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HOMOGENIZATION OF GENERAL QUASI-LINEAR
DIRICHLET PROBLEMS WITH QUADRATIC
GROWTH IN PERFORATED DOMAINS

By Juan CASADO-DIAZ

ABSTRACT. — In this paper, we study the homogenization of a Dirichlet problem in perforated domains for an
operator which is the perturbation of the Laplace operator by a general nonlinear term with quadratic growth in
the gradient. We show that a new term, which does not depend on the gradient, but which is nonlinear, appears
in the limit problem. We also give a corrector result.

0. Introduction

The goal of the present paper is to study the homogenization problem (')
{ — Auf + H(z,u*,Vu®) = f in D'(Q°),

(01 u € Hy() n L=(Q),

where Q¢ is a sequence of open sets which are contained in a fixed bounded open set
Q C RY, f is a function in L*°(2) and H(z,s,£) : @ x R x RY — R is a Carathéodory
function which has a quadratic growth in the variable £ and is of classe C? in the variable
(5,€).

The existence of a solution for the problem (0.1) has been established by L. Boccardo,
F. Murat and J.P. Puel in [B M P] and its uniqueness by G. Barles and F. Murat in [B M].
From these works, we also deduce that u® is bounded in H3(Q2) N L°°(Q). Therefore,
extracting a subsequence, u® converges weakly in H3 () and weakly-+ in L°(£)) to a
function u. The questions which we address here is to find the problem satisfied by the
function v and a corrector result.

It is well known (see [C M], [DM M1], [DM M2], [DM G]) than even for the linear
problem

02 { —Au = in D'(),

u® € Hy(9F),

(!) Here and in what follows, we consider the functions u° as defined on the whole of 2 by setting u* = 0
on 2\ O° (see Appendix: Notation).
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432 J. CASADO-DIAZ
the equation satisfied by the function v is not in general
—Au=f in D'(Q),
but is of the type
—Au+ pu=f in D'(Q),

where a positive measure £ vanishing on the sets of zero capacity appears.

In the case of equation (0.1), the nonlinear term H(x,u®, V u®) leads us to a more
complex equation, in which the new term which appears is no more linear in u, but
is of the form 7'(x,u)y for some nonlinear function T'(z, s) and for the same measure
1« which appears in the linear case. In [C3], we have studied the particular case where
H(z.u*,Vu®) = At —v|Vus|?, A > 0, and have proved that in that case

e’ —1

yers

T(x.8) =

For what concerns the sequence 2°, we will assume in the present paper that

325 € H'(Q),
(0.3) 25=0 in Q\ Q.
25— 1 in HY(Q) weakly.

This implies in particular that the holes 2\ ¢ are sufficiently small. As proved in [C2},
this hypothesis is very close to the hypotheses assumed in [C M] (see also [K M]) to study
the homogenization problem (0.2). A typical example is the case (2° = @\ T*, where T*
is the union of balls of radius ¥ the centers of which are periodically distributed at
the edges of a cubic network of size «.

Hypothesis (0.3) implies the existence of a subsequence w® which vanishes in 2\ Q¢
and which converges weakly to 1 in H'(Q) (see the precise properties of w® in Section
1, Theorem 1.3) such that the following corrector result holds: If u € H}(Q) n L>(€),
the solution u® of (0.2) satisfies

(0.4) u® —w'u — 0 in Hy(Q) strongly
or equivalently
Vut —Vu—uVw —0 in L*(Q)V strongly.

It is however proved in [C3], by the study of the example H(z,u",Vu®) =
Auf — |V ufl?, that (0.4) does not hold in general for the quasi-linear problem (0.1). We
will nevertheless use w*u as a test function in the proofs below to estimate V u° when u®
is the solution of the quasi-linear problem (0.1): In some sense, we will compare V u° and
Vu+ uVws. We follow the general method designed by L. Tartar (see [T]) to study a
homogenization problem which consists to test the equation by special test functions. We
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HOMOGENIZATION OF GENERAL QUASI-LINEAR DIRICHLET PROBLEMS 433

introduce here an original variant of this method, which consists to make a comparison
between V u® and V « + uV w® when u® is the solution of (0.1), u its weak limit and w*
the corrector for the linear problem. The important fact is that w®w is no more a corrector
for the nonlinear equation (0.1) (i.e. (0.4) does not hold here) but this comparison will
nevertheless to reconstruct the limit equation. Our proof will also make use of nonlinear
test functions (as done in [B M P]) and of a change of unknown function (as done in
[B M]) to pass from the quasi-linear equation (0.1) to another equivalent quasi-linear
equation which satisfies a good “structure condition”.

The homogenization of the quasi-linear problem (0.1) could as well be carried out
without assuming any hypothesis on the sequence §2°. In this case it is sufficient to replace
the sequence w*u by the corrector given in [DM G] (see also [DM Mul], [DM Mu2]). One
could as well consider the case where —A u° is replaced by a monotone or even pseudo-
monotone operator —div a(x, v,V uf) acting on W, *(Q) (in this case the function H
has to have a growth less than |£|P): One has to use in this latest case the corrector results
of DM Mu2]. In view of the technical difficulties which appear in the present paper, and
which are mostly due to the use of the technique of change of unknown function which
traces back to {B M], we have prefered to limit ourselves to the case where we assume
that (0.3) holds. We hope that the reader will be happy of our choice.

The method we use in the present paper (i.e. the comparison of V u® with V u+ uV w®)
is also sucessful in the study of the homogenization of Dirichlet problems for nonlinear
monotone and pseudo-monotne operators of Leray-Lions type. The mehod is presented in
[C4] in the simple case where monotone operators defined on W, (§2) are considered
and where an hypothesis similar to (0.3) is made on the sequence €2°. The general case
of monotone systems without any hypotheses on the sets €2° is treated in [C G]. Note
finally that even if the basis of the technique used in [C4] and [C G] is the same as in
the present paper, the situation is simpler there since no change of unknown function is
necessary when no “quadratic” perturbation occurs.

The main results obtained in the present paper can be summarized as follows: Let
2 C RY be an open bounded set and let {2° be a sequence of open sets contained in €2
such that (0.3) holds true. We consider a Carathéodory function  : @ x R x RV — R
such that for almost every x €  the function H(z,s,£) is of class C? in s and £ and
has at most a quadratic growth in £. We also assume that for a strictly positive constant
A and for almost every & € {2 we have

OH(x,s,£)

f\'v
P > A, V(s,f)eRxR

and that the first and second derivatives in (s, £) of H satisfy reasonable growth conditions
(actually the same as the derivatives of |£|?, see (1.2) and (4.3) for the precise hypotheses
made on H).

Then we have the following homogenization theorem for the quasi-linear problem (0.1)
(which easily results from Theorem 5.1, Theorem 6.3 and Remark 6.3):

THEOREM 0.1. — There exists a subsequence of & (still denoted by €), a positive bounded
Borel measure |1 which vanishes on the sets of zero capacity (1 is the same measure which
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434 J. CASADO-DIAZ

appears in the homogenization of the linear problem (0.2)) and a Carathéodory function
T :Q xR~ R, such that for any function f € L=(Q2), the unique solution u® of (0.1)
converges strongly in Wy (), 1 < p < 2, weakly in HL(), and weakly-x in L>(S2) to
a function u which is the unique solution of the problem:

—Au+T(z,u)p+ H(z,u,Vu)=f inD'(Q),
(0.5) { 1 -
u € Hy(Q) N L>=(Q).

For p-almost every x € €, the function T(x,.) is increasing, satisfies T(z,0) = 0, and
is locally Holder continuous, i.e. satisfies

T (w,51) ~ T(x,52)] < C(s)]s1 — Szlﬁ,

where s = max{|si|,|s2|} and where C : [0, +00) — [0, +00) and A : [0, +00) — [1,400)
are increasing.

We also have the following corrector result (this result is stated in Theorem 7.1):

THEOREM 2. — Let € be the subsequence extracted in Theorem 0.1. Define for s € R and
n € N the function s as the solution of

(06) { — AsS +nsS + H(z, s,V s;) =ns inD'(QF),
' s5 € HY(QF) N L=(F)

and set P<(s) = V 5. Consider on the other hand a step function y(z) = Y. sixq.(2),
where the Q; are closed subsets of Q which satisfy p(Q; N Q;) = 0 for i # § and where
the s; are real numbers. Let () and t be defined by:

m

Q= U Qi t= Iﬂax{sup{“ Ue “L?O(Q)}a || Y ”Loo(ﬂ)}-
=1

Then

n— oo e—0 % 1/ Qi

where C : [0,4+00) — [0,+00) and X : [0,+00) + [1,400) are increasing functions
which do not depend neither on the sets ;, nor on the function y and nor on the right
hand side f of (0.1).

The above result provides an approximation of V¢ in L2(Q)™. Indeed when
y(z) = 3" sixq.(x) is a step function which is defined on closed sets Q; with
u(Q:NQ;) = 0 and when y is close to w in L'(£2, dy) (it is possible to construct such test
functions, see Remark 7.4), then V u + P2 (z,y(z)) is close to V u° in L*(Q2)". Formally
the idea is to replace V u® by V s, where s is the value of u(z) at the (frozen) point
z. This replacement is nevertheless impossible, since the function V s, = P;(z, s) is not
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HOMOGENIZATION OF GENERAL QUASI-LINEAR DIRICHLET PROBLEMS 435

a continuous function with respect to s and this leads us to the use of an approximation
by a step function y.

The idea for the introduction of sZ, is the following: For s € R given (which will be
u(zy) for a given z), we would like to find some f, € L>(Q) such that the solution s° of

(0.8) { - As*+ H(z,5°,Vs%) = f, in D'(2°)

s € HY(QF) N L)

has the property that s® tends to s. This is impossible for several reasons: The first one is
that s does not belong to HJ(£2), since s # 0 on J€. This could be solved by replacing
s by sp(z) with ¢ € D(Q), but a new difficulty appears: Passing to the limit in (0.8)
would give, according to Theorem 0.1,

—A(sp) + T(z,sp)dp + H(z,s0,sV o) = f; in D'(Q)
and in general f, does not belong to L>(2). For this last reason, we introduce a new
parameter n and the penalization n(s5, — s) in (0.6); passing to the limit in (0.6) for n

fixed implies that s tends to s™ in H}(Q) weak, with:

{ ~ A8y +T(z,8,)pp + H(x,5,,V 5,) =ns in D'(Q),
8, € HY () N L™(Q)

and it can be proved that s, tends to s when n tends to infinity.
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436 I. CASADO-DIAZ

1. Some preliminary results about quasi-linear problems with
quadratic growth and hemegenization in perforated domains

1.1. Quasilinear problems with quadratic growth

We first recall some results about the existence and uniqueness of the solution of the
problem

(L.1) {“ Au+ H(z,u V)= in D'(6),

u € HH(O) N L¥(0),

where O is an open set contained in (2. Following the ideas of [B M P} and [B M], we will
obtain for this problem some estimates which will be useful in the homogenization of (0.1).
Let us assume that the Carathéodory function H : Q x R x RY — R satisfies the
following hypotheses:
1) For almost every x € Q and every ¢ € R™, the function H(x,.,£) is continuously
differentiable and there exists a constant A > 0 such that
OH .
(1.2) —8——(;1;,3,,5) > X ae x €, V(s &) e RxRY.
8
ii) There exist two increasing functions vy and v : [0, 4+00) — [0, +00), such that
(1.3) |H(x,s,6)| <volls]) +v(|s])]¢)?, ae. zin Q, V(s,&) € R x RY.

REMARK 1.1. — It is enough to assume that vy and v are just bounded on the bounded
sets of [0, +00). We then obtain increasing functions by defining 0p(s) = supg<,<, vo(?)
and 0(s) = supg<ic, v(t). -

L. Boccardo, F. Murat and J.P. Puel proved in [B M P] (see also [C1]) the following
existence result for (1.1).

THEOREM. — Assume that © is an open set, © C $Q, and that H satisfies (1.2) and (1.3) and
that f € L>(©). Then there exists a solution v of (1.1) such that || u || g1 ey and || v ||z~ (o)
are bounded by constants which depend only on A, vy, v, || f |1, () and the measure of ©.

In fact, we have

Vo(O)+ || flln=ce
(1.4 e oy 2O Moo

The estimate for || v || (o) is more complicated and will not be given explicitly. (It is
easily deduced from the following Lemma by taking ¢ = 1 and r = 0 in (1.7).

LEMMA 1. — (see [B M P]) Assume that © is an open set, © C (), and that H
satisfies (1.2) and (1.3) and that { € L>°(0). Consider a constant M > 0 and a function
u € H'(©) N L>(©) such that || u || =)< M, and define f € H1(0) + L'(0) by:
(1.5) —Au+ H(z,u,Vu)=f inD(O).

TOME 76 — 1997 — N° §



HOMOGENIZATION OF GENERAL QUASI-LINEAR DIRICHLET PROBLEMS 437

Let h € CY(R) be the function defined by
h(s) = 25e(V(M)2)”

which depends only on M. This function satisfies

, h(0) =0,
(1.6) {h'(s) —2v(M)|h(s)] > 1, Vs € R.

Then, for any r and ¢ such that
re H(®)NL>(O), ¢ € H(O)NL®(O), ¢ >0, (u—r)pec H(O),
we have (1)
(L.7)
/ |V (v~ 7)|%¢ < (f, h(u — T)pde —/ oV rVh(u-r)
© o

—/ h(u—r)Vqu0+v0(M)/ |h(u~r)|<p+2v(M)/ IV 2w = ).
Proof. i) Taking h(u — 1) € Hé(@)' r(? L>=(©) as test function (?n (1.5), we obtain
/' Vth(u—r)cp-l—/h(u-r)Vchp-f—/H(:L',u,Vu)h(u—r)go
S de. ’
Since V h(u — 1) = K(u~ 1)V (u - r) and (13) we have:
([ Ww=nI¥ =)o < (=)o
(1.8) —/OLerVh(u—r)-/Oh(u—r)Vqu

|+ 000) [ (b= rlo-+ o01) [ 190 b= e

Using the inequality |V u|? < 2|V (u — 7)|? + 2|V 7|? in (1.8) and carrying the term
20(M) [o IV (v = r)]*|h(u — r)|p to the right-hand side of (1.8) and using (1.6), we
deduce (1.7). A

We will use stronger hypotheses about H to obtain a uniqueness result for Problem (1.1).
Specifically let us assume that for almost every z € Q the function H(z, ., .) is continuously
differentiable and that there exists an increasing function « : [0, +00) + [0, +oc) such that

H(.,0,0) € L*™(Q),

OH
o ‘d (.5,6)

(') Here and in what follows, (f,v)e denotes the duality pairing between H~ H®) + L'(©) and
H3(©)N L>=(6) (see Appendix: Notation).

<af|sP(L+[€*), ae €N, V(s,6) eRxRY,

a(lsP(1+[¢]), ae.xe, V(s,£) e Rx RV,
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438 J. CASADO-DIAZ

ReMARK 1.2, — Assumption (1.9) implies the existence of increasing functions
v, v : [0, 400) — [0,400) such that the function H satisfies inequality (1.3).

The following lemma results from a computation which is due to G. Barles and F. Murat
(see proof of Theorem II.1 in {B M]).

LemMA 1.2. — Assume that © is an open set, © C §), and that H satisfies (1.2) and (1.9).
Let u € HY(O)N L>™(O) and f € H~*(O) + LY(©) which satisfy

{ —Au+H(z,u,Vu)=f inD'(0),
w& H'(®)NL=(O), || v |lp=@< M,
for some M > 0. Define for A > 0 and K > 0 the functions ¢ and 9 = =" by:

(1.10)

2 (—00, +00) — ( — oc, %logK)
(1.11) . :
\1/)(§) = —Zl()g<e“K‘45 + E)’ VsieR,
(19 : (— 00, llogK> — (—00, +00)
(1.12)
Is) =9~ (s) = —Llog e A 1 Vs such that s < ilog(I{).
{ KA K)’ A

Then there exists two constants A, K > 0, which are increasing with respect to M such
that the function 4 = 9(u) satisfies
{ ~ A+ B(x,4,V @) = § in D'(©),

(1.13) o e HY(O®)n L>(O),

where f is defined by
i S
()
and where the function B : Q x R x RN — R is a Carathéodory function which satisfies

a property similar to (1.9): For almost every x € () the function B(x,.,.) is continuously
differentiable and there exists an increasing function 3 : [0, +00) — [0, +0c) such that

B(.,0,0) € L=(Q),

(1.14) ‘ %g(m,s,é)‘ < A(18)Ha + I{IQ) ae. 1 € §, V(s,ﬁ) € R x RY,
%?—(x, 5.6 < AU +IE), aece V(56 eRxRY.

Finally, there exists also a constant n > 0, which depends on A and K, and thus on M,
and which is increasing with respect to M such that

OB OB z

1 oy 7
s > A, 1\‘
3 5 >0ae.zeQ V(58 eRxR

2n

(1.15) (z,5,€) - (z,3§,€)
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Proof. — The results of Lemma 1.2 are proved in [B M] (proof of Theorem II.1). Let
us recall the main points of this proof.

When K > e the domain of definition of 9 covers {— M, M]. When u is a solution of
(1.1) the change of unknown function @ = ¥(u) implies that 4 is a solution of (1.13), where

B(r.3,6) = L 2ljép 4 w,l(g)H(x,w<s->,w’<§>f>, ac.w €0, V(s,€) € R x RY.

It is then easy to prove that (1.14) holds true.

In order to prove (1.15), it is sufficient to follow the proof of [B M]. One first fixed A
sufficiently large, A = Ao(M) (with Ag(M) = K5 +1 in the notation of [B M]). Then for
K large enough (more precisely, K > Ko(M, ) where A is the constant which appears
in (1.2)) one obtains, when n is large enough (n > no(M, X))

2

2B (25,8 >0,
o8

aB(m § A) 1
05 2n

(1.16)

which is the desired result.

ReMARk 1.3. — As in Remark 1.2, the inequalities in (1.14) imply the existence of two
increasing functions 09,0 : [0,400) — [0,+00) such that the function B satisfies an
inequality similar to (1.3).

The following result provides similar estimates to those of Lemma 1.1, which will be
used later for the homogenization of problem (0.1). The ideas used in the proof follow
from [B M].

LemMMA 1.3. — Assume that © is an open set, © C Qandlet B : QxR xRN — R
be a Carathéodory function which satisfies properties (1.14) and (1.15). Consider i, 0 &
HY Q) N L2(Q), with || @ [|L=@)< M, || 0 [lL=@©)< M, and f,§ € H(©) + L'(O)
which satisfy

— A+ B(z,4,V4) = f inD'(0),
(1.17) { U+ (.L"lfg’l) f inD'(©)

Set S(s) = |s|"~1s. Then, for any function ¢ € HY(©) N L>(O), ¢ > 0, we have the
following estimates:
i) Let & = 4 — 9. Assume that Op € H}(O), we have:

(1.18)

L s@yvap £, V) - B, 5,V 9))S(&) + 25'(0)|V o
5/(_)5(w)|Vw| <p+/@[(B(x,u.,Vu) B(x, 9,V 9))S( ),+ 2S( )|V I*1e

— (f— 4, 5@ - / S5@)V @)V .
JO
Moreover

1
[(B(x,a,va) ~ B(z,9,V1))S(®) + 5S’(@)|V &l >0 ae. in @,
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ii) Let # € HY(©) N L>(0) and & = i — © — 7. Assume that wp € H}(O), we have:

(119)  { - 'wvsw)w—/ S(G)V (i ) Vg

[+ (_;[(1 + Vil + V)i + (1 +[Val + Vo))V [o]"e.

iii) Let @ = 4 — 0. Assume that &t € H3(©), we have:

1

(1.20) : LS’(@*)W&J*IQ <(f ~ 3,56 e,

Proof. — Let # € HY(©) N L>°(O) and set w = & — © — 7. Let ¢ € HY(O) N L>=(O),
¢ > 0 be such that wp € H}(O). Using S(w)p (which belongs to Hi(©) N L>(Q)) as
test function in the difference between the two equations of (1.17), we obtain

/Och(u—v )V S(w) + /S (t—0)Ve

+ [ B0,V ) - B 0. T 0)8@)e = (f - 6. 5@lo,
The equality V S(w) = S'(@) Vw. yields
/05'((:;)}v /O[ (0., V ) — B0,V )] S()¢

I(f—!}as(@)w)(—)—/@s@VfVS(@)— S(@)V (i~ )V .

(S]

(1.21)

Define the measurable functions b,;,bé b

0B . . . Y
bs(t,z) = 5;(:):, ti(z) + (1 — t)o(x), t Va(z) + (1 — t) Vi(z)),
3
be : [0,1] x 2 — RY

\ (1‘ x) = 05

Since B is continously differentiable, b; and bé are measurable on [0, 1] x Q. By (1.14);
we have (%)

(1.22)

—(x.tu(x) + (1 — t)o(x), t Va(z) + (1 — t) Vi(a)).

(1.23)

Ibe (1, #)| < Cai(1+ | Vi + V3.

(%) Here and in what follows, C'y; denotes a generic constant which can change from a line to another and
which is increasing with respect to M (see Appendix: Notation).
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We have then using Taylor’s formula:

([B('r @, Vi) — B(z,0,V0)]|S(w)

—di[B(:L ti+ (1~ )0, tVa+ (1 —t)Vo)dt S(&)

(it = 6) + be(t,0) V (4 — a)]drS()

ot
[ (£, 0)0S (&) + be(t, 2)S(@) V a] dt

A
(1.24) /
-/
]

[b, t,x)7 + bt az)Vr}dt S(w).

Using Young’s inequality and (1.23) yields

R . 1
lbe(t,)8(6) V&l < 5

)

€>

/01 [bg(t,w)f + be(t, @)V f] dt S

> —C[( 0P+ (L4 Vil + [V oDV #]1S(@)].
Therefore
[B(z, @, Vi) — Bz, 5,V 9)]S(&)
5 Logyworp I, )& a—lS@)Q 2
(129) {2 =g @Ial+ [ |h(tos@) - 55k lelea)

= Cur[(1+ Va2 + [V oP)I#| + (1 + [V af + [V o)V 7] 1S()].
Using S(s) = |s|*!s and (1.15), we have:

15(@)2 j)‘Z
2. 5/(@) €\

- 1
= ol (bit0) - elbet ) 20

bs(t, 2)0S (@) —

and therefore we finally deduce from (1.25) that

1
(1.26) [B(z,4,7 ) - B(z,5,V§)]S(2) > —2S'(@)|V of*
= Cu [+ VA + Vo) 7| + (1 + |V | + Vo)V #] ||
When 7 = 0, (1.18) is nothing but (1.21). Moreover (1.26) proves the positivity of the
second term. Similarly, (1.21) and (1.26) prove (1.19). The proof of (1.20) is similar to

the proof of (1.19) with # = 0 and ¢ = 1 taking as test function S(&)% instead of S(&)y
in the difference of the equations of (1.17). N
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The uniqueness result obtained by G. Barles and F. Murat in [B M] for equation (1.1)
is now easily derived:

THEOREM 1.2, — Assume that H satisfies (1.2) and (1.9) and let © C ) be an open set.
Consider w and v in H'(©) N L>(0O) such that:

— Au+ H(z,u.Vu) <0 inD'(O),
—Av+ H(z,v,Vv) >0 in D'(O).
Then inequality w < v in 00, (ie. (u —v)t € H(O)) implies u < v almost everywhere
in ©.
In particular the problem
{ —Au+ H(z,u,Vu)= [ inD(O)
u € H}(O)N L®(O)
has a unique solution when H satisfies (1.2} and (1.9) and f € L>=(©).
Proof. - Using Lemma 1.2, the functions @ = 9(u), © = 9(v) satisfy, since 1’ > 0
{ — Ad+ B(z,4,V4) <0 in D'(0),
— Ad+ B(z,9,V4) >0 in D'(0).
The result follows applying (1.20) to these equations. W

1.2, Homogenization in perforated domains

Let us now recall some results related with the homogenization of the Poisson’s equation
with Dirichlet boundary conditions in perforated domains. In the whole of the present paper,
assume that the sequence {2° of open sets with 2° C €2, satisfies the following condition:

(1.27) 3252 € HY(Q), 2> p >0 (p constant), such that
' 25 =0in Q\ Q°, 25 — z in H'(Q).

The following theorem has been proved in [C2].

THEOREM 1.3. — Assume that (1.27) holds true. Then for a subsequence of €, that we still
denote by ¢, there exist a sequence of functions w® and a distribution 1 which satisfy (})

(P1) w'e HY(Q)
(P2) w* =0inQ\Q°

(P3) 0<w <1
(P4)  w® — 1 weakly in H'(Q) and strongly in W'*(Q), 1 < p < 2
(P5)  peMQ)

*) Here and in what follows, MJ((2) denotes the set of bounded positive Borel measures which vanish on
the sets of zero capacity (see Apendix: Notation)
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(Vu,p € HI(2) N L2(Q),
Yo € H}(QF) and Vv € H}(Q) such that v¢ — v in Hj (),
(P6) 9

we have
Lv€L2(Q,du) and/wV(wEu)VvEﬂ/chqu%—/uwpdu.
Q Ja o)

Ve HY(Q) N L=(9Q),
Yoe € HYQ), v° = 0in Q\ QF, such that v¢ — 0 in H(Q),

(P7) 1 we have

/chwEVvE—»O.
vJa

The following results follow easily from these properties of w*® and p.

CoROLLARY 1.1. — For every ¢ € H}(2) N L>(Q), we have

(1.28) / Vw2 — / pdu.
Q Q
Proof. - Use u = 1, ¢ = 1 and v* = wy in (P6). A

CoroLLARY 1.2. — Consider a sequence ° such that

(1.29) $° € L(Q), || ¥° =< C.

Then for any v € H(Q) N L°°(Q) we have (*)

(1.30) / IV (0 — u)[2° = / IV W [2u2y + O..
Q Q

If 4° also belongs to H'(Q) and converges almost everywhere to zero and if
@ € HY(Q) N L>(Q) with ¢ > 0, we have:

(131) [1vurpvos ( / \Vw5|2e0)2( [ ww%)z ‘o..

Proof. — To obtain (1.30) use the fact that V (wu — u) = uV w® + (w® — 1) Vu and
then (P4) and (1.29).

To obtain (1.31) use »* = wy° in (P7) and then (P3) and Cauchy-Schwarz’s
inequality. W

REMARK 1.4. — The properties of the sequence of functions w*® and the distribution p
are very close to the hypotheses imposed in [{C M] (see also [K M]) for the study of
the homogenization problem:

(L32) { —Aw = f in D()

u® € Hy ().

(*) Here and in what follows O. denotes a sequence of real numbers which converges to zero and which can
change from a line to another (see Appendix: Notation)
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For this problem, D. Cioranescu and F. Murat ({[C M]) have shown that under their
hypotheses the sequence u® converges weakly in H((f2) to the unique solution u of the
problem

(1.33) { ~Autup=f inD(Q)

u € Hy(Q).

It is also known (see [C M] and [C2]) that when u € H}(Q) N L>(Q) one has for the
linear problem (1.32) the following corrector result:

(1.34) u —wu — 0 in Hy(Q).

It is proved however in [C3] by means of an example, that the corrector result (1.34)
is no more true in general when u° is the solution of the quasi-linear problem (0.1). In
spite of this, the main idea of the present paper will be to make a comparison between the
gradient of u®, solution of (0.1), and the gradient of w®wu; this will provides us with some
estimates for the gradient of u® which are similar of the properties of the gradient of w®.

In constrast with the work of D. Cioranescu and F. Murat the linear problem (1.32) is
solved without any hypothesis about the sequence Q¢ in [DM M1], [DM M2], DM G].
For what concerns the nonlinear problem (0.1), it is possible to eliminate hypothesis (1.27)
about 2° at the expense of replacing in what follows the sequence w®u by the corrector
given in [DM G] (see also [DM Mul], [DM Mu2]) for the linear problem (1.32). This
will however make the exposition of the quasi-linear problem much more tedious. We
have therefore prefered to remain in the more restictive case in which hypothesis (1.27)
is assumed. To see how it is possible to extend the results given in the present paper to
the case where no hypothesis is made on the domains ¢, the reader is referred to [C G]
where this task is carried out for monotone systems in which the corresponding estimates
are casier to obtain than for the problem (0.1).

From now on we will assume that (1.27) holds true or more exactly that the properties
(P1) to (P7) of Theorem 1.3 hold.

2. Estimates on the gradients of the solutions
and first results on the homogenization problem

In this Section we obtain some estimates on V «° when «° is the solution of (0.1). As a
consequence, we obtain a first representation for the limit problem of (0.1).

We will actually consider a problem which is more general than (0.1): more pecisely,
we consider the case where the right-hand sides are a sequence of distributions f¢ which
satisfies

fee H Y Q) + LYQF), fe H Q) + L(Q) such that
for any sequence v° € H}(Q°) N L°°(02°) such that

@1) v® — v in H}(Q) weak and in L>(Q2) weak-x,
we have (f°,v%)q: — (f.v)q
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and such that the following equation holds
(2.2) —Auf + H(x,u®,Vu) = f° in D'(¥)
Let us thus usually to consider f°, f, «° and « such that:

f¢ and f satisfy (2.1), »° and f° satisfy (2.2),
u® € HY(QF) N L2(0F), u € Hy() N L=(Q),
| u® ||z ()< M,

u® — u in Hy(€2) weak.

(2.3)

RemARK 2.1. — Consider the solution u° of problem (0.1) for f given in L>(Q).
Applying Theorem 1.1 implies that »¢ is bounded in Hj(2) N L*°(R2). Thus extracting
a subsequence such that u® converges to some u, and setting f¢ = f, we deduce that
fe, f, u® and wu satisfy (2.3).

This provides an example which proves that the set of the f°, f, u® and u which satisfy
(2.3) is not empty (once a subsequence has been extracted). We will prove most of the
results of the present paper in the framework (2.3), which has the advantage of to avoid
the extraction of a subsequence, since u° is already assumed to converge to some .

2.1. Strong W, () (p < 2) convergence

Our first result states the pointwise convergence of the gradient of the sequence u°, in
the spirit of Boccardo-Murat [Bo M].

THEOREM 2.1. — Assume that H satisfies (1.2) and (1.9). Consider f¢, f, u® and u which
satisfy (2.3). Then the sequence u converges strongly to u in W'P(Q), for any p with
1 <p<2

Proof. — The sequence z° = u® — wu converges to zero in measure, so by the Egorov’s
theorem, there exists a sequence 22" which converges to zero almost uniformly, i.e., for
every § > 0 there exists a set A5 with [\ As| < & such that 2 converges uniformly
to zero in As.

Given p > 0, we take T,(z°) € H3(Q)n L (') as test function in (2.2), where
T, : R — R is the truncation defined by

p ifs>p
T,(s) = {s if—p<s<p
—p ifs < —p.

We obtain
/V’If’VT,,(ZE,) +/ H(z,u® , Vu)T,(z5) = (£, T, (2% ))ax-
JQ Q

Note that the integrals are written on the whole of 2.

JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES



446 I, CASADO-DIAZ

Using (2.1) and the fact that H(z,u ,V u*') is bounded in L!(f) independently of ',
we conclude to the existence of a constant C' > 0 such that

/ IV 2
0

By (P6) the last term converges to zero. Since for & small enough we have
As C {z € Q: |z¢(z)| < p}, we deduce that

"Xz j<pp S O+ Cp = /QV (w'u) VT,(2).

limsup/ |V zE'IQ < Cp.
Ag

£'—0

Since p is arbitrary, this implies that
li
el —0

/leg'l”:/ IW/I“/ V2P
Q O\ As Ag

<[| V2 HI[)ﬂ(Q) S| Ve® ”I[),Q(A(,) 2=,

(2.4) m |V 2 =0.
As

Writing

we obtain that for any p such that 1 < p < 2, 2 converges strongly to zero in Wol’p (Q).
Since w® u converges strongly to u in WOI"’ (2) by (P4), we have that uS converges
strongly to u in W1P((2). Finally, since the above reasoning holds not only for * but for
any subsequence of u°, Theorem 2.1 is proved. W

2.2. First estimates on V «°

The following lemma extends in some sense the resuts of Corollary 1.2 to the case
where wfu is replaced by ¢, the solution of (0.1).

LeEMMA 2.1. — Assume that H satisfies (1.2) and (1.9). Consider f¢, f, u® and u which
satisfy (2.3), a function o € HY(Q)NL>(Q), ¢ > 0 and a sequence of functions 1° such that

p € HY(Q)NL™(Q), 20,
¥* e H(Q)NL=(Q), ¥° 20,
¥ ) + 197 L@ < C
Then there exists a sequence of functions p® which satisfies
25) {pf € Hy() N L¥(Q), 7 20
oF — 0 in H(2) weak, || 57 l|=()< Car

such that

/ IV (4 — P46 < Cns / IV w2
Q Q

([

(2.6)

)=

v
%
( A A% 1&5[2,05@) + 0.
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Proof. — Applying estimate (1.7) to equation (2.2) with © = Q°, u = v, r = weu,
@ = Yf¢ and setting
25 =u® —wu,

we obtain
(2.7)

IV 22y < (£°, b)) — Q oV () V h(5)
Qe €

- / h(=) Vo V (4°9) + Cr / IRzl + Ca / IV (wfu) PIR()e.
Qs Qe Qe

Let us now estimate the various terms of the right-hand side of (2.7):

By (2.1) we have (f¢,h(25)¥°p)q- = O. since h(z¢) — 0 in H'(Q2) weak.

Applying (P6) to v¢ = uh(2)y°¢ which belongs to H}(£2°) and tends weakly to zero
in H} (), and using || © ||~ < M, we obtain for the second term

- / PV (wu) V h(2f) = —/ Pero(wt Vau+uVw)Vh(z%)
Qs Q
:Oe—/zﬁstpquEVh(zE)
Q
205—/VwEV(W(puh(zE))—l-/d)ecph/(f)VwEVu
Q Q
—I—/Qcpuh(zE)VwEVd)E+/Q¢€uh(zs)Vw5V<p
:/ wuh(z2°)Vw* Viy© + O,
0

<ou( [ vafl2w>%< / |V¢f|2|h(ze>|2so>%+oe.

For what concerns the third term of the right-hand side of (2.7) we write

- h(z5) Vu* V (¥°p) /h (u* —u)V(¥p)+ 0

Qs

= - [ WV —w Vi +o.
< ( [ 19 - u»%o)%( / IVWIZIh(ze)l%)% +o..

Cu |h(z%) |9 = Oe.
Qs
For the fifth term, we have:

Cur [ 19 (P < Our [ (192 + P19 2] Ino ey

The fourth term is

- Cu / IV 0P|z + 0. < O / IV w Py 4+ O..
Q. Q
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Taking into account the estimates obtained for the right-hand side of (2.7) we have
proved that:
(2.8)

/ IV (uf — wu)|*y*o < Oy | [V 2o + O.
Ja Ja

Oy (( / Wl%f w17 =) ) ([ wopmeee)

Using (1.30) with 4° = 4°¢ and the fact that || u ||7~ o)< M, we have
(2.9)

IV (0" —u)Ppep < 2 / IV (14 — wou) Py e + 2 |V (wu ~ u)| Py
)

con(([imwrs) ([ -ore) ) ([ermers)

+Cu / A% 11?5‘2’1/)5@ +0..
Ja

Taking in (2.9) 4»° = 1 (which is licit), we obtain
IV (" — “/)1290 <Oy /
Ja Ja

which substituted in (2.9), implies (2.6) with p* = Cp/[h(z7)]2. W
COROLLARY 2.1. — Assume that H satisfies (1.2) and (1.9). Consider <, f, u® and uw which

satisfy (2.3), as well as ¢, € HL(Q) N L>(Q), with )° > 0, 4° bounded in L™=(2) and
p° converging strongly in H}() to 1. Then

?p 4+ 0.,

(2.10) limsup [ |V (u5 —u)|?¢ < Crr | W dp.
e—=0  JO JQ

Proof. — Take v = 1 in (2.6) and observe that [, |V w?|*1)° — [, 4 dp by (P6) with
e = wpt and v = =1. W

COROLLARY 2.2. — Assume that H satisfies (1.2) and (1.9). Consider f*, f, u° and u
which satisfy (2.3) and let 4 and @ be such that
o e H(Q)NL®(Q), ¢ >0,
YT e H'(Q)NL>(Q), ¢° >0,
P — 0 in Hi(2) N L™(Q) weak- .

Then we have

(2.11) / |V (0" — )Py < CM(/ |V w€|2cp) H (/ ]V'z/fﬁa) 0.,
Ja Jo Jo

(2.12) / |V P < CM< |V’IUEI2(p) _ (/ |V/1/)E|2<p) +0..
Jo Jo Jo

Proof. — Inequality (2.11) follows from (2.6), (1.31) and {| p. |1~y < Cp. while
inequality (2.12) is deduced from (2.11) and from |V u¢[? < 2|V (u® —u)|*+2[Vu>. W
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2.3, Structure of the limit of (0.1)

The estimates above obtained allow us to give a first result about the structure of the
problem obtained by passing to the limit in (0,1).

THEOREM 2.2. — Assume that H satisfies (1.2) and (1.9). Consider f*, f, u* and u which
satisfy (2.3). Then, there exists a function E € L>=(Q, dp) with || E || (0,40 < Car, such
that w is a solution of the problem:

(2.13) { —Au+ Ep+ H(x,u,Vu)=finD(Q).

we Hy(Q) N L=(Q),
or equivalently (°):
u € Hy ()N L>(Q),

(2.14) /Vqu+/Ezd,u+/ H(z,u,Vu)z = {f,2)q,
Jo Jo Q
Yz e Hy(Q)n L>(9).

The function E is defined by:
(2.15)

/ FEodyp=1lm [ H(z,u*,VuH)wp— / H(x,u,Vu)p +/ uwpdp, Yo e D)
Jo =0 /g Ja Q
ie., since H(xz,u,V uf)w is bounded in L'(Q),

Eu—-up+ H(z,u,Vu)= liH(l) H(x,u®, Vu*)w® in My(Q) weak- * .

Proof. — For ¢ € D(Q) we use (as for the linear case, see [C M]) w¢ €
H{(Q) N L>(§)°) as test function in (2.2). We obtain (note that the integrals can be
written on the whole of )

/ Vu* V{(w )+ / H(z,u®,Vu)uw o = (f*wp)g-.

Jo Ja

Using (P6) and (2.1) we deduce that, as ¢ — 0

(2.16) / H(z,u",Vu )wo - (fie)a— [ VuVe-— / wodp, Yo € D(Q).
Jo Jo Jo

Since H{z,uf. V u)we is bounded in L!(f2), we deduce from (2.16) that:

H(z,u*,Vu)w® —v=f+Au—up in My(Q) weak- = .

(%) Recall that HJ () N L>=(Q) C L>(Q,du) (see Appendix: Notation)
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On the other hand, using (1.9) and 0 < w*® < 1, we have for every function ¢ € D({2),

A[H(:E, u®, Vus)we — H(z,u, Vu)wsgo]}
< Cu <'/Q(1 +(VuE? + [V ul)|u® —ullo] + L(l +IVu |+ [Vul) |V (u ~ u)ll@l)-

Using that u® — u converges almost everywhere to zero, that || u® — u ||~ (o)< 2M, that

(2.17) |V uf|z <2IV (uf — )2 + 2|V ul?,
|V uf| < |V (v —u)|+ [Vu

and that

(2.18) IV (u® —u)| — 0 in L*(Q),

which is deduced from Theorem 2.1, we get:

/ [H(z, v, Vu)uwe — H(z,u, Vu)wego]’ < Cy / IV (u® = u)|?lg| + O-..
Q Jo

Passing to the limit in this expression and using (2.10) with ¥ = ||, we deduce

/(pdll— H(z,u,Vu)p
Q Jo

< Cur [ leldn, Yo € D).
Q

By the Radon-Nikodym’s theorem, we deduce that there exists a function £’ € L>°(Q, du)
with || E’ HL“(Q,du)S C)ys such that

JQ

/E’cpdu: /@du—- H(x,u,Vu)p
Jo Ja

=<f,so>n—/(;VuVso—/(;wdu~/(;ﬂ($’u,\7uw, Yy € D(Q)

which implies that £ defined by £ = £’ + u satisfies
Epn=v—H(zu,Vu)+up=f+Auv—H(z,u, Vu).

This proves (2.13) and (2.15). The equivalence between (2.13) and (2.14) follows from a
result of J. Deny ([D], see also [Z]) which implies that:

when p € M(Q), E € L=(Q,dp), z € HY(Q) N L=(Q);

2.19 "
( ) then (E;L,Z)Q:/ Ezdpy. 1
Q
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3. Comparison of the gradients of two sequences of solutions

This section is devoted to the proof of the following Lemma, which shows that when «*®
and v° are the solutions of two problems (0.1) with right-hand sides f and g, which weakly
converge to u and v, then || u® — v* —u+v || g2 (q) can be estimated by || u — v [|L1(0,dp)-

Lemma 3.1. — Assume that H satisfies (1.2) and (1.9). Consider f¢, f, u® and u, and ¢,
g, v° and v which respectively satisfy (2.3). Define:

7" =uf - v —u+v.

Then, for any function ¢ € H(Q) N L=(Q), ¢ > 0, we have (°)

l_ﬁ M
(3.1) / V720 < Oy (/ |V w5|2<p) (/ |V w|?|u — v|<pdu) + O..
0 Q Q

Proof. — It will be performed in eight steps.

Step 1. — In view of Lemma 1.2, there exist two functions v» and ¥ = ¢)~! given by
(1.11) and (1.12) such that denoting

@ =d(u), 9 =90°),
(3.2) = z9(u),€ v =9(v ;
g ML
() ¥’ (v°)
we have
(33) { — AW + B(z, 45,V i) = f* in D'(QF),
— A + B(z, 9,V ) = §° in D'(QF),

where the function B satisfies (1.14) and (1.15).
Step 2. We have (7)

(34) &= | < Catlu — o,
(3.5) {lWl < CulV |
|V 9°| < Cun|V 27|,
(3.6) {'V (@5 — @)| < Cu|V (u = w)| + OF
|V (55 — 9)| < Cag|V (v —v)| + OF,
(3.7) V7P < Om(|IV 4P+ V (v° =)’ — o) + OF,

(®) Here and in what follows Aps denotes a generic constant with Aps > 0, which can change from a line to
another and which is increasing with respect to M (see Appendix: Notation)

(") Here and in what follows OZ denotes a sequence which converges to zero in X and which can change
from a line to another (see Appendix: Notation)
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where analogously to 7°, 7° denotes
TE=4 - 0" — a4+ 0.

Proof. — Inequality (3.4) is clear since ¥ is locally Lipschitz-continuous.

The equality V 4° = ¢'(u®) V o implies |V 4°| < Cj/|V «¢| and analogously, we have

The first inequality of (3.6) (the second one is similar) is deduced from

)= () Vu© -9 (u)Vu
= (uw)V(u® —u)+ () = () Vu=9"(u*)V (u° —u) + ()ELE.

In order to prove (3.7), we write

Vre =4 (a)Va® =" (@)Vi— ' (0°) Vs +4'(0) Vo
= )V (07 0)+ (0 -/ (0) Vi
— ' (D) V (0° = 0) — (' (0°) = ' (0)) Vb
= (@) V75 + (9 (i) — ' (69)) V (8 = 9) + OF,

which implies (3.7).
SteEp 3. — Define
7" =4 — 0 —w (- b).

Then, for any function p € H'(Q) N L>=(Q), ¢ > 0, we have

(3.8) / VA 2o < Cy / IV ws > + O..
Ja Ja
Proof. — Write

IV A°12 < 4|V (4F — 0))* + 4|V (67 — 0)?
+ 4|V (wi — 0)|* + 4|V (' — b)|?

and then apply (1.30) with ° = ¢, (3.6) and (2.6) with %° = 1.

Step 4. — For any function ¢ € H'(2) N L>(Q), ¢ > 0, we have

(3.9) / |V 7 P10 |" e < Oy / IV 1w} |u — vjp + O,
Ja Ja

where the constant n is defined in Lemma 1.2 and is increasing with respect to M.

TOME 76 — 1997 — N° 5



HOMOGENIZATION OF GENERAL QUASI-LINEAR DIRICHLET PROBLEMS 453

Proof. — Applying (1.19), with © = Q°, & = 4, © = 35 f = w(t—?) and © = 7°
to the difference between the two equations of (3.3), (and writing the integrals on the
whole of ) we have

/ AE ~E 'A) g S(’A]E)
/S )V 7P < (ue)(p>95 —{g ’1/)’(1)5)@9“"

- [ V- ) v 86 - [ stV -9

+CM/ (149 + Vo
(5

(4~ )]

(14 [V + Vo)V (w0 - )]

Using in this inequality the property (2.1) of f* and g°, and taking into account (P6), (P3),
(3.4), (3.5), that 7* converges almost everywhere to 0 and

(3.10) 9 ||l @< Cumr,

we have:

/ IV 7 P < Car / (IV w2 + |9 o [B)u — ol
(3.11) @ ¢

+ [V 0]+ 190 DIV (- )T + 0

Inequality (2.12) with ¢ = |7°|", ¢ = |u — v|p, (3.8) and (3.10) implies

( / (V[ + [V o°[?)
Q

(3.12) scM( / leelﬂu—vlw)%(A lﬁﬂ“"””l%ﬂﬂu—ﬂw) +0.

< CM/ |V w0 |u — v]p + O..
\ Q

(eI

Writing
V'] |V —u)|+|Vul, [Vo°] < |V (v° = v)|+ |V

and
|V (w* (i —9))| < [V (& — )| + |& — 9]|V wf,
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and taking into account (3.10) and then using (3.4), Cauchy-Schwarz’s inequality and
finally (2.6) with ©/* = 1 and ¢ = |u — v|y, we obtain:

/Q (IV ] + [V o DIV (w0 (@ ~ )|
< Oy / (IV (= w) + |V (v — )|V || — bl + O

(vt -orto-vie) (oo —pie-si) }

( ]Vw€|2|u—vlcp> + O,
Q

< CM/ IV wf|?lu ~ v|p + O..
\ J Q2

(313) (¢ <Cu

Inequalities (3.11), (3.12) and (3.13) now give (3.9).
STEP 5. — For any function ¢ € H'(Q)NL>(Q), ¢ > 0 and for any fixed & > 1, we have

/Q IVﬁEFIﬁE\k‘leCM(k)[ / 1V w Pl - vl

(o) (e o

where we have written C)s(k) to remark that the constant depend on k.

(3.14)

Proof. — Let Si(s) = |s|*~'s. Using Si(7°)¢ as test function in the difference between
the two equations of (3.3), we have

[ V=) Vsiiner | sV -V
b [ Bl ) - B VoS = 5 D e - b7 Sl

which using (1.14) and (2.1), implies
/ SL)V i Pl + / oV (wF (it — $)V Sy
Q Q
<y [ [V ap + VP -
Q

++|Va

+V NIV (@ = )] Sk e + O

Using in this inequality, (P6) and (3.5), we have:

[ VR
Q
(3.15) S CM / [(|VU€|2 + |V’UE|2)"&E _ 65|
JQ

(T 0|+ [V DIV (@ =99 [[i e + O
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To estimate the first term of the right-hand side of (3.15), we use the triangle inequality,
(P3) and (2.12) with 9¢ = |°|**1. Therefore we have

/(lV w2+ |V P)as — 6°||9° |5
Q

< [0+ (0B + [ (V0 + 70 = ol
JQ

SCM<k>(L!V111 ) (/ VPl Pk)
ceuto( [ Ivwt—oe) ([ 19

Inequalities (3.10) and (3.8) then give
Lavact + oo Py - it
Q

scM(m[( |w|%a) ( [ |Vﬁf|2|fﬂ%) + [ 1V ur - ol
Q JQ Q

For what concerns the second term of the right-hand side of (3.15) we use the triangle
inequality

~

(S

Dy — v|<,0) + O..

+ 0.

/Q (V| + [V oIV (@ — 5°) 17 [

< / (IV ] + [V o¥]) (IV 4] + | (i — 9))]) [0
JQ

and we estimate the two terms of the right-hand side. For the first term, we use the triangle
inequality, Cauchy-Schwarz’s inequality and (2.6) with ¢* = 1. This gives

[l 19 s Dw et = [ (9 =) 419 7 = o)Vl o+ .

(le(us—u ) (/'V ’"”W) (/'anl |2’“> +0.
SCM( A ) </|Vn|ln|2’“) +0..

For the second term we make again the computation that we did in (3 13) with now n
replaced by k. We obtain

/(IV uf| + [V o)V (w(a - 0)) |17 < CM(k)/ |V w**lu = vlo + O
JQ Q

The estimates we obtained for each term of the right-hand side of (3.15) now give (3.14).
Step 6. — For any function ¢ € H'(Q) N L>=(Q), ¢ > 0, we have:

1

1=y pyn
(3.16) / IV 3% < CM</ |Vw5|2<p> (/ |V we || — u|<p> + O..
Q Jo
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Proof. — We claim that for any j > 1 one has
i

frovtssoan(fmets) ™ [(fet-an)”
c(fmwre) (e o)

an estimate that we now prove by induction. Indeed when j = 1, (3.17) is nothing but
(3.14) with & = 1. Assume that (3.17) holds true for some j, i.e. that

(3.17)

+ 0.

Xo < Cu(HATTTBTT + A¥XF] 4 0.,

where we denote
= / |V wf?p, B / IV w0 |?lu —vlp X /|V 11(2 Dy,
Jo

Then using (3.14) and (use that || v — v |[p~(@)< 2M) that Bo-T < CM(j)AQLJBzLJ it
is easy to prove that (3.17) holds for 7 + 1.

Taking the first integer j such that 2(2/ — 1) is bigger than n — 1 (which only depends
on n and then on M) and using (3.10), we have

(3.18) / IV Pl PPy < Cm/ 7 R
Ja Jo

Inequalities (3.17), (3.18) and (3.9) now give (3.16).

SteP 7. — For any function ¢ € H*(Q) N L=(£), ¢ > 0, we have

. : . ‘ 1—ﬁ . ﬁ
(3.19) / V720 < Ciy (/ Y w°‘|2<p> (/ |V w® |?|u — ’U|Lp) + 0.,
Jo Jo Q

Proof. — The result is easily obtained by writing
(3.20) / |V #%p <2 / IV 7P + 2/ IV ((w® = 1)(4 — 9)) .
Ja Jo Jo

and then, using (3.16), [, [w® — 1*|V (& — 0)[*¢ = O., (3.4) and the inequality

A 2 2 £12 1_X;t_l ' £12 ﬁ
/ IV wf Pu — o] g0_<_C'M</ IV | <p> (/ IV | \u—vlap) ,
9] JQ JQ

which follows from || u — v ||z~ < 2M.
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Step 8. — Proof of (3.1).

Using (3.7), the inequality |4 — 9°|> < Cy|4° — ©°| almost everywhere in (2 and the
triangle inequality, we have
(3.21)

V7% < O ( / v+ [ V0 - o)l - @%) 0.
JQ Q 0

50M</ vite+ | |V<vf—v)|2%€|so+/ |V(UE—'U)|2|?1-@|LP>+OE.
JOQ Q Q

Inequality (2.11) with u® = 0%, u = v, ° = |7¢| gives

(3.22) /Q IV (o = o)1l < O ( /Q v m%) : < /Q v ’f'sl2<p>% 0.

Inequality (3.4) and then (2.6) with ¢* = 1, ¢ = |u — v|yp implies
(3.23) |V (uf — w)|*|d — e < CM/ IV ws*lu — v]e + O..
Q Q

From (3.21), (3.19), (3.22), and (3.23), we deduce

1

( 1—ﬁ LYY
[weteson( [ wure) ([ Iwutu-)”
Q Q Q
. 1-ﬁ . 317
(324 4 +0M</ IVwE\ng) (/ |Vw€|2]u—v|<p>
Q Q

+C’M/ |V weu — v|p + O..
Q

\

Since || u — v |[z=(@< 2M we have

(/leweplu_vlgp)ﬁ < CM(/Q lvwﬂz@)éf—M(/(‘l leﬂ?lu—v]@)ﬁlﬁ

1— 55— g S
/ |V w Plu vl < Cu (/ % w6|2‘10> B (/ IV w® [ u — v]ap) ",
Jo Q Q

and inequality (3.24) implies (3.1). W

4. Dependence of the function ' with respect to u

Consider f¢, f, ¢ and u, and g%, g, v° and v which respectively satisfy (2.3). By
Theorem 2.2, there exist two functions E and F in L>(£, dy) such that « and v satisfy

(4.1) —Au+ Ep+ H(z,u,Vu)=f inD(Q),
—Av+ Fu+ H(z,v,Vv)=g in D'(Q).
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The goal of this Section is to prove estimate (4.4), which in particular implies that
E(z) = F(x) p-ae. on{zx € Q: u(z)=v(zx)}

and therefore that there exists a function 7" : €2 x R — R such that F is of the form
E = T(z,u). In order to obtain these results, we need an hypothesis which is stronger
than (1.9). Further to (1.2), we will assume that:

i) For almost every z € ), H(z,.,.) is continuously differentiable, and there exists an
increasing function v : [0, +00) + [0, +00) such that for any (s;,&), (s2,&2) € R x RY
we have for s = max{|si1],|s2|}

, OH OH N
H(0,0),5(,0,0), 5 (-0,0) € L=(9),

OH OH
g(xv Sl’fl) - 5;(1:752752)

<A (1 + & + |€2)]s1 — sal + (L + [&] + 1&2D16r — &al],

0OH

\ ‘3‘5‘(%31751) - %Ig(%smfz) <) [(1+ [&0] + [€2D]s1 — s2| + &2 — &l]-

(4.3)

REMARK 4.1. — In other terms, H is assumed to be sufficiently smooth (two times

differentiable in (s,£)) and such that %25 has a quadratic growth in &, —g;% has a linear

growth in £ while [«;ZTI; is bounded when s varies in a bounded set. A model example which
satisfies all the required hipotheses is H(z,s,£) = A(z, )€€ + As, where A is a matrix
which is sufficiently smooth in s and is such that aa—’:(x, s) > 0 in the sense of matrices.

ReEMARK 4.2. — Hypothesis (4.3) implies (1.9) and hence (1.3).
The goal of this Section is to prove the following Lemma:

Lemma 4.1 — Assume that H satisfies (1.2) and (4.3). Consider f¢, f, u* and u, and g°,
g, v° and v which respectively satify (2.3) and let E and F in L>(§),dp) be the functions
defined in Theorem 2.2, which thus satisfy (4.1) and (4.2). Then, we have

(4.4) |E - F| < Cylu—v|™% peae. in Q.

Proof.

Step 1. — Let us first prove that for any function ¢ € D(2), we have

/ |H(z,u®,Vu®) — H(z,v°.Vv°) — H(z,v,Vv)+ H(z,v,Vv)||¢]
Q

< cM(/ﬂwwu)“*(/Q u—ollgldu) ™ + 0.,
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For almost every = € (), we define the functions A, 0 [0,1] x 2 — R and
hg he = [0,1] x Q@ — R by:

h(t,z) = %—Ij(w,tus +(1-8)v",tVu + (1 =-¢t) Vo),
0H
hs(t,s) = —a?(a:,tu-i- (1-t)v,tVu+(1-1t) Vo),
{
he(t,x) = éj,)—fgr(:zz,tu6 + (1 =t)v5,tVuf + (1 —-1¢) Vo),
he(t,z) = %—?(m,tuﬁ- (I1-t)v,tVu+ (1-t)Vo).

By (1.9) and (4.3), there exists a constant C; such that for almost every = € ), we have:
(R3] < Cur (14 [Vl + [V o°?),
he(t,2)] < Cu(1 4V uf| + |V o)),
h3(t2) = ha(t,2)] < Oy [(1+ VU + Vo2 + [V ul® + [V o) (Jus = ul + [o° = v])]
+ O [(1+ [V | + |V o[ + [Vu| + [V o))
IV (6 = u)[ + |V (v = w)])],
|he(t, ) = he(t, )| < O [(1+ |V |+ V| + [Vl + [V o] (Ju = ul + |v° = v])
+ COu(V (u* —u)[ + |V (v = v)]).
By the previous estimates, we have

|H(z,u%, V')~ H(z,v*,Vv°) — H(x,u,Vu)+ H(z,v, V)|

= ‘/0 [RS(E, 2)(u — v°) + hg(t, ) V (uf — v%) — hy(t, 2)(u — v) — he(t,2) V (u - v)] dt
g/ﬂ |h§(t,x)|]7'5|dt+/0 |hE(t, z) — he(t, z)||u — v| dt
+/0 |he(t, z)||V 7| dt +/0 |he(t,z) — he(t, z)||V (v — v)| dt,

where as in Lemma 3.1, 7¢ denotes
T =u" -1 —u+ .

Using (2.17) and (2.18) (applied to »° and v) and the fact that |7¢| and |V 7¢| tend to
zero in L*(Q2) weak, we have for any function ¢ € D(f)

/|H:vu Vuf) - H(z,v*, V) — H(z,u,Vu)+ H(z,v, Vv)||g|

< Cu / IV w P + 1V o)}
(4.6) < {2
+ Ciur /Q(|V (uf —u)* + |V (v° - v)|2) (1 + |uf —u| + Jo° — v|)|u — v|¢|

[+ [V (0 =) + 9 (0 = 0))IV #lpl + 0.
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Let us estimate each integral of the right-hand side of (4.6). For the first integral, (2.12)
with ¢ = |7°|, » = |¢| gives:

/(|V1f|2+IV'UEF)ITEII«)I scM(/ |Vw€z2|w|)"(/ 1%%1)‘ ‘o..
JQ JQ 0

For the second integral, we use the fact that 1 + |u® — u| + |o° — v| < Chy, then (2.6)
with ¥ = 1, ¢ = |u — v||p| to obtain

'/<|v<u LW 4|V (of = o))

< Cw / (IV (0 = )2 + |V (o — )2 u— o]l

< Cuy / IV w*u — v||g] + O-.
Ja

For the third integral, we have using Cauchy-Schwarz’s inequality and then (2.6) with
¢P° =1, ¢ = ||

/ |V (u® —u)] + |V (0° = 0)])|V %]

((/W u —ulso) (/ IV (o° — o) ) ><.5;|V7512(p>%
< CM(/”stFlsol) (/{;IVT€|2|¢|>E o,

These estimates of the right-hand side of (4.6) give

wi—

toj-

| H(x,u®.Vu®) — H(z,v*,V*) = H(z,u,Vu)+ Hz.v, Vo) ||g

S0

<cul [Iwurt u=vliel+ [ 1vuiel) ([ 197 ) ] +o.

We now use the fact that for any Ay, > 1, then
(4.7)

/twﬂz\u_vw,g% I ‘V“’E'Z‘”' % / ([ 19w u=nel)’

< 0w [ 1w lel) ([ 19 Piel) ([ 9= ollel)

then estimate (3.1) and finally the facts (which are respectively deduced from (1.28) with
¢ = |o| and ¢ = |u — v|p) that

[ 190l = [ 1elan-+o.
JQ JQ

[ 1wl sliel= [ ju=slieldu+ 0.
Q Ja
complete the proof of (4.5).
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Step 2. — The functions F and F are defined by (2.15). Thus, we have for any function

v € D)

/ Epdy= liII[l) /(H(IL‘,UE,V’LLE) — H(z,u, Vu))w e+ / up dje,
JQ evJa JQ

/ Fodp = lim /(H(:17,1)€7V'z)€) ~ H(z,v,Vu))wp+ / v dp,
Jo =0 /g Ja

which implies

"/Q(E~F)apdu

+ lim Sl]p/ |H(z,u5, Vu) — H(z,v*,Vv°) = H(z,u,Vu)+ H(z,v, Y 0)||e|dp.
Q

e—0

< / T
JQ

therefore using

1-5t X
[ = vlilas o [ 1aian) ([ = ollel
JQ Q Q

and (4.5) we have

[E- F)sodu‘ < O [ telin) ([ tu=lola) ™
JQ JO JQ

Since for every open set A C (2, we have (see [Fo])

/ |E — F|du = sup{
Ja .

we deduce from (4.8) that for any open set A C 2, we have

. pyr
/ |E — F|dp < C]\.[/L(A)l_w (/ [ — v du) .
A A

Then, for any open ball B(z,r) C §, with p(B(z,r)) > 0, we have

(4.8)

/(E—F)cpdu‘ 9 €D(A),0<p< 1},
Q

fB(m’T) |E - Fldu c fB(w,r) lu — vl dp b
uBz.ry) = M\ w(B(x,r)

which letting r tend to zero and using the measure derivation Theorem, proves 4.4. W
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5. Construction of the function T

We have seen in the previous Section that the function £ is of the form E(z) =
T(z,u(x)) for some function 7. However the function 7' is only defined for the pairs
of the form (z,u(x)) where u is such that there exists f¢, f and u®, where f¢, f,
u® and u satisfy (2.3). We begin this Section by showing that for every s € R there
exists a sequence of such functions u (which we denote by s,) which converges to s in
H} _(Q)N L>(, du) where H} (1) is endowed with its strong topology and L (€2, du)

loc

with its weak-* topology.

LEMMA 5.1. — Assume that H satisfies (1.2) and (4.3). Consider s € R. For any n € N,
define s:, as the solution of the problem

51) { — As +ns;, + H(z,s5,,VsS) = ns in D'(Q°),

s € HA(QF) N Lo(0F).

Then, there exists a subsequence of e (which in order to simplify the notation we still
denote by ¢), two sequences of functions s,, and S,, and a function S such that

(5.2) s, € Hy(Q)NL®(Q), S, € L®(Q,dy), S € L™, du),

(6.3) = Asp+ Spp+ns, + H(z,s,,V s,) =ns in D'(Q),

(5.4) for any n € N fixed, s5 — s, in H}(Q) weak as ¢ — 0,

(5:5) |l s l[=(@< Clsp and thus || sy, [|Le@)< Cls

(5.6) s, — sin H}_(Q) and L(Q,dp) (1 < p < +00) strong,

(5.7 S, — S in L*=(Q,du) weak- x and in LP(Q,du) (1 < p < +00) strong,
(58) |l Sn llzoe@am < Cs) and thus || S ||z (.40 < Cy-

Proof.

Step 1. — Let n € N be fixed. By Theorems 1.1 and 1.2, there exists a unique solution
s of problem (5.1) such that || s || Hi@)nL=(0) is bounded by a constant which is
independent on ¢ but could depend on n. In fact the L°°(Q) norm of s is bounded
independently of ¢ and n since in view of (1.4), we have:

0(0) + nls] < wo(0)
A+n .

W
(5.9) Il 55 oo (@< + 3| = Cy-

By the diagonal process, we can thus assume that there exists a subsequence of ¢ and a
sequence s, such that s,, belongs to H}(2) N L>°(Q) and that (5.4) and (5.5) hold true.

By Theorem 2.2, there exists for each n € N a function S,, € L>(Q, du), with
(5.10) IS ML (@.am < Clal
such that s, satisfies (5.3).
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STEP 2. — For ¢ € D(Q), inequality (1.7) with @ = €, v = s,, 7 = 8, ¢ = ¢ and
f =n(s — 8,) — Supu (observe that S, € H () + L1(2) by (5.3)) yields

/ |V s, ]%0% < n/(s — 5n)h(sn — 8)@? —/ Sph(sn — 8)% dp
0 Q Q
_ 2/ h(sn — 8)pV s, Vo +Cy / |h(s, — 8)|¢?%,
Q Q
where we used (2.19) with E = S,,, z = h(s — s,)¢”.

Since A’ > 1 and h(0) = 0 (see (1.6)) we have (s, — s)h(s, — 8) > |s, — s|* almost
everywhere in {2, which implies:

/ IV 80 %0% + n/ |sn — s[%p® < —/ S,h(sn — s)* dp
Q Q Q
- Q/Qh(sn —5)pV s, Vi + C /Q |R(sn — 8)|?.

By (5.5) and (5.10), the two terms

(5.11)

- [ subtsn =1 dal. | [ tsn - ole?
Q Q

are bounded independently on n, while for the remaining term, we have

S A(sn = 8) iz @l €V sn llLz@v | Vo |2 @)v -

/ h(s, — s)pVs, Vo
0
Thus for each ¢ € D(Q2) there exists two positive constants a(y), b(¢) such that:

1oV suliZa@n +7 [l (52 = 9)9 720y < al0) +5(0) | @V 5n |2y -

This implies that s,, is bounded in H}. (£2) and that \/n(s,, — s) is bounded in L} ().
Thus s, — s converges to zero strongly in L?_((2), and weakly in H} (£2). By Theorem A6
in [C1], the weak convergence in H} (£2) implies the u-almost everywhere convergence.
It is now easy to see that the right-hand side of (5.11) converges to zero. This implies

that (5.6) holds true.
Step 3. — By Lemma 4.1, the sequence S, satisfies
[Sn = Sm| < Clsi|8n — 5m| p-ae. in Q

and then, since s, is a Cauchy sequence in L!(),du) we deduce that S, converges
strongly to a function S in L'(£2, dp). Since || S, || (q,4,) < Cjs|» this proves (5.7) which
completes the proof of Lemma 5.1. W

REMARK 5.1. — In order to define the function 7, the idea is now to set:

T(z,s) = S(z) pae. xe, VseR,

where for s € R, § = S(z) is the function defined in Lemma 5.1. The problem in this
definition is the fact that the subsequence of ¢ given by Theorem 5.1 depends on s. In
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order to avoid this problem we thus define T'(:x,s) only when s is a rational number,
and then extend the definition to any real number s by a limit argument. This will be
carried out in Theorem 5.1. Moreover, we will prove in Section 6 that the subsequence ¢
given in Lemma 5.1 may be choosen independently on s and that the functions S,, and
S which appear in Lemma 5.1 satisfy

S, =T(r,s,), S=T(x,8) p-ae x €l

But in order to prove this result, we need a uniqueness result for the limit problem which
cannot be proved at this stage.

THEOREM 5.1. — Assume thar H satisfies (1.2) and (4.3). For any ¢ € Q and for any
n € N, define ¢, by
5 - A¢S +ng, + H(x,q,.V ¢.) = ng in D' ()
(5.12) {q; € H ()N L>™(6).
Then there exist a subsequence of ¢ which does not depend neither on g nor on n (and

which to simplify the notation we still denote by ¢), two sequences of functions q,, and (),
and a function Q such that (5.2),..., (5.8) hold true with s = q, s, = ¢n, S, = Qn, S = Q.

Define the function T : {1 x Q — R by
(5.13) T(r.q) = Q(x) pae xinQ, YgeQ.

If s € R and if ¢* is a sequence in Q which converges to s, then the sequence T(x,q")
converges in LP(Q, dp) strong (1 < p < +oc) and in L>=(Q,du) weak-+. Define now
T:Q — R by

(5.14) T(z,s) :k}EgT(:n, q") in LP(Q, dp) strong (1<p<+oc) and in L (Q, dp) weak-x
The function T : 2} x R — R defined in this way, satisfies:

(5.15) T(.,s) € L>=(Q,dp), YseR. with || T(.,s) [|L~@.an< C(Js])

(5.16)  [T(r.51) = T 2)| < Cls)lss — 52|77, s = max{fsi]. |sal}.

where C : [0,400) — [0,4+00) and A : [1,+0oc) — [0, +00) are increasing functions.

Proof.

Step 1. — Since Q is a countable set, by Lemma 5.1 and the diagonal process we can
extract a subsequence ¢ such that for any ¢ € Q the results of Lemma 5.1 hold true. This
proves the first part of Theorem 5.1.

Step 2. — Define the function 7' : 2 x Q — R by (5.13). By (5.8), the function 7’ satisfies
(5.17) T.0)] < €
Consider ¢ and ¢’ in Q. By the definitions of @,,, 2/, and Lemma 4.1, we have

|Qn — QL1 < Carlg — q’iﬁ y-a.e. in Q,
where M = max{lq|, |¢’|} and then, passing to the limit in »n, we obtain:
(5.18) |T(x,q) — T(x.q")| < Carlg — q’|7:\7 p-a.e. win €.
where M = max{]g|, |¢’|}. This uniform continuity of the mapping ¢ € Q — T'(.,q) €

LY(Q,dyu) and (5.17) allows one to define T'(..s) for any s € R by (5.14). By (5.17) and
(5.18), the function T satisfies (5.15) and (5.16). W

p-ae. rin €2, Yq € Q.

ql
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6. The homogenization result and a property of the function 7

6.1. A first homogenization result

In this subsection we prove that the function 7" : €2 x R — R defined in Theorem 5.1
is such that the function E defined by (2.15) may be expressed in the form E = T'(x, u).
Indeed, we will prove:

THEOREM 6.1. — Assume that H satisfies (1.2) and (4.3). Then for the subsequence ¢ and

the function T' defined in Theorem 5.1 we have the following homogenization result:
If /5, f, u® and u satisfy (2.3), the function u satisfies

(6.1) {’ Au+T(zw)p+ H(z,u,Vu)=f inD'(Q),

u € Hy () NL>(Q),
or equivalently
u € Hy(Q)n L>=(Q),
(6.2) i VuVz+ /QT(x,u)z dp + i H(z,u,Vu)z = {(f,2)a,

V2 e HYQ) N Le(9).

Proof. — Consider f¢, f, u® and u which satisfy (2.3) and let £ be defined by (2.15).
By applying (4.4) to the problems (2.2) and (5.12) with f* = f° and ¢° = ng — ng®, we
have for any ¢ € Q and any n € N

1 . .
|E — Q] < Carlu— go|™ prae. in , M = max{sup{|| v ||~} lal}
and then by passing to the limit in n, we obtain that for any ¢ € Q
|E~T(z,q)| < Culu—q|*% p-ae.zef, M= max{sup{” u ||~} |q|}

If now s belongs to R, taking a sequence of rational numbers ¢¢ which converges to s
and using the continuity (5.16) of T, we get

(6.3) |E—T(x.5)] < Crlu—s|, prae. z€Q, M =max{sup{| v ||p=(o} |s]}.

Considering the points z where u(x) and F(x) are defined by their representatives and
then taking s = u(x), inequality (6.3) implies that

E(zx) =T(z,u(z)) paeczec. W

REMARK 6.1. — Using Theorem 1.1, we can prove that there exists a subsequence (still
denoted by ¢) of the subsequence extracted in Theorem 5.1, such that the corresponding
subsequence of ¢, solution of (0.1), converges weakly in H}() to a function u which
is a sotution of (6.1). Once uniqueness will be proved for problem (6.1), we will deduce
that for the subsequence ¢ extracted in Theorem 5.1, the whole subsequence u°, solution
of (0.1), converges to u, without extracting another subsequence.
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6.2. The uniqueness of the limit problem
We will prove in this Subsection the uniqueness of the solution of the limit problem (6.1).

LEMMA 6.1. — Assume that H satisfies (1.2) and (4.3) and consider the function T defined
in Theorem 5.1. For any M > 0, there exist two constants A and K which only depend
on M and are increasing in M such that for the functions ¥ and + defined by (1.11) and
(1.12) we have

(6.4)

T@s)  T@H g o
(1/)’(19(5)) 'd)’(ﬁ(t)))(ﬁ(') 9(t)) >0 p-ae inQ,

for any s and t in R such thar max{|s|,|t|} < M.
Since ¢ = 971 and ¥ are increasing functions, the result of Lemma 6.1 states that the

function s — T((;”( 5 (or equivalently m) is increasing.
Proof.

SteP 1. — We will first prove the following result: Consider f¢, f, u°, v and ¢°, g, v°,
v which satisfy (2.3). Then, there exist two constants A and K (which are increasing with
respect to M) such that for the functions ¢ and ¥ = +~! defined by (1.11) and (1.12),
the functions » and v satisfy

T(x T(x
65) (R T
P'(B(u) ' (I(v)
Proof. — By Lemma 1.2 applied to equation (2.2), with ©® = Q°, w = v and f = f°¢
(respectively u = v* and f = ¢°) there exist two constants A and K which are increasing
with respect to M, such that the functions ¢° = J(u®) and o° = J(v°) satisfy

))(’9(“) - %)) >0 p-ae z€Q.

&

— AU + Bz, 4", Va*) = e in D'(Q°),
(6.6) v (E“ )
— A% + B(z, 9%, Vo° in D'(QF),
where the function B satisfies properties (1.14) and (1.15). Estimate (1.18) applied to these
equations with © = Q°, 4 = 45, 0 = 0%, f = f° and § = ¢°, implies that for w® = 4° — 9°
and for any function ¢ € D(Q) ¢ > 0, we have
1 »
3 | sEva,
2 Ja
. ‘ .
(6.7) —+—/ {( (z,0°,V4°) = B(z,8°, V%)) S(@°) + §Sl(w°)|Vw€|2}p
Q
S(@F) S(@f) / P
¢ —{g°, —— e = | SV Ve,
=S e [, 50

where the integrand of the second term is nonnegative. By Theorem 2.1, this integrand
converges almost everywhere to

':(B(x,ﬂ,Vﬂ)—B(x,@,Vz?)) @) +5 Lsoywe |]
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with & = ¥(u), © = J(v) and @ = & — 0. Therefore Fatou’s lemma permit us to pass to

the limit in (6.7) and to obtain

S@IVale+ [ [Bled. Vi) - Bla.o. Vo)S@e

Sw) . S@)

M TP (D)

On the other hand, by Theorem 6.1 the functions u and v satisfy the equations:
{ ~Au+T(z,w)p+ H(z,u,Vu) = f inD(),

~Av+T(z,v)u+ H(x,v,Vv) =g in D'(Q),

(6.8) &

(fv Q—/S YVoVe, YoeD(Q), ¢ >0.

where f — T'(x,v) and g — T(z,v)u belong to H(Q) + L*(f2). Applying Lemma 1.2
to these two equations with the same functions ¢ and + as above (since || v ||p« )< M
and || v ||p~ ()< M) and © =  implies that 4 and ¢ satisfy:

— A+ T(j’;’f‘)u + B(z,4, Vi) = —f— in D'(Q°),
69) Tzﬁ <u>) J(@)
) N x,v g . 11 Oe

Taking S(@)¢ with ¢ € D(£2), ¢ > 0 as test function in the difference of the two equations
of (6.9) and applying (2.19) with E = T(w “))u — L&) and 2 = S(@)e, we get

' (B)
[s@ivape+ [ s@voves [ ( d,xu‘)‘) ) st@hods
5(0) 5()

+ [ [B.0.V ) - B0,V DIS(@)e = (7. 50l - (0. S5 el

Comparison with (6.8) implies that

T(z,u) T(z,v)
/Q( ) >S< Jodu 20, ¥ e D(Q).

Since the sign of S(&) coincides with the sign of w, we have proved that (6.6) holds true.

Step 2. — Let g and ¢ be rational numbers with max{|q|, |¢’|} < M. From (6.5) applied
to the sequences u° = ¢ and v* = (¢'); defined by (5.12), we deduce that there exists
two constants A and K which are increasing with respect to M such that for the functions
9y and ¥ defined by (1.11) and (1.12) we have

< T(z,q0) T(x,qg))>(19(qn) —9(g.)) >0 pae. inQ, ¥neN,

¥ (9(gn)  ¥'(¥qy)

where the functions ¢,, and ¢/, are defined by Theorem 5.1. Taking in this expression the
limit in n we deduce that

(T(w,q) _ T(z,q)
Y (I(q)  ¢'(I(d)

))(ﬁ(q) —9(¢')) >0 p-ae. in Q.
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The continuity (5.16) of T then implies (6.4). N
We are now in position to prove a maximum principle.

THEOREM 6.2. — Let H : Q@ x R x RY — R be a Carathéodory function (note that H can
be different of H) which satisfies hypotheses similar to (1.2) and (1.9), i.e.:
i) For almost every x €  the function H(z,.,.) is continuously derivable and there
exists a constant A > 0, such that for almost every x € () we have
8H e ‘2
(6.10) 5’(:1:,5’&') >A>0, ¥(s.6) €ER xRV,

S

il) There exists an increasing function & : [0,+oc) — [0, +00) such that

H(.,0,0) € L™(9),
(aH

?(:lr,.s,f) <a(lsp(1+€), ae 2 €, V(s,6) eRx RY

(6.11)

I —(xz,8,£) ‘ a(ls(1+[£]). ae x e, ¥(s,6) € RxRY,

Assume that H satisfies (1.2) and (4.3) and let T be the function defined in Theorem 5.1.
Consider u and v in H(Q) N L>(Q) such that there exist f and g in H=1(Q) + LY(Q)
which satisfy

(6.12) { —~Au+T(r,u)p+ H(z,u,Vu) = f <0 in D'(Q),

—Av+ T, )+ H(z,0. Vo) =g>0 in D).

Then inequality v < v in 9 (i.e. (u—v)* € HL(Q)) implies that u < v almost everywhere
in .
In particular for f € H~1(Q) + LY(Q), the problem

(613) . { —Au+ T, wW)p+ H(z,u,Vu) = f inD'(Q)

w € Hy(Q) N L2(Q).

has at most one solution.

Proof. — By Lemma 1.2 with ® = Q and H = H, there exist two constants A and K
such that for the functions ¢ and o = +~! defined by (1.11) and (1.12), the functions
& = 9(u) and © = ¥(v) respectively satisfy (recall that by (6.12) T'(x,u)p and T(x,v)u
belong to H~1(Q2) + L'(N2) and observe that ¢/ > 0)

— At +T( )J,-+-B(J @, Va) <0 in D'(Q),
(6.14) V(i)
- A+ /(I( )) + B(x,9,V9) >0 in D'(),
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where the function B satisfies properties analogous to (1.14) and (1.15). Moreover, by
(6.4) we have

‘ T(z,u) _ T(x,v)
(6:45) (¥ o
where 4 = ¥(u) and © = J(v).

Define w = @ — © and apply estimate (1.20) to the two equations of (6.14). By (6.15)
we have

l ‘ IL:}+ ~+12 _ T(.T,’U,)“_T(.Z',’U) a4 ) .
2/05( WVWar|” < /Q( @) 700 )S(w Ydp <0 p-ae. in 2

and thus @+ = 0 almost everywhere in €, i.e. 4 < ¢ and thus u < v almost everywhere
in 2. M

)(fb —9) >0 p-ae. in Q,

6.3. The homogenization result

As a consequence of Theorem 6.2, we can now prove the following homogenization
Theorem.

THEOREM. — Assume that H satisfies (1.2) and (4.3) and consider the subsequence € and
the function T defined in Theorem 5.1.
Let f:Q x R x RN +— R be a Carathéodory function such that:

i) There exist two increasing functions Yo, Ty : [0,400) + [0,400) and there exists
a € [0,2) such that

(616) If(:E?Svg)l < TO('SD + Tl(lsl)mla ae. x €, V(&f) e R xR".

il) For every x € §) the function f(x,.,.) is continuously derivable and there exists an
increasing function ¢ : [0, +00) — [0,40c) such that

f(.,0,0) € L*™(Q)

(6.17) ‘ gg(w,saf) < CUsD(L+1€)?), ae zeQ, V(s,6) e RxRY
%g(:v,s,.f) < s+ |€]), ae z€Q, V(s &) €RxRY,

iii) There exists o > 0 such that for almost every z € §)

0
(6.18) A—a—f(z,5,§)>0, ae in€), V(s &) €RxRY,
s

where A is defined by (1.2).

Then the unique solution u® of the problem:

(6.19) { - Au® + H(z,u, Vus) = f(a,u, Vus), inD'(Q),

us € HH Q) N L=(9F),
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converges weakly in HL(R), strongly in Wy P() (1 < p < 2) and weakly-x in L>(S2) to
the unique solution u of the problem

(6.20) { —Au+T(z,u)p+ H(z,u,Vu) = f(z,u,Vu) inD'(Q)

u € HY ()N L=(Q).

REMARK 6.1. — Taking f(z,s,&) = f(z) € L°°(Q) and taking into account Remark 6.3
below, we inmediately deduce Theorem 0.1 from Theorem 6.3.

REMARK 6.2. — As announced in Remark 5.1, Theorem 6.3 implies that the subsequence
¢ which appears in the statement of Lemma 5.1 may be chosen as the subsequence ¢
given in Theorem 5.1, and thus independently of u. Moreover Theorem 6.3 implies that
the functions S, and S defined in Lemma 5.1 satisfy

Sy =T(x,8,), S=T(x,s), p-ae x el

Proof of Theorem 6.3. — Theorems 1.1 and 1.2 applied to ©® = 2° and H = H — f, imply
that there exists a unique solution u¢ of (6.19) and that «° is bounded in H} () N L>(Q).
Therefore there exists a subsequence &’ such that u¢ converges weakly in H}(Q) and
weakly-x in L°(f) to a function u. By Theorem 2.1, applied to u® = u®, H = H — f
and f¢ = f =0, we also have that u converges strongly in WhHP(Q) (1 < p < 2)
to u. Inequality (6.16) and Lebesgue’s dominated convergence theorem imply thus that
f(x, u |V uel) converges strongly in L' (§2) (and thus in the sense of (2.1)), to f(z,u, V u).
By Theorem 6.1 we then have that w is a solution of (6.20). Theorem 6.2 applied to
H = H — f implies the uniqueness of u and therefore the convergence for the whole
sequence. M

REMARK 6.3. — As a consequence of the results of the present Section, we also could
prove the following monotonicity property of the function T'(x,.).

(6.21) {T(x’()) =0, p-ae x €Ll

(T(z,81) = T(x,52))(81 — s2) >0, p-ae. x €L, Vs, 52 €R.
Actually this monotonicity property is not very important (except for esthetic reasons).

What is important for uniqueness is property (6.4), i.e. that T(i’f(i()s)) is increasing with
respect to s, and thus we do not give the proof of (6.21).

7. Corrector
In this Section, we use Lemma 3.1 and Lemma 5.1 to give an approximation of V u®
in the strong topology of L2(Q)V.

DEFINITION 7.1. — Define PS5 : Q2 x R — RY by P(z,5) = V s(x), where for any s € R
and n € N, s is defined as the unique solution of problem (5.1).

THEOREM 7.)1. — Assume that H satisfies (1.2) and (4.3) and let € be the subsequence
defined in Theorem 5.1. Consider f¢, f, u* and u which satisfy (2.3). Then, for any step

TOME 76 — 1997 — N° 5



HOMOGENIZATION OF GENERAL QUASI-LINEAR DIRICHLET PROBLEMS 471

function y(z) = > i sixq,(z) with s; € R and Q; closed subsets of RN with Q; C €,
which satisfy p(Q; N Q;) = 0 for i # j, we have

n—oc e—0

(7.1) .

Y

< C'MM(Q)l_ﬁ (/Q lu — Z/Idlb> ! ;

lim sup lim sup / IVus — Vu— P(a,9)?
v Q

where
m

Q= U Qi and M = max{sup{|| v* ||z~ }. || ¥ 2=}

i=1
and where the constant Cyy does not depend on Q).

Remark 7.1. — The meaning of Theorem 7.1 is the following: If we could take y = u
in (7.1) we would obtain

n—oo e—0

limsuplimsup/ |V u = Vu—Pi(z,u)*=0
JQ

which says that Vu + Pé(x,u) is a good approximation of V u® in L*(Q)" strongly.
However this choice is not possible, since P is not a Carathéodory function in general and
since therefore PS(x,u(x)) has not reason to be measurable. This is why we approximate
u by the step function y.

REMARK 7.2. — In the statement of Theorem 7.1, the value of the function y on the
set Q; NQ;, ¢ # j, does play any role since p(Q; N Q;) = 0 by hypothesis. Indeed
estimate (7.2) applied to Q@ = Q; N Q; and s = s; and s;, together with the triangle
inequality, shows that

lim limsup || P;(x, s1) — P (x, s2) llsz(QmQj): 0.

n—oo  ._,Q

RemArk 7.3. — Consider a closed set () such that p(Q) = 0. Applying estimate (7.1)
to y = 0, we obtain

n—oo a0

lim Iimsup/ [V — Vu~— P(x,0)]* = 0.
Q

On the other hand by taking u* = v = 0 and y = 0 in (7.1), which is possible since
u® = 0 satisfies

{ —Av + H(z,u*,Vu®) = H(z,0,0)
ut € Hy (F) N L=(QF),

we have

lim limsup/ |PE(z,0)]* = 0.
Q

n—oo  o_,0
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These inequalities show that for 4® and w as in the statement of Theorem 7.1, one has
Vus —Vu— 0 strongly in L2(Q)V,

for any closed set () contained in {2 such that p(Q) = 0.

REmMARK 7.4. — It is easy to approach a function u in L'(§),du) by a step function
y(z) = 300, sixq,(x) with s, € R and Q; closed subsets of RY with Q; C Q, such that
p(QiNQ;) =0 for i # j. for example we can reason in the following way:

Given 6 > 0, we choose M > 0 such that

/ ful dp < 6.
J{julzat}

Since p(£) < 400, the set of s € R such that p({z € Q : u(x) = s}) > 0 is at most
a countable set and thus there exist si.....s,,,; in R such that:

-M= 81 <82 <o < 8y < Sm41 = M,
Si+1—8i<6. Vi with 1 <7 <m,
p{z € Q:u(x)=s;}) =0, Viwith2 <i<nm.

Defining y(z) = >\, sixo,(x) where for any ¢ with 1 <4 < m, ; is a closed set of
R contained in {x € Q : 5; < u(z) < s;41} such that

6

({TEQ s; Sufw) < 5L+1}\Q) mM’

we have

/Iu—wdu

Q

s/ ] dye + / ] dpe + / i — il dp < 8(2 + (),
{\u|2]\1} Z {s <u<sl+1}\Q Z

Proof of Theorem 7.1. — Let s € R be and ) be a closed set of RY with Q C €. By
Lemuna 5.1 and Remark 6.2, the sequence sZ, defined by (5.1) converges weakly in H[(€2)
to a function s, and the sequence s, converges to s strongly in H; _(2) and u-almost
everywhere. Moreover || s5 ||p=)< Cjy-

Lemma 3.1 implies that for any function ¢ € D(2), ¢ > X we have:

. . - =
limsup/ |Vuf =V u—P(z,8)+V s,|* < C’M</ cpdu) " (/ lu — sn|<pdu> :
e—0 Q Q2

where M = max{sup{|| v ||z~ },|s]}. Since ¢ is arbitrary, we have:

limsup/ IVu' = Vu—~ Px,s)+ Vis,|* < Crlp (/ [ — 5n|du> "

e—0
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where M = max{sup{|| u° ||z~()},|s|}. Taking in this expression the limit in n and
using that V s,, converges strongly to zero in L%(Q)" we get
(7.2)

limsuplimsup/ |Vus = Vu— P(x,s)? < C’M(/L(Q))l‘TIXT (/ lu— s > "
@ Q

N—0C g

where M = max{sup{|| u° ||z~ }, |s|}.

Letnowy = >.", sixq., @ = Ui~ @i and M = max{sup{|| v ||c=~@ }, || ¥ |z~ }
be as in the statement of Theorem 7.1. Adding the inequalities (7.2) for () = ); and s = s;,
and then using Holder’s inequality and the fact that p(Q; N Q;) = 0 for 4 # j we obtain

lim sup lim sup/ |V us = Vu— Pz, y)]

Nn-—0C e—0

1n—00 e—0

<hmbuphmsup2/ |Vu® - Vu— Pz s)|

T

< Cur Y Qi)™ (/Q Ju— .sz-mu) i

i=1

< Cu (i M(Qi)) (Zm: / u— s )ﬁ
([ i)

which proves (7.1). N

Appendix: Notation

A.1l. Standard notation

We denote by € a parameter which takes its values in a sequence of strictly positive real
numbers which converges to zero; the subsequences are also denoted by ¢.

) denotes a bounded open set of R™ and ) a sequence of open sets of RY which
are contained in 2. In the whole of the paper we assume that (1.27) (or more exactly
(P1),...,(P7) see Theorem 1.3) hold true.

D(€) denotes the space of smooth functions with compact support in Q. Its dual space
is the space of distributions which is denoted by D’(2).

My(2) denotes the space of bounded Borel measures in (2.

Given a measure y in 2, we define LP(Q,du), 1 < p < +o0, as the space of
those functions v which are p-measurable and such that /Q |v|P dpp < 4o00. The space
L=(§,dy) is defined as the space of functions yu-essentially bounded. When the measure
under consideration is the Lebesgue measure, we simplify the notation by writing LP((2)
and L>(Q), respectively.
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W1P(Q) denotes the space of those functions u € LP(£) whose first derivatives in the
sense of distributions belongs to LP(2). The space W2(2) is denoted by H'(2).

LY (Q,du) (respectively W, ?(€2)) denotes the space of functions which belong to

loc loc

LP(K,dp) (respectively W1#(Q)) for any compact set K C .
W, ?(£2) denotes the closure of D(Q) in W1P(Q).
The characteristic function of the set A € RY is denoted by xa-
The Lebesgue measure of the set A C RY is denoted by |A|.
The capacity of a subset A of € is defined as in the following way:
If A is a compact set, the capacity of A is defined by

can(a) = inf{ [ (965 e D). o2 ).
If A is an open set, the capacity onA is defined by
cap(A) = sup{cap(K) : KCA K compact}‘
If A is an arbitrary set, the capacity of A is defined by
cap(A) = mf{cap(G) cACGCQ, G open}.
MY (£2) denotes the set of bounded positive Borel measures which vanish on the sets

of zero capacity.

It is well known (see [F Z), [Z], [E G]) that a function v € H'(€2) has a representative
which is well defined except on a set of zero capacity. We always identify « with this
representative. If € MY(Q), a consequence of this result and of the fact that p is
bounded is that

Hi () N L=(Q) € L™(Q,dp) € LI(Q,dp) forany q, 1 < g < +o0.

A.2. Specific notation

The functions u® € W,*(€2) will be extended to the whole of Q by setting

N u® in £,
“ Tl ino\ o

and thus they will be considered as elements of W,?(Q2).

We denote by O, a sequence of real numbers which converges to zero when ¢ tends to
zero and which can change from a line to another. Similarly, for a Banach space X (which
will be L}(£2) or L2(R)), we denote by OX € X a sequence which strongly converges to
zero in X and which can change from a line to another.

For a real parameter M, we denote by Cjs and Ay, generic constants which can change
from a line to another and which are increasing with respect to M; The constants Ay,
will allways be assumed to satisfy Ay, > 1. These constants will neither depend on &
nor on the right-hand side of the homogenization problem (0.1), but can depend on the
function H and on 2.

For an open set © C Q we denote by (f,v)e the duality pairing between
fe HY®)+ LYO) and v € H}(©) N L>(8).
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