = f in Q
u = 0 on (0, T ) × ∂�

u(0, .) = u0, ∂t u(0, .) = M−1(0) u1 in �.

(2.8)

Remark 2.4 Since the matrix exp(ρ−1ßε) is unitary, the lower semi-continuity of convex
functionals yields for any λ ∈ R

N and for any measurable set E ⊂ �,∫
E
M−1λ · M−1λ dx ≤ lim inf

ε→0

∫
E
exp(−ρ−1ßε)λ · exp(−ρ−1ßε)λ dx = |E | |λ|2,

which implies that M−1λ · M−1λ ≤ |λ|2 a.e. in �. Due to M = (M−1)−1, we equivalently
get that for any λ ∈ R

N , Mλ · Mλ ≥ |λ|2 a.e. in �. Hence, the homogenized equation (2.8)
involves an effective anisotropic mass

ρ MtM ≥ ρ IN a.e. in �,

which is greater than the initial one ρ.Wewill see in Sect. 4 that if we replace time oscillations
by space oscillations, the homogenization process also induces a larger effective anisotropic
mass but in quite a different way.

Proof of Theorem 2.3 The proof is performed under the general assumption (2.3). First of all,
since ßε is skew-symmetric, the classical estimates for the wave equation yield convergence
(2.7) up to a subsequence.

By (2.3) we have
(
exp(ρ−1ßε)

)′ = ρ−1 ß′
ε exp(ρ

−1ßε) = ρ−1 exp(ρ−1ßε) ß′
ε . Hence,

equation (2.5) can be written as

ρ ∂t
(
exp(ρ−1ßε) ∂t uε

)− exp(ρ−1ßε)Divx
(
Ae(uε)

) = exp(ρ−1ßε) f in Q, (2.9)

which implies that for any� ∈ C1([0, T ];C∞
c (�))N with�(T , .) = 0, recalling ßε(0) = 0,∫

Q

(
−ρ exp(ρ−1ßε) ∂t uε · ∂t� + Ae(uε) : e( exp(−ρ−1ßε)�

))
dt dx

=
∫

�

ρ u1ε · �(0, .) dx +
∫
Q

f · exp(−ρ−1ßε)� dt dx .
(2.10)

For ϕ ∈ C∞
c (�)N , define the function ξε ∈ L∞(0, T )N by

ξε(t) := ρ exp
(
ρ−1ßε(t)

) ∫
�

∂t uε(t, x) · ϕ(x) dx, for a.e. t ∈ (0, T ). (2.11)

By (2.9) and (2.7) we have

ξ ′
ε =

∫
�

(−Ae(uε) : e(exp(−ρ−1ßε)ϕ) + f · exp(−ρ−1ßε)ϕ
)
dx bounded in L∞(0, T ).
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Hence, ξε is bounded in W 1,∞(0, T ), and up to a subsequence converges weakly-∗ to some
ξ in W 1,∞(0, T )N . This combined with convergences (2.2) and (2.7) implies that

exp(−ρ−1ßε) ξε

∗
⇀ M−1ξ = ρ

∫
�

∂t u(t, x) · ϕ(x) dx in L∞(0, T )N .

Due to the arbitrariness of ϕ it follows that

exp(ρ−1ßε) ∂t uε

∗
⇀ M ∂t u in L∞(0, T ; L2(�))N . (2.12)

Moreover, integrating by parts with respect to x and noting that ßε is independent of x , the
weak convergence (2.7) of uε (see, e.g., [16, Chapter 3, Sect. 8]) and (2.2) yield
∫
Q
Ae(uε) : e( exp(−ρ−1ßε)�

)
dt dx = −

∫
Q
uε : Divx

[
Ae
(
exp(−ρ−1ßε)�

)]
dt dx

−
∫
Q
u : Divx

[
Ae(M−1�)

]
dt dx + Oε =

∫
Q
Ae(u) : e(M−1�) dt dx + Oε.

Therefore, passing to the limit in (2.10) with (2.12) and (2.7), we get that for any � ∈
C∞
c (Q)N ,

∫
Q

(−ρ M ∂t u · ∂t� + Ae(u) : e(M−1�)
)
dt dx =

∫
Q

f · M−1� dt dx .

which is equivalent to the first equation of (2.8).
Finally, let � ∈ C1([0, T ];C∞

c (�))N with �(T , .) = 0. Passing to the limit in (2.10)
with the second convergences of (2.2) and (2.6) we get that

∫
Q

(−ρ M ∂t u · ∂t� + Ae(u) : e(M−1�)
)
dt dx

=
∫

�

ρ u1 · �(0, .) dx +
∫
Q

f · M−1� dt dx,

which combinedwith the first equation of (2.8) gives the initial conditionM(0) ∂t u(0, .) = u1.
The condition u(0, .) = u0 just follows from (2.7), which also implies that uε converges to
u in C0([0, T ]; L2(�)N ). The proof is now complete. ��

3 Homogenization of a stationary problem

This section follows the spirit of [21] and [4].
Let � be a smooth bounded open set of RN with N ≥ 2. Consider a sequence Fε of

matrix-valued functions in W−1,p(�)N×N with p > N ∨ 3, such that

Fε⇀0 in W−1,p(�)N×N , (3.1)

Each entry Fi, j
ε , 1 ≤ i, j ≤ N , of the matrix-valued distribution Fε read as Fi, j

ε =
− div(�i, j

ε ), where �
i, j
ε is a bounded sequence in L p(�)N . In the sequel Fεz for z ∈

H1(�)N , denotes the vector-valued distribution defined by

Fεz · ei =
N∑
j=1

(
− div(z j �

i, j
ε ) + �i, j

ε · ∇z j
)

for i ∈ {1 . . . , N }. (3.2)
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Define w
j
ε , 1 ≤ j ≤ N , as the solution to

{−Div
(
Ae(w j

ε )
)+ Fεe j = 0 in �

w j
ε = 0 on ∂�,

(3.3)

which satisfies (due to the regularity of �)

w j
ε ⇀0 in W 1,p

0 (�)N , ∀ j ∈ {1 . . . , N }. (3.4)

Extracting a subsequence if necessary, we can assume the existence of a nonnegative sym-
metric matrix-valued function M in L

p
2 (�)N×N such that

Ae(w j
ε ) : e(wk

ε )⇀(Mej ) · ek in L
p
2 (�), ∀ j, k ∈ {1, . . . , N }. (3.5)

We have the following result which will be used in the next section with uε as a time
average of the displacement and zε as a time average of the velocity in the elastodynamics
problem.

Theorem 3.1 Consider two sequences zε ∈ H1(�)N and fε ∈ H−1(�)N such that

zε⇀z in H1(�)N , fε → f in H−1(�)N , (3.6)

and recalling (3.2) define uε ∈ H1
0 (�)N as the solution to

{−Div
(
Ae(uε)

)+ Fεzε = fε in �

uε = 0 on ∂�.
(3.7)

Then, up to a subsequence, we have

uε⇀u in H1
0 (�)N (3.8)

uε − u −
N∑
j=1

w j
ε z j → 0 in H1

0 (�)N , (3.9)

Ae(uε) : e(uε)
∗
⇀ Ae(u) : e(u) + Mz · z in M (�̄). (3.10)

Proof First of all, observe that by (3.2), the compact imbedding of H1(�)N into L
2p
p−2 (�)N ,

and Hölder’s inequality involving exponents p, 2, 2p
p−2 , we have for any sequences vε , v′

ε,

which converge weakly to zero in H1
0 (�)N , and any ϕ ∈ C∞

c (�),

〈
Fεvε · v′

ε, ϕ
〉 =

N∑
i, j=1

∫
�

(
�i, j

ε · ∇(ϕ vε, j ) v′
ε,i + �i, j

ε · ∇v′
ε,i ϕ vε, j

)
dx → 0.

This proves the compactness result

vε, v
′
ε⇀0 in H1(�)N ⇒ Fεvε · v′

ε⇀0 in D ′(�). (3.11)
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Similarly, using Sobolev’s imbedding H1
0 (�)N ↪→ L

2p
p−2 (�)N and Hölder’s inequality as

above, we get that

∣∣〈Fεzε, uε〉
∣∣ =

∣∣∣∣∣∣
N∑

i, j=1

∫
�

(
�i, j

ε · ∇uε, j zε,i + �i, j
ε · ∇zε,i uε, j

)
dx

∣∣∣∣∣∣

≤ C
N∑

i, j=1

‖�i, j
ε ‖L p(�)N

(
‖∇uε, j‖L2(�)N ‖zε,i‖

L
2p
p−2 (�)

+ ‖∇zε,i‖L2(�)N ‖uε,i‖
L

2p
p−2 (�)

)

≤ C ‖uε‖H1
0 (�)N .

Hence, putting uε as test function in (3.7) the former estimate combinedwith the boundedness
of fε in H−1(�)N implies that uε is bounded in H1

0 (�)N . Therefore, convergence (3.8) holds
up to a subsequence.

Now, given φ ∈ C∞(�̄)N , we put

uε − u −
N∑
j=1

w j
ε φ j

as test function in (3.7). Thanks to (3.11) and (3.4), we get

∫
�

Ae(uε) :
(
e(uε) − e(u) −

N∑
j=1

e(w j
ε )φ j

)
dx +

〈
Fεz,

(
uε − u −

N∑
j=1

w j
ε φ j

)〉
= Oε.

(3.12)

On the other hand, putting

φ j

(
uε − u −

N∑
i=1

wi
εφi

)

as test function in (3.3), adding in j and using (3.4), we get

∫
�

A
( N∑

j=1

e(w j
ε )φ j

)
:
(
e(uε) − e(u) −

N∑
j=1

e(w j
ε )φ j

)
dx

+
〈
Fεφ, (uε − u −

N∑
j=1

w j
ε φ j

)〉
= Oε. (3.13)

Subtracting (3.12) and (3.13) we have

∫
�

A
(
e(uε) −

N∑
j=1

e(w j
ε )φ j

)
:
(
e(uε) − e(u) −

N∑
j=1

e(w j
ε )φ j

)
dx

+
〈
Fε(z − φ),

(
uε − u −

N∑
j=1

w j
ε φ j

)〉
= Oε.

This combined with the weak convergence

e(uε) − e(u) −
N∑
j=1

e(w j
ε )φ j ⇀0 in L2(�)N×N
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also yields

∫
�

A
(
e(uε) − e(u) −

N∑
j=1

e(w j
ε )φ j

)
:
(
e(uε) − e(u) −

N∑
j=1

e(w j
ε )φ j

)
dx

+
〈
Fε(z − φ),

(
uε − u −

N∑
j=1

w j
ε φ j

)〉
= Oε.

From Rellich-Kondrachov’s compactness theorem and Cauchy-Schwarz’ inequality, we
deduce

lim sup
ε→0

∫
�

A
(
e(uε) − e(u) −

N∑
j=1

e(w j
ε )φ j

)
:
(
e(uε) − e(u) −

N∑
j=1

e(w j
ε )φ j

)
dx

≤ C ‖z − φ‖H1
0 (�)N .

Moreover, taking a sequence φn which converges strongly to z in H1(�)N and noting that

lim
n→∞ lim sup

ε→0

∫
�

A
( N∑

j=1

e(w j
ε )(φn

j − z j )
)

:
( N∑

j=1

e(w j
ε )(φn

j − z j )
)
dx = 0,

we conclude to

lim
ε→0

∫
�

A
(
e(uε) − e(u) −

N∑
j=1

e(w j
ε )z j

)
:
(
e(uε) − e(u) −

N∑
j=1

e(w j
ε )z j

)
dx = 0,

(3.14)

which by Korn’s inequality proves (3.9). It is immediate that (3.14) and (3.5) imply (3.10).
��

We also have the following lower semicontinuity result.

Lemma 3.2 Consider a sequence uε which satisfies the assumptions of Theorem 3.1. Then,
up to subsequence, there exists a measurable function ζ : � → R

N , with

Mζ · ζ ∈ L1(�)N , Mζ ∈ L
2p
p+2 (�)N , (3.15)

such that

Ft
εuε⇀Mζ in H−1(�)N , (3.16)

lim inf
n→∞

∫
�

Ae(uε) : e(uε)ϕ dx ≥
∫

�

(
Ae(u) : e(u) + Mζ · ζ

)
ϕ dx, ∀ ϕ ∈ C0(�̄), ϕ ≥ 0.

(3.17)

Proof For φ ∈ C∞(�̄)N , thanks to (3.3) we have

〈
Ft

εuε, φ
〉 = 〈Fεφ, uε

〉 = −
N∑
j=1

∫
�

Ae(uε) : e(w j
ε ) φ j dx + Oε.

Therefore, defining Z ∈ L
2p
p+2 (�)N by

Ae(uε) : e(w j
ε )⇀ − Z j in L

2p
p+2 (�), (3.18)
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we get

Ft
εuε⇀Z in H−1(�)N . (3.19)

Applying (3.19) to wk
ε in place of uε and recalling the definition of M , we get

Ft
εw

k
ε⇀ − Mek in H−1(�)N , (3.20)

which implies

Ft
ε

( N∑
k=1

wk
εφk

)
⇀ − Mφ in H−1(�)N , ∀ φ ∈ C∞(�̄)N . (3.21)

On the other hand, by (3.18), (3.5) and Cauchy-Schwarz’ inequality, we have for any

function η ∈ L
2p
p−2 (�)N ,

∣∣∣∣
∫

�

Z · η dx

∣∣∣∣ =
∣∣∣∣∣∣ limε→0

∫
�

Ae(uε) :
( N∑

j=1

e(w j
ε )η j

)
dx

∣∣∣∣∣∣

≤
(
lim sup

ε→0

∫
�

Ae(uε) : e(uε) dx

) 1
2
(∫

�

Mη · η dx

) 1
2

.

Therefore, Z is orthogonal to any function η ∈ L
2p
p−2 (�)N such that Mη = 0 a.e. in�.Now,

let us show the existence of a measurable function ζ : � → R
N such that Z = Mζ. To this

end, consider the set

V :=
{
Mξ : ξ ∈ L

2p
p−3 (�)N

}

which byHölder’s inequality (recall thatM ∈ L
p
2 (�)N×N ) is a linear subspace of L

2p
p+1 (�)N .

Let η ∈ L
2p
p−2 (�)N . Due to the symmetry of M we have

η ∈ V⊥ ⇔ ∀ ξ ∈ L
2p
p+1 (�)N ,

∫
�

Mη · ξ dx = 0 ⇔ Mη = 0 a.e. in �,

which implies that Z ∈ (V⊥)⊥ = V since L
2p
p+1 (�)N is a reflexive space (see, e.g., [6,

Proposition 1.9]). Hence, there exists a sequence ζn in L
2p
p−3 (�)N such that Mζn converges

strongly to Z in L
2p
p+1 (�)N . Up to replace ζn by its orthogonal projection on (ker M)⊥, we

may assume that ζn ∈ (ker M)⊥ a.e. in �. Next, consider the measurable pseudo-inverse
M−1 of the matrix-valued M defined for a.e. x ∈ � by M(x)−1(M(x) ξ) = ξ for any
ξ ∈ (ker M(x))⊥. Then, we have for any k > 0,

1{|M−1|≤k} ζn = 1{|M−1|≤k}M−1(Mζn) → 1{|M−1|≤k}M−1Z strongly in L
2p
p+1 (�)N .

Since a strongly convergent sequence in Lq(�) converges up to a subsequence a.e. in �,
using a diagonal procedure in the former convergences there exists a subsequence ζθ(n) such
that for any k > 0,

1{|M−1|≤k} ζθ(n) → 1{|M−1|≤k} M−1Z a.e. in �.

Therefore, the a.e. limit ζ of ζθ(n) in � satisfies Z = Mζ a.e. in �.
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It remains to prove (3.17) which in particular implies the first assertion of (3.15). Taking
into account (3.4) and (3.8), for any φ ∈ C0(�̄)N and ϕ ∈ C0(�̄), ϕ ≥ 0, we have

∫
�

A
(
e(uε) − e(u) −

N∑
j=1

e(w j
ε ) φ j

)
:
(
e(uε) − e(u) −

N∑
j=1

e(w j
ε ) φ j

)
ϕ dx

=
∫

�

Ae(uε) : e(uε) ϕ dx −
∫

�

Ae(u) : e(u) ϕ dx

+
∫

�

A
( N∑

j=1

e(w j
ε ) φ j

)
:
( N∑

j=1

e(w j
ε ) φ j

)
ϕ dx − 2

N∑
j=1

∫
�

Ae(uε) : e(w j
ε ) φ j ϕ dx + Oε

=
∫

�

Ae(uε) : e(uε) ϕ dx −
∫

�

Ae(u) : e(u) ϕ dx +
∫

�

Mφ : φ ϕ dx + 2
∫

�

Mζ · φ ϕ dx + Oε.

This proves

lim
ε→0

∫
�

Ae(uε) : e(uε) ϕ dx ≥
∫

�

Ae(u) : e(u)ϕ dx −
∫

�

Mφ · φ ϕ dx − 2
∫

�

Mζ · φ ϕ dx,

for any φ ∈ C0(�̄)N and any ϕ ∈ C0(�̄), ϕ ≥ 0. Taking into account that Mζ

belongs to L
2p
p+2 (�)N , we deduce by approximation that the above equality holds for any

φ ∈ L
2p
p−2 (�)N . Thus, we can choose in particular φ = − 1B(0,R)∩{|ζ |<R} ζ . Then, passing

to the limit as R tends to infinity thanks to the monotone convergence theorem we conclude
to (3.17). As a by-product we deduce from (3.17) with ϕ = 1 that Mζ · ζ ∈ L1(�). ��

4 Homogenization of a general magneto-elastodynamics problem

Let � be a smooth bounded open set of RN , N ≥ 2, T > 0, Q = (0, T ) × �, ρ > 0 and let
A ∈ L (RN×N

s ;RN×N
s ) be a positive definite symmetric tensor.

Consider a sequence Fε of skew-symmetricmatrix-valued functions in L∞(�)N×N which
satisfies (3.1) for some p > N ∨ 3, a sequence of skew-symmetric matrix-valued functions
Gε in L∞(Q)N×N such that

Gε

∗
⇀ 0 in L∞(Q)N×N , (4.1)

and a sequence Hε of skew-symmetric matrix-valued functions in L∞(Q)N×N such that

Hε → H in H1(0, T ;W−1,p(�))N×N . (4.2)

Define

Bε(t, x) := Fε(x) + Gε(t, x) + Hε(t, x) for (t, x) ∈ Q. (4.3)

Recall that M is the non-negative symmetric matrix-valued function in L
p
2 (�)N×N defined

by (3.5).
The main result of the section is the following

Theorem 4.1 Let fε ∈ L1(0, T ; L2(�))N be such that

fε → f in L1(0, T ; L2(�))N , (4.4)
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and u0ε ∈ H1
0 (�)N , u1ε ∈ L2(�)N be such that

u0ε⇀u0 in H1
0 (�)N , u1ε⇀u1 in L2(�)N . (4.5)

Then, there exist a measurable function ζ : � → R
N and a function g ∈ L∞(0, T ; L2(�))N

such that the solution uε of⎧⎨
⎩

ρ ∂2t t uε − Divx
(
Ae(uε)

)+ Bε∂t uε = fε in Q
uε = 0 on (0, T ) × ∂�

uε(0, .) = u0ε, ∂t uε(0, .) = u1ε in �,

(4.6)

and u0ε satisfy up to a subsequence

uε

∗
⇀ u in L∞(0, T ; H1

0 (�))N ∩ W 1,∞(0, T ; L2(�))N , (4.7)

Gε∂t uε

∗
⇀ g in L∞(0, T ; L2(�))N , (4.8)

Fεu
0
ε⇀Mζ in H−1(�)N , with Mζ ∈ L

2p
p+2 (�)N , Mζ · ζ ∈ L1(�). (4.9)

Moreover, the limit u is a solution to⎧⎨
⎩

(ρ IN + M)∂2t t u − Divx
(
Ae(u)

)+ H∂t u + g = f in Q
u = 0 on (0, T ) × ∂�

u(0, .) = u0, ∂t u(0, .) = (ρ IN + M)−1(ρu1 + Mζ ) in �,

(4.10)

with

M∂t u · ∂t u ∈ L∞(0, T ; L1(�)). (4.11)

Remark 4.2 Actually, the function g given by convergence (4.8) is independent of the
sequence Hε (which is in some sense compact) but cannot be determined in terms of the
limits f , u0, u1. In particular, we cannot prove an uniqueness result for the limit prob-
lem (4.10). In Sect. 5 we will give a specific representation about the function g illuminating
possible nonlocal effects in the homogenization process.

However, if ∂tGε is assumed for instance to be bounded in L1(0, T ; L∞(�))N×N which
corresponds to the absence of time oscillations, then the function g is zero. In this case the limit
problem (4.10) is completely determined and has a unique solution. The limit elastodynamics
equation (4.10) is then characterized by a magnetic field H and an increase of mass M which
only depends on the space oscillations of Fε(x) through (3.5). This completes the picture
of Sect. 2 where the magnetic field only depends on time. The general case with both space
and time oscillations through Gε(t, x) is much more intricate and leads to the undetermined
function g.

Note that the strong convergence (4.2) makes Hε a compact perturbation of the magnetic
field which simply gives the limit H in the homogenized equation (4.10).

Proof of Theorem 4.1 First of all (see, e.g. [15, Chapter 1]), it is classical that the limit problem
(4.6) has one solution in C0([0, T ]; H1

0 (�))N ∩ C1([0, T ]; L2(�))N and that, taking into
account that Fε, Hε are skew-symmetric, we have the energy identity

1

2

d

dt

(∫
�

(
ρ|∂t uε|2 + Ae(uε) : e(uε)

)
dx

)
=
∫

�

fε · ∂t uε dx .

This implies that up to a subsequence uε satisfies (4.7), (4.8). In particular, we have

uε → u in C0([0, T ]; L2(�))N . (4.12)
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Moreover, we recall that u ∈ L∞(0, T ; H1
0 (�))N ∩ W 1,∞(0, T ; L2(�))N gives

{
u(t, .) ∈ H1

0 (�)N , ∀ t ∈ [0, T ]
tn → t ⇒ u(tn, .)⇀u(t, .) in H1

0 (�)N ,

and that (4.7) implies

uε(t, .)⇀u(t, .) in H1
0 (�)N , ∀ t ∈ [0, T ]. (4.13)

Now, the idea is to take time-average values of uε and to apply the results of Sect. 3.
Integrating (4.6) with respect to t in (t1, t2) with 0 ≤ t1 < t2 ≤ T , we deduce that the
function

ūε :=
∫ t2

t1
uε(s, .) ds in �

satisfies

ρ
(
∂t uε(t2, x) − ∂t uε(t1, x)

)− Divx
(
Ae(ūε)

)+ Fε

(
uε(t2, x) − uε(t1, x)

)

+(Hεuε)(t2, x) − (Hεuε)(t1, x) −
∫ t2

t1
∂t Hεuε dt +

∫ t2

t1
Gε∂t uε dt

=
∫ t2

t1
fε dt in H−1(�)N . (4.14)

First step. A corrector result for ūε . By (4.7) we have

ρ
(
∂t uε(t2, .) − ∂t uε(t1, .)

)
bounded in L2(�)N . (4.15)

By (4.2) we have

Hε(t, .) → H(t, .) in C0([0, T ];W−1,p(�))N×N ,

which combined with (4.13) and Rellich-Kondrachov’s theorem gives

(Hεuε)(t2, .) − (Hεuε)(t1, .) → (Hu)(t2, .) − (Hu)(t1, .) in H−1(�)N . (4.16)

Similarly, we have
∫ t2

t1
∂t Hεuε dt →

∫ t2

t1
∂t Hu dt in H−1(�)N . (4.17)

By (4.8) we also have
∫ t2

t1
Gε∂t uε dt⇀

∫ t2

t1
g dt in L2(�)N . (4.18)

The previous convergences (4.15), (4.16), (4.17), and (4.18) combined with (4.13) and (4.14)
allow us to apply Theorem 3.1 to deduce the corrector result

ūε − ū −
N∑
j=1

(
u j (t2, .) − u j (t1, .)

)
w j

ε → 0 in H1
0 (�)N , (4.19)

where we denote

ū :=
∫ t2

t1
u(s, .) ds in �.
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Second step. Limit of (4.14). We replace in (4.14), t1, t2 by t1 + s, t2 + s and we integrate
with respect to s in (0, τ ) with τ < T − t2. Then, we can pass to the limit as ε tends to zero
to deduce

ρ
(
u(t2 + τ, .) − u(t2, .) − u(t1 + τ, .) + u(t1, .)

)− Div

(
Ae
( ∫ τ

0

∫ t2+s

t1+s
u dt ds

))

+ lim
ε→0

Fε

(∫ τ

0

(
uε(t2 + s, .) − uε(t1 + s, .)

)
ds

)

+
∫ τ

0

(
(Hu)(t2 + s, .) − (Hu)(t1 + s, .)

)
ds

+
∫ τ

0

∫ t2+s

t1+s

(− ∂t Hu + g
)
dt ds =

∫ τ

0

∫ t2+s

t1+s
f dt ds in H−1(�)N , (4.20)

where the limit in the third term is taken in the weak topology of H−1(�)N . Moreover, by
(3.1), (4.19), (3.20) and Fε skew-symmetric we have

Fε

(∫ τ

0

(
uε(t2 + s, .) − uε(t1 + s, .)

)
ds

)
= Fε

(∫ t2+τ

t2
uε(s, .) ds −

∫ t1+τ

t1
uε(s, .) ds

)

=
N∑
j=1

(
u j (t2 + τ, .) − u j (t2, .) − u j (t1 + τ, .) + u j (t1, .)

)
Fεw

j
ε + Rε

= M
(
u(t2 + τ, .) − u(t2, .) − u(t1 + τ, .) + u(t1, .)

)+ Rε, (4.21)

where Rε denotes a sequence which converges weakly (strongly for the first one) to zero in
H−1(�)N . Putting (4.21) in (4.20), dividing by τ and letting τ tend to zero, we get

ρ
(
∂t u(t2, .) − ∂t u(t1, .)

)− Div

(
Ae
( ∫ t2

t1
u dt

))

+M
(
∂t u(t2, .) − ∂t u(t1, .)

)+ (Hu)(t2, .) − (Hu)(t1, .)

+
∫ t2

t1

(− ∂t Hu + g
)
dt =

∫ t2

t1
f dt in H−1(�)N .

Finally, dividing by t2 − t1 and letting t2 − t1 tend to zero, we obtain

(ρ IN + M)∂2t t u − Divx
(
Ae(u)

)+ H∂t u + g = f in D ′(Q)N . (4.22)

Third step. Limit of the initial conditions. By (4.13) and (4.5) the limit u satisfies

u(0, .) = u0 in �. (4.23)

Now, it remains to find the initial velocity. Let us prove that

(ρ∂t uε + Fεuε)(t, .)⇀
(
(ρ IN + M)∂t u

)
(t, .) in H−1(�)N , ∀ t ∈ [0, T ). (4.24)

By (4.6) we have

∂t
(
ρ∂t uε + Fεuε + Hεuε

) = fε + Divx
(
Ae(uε)

)+ ∂t Hεuε − Gε∂t uε,

where the right-hand side is bounded in L1(0, T ; H−1(�))N by (4.1), (4.2), (4.4), (4.7).
Therefore,

ρ∂t uε + Fεuε + Hεuε is bounded in W 1,1(0, T ; H−1(�))N ,
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Now, we fix t0 ∈ [0, T ) and we observe that (3.1), uε ∈ C0([0, T ]; H1
0 (�))N ∩

C1([0, T ]; L2(�))N and (4.7) imply, up to a subsequence,

(ρ∂t uε + Fεuε)(t0, .)⇀L in H−1(�)N . (4.25)

On the other hand, for τ ∈ (0, T − t0), we have∥∥∥∥ (ρ∂t uε + Fεuε + Hεuε)(t0, .) − 1

τ

∫ t0+τ

t0
(ρ∂t uε + Fεuε + Hεuε)(t, .) dt

∥∥∥∥
H−1(�)N

=
∥∥∥∥ 1

τ

∫ τ

0

(∫ t0+t

t0
∂r (ρ∂r uε + Fεuε + Hεuε)(r , .) dr

)
dt

∥∥∥∥
H−1(�)N

≤ 1

τ

∫ τ

0

(∫ t0+t

t0

∥∥ fε + Divx
(
Ae(uε)

)+ ∂r Hεuε − Gε∂r uε

∥∥
H−1(�)N

dr

)
dt

≤ ‖ fε(t, .)‖L1(t0,t0+τ ;L2(�))N

+
(τ

2
‖A‖ + C

√
τ
∥∥∂t Hε

∥∥
L2(t0,t0+τ ;W−1,p(�)N×N )

)
‖uε‖L∞(0,T ;H1

0 (�))N

+Cτ ‖Gε‖L∞(Q)N ‖∂t uε‖L∞(0,T ;L2(�))N .

By (4.2), (4.7) and (4.13) we have

(Hεuε)(t0, .) → (Hu)(t0, .) in H−1(�)N ,

1

τ

∫ t0+τ

t0
(ρ∂t uε + Hεuε)(t, .) dt → 1

τ

∫ t0+τ

t0
(ρ∂t u + Hu)(t, .) dt in H−1(�)N .

By (4.21) we also have

1

τ

∫ t0+τ

t0
Fεuε dt⇀

1

τ

∫ t0+τ

t0
M∂t u dt in H−1(�).

Therefore, we deduce∥∥∥∥ L + (Hu)(t0, .) − 1

τ

∫ t0+τ

t0

(
(ρ IN + M)∂t u + Hu

)
(t, .) dt

∥∥∥∥
H−1(�)N

≤ ‖ f (t, .)‖L1(t0,t0+τ ;L2(�))N + C
(√

τ + τ
)
. (4.26)

Next, equation (4.22), combined with u ∈ L∞(0, T ; H1
0 (�))N ∩ W 1,∞(0, T ; L2(�))N

implies as above

(ρ IN + M)∂t u + Hu ∈ W 1,1(0, T ; H−1(�))N ↪→ C0([0, T ]; H−1(�))N .

Hence, passing to the limit in (4.26) as τ tends to zero, we get

L = ((ρ IN + M)∂t u
)
(t0, .),

which implies (4.24).
Convergence (4.24) combined with (4.5) yields

ρu1ε + Fεu
0
ε⇀
(
(ρ IN + M)∂t u

)
(0, .) in H−1(�)N . (4.27)

Therefore, by (3.16) and Fε skew-symmetric there exists a measurable function ζ satisfying
(4.9), which yields the second initial condition of (4.10).

Finally, the proof of estimate (4.11) is given in Lemma 5.9 below. This concludes the
proof of Theorem 4.1. ��
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5 Energy estimates and nonlocal effects

The aim of this section is to estimatemore precisely the function g arising in the homogenized
problem (4.10).

5.1 Energy estimate

First of all, observe that the following inequality holds

(ρ IN + M)−1(ρξ + Mη) · (ρξ + Mη) ≤ ρ|ξ |2 + Mη · η, ∀ ξ, η ∈ R
N . (5.1)

In order to show it, setϒ := (ρ IN +M)−1(ρξ +Mη). Then, using successively the Cauchy-
Schwarz inequality with the non-negative symmetric matrix M and the Cauchy-Schwarz
inequality in R

2, we have

(ρ IN + M)ϒ · ϒ = (ρξ + Mη) · ϒ ≤ (ρ|ξ |2 + Mη · η)
1
2
(
(ρ IN + M)ϒ · ϒ

) 1
2 ,

which gives (5.1).
From (4.5), applying the lower semicontinuity (3.17) and convergence (3.16) with uε =

u0ε , and applying the inequality (5.1) with ξ = u1 and η = ζ , we can assume, up to extract a
subsequence, that there exists a non-negative Radon measure μ0 defined on �̄ such that

ρ|u1ε |2 + Ae(u0ε) : e(u0ε)
∗
⇀ μ0 + Ae(u0) : e(u0) + (ρ IN + M)−1(ρu1 + Mζ ) · (ρu1 + Mζ ) in M (�̄).(5.2)

Remark 5.1 The measure μ0 represents the compactness default with respect to the initial
conditions u0ε , u

1
ε . Now, assume that the initial conditions are well-prepared (see [13] for

the classical homogenization of the wave equation without Lorentz force) in the following
sense:

u1ε⇀u1 in H1(�)N , − div
(
Ae(u0ε)

)+ Fεu
1
ε is compact in H−1(�)N . (5.3)

Then, using the convergence (3.9) with uε = u0ε and zε = u1ε , combined with convergences
(3.1), (3.20), we get that Mζ = Mu1. Moreover, by (3.10) and Rellich-Kondrachov’s com-
pactness theorem we have

ρ|u1ε |2 + Ae(u0ε) : e(u0ε)
∗
⇀ ρ|u1|2 + Ae(u0) : e(u0) + Mu1 · u1 in M (�̄),

which proves that the measure μ0 vanishes.

Let us introduce the following notations.

Definition 5.2 Set

c :=
√

‖A‖
ρ

. (5.4)

For x̄ ∈ �̄, S ∈ (0, T ) and t ∈ (0, S), we denote

B(x̄, S, t) := B
(
x̄, c(S − t)

) ∩ �. (5.5)

K (x̄, S, t) := ∂B
(
x̄, c(S − t)

) ∩ �, (5.6)

and recall that Bδ is the ball centered at the origin of radius δ > 0.
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We have the following result.

Theorem 5.3 Under the assumptions and the notations of Theorem 4.1, for any x̄ ∈ �̄,

0 < S1 < S2, s ∈ (0, S1), δ > 0, and ψ ∈ L2(0, T ; L 2p
p−2 (�))N , the solution uε of (4.10)

satisfies

lim sup
ε→0

1

2

∫ S2

S1

∫
Bδ

∫
B(x̄+z,S,s)

[
ρ|∂t (uε − u)|2

+A
(
e(uε) − e(u) −

N∑
j=1

e(w j
ε )ψ j

)
:
(
e(uε) − e(u) −

N∑
j=1

e(w j
ε )ψ j

)]
dxdzdS

≤ 1

2

∫ S2

S1

∫
Bδ

μ0(B̄(x̄ + z, S, 0)
)
dzdS +

∫ S2

S1

∫
Bδ

∫
B(x̄+z,S,t)

M(∂t u − ψ) · (∂t u − ψ) dxdzdS

+
∫ S2

S1

∫
Bδ

∫ s

0

∫
B(x̄+z,S,t)

g · ∂t u dxdtdzdS. (5.7)

Remark 5.4 Assuming that the measure μ0 and the function g vanish, estimate (5.7) gives
the corrector result

lim sup
ε→0

1

2

∫ S2

S1

∫
Bδ

∫
B(x̄+z,S,s)

[
ρ|∂t (uε − u)|2

+A
(
e(uε) − e(u) −

N∑
j=1

e(w j
ε )ψ j

)
:
(
e(uε) − e(u) −

N∑
j=1

e(w j
ε )ψ j

)]
dxdzdS

≤
∫ S2

S1

∫
Bδ

∫
B(x̄+z,S,t)

M(∂t u − ψ) · (∂t u − ψ) dxdzdS. (5.8)

By virtue of Remark 4.2 andRemark 5.1 a sufficient condition for estimate (5.8) to be satisfied
is that the sequence ∂tGε is bounded in L1(0, T ; L∞(�))N×N and that the initial conditions
are well-prepared in the sense of (5.3).

From Theorem 5.3 we deduce the following estimate for the function g which will be
improved in Sect. 5.2.

Corollary 5.5 Under the same assumptions of Theorem 5.3, there exists a constant C > 0
which only depends on supε>0 ‖Gε‖N×N

L∞(Q) such that the function g of (4.10) satisfies

∫
B(x̄,S,s)

|g|2dx ≤ Cμ0(B̄(x̄, S, 0)
)+ C

(∫ s

0

(∫
B(x̄,S,t)

|∂t u|2dx
) 1

2

dt

)2

, (5.9)

0 ≤ μ0(B̄(x̄, S, 0)
)+

∫ s

0

∫
B(x̄,S,t)

g · ∂t u dxdt, (5.10)

for any x̄ ∈ �̄, any S ∈ (0, T ) and a.e. s ∈ (0, S).

Remark 5.6 For x̄ ∈ �̄ and S ∈ (0, T ), define the cone of vertex (x̄, S) and angle equal to
2 arctan c

C (S, x̄) := {(t, x) : 0 < t < S, x ∈ B
(
x̄, c(S − t)

)}
, (5.11)

where c is the wave propagation velocity defined by (5.4). Then, estimate (5.9) means that
the norm of g over the cone section at time t = s is bounded by the measure μ0 of the cone
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section at time t = 0 plus the norm of the velocity ∂t u over the truncated cone in the time
interval (0, s).

Proof of Corollary 5.5 By (4.8) and (5.7) there exists a constant C > 0 which only depends
on sup ‖Gε‖N×N

L∞(Q) such that for any S1, S2 with 0 < S1 < S2 < T , s ∈ (0, S1), δ > 0, and

ψ ∈ L2(0, T ; L 2p
p−2 (�))N ,

∫ S2

S1

∫
Bδ

∫
B(x̄+z,S,s)

|g|2 dxdzdS ≤ C
∫ S2

S1

∫
Bδ

μ0(B̄(x̄ + z, S, 0)
)
dzdS

+C
∫ S2

S1

∫
Bδ

∫
B(x̄+z,S,t)

M(∂t u − ψ) · (∂t u − ψ) dxdzdS

+C
∫ S2

S1

∫
Bδ

∫ s

0

∫
B(x̄+z,S,t)

g · ∂t u dxdtdzdS. (5.12)

Moreover, by virtue of (4.11) and using an approximation by truncation in the space of the
functions v ∈ L∞(0, T ; L2(�))N with Mv · v ∈ L∞(0, T ; L1(�)), the sequence ψn :=
∂t u 1{|∂t u|≤n} in L∞(Q)N satisfies

lim
n→∞

∥∥M(∂t u − ψn) · (∂t u − ψn)
∥∥
L1(Q)

= 0.

Using this approximation in (5.12) it follows that

∫ S2

S1

∫
Bδ

∫
B(x̄+z,S,s)

|g|2 dxdzdS ≤ C
∫ S2

S1

∫
Bδ

μ0(B̄(x̄ + z, S, 0)
)
dzdS

+C
∫ S2

S1

∫
Bδ

∫ s

0

∫
B(x̄+z,S,t)

g · ∂t u dxdtdzdS. (5.13)

Making S1, S2 tend to S, then δ tend to zero, this implies that for any S ∈ (0, T ) and a.e.
s ∈ (0, S),

∫
B(x̄,S,s)

|g|2dx ≤ Cμ0(B̄(x̄, S, 0)
)+ C

∫ s

0

∫
B(x̄,S,t)

|g · ∂t u| dxdt . (5.14)

Now, defining

�(s) :=
∫
B(x̄,S,s)

|g|2dx, A := Cμ0(B̄(x̄, S, 0)
)
, K (s) :=

(∫
B(x̄,S,s)

|∂t u|2dx
) 1

2

,

and using the Cauchy-Schwarz inequality in (5.14), it follows that

�(s) ≤ A + C
∫ s

0
K (t)�(t)

1
2 dt .

By a Gronwall’s type argument this provides (5.9) for another constant C , which concludes
the proof of (5.9).

The proof of (5.10) easily follows from (5.13) by taking S1 = S, dividing by (S2 − S) δN ,
then letting this quantity tend to zero. ��

To prove Theorem 5.3 we need the following results.
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Lemma 5.7 Let � be a smooth (C1-regular) open set in R
N , δ > 0 and U ∈

W 1,1(0, T ; L1(�)). For x0 ∈ R
N and R ∈ C1(0, T ), R > 0, we define

�(t) :=
∫
Bδ

∫
B(x0+z,R(t))∩�

U (t, x) dxdz, for t ∈ [0, T ].

Then, � ∈ W 1,1(0, T ) and

�′(t) =
∫
Bδ

∫
B(x0+z,R(t))∩�

∂tU (t, x) dxdz

+ R′(t)
∫
Bδ

∫
∂B(x0+z,R(t))∩�

U (t, x) ds(x)dz, for a.e. t ∈ (0, T ). (5.15)

Remark 5.8 Thanks to Fubini’s theorem the functionU (t, ·) in Lemma 5.7 above is integrable
on the boundary ∂B(x0 + z, R(t)) for a.e. z ∈ Bδ , and a.e. t ∈ (0, T ). Therefore, this yields
a sense to the last integral of (5.15) under the sole assumption thatU (t, ·) ∈ L1(�). We will
use this additional integration over the ball Bδ with the (total) energy density

U (t, x) := ρ|∂t uε|2 + Ae(uε) : e(uε) (5.16)

in the proof of Theorem 5.3. below.

Lemma 5.9 The limit u of the solution uε of (4.6) satisfies (4.11). Moreover, for any ν ∈
C0(Q̄)N with |ν| ≤ 1, and for any ϕ ∈ C0(Q̄) with ϕ ≥ 0, we have

lim inf
ε→0

∫ T

0

∫
�

( c
2

ρ |∂t uε|2 + c

2
Ae(uε) : e(uε) − Ae(uε) : (∂t uε � ν)

)
ϕ dxdt

≥
∫ T

0

∫
�

( c
2

(
ρ IN + M)∂t u · ∂t u + c

2
Ae(u) : e(u) − Ae(u) : (∂t u � ν)

)
ϕ dxdt .

(5.17)

We also have

Ae(uε) : e(w j
ε )

∗
⇀ M∂t u · e j in L∞(0, T ; L 2p

p+2 (�)
)
, ∀ j ∈ {1, . . . , N }. (5.18)

Proof of Theorem 5.3 Let x̄ ∈ �̄, S ∈ (0, T ), t ∈ (0, S) and δ > 0. First, assume that
∂t uε ∈ L∞(0, T ; H1

0 (�))N . So, we may put ∂t uε as test function in (4.6), which due to the
skew-symmetry of the matrix-valued function Bε yields

1

2

d

dt

(∫
�

(
ρ|∂t uε|2 + Ae(uε) : e(uε)

)
dx

)
=
∫

�

fε(t, x) · ∂t uε dx .

In the general case, the former equality remains true using an approximation argument.Hence,
we deduce that the energy density (5.16) belongs to W 1,1(0, T ; L1(�)). Then, integrating
with respect to x over B(x̄ + z, S, t) and to z over Bδ , by virtue of Lemma 5.7 we get that
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(here ν denotes the unit exterior normal to B(x̄ + z, S, t))

1

2

d

dt

∫
Bδ

∫
B(x̄+z,S,t)

(
ρ|∂t uε|2 + Ae(uε) : e(uε)

)
dxdz

=
∫
Bδ

∫
B(x̄+z,S,t)

(
ρ ∂2t t uε · ∂t uε + Ae(uε) : e(∂t uε)

)
dxdz

− c

2

∫
Bδ

∫
K (x̄+z,S,t)

(
ρ|∂t uε|2 + Ae(uε) : e(uε)

)
ds(x)dz

=
∫
Bδ

∫
B(x̄+z,S,t)

(
ρ ∂2t t uε − Divx (Ae(uε))

) · ∂t uε dxdz

+
∫
Bδ

∫
K (x̄+z,S,t)

(
Ae(uε) : (∂t uε � ν) − c

2
ρ|∂t uε|2 − c

2
Ae(uε) : e(uε)

)
ds(x)dz

=
∫
Bδ

∫
B(x̄+z,S,t)

fε · ∂t uε dxdz

+
∫
Bδ

∫
K (x̄+z,S,t)(

Ae(uε) : (∂t uε � ν) − c

2
ρ|∂t uε|2 − c

2
Ae(uε) : e(uε)

)
ds(x)dz. (5.19)

Now, integrating with respect to t in (0, s) with 0 < s < S, we obtain

1

2

∫
Bδ

∫
B(x̄+z,S,s)

(
ρ|∂t uε|2 + Ae(uε) : e(uε)

)
dxdz

−1

2

∫
Bδ

∫
B(x̄+z,S,0)

(
ρ|u1ε |2 + Ae(u0ε) : e(u0ε)

)
dxdz =

∫
Bδ

∫ s

0

∫
B(x̄+z,S,t)

fε · ∂t uε dxdtdz

−
∫
Bδ

∫ s

0

∫
K (x̄+z,S,t)( c

2
ρ|∂t uε|2 + c

2
Ae(uε) : e(uε) − Ae(uε) : (∂t uε � ν)

)
ds(x)dtdz. (5.20)

Using estimate (5.17) in (5.20) and recalling (5.2) we then deduce

lim sup
ε→0

(
1

2

∫
Bδ

∫
B(x̄+z,S,s)

(
ρ|∂t uε|2 + Ae(uε) : e(uε)

)
dxdz

)

≤
∫
Bδ

∫ s

0

∫
B(x̄+z,S,t)

f · ∂t u dxdtdz + 1

2

∫
Bδ

μ0(B̄(x̄ + z, S, 0)
)
dz

+ 1

2

∫
B(x̄+z,S,0)

(
Ae(u0) : e(u0) + (ρ IN + M)−1(ρu1 + Mζ ) : (ρu1 + Mζ )

)
dxdz

−
∫
Bδ

∫ s

0

∫
K (x̄+z,S,t)

( c
2
(ρ IN + M)∂t u · ∂t u

+ c

2
Ae(u) : e(u) − Ae(u) : (∂t u � ν)

)
ds(x)dtdz. (5.21)

Moreover, the non-negativity of the last integral of (5.20), convergences (4.4), (4.5), (4.7),
and the inclusion B(x̄ + z, S, s) ⊂ � imply that there exists a constant Cδ such that

∫
Bδ

∫
B(x̄+z,S,s)

(
ρ|∂t uε|2 + Ae(uε) : e(uε)

)
dxdz ≤ Cδ. (5.22)
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Next, similarly to (5.20) with equation (4.10) we have

1

2

∫
Bδ

∫
B(x̄+z,S,s)

(
(ρ IN + M)∂t u · ∂t u + Ae(u) : e(u)

)
dxdz

= 1

2

∫
Bδ

∫
B(x̄+z,S,0)

(
Ae(u0) : e(u0) + (ρ IN + M)−1(ρu1 + Mζ ) · (ρu1 + Mζ )

)
dxdz

+
∫
Bδ

∫ s

0

∫
B(x̄+z,S,t)

( f − g) · ∂t u dxdtdz

−
∫
Bδ

∫ s

0

∫
K (x̄+z,S,t)

( c
2
(ρ IN + M)∂t u · ∂t u

+ c

2
Ae(u) : e(u) − Ae(u) : (∂t u � ν)

)
ds(x)dtdz. (5.23)

On the other hand, for any ψ ∈ C∞
c (Q)N , we have

1

2

∫ S2

S1

∫
Bδ

∫
B(x̄+z,S,s)

[
ρ|∂t (uε − u)|2 +

+A
(
e(uε) − e(u) −

N∑
j=1

e(w j
ε )ψ j

)
:
(
e(uε) − e(u) −

N∑
j=1

e(w j
ε )ψ j

)]
dxdzdS

= 1

2

∫ S2

S1

∫
Bδ

∫
B(x̄+z,S,s)

(
ρ|∂t uε|2 + Ae(uε) : e(uε)

)
dxdzdS

−
∫ S2

S1

∫
Bδ

∫
B(x̄+z,S,s)

⎛
⎝ρ∂t uε · ∂t u + Ae(uε) :

(
e(u) +

N∑
j=1

e(w j
ε )ψ j

)⎞⎠ dxdzdS

+1

2

∫ S2

S1

∫
Bδ

∫
B(x̄+z,S,s)

(
ρ|∂t u|2 + Ae(u) : e(u)

)
dxdzdS

+
∫ S2

S1

∫
Bδ

∫
B(x̄+z,S,s)

Ae(u) :
( N∑

j=1

e(w j
ε )ψ j

)
dxdzdS

+1

2

∫ S2

S1

∫
Bδ

∫
B(x̄+z,S,s)

A
( N∑

j=1

e(w j
ε )ψ j

)
:
( N∑

j=1

e(w j
ε )ψ j

)
dxdzdS.

Passing to the limit as ε tends to zero thanks to (5.18) and (3.5) we get

lim sup
ε→0

1

2

∫ S2

S1

∫
Bδ

∫
B(x̄+z,S,s)

[
ρ|∂t (uε − u)|2

+ A
(
e(uε) − e(u) −

N∑
j=1

e(w j
ε )ψ j

)
:
(
e(uε) − e(u) −

N∑
j=1

e(w j
ε )ψ j

)]
dxdzdS

≤ lim sup
ε→0

(
1

2

∫ S2

S1

∫
Bδ

∫
B(x̄+z,S,s)

(
ρ|∂t uε|2 + Ae(uε) : e(uε)

)
dxdzdS

)

− 1

2

∫ S2

S1

∫
Bδ

∫
B(x̄+z,S,s)

(
ρ|∂t u|2 + Ae(u) : e(u) + 2M∂t u · ψ − Mψ · ψ

)
dxdzdS,
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which, by theLebesgue dominated convergence theorem togetherwith estimate (5.22), yields

lim sup
ε→0

1

2

∫ S2

S1

∫
Bδ

∫
B(x̄+z,S,s)

[
ρ|∂t (uε − u)|2

+ A
(
e(uε) − e(u) −

N∑
j=1

e(w j
ε )ψ j

)
:
(
e(uε) − e(u) −

N∑
j=1

e(w j
ε )ψ j

)]
dxdzdS

≤
∫ S2

S1
lim sup

ε→0

(
1

2

∫
Bδ

∫
B(x̄+z,S,s)

(
ρ|∂t uε|2 + Ae(uε) : e(uε)

)
dxdz

)
dS

− 1

2

∫ S2

S1

∫
Bδ

∫
B(x̄+z,S,s)

(
ρ|∂t u|2 + Ae(u) : e(u) + 2M∂t u · ψ − Mψ · ψ

)
dxdzdS.

(5.24)

Estimate (5.24) combined with (5.21) and (5.23) finally yields (5.7) for ψ ∈ C∞
c (Q)N . The

case where ψ ∈ L2(0, T ; L 2p
p−2 (�))N easily follows by approximating ψ by a sequence in

C∞
c (Q)N . ��

5.2 Fine estimate of the function g

Corollary 5.5 can be improved by the following result.

Theorem 5.10 Under the assumptions of Theorem 4.1 there exist a subsequence of ε still
denoted by ε, a constant C > 0 which only depends on supε>0 ‖Gε‖L∞(Q)N×N and a con-
tinuous linear operator G : L1(0, T ; L2(�))N → L∞(0, T ; L2(�))N such that for any
w ∈ L1(0, T ; L2(�))N , any x̄ ∈ �̄, any S ∈ (0, T ) and a.e. s ∈ (0, S),

∫
B(x̄,S,s)

∣∣Gw
∣∣2dx ≤ C

(∫ s

0

(∫
B(x̄,S,t)

|w|2dx
) 1

2

dt

)2

, (5.25)

0 ≤
∫ s

0

∫
B(x̄,S,t)

(
Gw
) · w dxdt (5.26)

and such that the functions g and u in the limit problem (4.10) defined up to a subsequence
of ε, satisfy

∫
B(x̄,S,s)

∣∣g − G (∂t u)
∣∣2dx ≤ C μ0(B̄(x̄, S, 0)

)
, (5.27)

where μ0 is the measure defined by (5.2) up to a subsequence of ε.

Remark 5.11 Theorem 5.10 shows that the function g of problem (4.10) is the difference of
G (∂t u) and a function h0 which only depends on the initial conditions u0ε , u

1
ε of problem

(4.6) through the measure μ0. The additional term h0 acts as a new exterior force in the limit
equation (4.10).

As a consequence of Theorem 5.26 we can now get a full representation of the limit
problem (4.10) for some particular choices of the initial conditions. Our first result refers to
the case of well-prepared initial conditions in the sense of Remark 5.1.
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Corollary 5.12 Consider the subsequence of ε defined by Theorem 5.10. Assume that the
initial conditions u0ε , u

1
ε in (4.6) satisfy (5.3). Then, the solution uε of (4.6) satisfies (4.7),

where u is the unique solution to⎧⎨
⎩

(ρ IN + M)∂2t t u − Divx
(
Ae(u)

)+ H∂t u + G (∂t u) = f in Q
u = 0 on (0, T ) × ∂�

u(0, .) = u0, ∂t u(0, .) = u1 in �,

(5.28)

As an example of not well-prepared initial data consider the case where the initial condi-
tions do not depend on ε.

Corollary 5.13 There exists a subsequence of ε such that Theorem 5.10 holds and such that
there exists a constant C > 0, which only depends on supε>0 ‖Gε‖L∞(Q)N and a continuous
linear operator F : L2(�)N → L∞(0, T ; L2(�))N such that for any v ∈ L2(�)N , any
x̄ ∈ �̄, any S ∈ (0, T ) and a.e. s ∈ (0, S),∫

B(x̄,S,s)
|F (v)|2dx ≤ C

∫
B(x̄,S,0)

(ρ I + M)−1Mv · v dx, (5.29)

and such for any u0 ∈ H1
0 (�) and u1 ∈ L2(�), the solution uε of (4.6) with u0ε = u0,

u1ε = u1 satisfies (4.7), where u is the unique solution to
⎧⎨
⎩

(ρ IN + M)∂2t t u − Divx
(
Ae(u)

)+ H∂t u + G (∂t u) = f + F (u1) in Q
u = 0 on (0, T ) × ∂�

u(0, .) = u0, ∂t u(0, .) = ρ(ρ IN + M)−1u1 in �,

(5.30)

Moreover, for any x̄ ∈ �̄, any S ∈ (0, T ) and a.e. s ∈ (0, S),∫ s

0

∫
B(x̄,S,s)

F (u1) · ∂t u dxdt ≤
∫ s

0

∫
B(x̄,S,s)

G (∂t u) · ∂t u dxdt

+ρ

2

∫
B(x̄,S,0)

(ρ I + M)−1Mu1 · u1 dx . (5.31)

The proof of Theorem 5.10 is based on the following result.

Lemma 5.14 Let w ∈ C∞
c (Q)N and let vkε for k ∈ N be the solution to

⎧⎨
⎩

ρ ∂2t tv
k
ε − Divx

(
Ae(vkε )

)+ (Fε + Gε)∂tv
k
ε + k

(
∂tv

k
ε − w

) = 0 in Q
vkε = 0 on (0, T ) × ∂�

vkε (0, .) = 0, ∂tv
k
ε (0, .) = 0 in �.

(5.32)

Then, there exists a constant Cw > 0 such that for any k ∈ N,
∥∥∥∥vkε −

∫ t

0
w ds

∥∥∥∥
2

L∞(0,T ;H1
0 (�))N

+ ∥∥∂tvkε − w
∥∥2
L∞(0,T ;L2(�))N

+ k
∥∥∂tvkε − w

∥∥2
L2(Q)

≤ Cw.

(5.33)

Proof of Theorem 5.10 Let {wn, n ∈ N} be a subset of C∞
c (Q)N which is dense in

L1(0, T ; L2(�))N . Let uk,nε , k, n ∈ N, be the solution to
⎧⎨
⎩

ρ ∂2t t u
k,n
ε − Divx

(
Ae(uk,nε )

)+ (Fε + Gε)∂t u
k,n
ε + k

(
∂t u

k,n
ε − wn) = 0 in Q

uk,nε = 0 on (0, T ) × ∂�

uk,nε (0, .) = 0, ∂t uk,nε (0, .) = 0 in �.

(5.34)
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By virtue of Theorem 4.1 and using a diagonal extraction procedure, there exists a subse-
quence of ε, still denoted by ε, such that the following convergences hold for any k, n ∈ N,{

uk,nε

∗
⇀ uk,n in L∞(0, T ; H1

0 (�))N ∩ W 1,∞(0, T ; L2(�))N ,

Gε∂t uk,nε

∗
⇀ gk,n in L∞(0, T ; L2(�))N ,

(5.35)

where uk,n is a solution to⎧⎨
⎩

(ρ IN + M)∂2t t u
k,n − Divx

(
Ae(uk,n)

)+ k(∂t u
k,n − wn) + gk,n = f in Q

uk,n = 0 on (0, T ) × ∂�

uk,n(0, .) = 0, ∂t u
k,n(0, .) = 0 in �.

(5.36)

Fix n ∈ N. By the first convergence of (5.35) and the estimate (5.33) with vkε = uk,nε and
w = wn , we have

∂t u
k,n −→

k→∞ wn in L2(Q)N . (5.37)

Moreover, since the initial conditions of (5.34) are clearly well-prepared in the sense (5.3),
by estimate (5.9) with g = gk,n , we have for any x̄ ∈ �̄, any S ∈ (0, T ) and a.e. s ∈ (0, S),

∫
B(x̄,S,s)

|gk,n |2dx ≤ C

(∫ s

0

(∫
B(x̄,S,t)

|∂t uk,n |2dx
) 1

2

dt

)2

,

where the constantC only depends on sup
ε>0

‖Gε‖L∞(Q)N×N . This combined with (5.37) yields

lim sup
k→∞

∫
B(x̄,S,s)

|gk,n |2dx ≤ C

(∫ s

0

(∫
B(x̄,S,t)

|wn |2dx
) 1

2

dt

)2

.

Hence, using a diagonal extraction argument, there exist a subsequence of k, still denoted by
k, such that for any n ∈ N,

gk,n
∗
⇀ gn in L∞(0, T ; L2(�)))N , (5.38)

which implies that for any x̄ ∈ �̄, any S ∈ (0, T ) and a.e. s ∈ (0, S),

∫
B(x̄,S,s)

|gn |2dx ≤ C

(∫ s

0

(∫
B(x̄,S,t)

|wn |2dx
) 1

2

dt

)2

. (5.39)

Then, for any w ∈ L1(0, T ; L2(�))N and any subsequence w pn which converges strongly
to w, we define the function Gw by

gpn ∗
⇀ Gw in L∞(0, T ; L2(�)))N . (5.40)

This definition is independent of the strongly convergent subsequencew pn due to the linearity
of (5.34) combined with estimate (5.39). By the linearity of problem (5.34) the operator G is
linear. Moreover, using the lower semicontinuity of the L2(�)N -norm in (5.39) we deduce
that G satisfies estimate (5.25). Estimate (5.26) is a simple consequence of (5.10) in the
absence of measure μ0.

Note that the definition of G is based on the subsequence ε satisfying convergences (5.35)
for any k, n ∈ N.

Now let us prove estimate (5.27). Let uε be the solution to problem (4.6) and consider
a subsequence ε′ of ε such that uε′ satisfies the results of Theorem 4.1. Also consider a
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sequence w pn which strongly converges to ∂t u in L2(Q)N . Applying the estimate (5.9) with
the sequence uε′ − uk,pn

ε′ for k, n ∈ N, we get that for any x̄ ∈ �̄, any S ∈ (0, T ) and a.e.
s ∈ (0, S), ∫

B(x̄,S,s)
|g − gk,pn |2dx ≤ Cμ0(B̄(x̄, S, 0)

)

+C

(∫ s

0

(∫
B(x̄,S,t)

|∂t u − ∂t u
k,pn |2dx

) 1
2

dt

)2

. (5.41)

where the measure μ0 is defined by (5.2) with the sequence uε′ but independently of uk,pn
ε′ .

Therefore, passing successively to the limit k → ∞ with convergences (5.38) and (5.37),
then to the limit n → ∞ with convergences (5.40) and w pn → ∂t u, we obtain the desired
estimate (5.27). This concludes the proof of Theorem (5.10). ��

Proof of Corollary 5.12 Consider a subsequence of ε such that (4.7), (4.8) and (4.9) hold.
Since (5.3) is satisfied, the function ζ defined by (4.9) agrees with u1 and the measure μ0

defined by (5.2) vanishes. By (5.27) we get that g = G (∂t u), and thus (4.10) proves that u is
a solution to (5.28). Estimates (5.23), (5.26) and Gronwall’s Lemma imply the uniqueness
of a solution to (5.28). Hence, it is not necessary to extract a new subsequence to get the
convergence of uε. ��
Proof of Corollary 5.13 Consider the subsequence of ε given by Theorem 5.10 and a dense
countable set {ϕ1

k } of L2(�)N contained in C∞
c (�)N . By Theorem 4.1, Theorem 5.10 and

(5.2) we can use a diagonal argument to deduce the existence of a subsequence of ε and a
linear operatorF : Span({ϕ1

k }) → L∞(0, T ; L2(�)) such that for any ϕ1 ∈ Span({ϕ1
k }) the

solution vε of ⎧⎨
⎩

ρ ∂2t tvε − Divx
(
Ae(vε)

)+ Bε∂tvε = 0 in Q
vε = 0 on (0, T ) × ∂�

vε(0, .) = 0, ∂tvε(0, .) = ϕ1 in �,

(5.42)

converges weakly-∗ in L∞(0, T ; H1
0 (�))N ∩W 1,∞(0, T ; L2(�))N to a function v solution

to ⎧⎨
⎩

ρ ∂2t tv − Divx
(
Ae(v)

)+ B∂tv + G (∂tv) = F (ϕ1) in Q
v = 0 on (0, T ) × ∂�

v(0, .) = 0, ∂tv(0, .) = ρ(ρ IN + M)−1ϕ1 in �,

(5.43)

where F (ϕ1) satisfies

Gε∂tvε

∗
⇀ G (∂tv) − F (ϕ1) in L∞(0, T ; L2(�))N . (5.44)

Moreover, by (5.2) and estimate (5.27) we have for any S ∈ (0, T ), for any x̄ ∈ �̄, and a.e.
s ∈ (0, S), ∫

B(x̄,S,s)

∣∣F (ϕ1)
∣∣2dx ≤ Cρ

∫
B(x̄,S,0)

(ρ IN + M)−1Mϕ1 · ϕ1 dx . (5.45)

This allows us to extend F to a continuous linear operator in L2(�) which satisfies (5.29).
Assume now u0 ∈ H1

0 (�)N , u1 ∈ L2(�)N and define uε as the solution to (4.6) with
u0ε = u0, u1ε = u1. Applying Theorem4.1 and Theorem5.10, we can extract a subsequence of
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ε satisfying (4.7) and (4.8), where u is a solution to (4.10)with ζ = 0. Also applying Theorem
5.10 to the sequence uε − vε , where vε is the solution to (5.42) for some ϕ1 ∈ Span({ϕ1

k }),
and recalling the definition (5.44) ofF (ϕ1), we have for any S ∈ (0, T ) and a.e. s ∈ (0, S),

∫
B(x̄,S,s)

∣∣g − G (∂t u) + F (ϕ1)
∣∣2dx ≤ Cρ

∫
B(x̄,S,0)

(ρ IN + M)−1M(u1 − ϕ1) · (u1 − ϕ1) dx,

which by the arbitrariness of ϕ1 shows that

g = G (∂t u) − F (u1), (5.46)

and thus that u is a solution to (5.30).
The uniqueness of a solution to (5.30) just follows by the uniqueness of a solution to (5.28)

proved above, where f is now replaced by f +F (u1). This shows that it is not necessary to
extract a new subsequence.

Finally, estimate (5.31) is a consequence of (5.10) and (5.46). ��

5.3 A general representation result

The operator G defined by (5.40) admits the following representation which shows explicitly
that G (∂t u) is a nonlocal operator with respect to the velocity in Theorem 5.10.

Theorem 5.15 Under the assumptions of Theorem 5.10 there exists a matrix-valued mea-
sure 	 ∈ M (Q̄; L2(Q))N×N which is absolutely continuous with respect to the Lebesgue
measure, such that L2(Q)N ⊂ L1(Q; d	) and such that the operator G defined by (5.40)
satisfies the representation formula

G (w)(t, x) =
∫
Q
d	(s, y)w(s, y) a.e. in Q, ∀ w ∈ L2(Q)N . (5.47)

Moreover, we have

	(B) = 0 a.e. in
{
(x̄, S) ∈ �̄ × (0, T ) : |B ∩ C (x̄, S)| = 0

}
, ∀ B ⊂ Q, measurable.

(5.48)

Theorem 5.15 is based on the following representation result with Remark 5.17 below.

Proposition 5.16 Let X be a reflexive Banach space and let (ω,�,μ) be a finite measurable
space. Then, for any linear continuous operator T : L p(ω; dμ)N → X with 1 ≤ p <

∞, there exists a vector-valued measure 	 ∈ M (ω; X)N , 	 = (	1, . . . , 	N ) which is
absolutely continuous with respect to μ such that

L p(ω; dμ)N ⊂ L1(ω;	), T u =
∫

ω

d	(y) u(y), ∀ u ∈ L p(ω; dμ)N , (5.49)

and

sup
E∈�

‖	 j (E)‖X ≤ |ω| 1p ‖T ∗
j ‖L (X ′;L p′ (ω))

≤ 4 sup
E∈�

‖	 j (E)‖X , ∀ j ∈ {1, . . . , N },
(5.50)
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where we have

‖T ∗
l ‖ ≤ ‖T ‖ ≤

⎛
⎝ N∑

j=1

‖T ∗
j ‖p′

⎞
⎠

1
p′

, ∀ l ∈ {1, . . . , N }.

Remark 5.17 We aremainly interested in the case where X = Lq(� ; dν)M with 1 < q < ∞
In this case, 	 = (	1, . . . , 	N ) is replaced by a matrix-valued measure

	 j = (	1 j , . . . , 	Mj ) ∈ M (ω; Lq(� ; dν))M , ∀ j ∈ {1, . . . , M}.
Thus, 	 belongs to M (ω; Lq(� ; dν))(ω; dμ)M×N and (5.49) can be written as

L p(ω; dμ)N ⊂ L1(�;	), T u =
∫

ω

d	(y) u(y), ∀ u ∈ L p(ω; dμ)N , (5.51)

where
(∫

ω

d	(y)u(y)

)
j
=

N∑
k=1

∫
ω

d	 jk(y) uk(y), ∀ j ∈ {1, . . . , M}.

Observe that for any set E ⊂ �, 	(E) is a function in Lq(� ; dν)M×N , then the M × N
matrix 	(E)(x) is defined ν-a.e. x ∈ � . If we assume that

∃N ⊂ �, μ(N ) = 0, such that

{
the function E ∈ � �→ 	(E)(x)
is well defined for any x ∈ � \ N and defines a measure,

(5.52)

then, denoting 	(x, E) = 	(E)(x), formula (5.51) can be written as the kernel representa-
tion formula

(T u)(x) =
∫

ω

d	(x, y) u(y), ∀ u ∈ L p(ω; dμ)N . (5.53)

However, it is not clear than assumption (5.52) holds true in general. Furthermore, even if
formula (5.53) holds, 	(x, .) is not in general absolutely continuous with respect to μ, i.e.
	(x, .) is not a function but just a measure. As a simple example, consider Lq(� ; dν)M =
L p(ω; dμ)N and T as the identity operator, then the measure 	 is given by

	(B) = 1B IN , for B ∈ �.

In this case (5.53) is satisfied with

	(x, y) = δx (y) IN .

Proof of Theorem 5.15 First note that

G : L2(Q)N ↪→ L1(0, T ; L2(�))N −→ L∞(0, T ; L2(�))N ↪→ L2(Q)N ,

where the two embedding are continuous. Moreover, by the Cauchy-Schwarz inequality and
estimate (5.25) we get that for any w ∈ L2(Q)N ,∫

C (x̄,S)

∣∣Gw
∣∣2dt dx ≤ 1

2
CS2

∫
C (x̄,S)

|w|2dt dx, ∀ (S, x̄) ∈ Q. (5.54)

which implies in particular the continuity of the linear operatorG from L2(Q)N into L2(Q)N .

123



163 Page 30 of 36 M. Briane, J. Casado-díaz

Therefore, applying Proposition 5.16 and Remark 5.17 with X = L2(Q)N , ω = Q,
μ the Lebesgue measure on Q and p = 2, there exists a matrix-valued measure 	 ∈
M (Q̄; L2(Q))N×N which is absolutely continuous with respect to the Lebesgue measure,
such that G satisfies the representation formula (5.47).

Moreover, applying (5.25) we get (5.48). ��
Proof of Proposition 5.16 Denoting i p′,1 the continuous embedding from L p′

(ω; dμ)N into
L1(ω; dμ)N , we apply Theorem 8.1 in [11] to the N components of the operator i p′,1 ◦ T ∗
in L (X ′; L1(ω; dμ))N . Taking into account that X ′ is reflexive and then the unit ball is
weakly compact, we deduce that there exists a vector-valued measure 	 = (	1, . . . , 	N ) ∈
M (ω; X)N , which is absolutely continuous with respect to μ, such that for any ζ ′ ∈ X ′ and
any j ∈ {1, . . . , N }, the measure E ∈ � �→ 〈

ζ ′,	 j (E)
〉
X ′,X ∈ R satisfies

T ∗
j (ζ ′) = d

dμ

〈
ζ ′,	 j (.)

〉
X ′,X ,

or equivalently ∫
E
(T ∗

j ζ ′)(x) dμ(x) = 〈ζ ′,	 j (E)
〉
X ′,X , ∀ E ∈ �.

Therefore, for any step function

u =
m∑
l=1

λl 1El , λ1, . . . , λm ∈ R
N , E1, . . . , Em ∈ �,

and any ζ ′ ∈ X ′, we have

〈ζ ′,T u〉X ′,X = 〈T ∗ζ ′, u
〉
L p′ (ω)N ,L p(ω)N

=
N∑
j=1

∫
ω

(T ∗
j ζ ′)(x)u j (x) dμ(x)

=
N∑
j=1

m∑
l=1

λl j

∫
El

(T ∗
j ζ ′)(x) dμ(x) =

N∑
j=1

m∑
l=1

λl j
〈
ζ ′,	 j (El)

〉
X ′,X

=
m∑
l=1

〈
ζ ′, λl · 	(El)

〉
X ′,X =

〈
ζ ′,
∫

ω

d	(y) u(y)

〉
.

This shows that for any step function u,

T u =
∫

ω

d	(y) u(y).

Now, using thatT is a continuous operator from L p(ω; dμ))N into X , we conclude to (5.50).
��

5.4 Proof of the lemmas

Proof of Lemma 5.7 ExtendingU byzerooutside�,wemayassumeU ∈ W 1,1(0, T ; L1(RN )).
On the other hand, using a translation we can also assume that x0 = 0.

First, assume � = R
N . In this case, using the change of variables y = (x − z)/R(t), we

have

�(t) = R(t)N
∫
B1

∫
Bδ

U (t, z + R(t)y) dzdy.
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Then, denoting by ν the unit exterior normal to Bδ , we have

�′(t) = N R(t)N−1R′(t)
∫
B1

∫
Bδ

U (t, z + R(t)y) dzdy + R(t)N
∫
B1

∫
Bδ

∂tU (t, z + R(t)y) dzdy

+R(t)N R′(t)
∫
B1

∫
∂Bδ

U (t, z + R(t)y)ν · y ds(z)dy = R(t)N
∫
B1

∫
Bδ

∂tU (t, z + R(t)y) dzdy

+R(t)N−1R′(t)
∫
B1

(
N
∫
Bδ

U (t, z + R(t)y)dz + R(t)
∫

∂Bδ

U (t, z + R(t)y)ν · y ds(z)
)
dy

= R(t)N
∫
B1

∫
Bδ

∂tU (t, z + R(t)y) dzdy

+R(t)N−1R′(t)
∫
B1

divy

(∫
Bδ

U (t, z + R(t)y)y dz

)
dy

= R(t)N
∫
B1

∫
Bδ

∂tU (t, z + R(t)y) dzdy + R(t)N−1R′(t)
∫

∂B1

∫
Bδ

U (t, z + R(t)y) dzds(y)

=
∫
Bδ

∫
B(z,R(t))

∂tU (t, x) dxdz + R′(t)
∫
Bδ

∫
∂B(z,R(t))

U (t, x) ds(x)dz,

which proves the result. In the general case, for λ ∈ C∞
c (RN ) with

∫
RN

λ(x) dx = 1,

and ε > 0, we define ζε ∈ C∞(RN ) by

ζε(x) := 1

εN

∫
�

λ

(
x − y

ε

)
dy ∀ x ∈ R

N .

Applying the above proved to the function (t, x) �→ U (t, x)ζε(x), we get that∫
Bδ

(∫
B(z,R(t2))

U (t2, x) ζε(x)dx −
∫
B(z,R(t1))

U (t1, x) ζε(x) dx

)
dz

=
∫
Bδ

∫ t2

t1

(∫
B(z,R(t))

∂tU (t, x) ζε(x) dxdz + R′(t)
∫

∂B(z,R(t))
U (t, x) ζε(x) ds(x)

)
dtdz. (5.55)

Moreover, using that ζε is bounded in L∞(RN ) and

ζε(x) →

⎧⎪⎨
⎪⎩
1 if x ∈ �
1

2
if x ∈ ∂�

0 if x ∈ R
N \ �̄,

when ε → 0,

we can pass to the limit in (5.55) to deduce
∫
Bδ

(∫
B(z,R(t2))∩�

U (t2, x)dx −
∫
B(z,R(t1))∩�

U (t1, x)dx

)
dz

=
∫
Bδ

∫ t2

t1

(∫
B(z,R(t))∩�

∂tU (t, x) dx + R′(t)
∫

∂B(z,R(t))∩�

U (t, x) ds(x)

)
dtdz

+1

2

∫
Bδ

∫ t2

t1
R′(t)

∫
∂B(z,R(t))∩∂�

U (t, x) ds(x)dtdz. (5.56)

123



163 Page 32 of 36 M. Briane, J. Casado-díaz

Now, consider z ∈ Bδ and (t̄, x̄) ∈ (0, T ) × ∂� such that

R′(t̄) �= 0, x̄ ∈ ∂B(z, R(t̄)) ∩ ∂�.

Since � is C1-regular, there exists a ball B(x̄, δx̄ ), an open set O ⊂ R
N−1 with 0 ∈ O and

a function φ = φ(ζ ) ∈ C1(O;RN ) such that

φ(0) = x̄, φ is injective in O, Rank(Dφ)(ζ ) = N − 1, ∀ ζ ∈ O, ∂� ∩ B(x̄, δx̄ ) = φ(O).

Since R′(t̄) �= 0, applying the implicit function theorem to the function

(t, ζ ) ∈ (0, T ) × O �→ |φ(ζ )| − R(t),

we deduce that δx̄ and O can be chosen small enough to ensure the existence of ε > 0 and a
function ψ in C1(O; (t̄ − ε, t̄ + ε)) such that

ψ(0) = t̄, R(ψ(ζ )) = |φ(ζ )|, ∀ ζ ∈ O,

{
t ∈ (t̄ − ε, t̄ + ε), ζ ∈ O
R(t) = |φ(ζ )| ⇒ t = ψ(ζ ).

(5.57)

Therefore, we have
{
(t, x) : t ∈ (t̄ − ε, t̄ + ε) : x ∈ B(x̄, δx̄ ) ∩ ∂B(z, R(t)) ∩ ∂�} = {(ψ(ζ ), ζ

) : ζ ∈ O
}
,

which thus has null N -dimensional measure. Since for any integer n ≥ 1, the set (we may
assume that R is defined in an interval larger than [0, T ])

{
(t̄, x̄) ∈ [0, T ] × ∂� : x̄ ∈ ∂B(z, R(t)), |R′(t)| ≥ 1/n

}
is a compact set, we deduce that this set has zero measure. Hence, the set

{
(t̄, x̄) ∈ [0, T ] × ∂� : x̄ ∈ ∂B(z, R(t)), R′(t) �= 0

}
also has null N -dimensional measure. This shows that in the last term of (5.56), we have

R′(t)
∫

∂B(z,R(t))∩∂�

U (t, x) ds(x) = 0,

for any z ∈ Bδ , and a.e. t ∈ (0, T ). Therefore, the derivative formula (5.15) holds. ��
Proof of Lemma 5.9 It is enough to consider the case where ϕ ∈ C1(Q̄) and ν ∈ C1(Q̄). For
any integer n ≥ 1 and any k ∈ {0, . . . , n − 1}, set

ūn,k
ε (x) := n

T

∫ k+1
n T

k
n T

uε(t, x)dt, v̄n,k
ε (x) := n

T

(
uε

(
k + 1

n
T , x

)
− uε

(
k

n
T , x

))
,

(5.58)

ūn,k := n

T

∫ k+1
n T

k
n T

u(t, x)dt, v̄n,k := n

T

(
u

(
k + 1

n
T , ·
)

− u

(
k

n
T , ·
))

, (5.59)

ϕ̄n,k(x) := n

T

∫ k+1
n T

k
n T

ϕ(t, x)dt, ν̄n,k(x) := n

T

∫ k+1
n T

k
n T

ν(t, x)dt . (5.60)

Taking into account that for any ξ ∈ R
N with |ξ | ≤ 1, the function Qξ defined as

Qξ : (v, V ) ∈ R
N × R

N×N
s �−→ c

2
ρ|v|2 + c

2
AV : V − AV : v � ξ ∈ R
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is convex and (4.19), we have

∫ T

0

∫
�

Qν

(
∂t uε, e(uε)

)
ϕ dxdt =

n−1∑
j=0

∫ k+1
n T

k
n T

∫
�

Qν̄n,k

(
∂t uε, e(uε)

)
ϕ̄n,kdxdt − C

n

≥ T

n

n−1∑
k=0

∫
�

Qν̄n,k

(
v̄n,k
ε , e(ūn,k

ε )
)
ϕ̄n,kdxdt − C

n

= T

n

n−1∑
k=0

∫
�

Qν̄n,k

(
v̄n,k
ε , e(ūn,k) +

N∑
j=1

e(w j
ε )v̄

n,k
j,ε

)
ϕ̄n,kdx + Oε − C

n

= T

n

n−1∑
k=0

∫
�

Qν̄n,k

(
v̄n,k + (v̄n,k

ε − v̄n,k), e(ūn,k)

+
N∑
j=1

e(w j
ε )(v̄

n,k
j + (v̄n,k

ε − v̄n,k))
)
ϕ̄n,kdx + Oε − C

n
.

Using the weak convergence to zero of e(w j
ε ) in L p(�)N×N with p > N , Rellich-

Kondrachov’s compactness theorem for v̄n,k
ε − v̄n,k , the non-negativity of the quadratic form

Qν and the definition (3.5) of M , we have

∫ t

0

∫
�

Qν

(
∂t uε, e(uε)

)
ϕ dxdt ≥ T

n

n−1∑
k=0

∫
�

Qν̄n,k

(
v̄n,k, e(ūn,k) +

N∑
j=1

e(w j
ε )v̄

n,k
j

)
ϕ̄n,kdx + Oε − C

n

= T

n

n−1∑
k=0

∫
�

(
Qν̄n,k

(
v̄n,k, e(ūn,k)

)+ c

2
M v̄n,k · v̄n,k

)
ϕ̄n,kdx + Oε − C

n
.

Therefore, we have just proved

lim inf
ε→0

∫ T

0

∫
�

Qν

(
∂t uε, e(uε)

)
ϕ dxdt

≥ T

n

n−1∑
k=0

∫
�

(
Qν̄n,k

(
v̄n,k, e(ūn,k)

)+ c

2
M v̄n,k · v̄n,k

)
ϕ̄n,kdx − C

n
.

Passing to the limit as n tends to infinity, we finally obtain (4.11) and (5.17).

Finally, let us prove (5.18).The sequence Ae(uε) : e(w j
ε ) is bounded in L∞(0, T ; L 2p

p+2 (�)
)
.

Hence, it is enough that convergence (5.18) holds in the distributions sense in Q.
Let ϕ ∈ C∞

c (Q). With notations (5.58) and (5.59) we have for any integer n ≥ 1,

∫
Q
Ae(uε) : e(w j

ε ) ϕ dxdt =
n−1∑
k=0

∫ k+1
n T

k
n T

∫
�

Ae(uε) : e(w j
ε ) ϕ̄n,k dx + O

(
1

n

)

= T

n

n−1∑
k=0

∫
�

Ae(ūn,k
ε ) : e(w j

ε ) ϕ̄n,k dx + O

(
1

n

)
.
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Then, again using convergence (4.19), the weak convergence to zero of e(w j
ε ) in L p(�)N×N

and the definition (3.5) of M , we get∫
Q
Ae(uε) : e(w j

ε ) ϕ dxdt

= T

n

n−1∑
k=0

∫
�

Ae
(
ūn,k +

N∑
i=1

e(wi
ε)v̄

n,k
i

)
: e(w j

ε ) ϕ̄n,k dx + Oε + O

(
1

n

)
.

= T

n

n−1∑
k=0

∫
�

M v̄n,k · e j ϕ̄n,k dxdt + Oε + O

(
1

n

)
.

Passing successively to the limit as ε tends to zero for a fixed n, and to the limit as n tends
to infinity, we obtain that

lim
ε→0

∫
Q
Ae(uε) : e(w j

ε ) ϕ dxdt =
∫
Q
M∂t u · e j ϕ dxdt,

which concludes the proof of Lemma 5.9. ��
Proof of Lemma 5.14 Set

v(t, .) =
∫ t

0
w(s, .) ds, for t ∈ [0, T ].

Putting ∂tv
k
ε − w as test function in (5.32) and using that Fε, Gε are skew-symmetric, we

get

1

2

d

dt

∫
�

(
ρ
∣∣∂tvkε − w

∣∣2 + Ae(vkε − v) : e(vkε − v)
)
dx + k

∫
�

∣∣∂tvkε − w
∣∣2dx

= d

dt

∫
�

Fε(v
k
ε − v) · w dx −

∫
�

Fε(v
k
ε − v) · ∂tw dx −

∫
�

Gεw · (∂tvkε − w
)
dx

−
∫

�

ρ ∂tw · (∂tv
k
ε − w) dx −

∫
�

Ae(v) : e(∂tvkε − w) dx . (5.61)

Setting

Ek
ε (t) := 1

2

∫
�

(
ρ
∣∣∂tvkε − w

∣∣2 + Ae(vkε − v) : e(vkε − v)
)
dx,

hkε(t) :=
∫

�

Fε(v
k
ε − v) · w dx,

equality (5.61) implies that

dEk
ε

dt
+ k

∫
�

∣∣∂tvkε − w
∣∣2dx ≤ Cw

(
Ek

ε + 1
)+ dhkε

dt
. (5.62)

Applying Gronwall’s lemma and noting that Ek
ε (0) = 0, we get

Ek
ε (t) ≤ Cw + Cw

∫ t

0
Ek

ε (s) ds,

which again using Gronwall’s lemma gives

Ek
ε (t) ≤ Cw, ∀ t ∈ [0, T ]. (5.63)
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This combined with (5.62) proves that

k
∫
Q

∣∣∂tvkε − w
∣∣2dxdt ≤ Cw.

Finally, the former estimate and (5.63) yield the desired estimate (5.33). ��
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