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Abstract

This paper deals with the homogenization of nonlinear convex energies defined in W
1,1
0 (Ω), for a regular bounded open set Ω

of RN , the densities of which are not equi-bounded from above, and which satisfy the following weak coercivity condition: There

exists q > N − 1 if N > 2, and q � 1 if N = 2, such that any sequence of bounded energy is compact in W
1,q
0 (Ω). Under this

assumption the Γ -convergence of the functionals for the strong topology of L∞(Ω) is proved to agree with the Γ -convergence for
the strong topology of L1(Ω). This leads to an integral representation of the Γ -limit in C1

0 (Ω) thanks to a local convex density.
An example based on a thin cylinder with very low and very large energy densities, which concentrates to a line shows that the loss
of the weak coercivity condition can induce nonlocal effects.
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1. Introduction

Since the beginning of the seventies the homogenization theory has greatly developed through the G-convergence
of operators [30], the H-convergence of PDE’s [29] (see also [31] and the references therein), and the Γ -convergence
of functionals [19,21] (see also [18] for a review and the references therein). The De Giorgi Γ -convergence has been
a powerful mathematical tool for studying the asymptotic behavior of minima of functionals defined for a regular
bounded open set Ω of RN , by

Fn(v) :=
∫
Ω

fn(x,∇v)dx, for v ∈ W
1,1
0 (Ω). (1.1)
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The seminal results in this sense were obtained in [20,15,17]. Assuming that fn is convex with respect to the second
argument and satisfies the boundedness from above:

fn(x, ξ)� an(x)
(
1 + |ξ |p), for a.e. x ∈ Ω, ∀ξ ∈RN, ∀n ∈N, (1.2)

for a fixed p > 1 and for a given nonnegative bounded sequence an in L1(Ω), any Γ -limit F of Fn for the topology
of C0

0(Ω) was shown in [15,17] to have a similar integral representation, namely

F(v) =
∫
Ω

f (x,∇v)dμ, for v ∈ C1
0(Ω), (1.3)

where f is convex with respect to the second argument and μ is a Radon measure on Ω̄ . Under the additional assump-
tion of equi-integrability of the sequence an the previous representation also holds for the strong topology of L1(Ω)

as shown first in [20]. A few years later, it was proved in [22] that the loss of equi-integrability for equicoercive
quadratic densities fn may induce nonlocal effects in dimension three. A connection between this type of degener-
acy and the Beurling–Deny [5] representation formula of the Dirichlet forms was established in [28] for quadratic
functionals. Then, the closure set of the three-dimensional quadratic functionals with respect to the Γ -convergence
for the strong topology of L2(Ω) was obtained in [16] according to the Beurling–Deny theory. In the same spirit, the
three-dimensional examples from [4] of W 1,p(Ω)-equicoercive functionals for p > 1, i.e.

∃C > 0, ∀n ∈ N, ∀v ∈ C1
c (Ω), Fn(v)� C

∫
Ω

|∇v|p dx, (1.4)

show no degeneracy of their Γ -limits for the strong topology of Lp(Ω) provided that p > 2, while nonlocal effects
appear when p ∈ (1,2], like in [22,4]. On the contrary, the case of dimension two with equicoercive functionals is
quite different, since it was proved in [12–14] for quadratic functionals, and in [8] for W 1,p-equicoercive, p > 1,
convex periodic functionals, that the Γ -limits have a representation of type (1.3) in dimension two. On the other hand,
the loss of coercivity may also induce degenerate limit behaviors in terms of coupled systems as shown for example
in [24,28,25,9,7]. Also note that in periodic homogenization very weak coercivity conditions including perforated do-
mains were treated using extension operators, weak notions of connectedness or multi-scale convergence approaches
(see, e.g., [1,2,10,32,33]). From a certain point of view all these works deal with the same question:

Under what conditions the Γ -limits of convex functionals of type (1.1) remain of type (1.3)?
The present work is an attempt to give a unified answer in any dimension N � 2, for sequences of convex func-

tionals Fn the densities of which are neither equi-bounded from above nor equi-bounded from below. Our approach is
based on the combination of three independent results:

• In Section 2 we recover the result of [17] (see Theorem 2.4) but replacing the Γ -convergence for the topology
of C0

0(Ω) by the Γ -convergence for the strong topology of L∞(Ω). We also make an assumption on the convex
densities fn, which is less restrictive than (1.2) (see conditions (2.11), (2.12), and Remark 2.6), and needs an
alternative approach.

• In Section 3 we establish a general framework (see Corollary 3.5) in which the Γ -convergence for the strong
topology of L∞(Ω) agrees with the Γ -convergence for the strong topology of L1(Ω). This is the most original
part of the paper. The strong equicoercivity condition (1.4) is now replaced by the following weaker condition:
There exists a real number q with q > N − 1 if N > 2, and q = 1 if N = 2, such that⎧⎪⎨

⎪⎩
∀n ∈N, ∀c > 0, {Fn � c} is sequentially compact in W

1,q

0 (Ω) weak,

∀un ∈ W
1,1
0 (Ω), lim sup

n→∞
Fn(un) < ∞ ⇒ un converges weakly in W

1,q

0 (Ω),

up to a subsequence,

(1.5)

which holds for a large class of functions fn (see Proposition 3.2). Under this condition we prove (see Theo-
rem 3.4) a uniform convergence for (roughly speaking) minimizers un of Fn which converge weakly in W

1,q

0 (Ω)

to a function in C0(Ω̄). The key ingredient is a maximum principle type result (see Lemma 3.7) following the
idea of [27] (see also [23]), which allows us to deduce a uniform estimate for un from the compact embedding
of W 1,q (∂B) into C0(∂B) for any ball B ⊂ Ω , due to the condition on q . The Aubin compactness theorem [3]
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is also used in the case N > 2 and q > N − 1, while it is replaced by the Kuratowski, Ryll-Nardzewski selection
theorem [26] in the much more delicate case N = 2 and q = 1.

• Section 4 is devoted to a counter-example, separating the cases N > 2 (Theorem 4.2) and N = 2 (Theorem 4.4),
which shows that the weak coercivity condition (1.5) is actually crucial to obtain the local Γ -limit representa-
tion (1.3). Indeed, the loss of condition (1.5) may induce nonlocal effects. The counter-example is based on a
columnar structure like in [22,4]. But contrary to the three-dimensional periodic fiber reinforcement of [22,4],
here the energy density fn takes both very low and very large values in one cylinder if N > 2, and one strip if
N = 2, which concentrates along a line as n tends to ∞. Based on the counter-example the importance of the
weak coercivity condition (1.5) as well as the more precise conditions of Proposition 3.2, for deriving a local
Γ -limit is discussed in Remark 4.1.

Therefore, the three previous results allow us to answer to the above question through the following:

Theorem 1.1. Let Ω be a bounded open set of RN , N � 2, with a Lipschitz boundary. Consider a sequence of
nonnegative functions fn : Ω ×RN → [0,∞), n ∈ N, satisfying the properties (2.1)–(2.4), (2.11), (2.12) below. Also
assume that the associated convex functional Fn defined by (1.1) satisfies the condition (1.5).

Then, there exist a subsequence of n, still denoted by n, a Radon measure μ on Ω̄ , and a function f : Ω ×RN →
[0,∞) satisfying the properties (2.13)–(2.16) below, such that the sequence Fn Γ -converges in C1

0(Ω) for the strong
topology of L1(Ω) to the functional F defined by (1.3).

Focus on the particular two-dimensional case with quadratic densities fn(x, ξ) = An(x)ξ · ξ , for (x, ξ) ∈ Ω ×R2,
where An is a sequence of positive definite symmetric matrix-valued functions defined on Ω . Then, Theorem 1.1
and Proposition 3.2 for N = 2 lead to a local Γ -limit of type (1.3) under the sole assumption that the inverse of the
smallest eigenvalue λn of An is bounded and equi-integrable in L1(Ω), without any prescribed bound from above.
Moreover, the two-dimensional counter-example of Section 4 (see Theorem 4.4) shows that the equi-integrability
of λ−1

n in L1(Ω) is actually essential. This extends the result of [14] obtained through an approach based on the
Dirichlet forms, but for a sequence λn which is bounded from below by a positive constant.

A few recalls and notations

We recall the definition of the De Giorgi Γ -convergence and some of its properties which will be used in the sequel.
We refer to [18] for an exhaustive presentation of Γ -convergence (see also [6] for an elementary approach).

Definition 1.2. Let V be a metric space, and let Fn : V → [0,∞], n ∈ N, be a sequence of functionals. For v ∈ V , Fn

is said to Γ -converge to F(v) ∈ [0,∞] at v if

i) the Γ -liminf inequality holds

∀vn → v in V, F (v) � lim inf
n→∞ Fn(vn), (1.6)

ii) the Γ -limsup inequality holds

∃vn → v in V, F (v) = lim
n→∞Fn(vn). (1.7)

Any sequence satisfying (1.7) is called a recovery sequence for Fn of limit v.
Let W be a subset of V . The sequence Fn is said to Γ -converge in W to F : W → [0,∞] if for any v ∈ W , Fn

Γ -converges to F(v) at v.

Notations
• SN−1 denotes the unit sphere of RN for any integer N � 2.
• |E| denotes the Lebesgue measure of any measurable set E ⊂RN .
• −

∫
E = 1 ∫

denotes the average-value over a measurable set E ⊂RN .
|E| E
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• For any bounded open set Ω of RN , C1(Ω̄) denotes the space of the restrictions to Ω̄ of the functions in C1
c (RN).

Note that C1(Ω̄) is not generally a Banach space if Ω is not regular. But this property will not be used.
• M (X) denotes the set of the Radon measures on a locally compact set X.

2. Γ -convergence in L∞

Let Ω be a bounded open set of RN . Let fn, gn : Ω × RN → [0,∞), n ∈ N, be two sequences of nonnegative
functions satisfying:

fn(·, ξ), gn(·, ξ) are measurable for any ξ ∈ RN and fn(·,0) = gn(·,0) = 0, (2.1)

fn(x, ·), gn(x, ·) are convex for a.e. x ∈ Ω, (2.2)

fn(x, ξ)� gn(x, ξ) a.e. x ∈ Ω, ∀ξ ∈ RN, ∀n ∈ N, (2.3)

there exist K � 2 and a nonnegative bounded sequence bn in L1(Ω) such that

gn(x,2ξ)� Kgn(x, ξ) + bn a.e. x ∈ Ω, ∀ξ ∈ RN, ∀n ∈N. (2.4)

An easy consequence of (2.4) is the following estimate:

Proposition 2.1. There exists a constant ρ � 1 such that

gn(x, tξ)� Ktρ
(
gn(x, ξ) + bn

)
a.e. x ∈ Ω, ∀t � 1, ∀ξ ∈RN, ∀n ∈N. (2.5)

Remark 2.2. Conversely to Proposition 2.1, estimate (2.5) implies (2.4) replacing K by 2ρK . Also note that by
convexity we have

gn(x, tξ)� tgn(x, ξ) a.e. x ∈ Ω, ∀t ∈ [0,1], ∀ξ ∈ RN, ∀n ∈N. (2.6)

On the other hand, taking into account the convexity of gn and (2.4), the following inequality holds

gn(x, ξ + η)� K

2

(
gn(x, ξ) + gn(x, η)

) + bn a.e. x ∈ Ω, ∀ξ, η ∈ RN, ∀n ∈ N. (2.7)

Remark 2.3. Despite of the convexity and the inequality fn � gn, the sequence fn does not satisfy in general a bound
of type (2.4). Indeed, consider the following example:

Let θ :R→ [0,∞) be defined by

θ(t) :=
{

t2 if t � 1,

(t − √
k! )(√(k + 1)! + √

k! ) + k! if t ∈ [√k!,√(k + 1)! ], k ∈N.
(2.8)

The function θ is convex, θ(
√

k! ) = k! for any k ∈ N, and θ(t) � t4 + 1 for any t ∈ R. Now define the function
fn : RN ×RN → [0,∞) by

fn(x, ξ) := an(x)
(
θ(ξ1) + |ξ2|4 + · · · + |ξN |4) for (x, ξ) ∈ RN ×RN, (2.9)

where an :RN → (0,∞) is a positive function. Therefore, we have

fn(x, ξ)� gn(x, ξ) := an(x)
(|ξ |4 + 1

)
for any (x, ξ) ∈RN ×RN,

hence conditions (2.1)–(2.4) are clearly satisfied. However, we have for ξn := (
√

n!,0, . . . ,0),

fn(2ξn)

fn(ξn)
= θ(2

√
n! )

θ(
√

n! ) ≈
n→∞ (

√
2 − 1)

√
n,

which shows that fn cannot satisfy a bound of type (2.4).

Let Ω be a bounded open set of RN , with a Lipschitz boundary. Consider the sequence of functionals Fn defined
by
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Fn(u) :=
{∫

Ω
fn(x,∇u)dx if u ∈ W 1,1(Ω) ∩ L∞(Ω),

∞ if u ∈ L∞(Ω) \ W 1,1(Ω),

Gn(u) :=
{∫

Ω
gn(x,∇u)dx if u ∈ W 1,1(Ω) ∩ L∞(Ω),

∞ if u ∈ L∞(Ω) \ W 1,1(Ω).
(2.10)

We make the following assumption: for any x ∈ Ω̄ , there exist N + 1 functions wi ∈ C1(Ω̄), 0 � i � N , such that

0 belongs to the interior of the convex envelop of
(∇w0(x), . . . ,∇wN(x)

)
, (2.11)

and N + 1 sequences wi
n ∈ W 1,1(Ω) ∩ L∞(Ω) such that

wi
n → wi strongly in L∞(Ω) and Gn

(
wi

n

)
is bounded. (2.12)

We have the following representation result:

Theorem 2.4. Assume that (2.1), (2.2), (2.3), (2.4), and (2.11), (2.12) hold. Then, there exist a subsequence of n,
still denoted by n, a Radon measure μ on Ω̄ , and two functions f,g : Ω̄ × RN → [0,∞) satisfying the following
properties:

f (·, ξ), g(·, ξ) are μ-measurable for any ξ ∈RN and f (·,0) = g(·,0) = 0, (2.13)

f (x, ·), g(x, ·) are convex for μ-a.e. x ∈ Ω̄, (2.14)

f (x, ξ) � g(x, ξ) μ-a.e. x ∈ Ω̄, ∀ξ ∈RN, ∀n ∈N, (2.15)

g(x,2ξ) �Kg(x, ξ) + b μ-a.e. x ∈ Ω̄, ∀ξ ∈ RN, ∀n ∈ N, (2.16)

where K is the constant in (2.4) and b is given by the convergence

bn ⇀ bμ weakly-∗ in M (Ω̄), (2.17)

such that the sequences Fn,Gn defined by (2.10) Γ -converge in C1(Ω̄) (see Definition 1.2) for the strong topology of
L∞(Ω) to the functionals F,G given by

F(u) :=
∫
Ω̄

f (x,∇u)dμ, G(u) :=
∫
Ω̄

g(x,∇u)dμ, for u ∈ C1(Ω̄). (2.18)

Moreover, for any open set ω ⊂ Ω , the sequence of functionals Fω
n ,Gω

n defined by

Fω
n (u) :=

{∫
ω

fn(x,∇u)dx if u ∈ W
1,1
0 (ω) ∩ L∞(ω),

∞ if u ∈ L∞(ω) \ W
1,1
0 (ω),

Gω
n (u) :=

{∫
ω

gn(x,∇u)dx if u ∈ W
1,1
0 (ω) ∩ L∞(ω),

∞ if u ∈ L∞(ω) \ W
1,1
0 (ω).

(2.19)

Γ -converge in C1
0(ω) to the functionals Fω,Gω given by

Fω(u) :=
∫
ω

f (x,∇u)dμ, Gω(u) :=
∫
ω

g(x,∇u)dμ, for u ∈ C1
0(ω). (2.20)

Remark 2.5. In the proof of Theorem 2.4 below we will also prove that for any u ∈ C1(Ω̄) and any recovery se-
quence un for Fn of limit u, the weak convergence of the energy density holds

fn(·,∇un) ⇀ f (·,∇u)μ weakly-∗ in M (Ω̄). (2.21)

Remark 2.6. Carbone and Sbordone [17] obtained a representation formula for the Γ -convergence in C0(Ω) of a
sequence of convex functionals Fn the density of which satisfies

fn(x, ξ)� an(x)
(|ξ |p + 1

)
a.e. x ∈ Ω, ∀ξ ∈ RN, ∀n ∈ N, (2.22)
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where p > 1 and an is a bounded sequence in L1(Ω). The condition (2.4) is sharper than (2.22). Indeed, the function
gn(x, ξ) := an(x)(|ξ |p + 1) clearly satisfies the inequality (2.4). Moreover, the L1-boundedness of an in [17] is here
replaced by the weaker condition (2.12). Indeed, it is easy to construct a sequence an which is not bounded in L1(Ω)

such that the extra condition (2.12) holds and for which the representation Theorem 2.4 applies. Think for example of
the sequence fn(x, ξ) := (1 + βn1B(0,n−1))|ξ |p , where βnn

−N → ∞.

Remark 2.7. Assumptions (2.11), (2.12) are needed to ensure that the domain DF of the Γ -limit F of the sequence Fn

contains the set of regular functions C1(Ω̄). More precisely, at each point x ∈ Ω̄ , the gradients of (N + 1) functions
in C1(Ω̄)∩ DF have to span a sufficiently large convex set in order to derive any regular function as an L∞-limit of a
sequence of bounded energy Gn in the neighborhood of x. This is given by the barycenter condition (2.11) combined
with the convergence condition (2.12) which are the key ingredients of Lemma 2.10 below.

Lemma 2.8. Let un ∈ W 1,1(Ω) ∩ L∞(Ω) which converges strongly to u in L∞(Ω). Then, there exists a sequence
ũn ∈ W 1,1(Ω) ∩ L∞(Ω) which strongly converges to u in L∞(Ω) such that

ũn = 0 a.e. in {u = 0} and fn(·,∇ũn) � fn(·,∇un) a.e. in Ω. (2.23)

Proof. Set εn := ‖un − u‖L∞(Ω). Then, the sequence ũn defined by

ũn :=
{

un + εn if un < −εn,

0 if − εn � un � εn,

un − εn if un > εn,

clearly satisfies (2.23). �
We have the following result:

Proposition 2.9. Assume that conditions (2.1)–(2.4), and (2.11), (2.12) hold. Then, for any u ∈ C1(Ω̄) there exists a
sequence un ∈ W 1,1(Ω) ∩ L∞(Ω) such that

un → u strongly in L∞(Ω) and Gn(un) is bounded. (2.24)

Proof. We need the following lemma which is a simple extension of Proposition 4.4 in [8] to dimension N � 2,
extending gn(x, ·) by 0 for x ∈RN \ Ω . So, we omit its proof.

Lemma 2.10. For any x0 ∈ Ω̄ , there exist three constants ε, δ,C > 0 such that for any u in C1(B̄(x0, δ) ∩ Ω̄), with
‖∇u‖L∞(B(x0,δ)∩Ω) � ε, there exists a sequence un satisfying⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

un ∈ W 1,1(B(x0, δ) ∩ Ω
) ∩ L∞(

B(x0, δ) ∩ Ω
)
,

un → u strongly in L∞(
B(x0, δ) ∩ Ω

)
,

sup
n�0

∫
B(x0,δ)∩Ω

gn(x,∇un)dx � C.

(2.25)

Due to the compactness of Ω̄ , Lemma 2.10 implies the existence of k balls B(zi, δi), for i = 1, . . . , k, covering Ω̄ ,
and constants ε,C > 0 such that (2.25) holds in B(zi, δi) for any u in C1(B̄(zi , δi)∩Ω̄), with ‖∇u‖L∞(B(zi ,δi )∩Ω) � ε,
and any i = 1, . . . , k. Consider a partition of the unity ϕi , 1 � i � N , such that ϕi ∈ C1

c (B(zi, δi)), 0 � ϕi � 1,∑k
i=1 ϕi = 1 in Ω̄ . Then, there exist k sequences ui

n in W 1,1(B(zi, δi) ∩ Ω) such that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ui
n n→∞−−−−→ εϕiu

‖∇(ϕiu)‖L∞(Ω) + 1
strongly in L∞(

B(zi, δi) ∩ Ω
)
,∫

gn

(·,∇ui
n

)
dx is bounded.

(2.26)
B(zi ,δi )∩Ω
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By Lemma 2.8 with the open set B(zi, δi) ∩ Ω , we can also assume that ui
n = 0 a.e. in {ϕi = 0}. Therefore, extending

ui
n by 0 in Ω \ B(zi, δi), the sequence un defined by

un :=
k∑

i=1

ε−1(∥∥∇(
ϕiu

)∥∥
L∞(Ω)

+ 1
)
ui

n

strongly converges to u in L∞(Ω). Moreover, by the convexity of gn and (2.5) combined with estimate (2.26) we get
that

Gn(un)�
1

k

k∑
i=1

∫
Ω

gn

(
x, kε−1(∥∥∇(

ϕiu
)∥∥

L∞(Ω)
+ 1

)
ui

n

)
dx � c. �

Consider for any ϕ ∈ C1(Ω̄), the sequence of functionals F
ϕ
n ,G

ϕ
n defined by

Fϕ
n (v) :=

{∫
Ω

ϕfn(x,∇v)dx if v ∈ W 1,1(Ω) ∩ L∞(Ω),

∞ if v ∈ L∞(Ω) \ W 1,1(Ω),

Gϕ
n(v) :=

{∫
Ω

ϕgn(x,∇v)dx if v ∈ W 1,1(Ω) ∩ L∞(Ω),

∞ if v ∈ L∞(Ω) \ W 1,1(Ω).
(2.27)

These sequences allow us to derive local properties for the Γ -convergence of the sequences Fn,Gn.

Proposition 2.11. Assume that conditions (2.1)–(2.4), and (2.11), (2.12) hold. Then, there exist a constant M > 0 and
a Radon measure μ on Ω̄ , such that for any ϕ ∈ C1(Ω̄) with ϕ � 0, and for any u ∈ C1(Ω̄), there exists a sequence un

in W 1,1(Ω) strongly converging to u in L∞(Ω) satisfying

lim sup
n→∞

Gϕ
n(un)� M

(‖∇u‖ρ

L∞(suppϕ)N
+ ‖∇u‖L∞(suppϕ)N

)∫
Ω̄

ϕ dμ. (2.28)

Proof. Define the linear functions

w0(x) := − 1

2N

N∑
i=1

xi and wi(x) := xi + w0(x), for 1 � i � N.

By Proposition 2.9 there exist sequences wi
n in W 1,1 strongly converging to wi in L∞(Ω), with Fn(w

i
n) bounded, for

i = 0, . . . ,N . Define the Radon measure μ on Ω̄ by

μ := ν +
N∑

i=0

μi with

{
bn ⇀ ν,

gn(·,∇wi
n) ⇀ μi weakly-∗ in M (Ω̄), (2.29)

where the N + 2 weak-∗ convergences hold true up to a subsequence of n still denoted by n. Let u ∈ C1(Ω̄). We can
assume that ∇u is non-zero in suppϕ, otherwise the sequence un := u does the job. Define the sequences zn and un

by {
zn := (

w1
n − w0

n, . . . ,w
N
n − w0

n

) ∈ W 1,1(Ω)N ∩ L∞(Ω)N,

un := u(zn) + 4Nγ
(
w0

n − w0(zn)
)
, with γ := ‖∇u‖L∞(suppϕ)N .

(2.30)

Since zn converges strongly to the identity function in L∞(Ω)N , the sequence un clearly converges strongly to u in
L∞(Ω). On the other hand, we have

∇un = 4Nγ

[
N∑ 1

4N

(
2 + ∂iu(zn)

γ

)
∇wi

n + 1

4N

(
2N −

N∑ ∂iu(zn)

γ

)
∇w0

n

]
.

i=1 i=1
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Since the term in brackets is a convex combination for large enough n (due to the strong convergence of ∂iu(zn)

to ∂iu), the convexity of gn together with estimates (2.5) and (2.6) yields

gn(·,∇un) �
(
K(4Nγ )ρ + 4Nγ

)(
bn + gn

(·,∇w0
n

) +
N∑

i=1

gn

(·,∇wi
n

))
.

This combined with the definition (2.29) of the measure μ implies the desired estimate (2.28). �
Proposition 2.12. Assume that conditions (2.1)–(2.4), and (2.11), (2.12) hold. Consider u ∈ C1(Ω̄) and a recovery
sequence un for Fn at u strongly converging in L∞(Ω). Then, for any sequence vn strongly converging to u in L∞(Ω)

with Fn(vn) bounded, and for any ϕ ∈ C1(Ω̄) with ϕ � 0, we have

lim inf
n→∞

∫
Ω

ϕ
(
fn(x,∇vn) − fn(x,∇un)

)
dx � 0. (2.31)

Remark 2.13. Proposition 2.12 implies some local property of the Γ -convergence of Fn, where the strong topology
of L∞(Ω) plays an essential role (contrary to Proposition 2.11 which only gives an energy bound).

Proof of Proposition 2.12. Let u ∈ C1(Ω̄). Consider a recovery sequence un for Fn strongly converging to u

in L∞(Ω). Clearly it is enough to prove the result for any ϕ ∈ C1(Ω̄) with 0 � ϕ � 1/2. By Proposition 2.9 there exist
two sequences ϕ̃n, ψ̃n strongly converging respectively to ϕ,−ϕ in L∞(Ω) with Fn(ϕ̃n),Fn(ψ̃n) bounded. Then, the
truncations ϕn := (0 ∨ ϕ̃n) ∧ 1/2, ψn := (−1/2 ∨ ψ̃n) ∧ 0 strongly converge respectively to ϕ,−ϕ in L∞(Ω), and
satisfy

0 � ϕn,−ψn � 1/2 and gn(·, ϕn) � gn(·, ϕ̃n), gn(·,ψn) � gn(·, ψ̃n) a.e. in Ω,

so that the energies Gn(ϕn),Gn(ψn) are bounded.
Consider a sequence vn ∈ W 1,1(Ω) strongly converging to u in L∞(Ω) with Fn(vn) bounded and a sequence

zn ∈ W 1,1(Ω) strongly converging to u in L∞(Ω) with Gn(zn) bounded, and define for ε ∈ (0,1/2) the sequence

wn := (1 − ε)un + ϕn(vn − un)
+ + ψn(vn − un)

− + εzn.

In the set {un � vn} we have

∇wn = (1 − ε − ϕn)∇un + ϕn∇vn + ε
(∇zn + ε−1(vn − un)∇ϕn

)
= (1 − ε − ϕn)∇un + ϕn∇vn + ε

((
1 − (vn − un)

)∇zn + (vn − un)
(∇zn + ε−1∇ϕn

))
.

Note that the last term is a linear combination for n large enough, since we work in the set {un � vn} and vn − un

converges strongly in L∞(Ω). Then, by the convexity of fn and (2.3), (2.7) we get that∫
{un�vn}

fn(x,∇wn)dx �
∫

{un�vn}

(
(1 − ε − ϕn)fn(x,∇un) + ϕnfn(x,∇vn)

)
dx

+ ε

∫
{un�vn}

((
1 − (vn − un)

)
gn(x,∇zn) + (vn − un)gn

(
x,∇zn + ε−1∇ϕn

))
dx.

From the estimates (2.5), (2.6), (2.7) satisfied by gn, the boundedness of Fn(un), Fn(vn), Gn(zn), Gn(ϕn), and the
strong convergence of ϕn to ϕ and vn − un to 0 in L∞(Ω), we deduce that∫

{un�vn}
fn(x,∇wn)dx �

∫
{un�vn}

(
(1 − ε − ϕ)fn(x,∇un) + ϕfn(x,∇vn)

)
dx + ε

∫
{un�vn}

gn(x,∇zn) dx + o(1),

where o(1) tends to 0 as n → ∞ for a fixed ε ∈ (0,1/2). Similarly for the set {vn < un} with the sequence ψn, we
obtain that∫

fn(x,∇wn)dx �
∫ (

(1 − ε − ϕ)fn(x,∇un) + ϕfn(x,∇vn)
)
dx + ε

∫
gn(x,∇zn) dx + o(1).
{vn<un} {vn<un} {vn<un}
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Using that wn converges strongly to u in L∞(Ω) and that un is a recovery sequence for Fn, and adding the two
previous inequalities, it follows that∫

Ω

fn(x,∇un)dx �
∫
Ω

fn(x,∇wn)dx + o(1)

�
∫
Ω

fn(x,∇un)dx +
∫
Ω

ϕ
(
fn(x,∇vn) − fn(x,∇un)

)
dx

+ ε

∫
Ω

(
gn(x,∇zn) − fn(x,∇un)

)
dx + o(1),

which implies

lim inf
n→∞

∫
Ω

ϕ
(
fn(x,∇vn) − fn(x,∇un)

)
dx � −ε lim sup

n→∞

∫
Ω

(
gn(x,∇zn) − fn(x,∇un)

)
dx.

Finally, the arbitrariness of ε yields (2.31). �
Proposition 2.14. Assume that (2.1)–(2.4), and (2.11), (2.12) hold. Then, there exists a constant C > 0 such that for
any u,v ∈ C1(Ω̄) and any recovery sequences un, vn for Fn respectively at u,v, converging respectively to u,v in
L∞(Ω), and for any ϕ ∈ C1

c (Ω̄) with ϕ � 0, the following estimate holds

lim sup
n→∞

∣∣∣∣
∫
Ω

ϕ
(
fn(x,∇un) − fn(x,∇vn)

)
dx

∣∣∣∣
� C‖∇u − ∇v‖L∞(suppϕ)

(‖∇u‖ρ

L∞(suppϕ)
+ ‖∇v‖ρ

L∞(suppϕ)
+ 1

)∫
Ω̄

ϕ dμ. (2.32)

Proof. Let u,v,ϕ ∈ C1(Ω̄), and set γ := ‖∇u − ∇v‖L∞(suppϕ). Consider two recovery sequences un, vn for Fn

respectively at u,v, converging respectively to u,v in L∞(Ω). First, note that by virtue of Proposition 2.11 and
Proposition 2.12 (applied to the recovery sequences un, vn) combined with the inequality F

ϕ
n � G

ϕ
n , estimate (2.32)

holds when γ � 1. From now on, we assume that γ < 1.
Take ε ∈ (0,1 − γ ). By Proposition 2.11 there exists a sequence ζn ∈ W 1,1(Ω) strongly converging to ζ := v +

(γ +ε)−1(u−v) in L∞(Ω), and satisfying the bound (2.28) with the pair (ζn, ζ ). The sequence ũn := (1−γ −ε)vn +
(γ + ε)ζn converges strongly to u in L∞(Ω). Then, since un is a recovery sequence for Fn, by Proposition 2.12 and
by the convexity of fn we have

Fϕ
n (un) � Fϕ

n (ũn) + o(1)� (1 − γ − ε)Fϕ
n (vn) + (γ + ε)Gϕ

n(ζn) + o(1)

� Fϕ
n (vn) + M(γ + ε)

(‖∇ζ‖ρ

L∞(suppϕ)N
+ ‖∇ζ‖L∞(suppϕ)N

)∫
Ω̄

ϕ dμ + o(1)

� Fϕ
n (vn) + 2ρM(γ + ε)

(‖∇v‖ρ

L∞(suppϕ)N
+ 1

)∫
Ω̄

ϕ dμ + o(1).

Changing the roles of un and vn we also get that

Fϕ
n (vn) � Fϕ

n (un) + 2ρM(γ + ε)
(‖∇u‖ρ

L∞(suppϕ)N
+ 1

)∫
Ω̄

ϕ dμ + o(1).

Therefore, from the two previous inequalities we deduce that

lim sup
n→∞

∣∣Fϕ
n (un) − Fϕ

n (vn)
∣∣� 2ρM(γ + ε)

(‖∇u‖ρ

L∞(suppϕ)N
+ ‖∇v‖ρ

L∞(suppϕ)N
+ 2

)∫
Ω̄

ϕ dμ.

Finally, the arbitrariness of ε > 0 implies the desired estimate (2.32). �
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Proof of Theorem 2.4. First, note that it is enough to prove the results for the sequence fn, since the properties of fn

are clearly satisfied by gn. Thanks to Proposition 2.9, Proposition 2.11, and using a diagonal extraction there exists
a subsequence of n still denoted by n, such that for any linear function wξ : x �→ ξ · x, with ξ ∈ QN , there exists a
recovery sequence w

ξ
n for Fn at wξ strongly converging in L∞(Ω) to wξ , and a function hξ ∈ L1

μ(Ω̄) such that

fn

(·,∇wξ
n

)
⇀ hξμ weakly-∗ in M (Ω̄), (2.33)

where by estimates (2.28) and (2.32) the function hξ satisfies{
0 � hξ � M

(|ξ |ρ + |ξ |) μ-a.e. in Ω̄, ∀ξ ∈ QN,∣∣hξ − hη
∣∣� C|ξ − η|(|ξ |ρ + |η|ρ + 1

)
μ-a.e. in Ω̄, ∀ξ, η ∈ QN.

(2.34)

By the Lipschitz estimate of (2.34) there exists a unique Caratheodory function f : Ω̄ ×RN → [0,∞) defined by

f (x, ξ) := hξ (x) μ-a.e. x ∈ Ω̄, ∀ξ ∈QN . (2.35)

First step: Γ -convergence of Fn in C1(Ω̄).
Let u ∈ C1(Ω̄). There exists a subsequence n′ of n such that Fn′ Γ -converges at u. Consider a recovery se-

quence un′ for Fn′ , which strongly converges to u in L∞(Ω). Up to extract a new subsequence, thanks to Propo-
sition 2.11 and Proposition 2.12 combined with F

ϕ
n � G

ϕ
n , we can also assume that there exists hu ∈ L1

μ(Ω̄) such
that

fn′(·,∇un′) ⇀ huμ weakly-∗ in M (Ω̄). (2.36)

Applying (2.32) (after a localization) with the recovery sequences un′ ,wξ

n′ , for ξ ∈ QN , we obtain that∣∣hu − f (·, ξ)
∣∣� C|∇u − ξ |(|∇u|ρ + |∇u| + |ξ |ρ + |ξ | + 1

)
μ-a.e. in Ω̄, ∀ξ ∈ QN,

which by continuity of f (x, ·) implies that hu = f (·,∇u) a.e. in Ω̄ . Hence, by convergence (2.36) and a uniqueness
argument the whole sequence Fn Γ -converges at u to F(u) defined by (2.18). This also implies convergence (2.21)
for any recovery sequence un for Fn.

Second step: Properties of the density f .
Let us prove the convexity of f (x, ·). The proofs of the other properties are similar. Let ξ, η ∈ RN , and set λ :=

tξ + (1 − t)η for t ∈ [0,1]. Consider recovery sequences w
ξ
n , w

η
n , wλ

n , for Fn of limits wξ , wη, wλ respectively.
Applying inequality (2.31) with un := wλ

n and vn := tw
ξ
n + (1 − t)w

η
n and using the convergence (2.21) of the energy

density, we get that for any ϕ ∈ C1(Ω̄) with ϕ � 0,∫
Ω̄

ϕf
(
x, tξ + (1 − t)η

)
dμ = lim

n→∞

∫
Ω

ϕfn

(
x,∇wλ

n

)
dx

� lim inf
n→∞

∫
Ω

ϕfn

(
x, t∇wξ

n + (1 − t)∇wη
n

)
dx

� t

∫
Ω̄

ϕf (x, ξ) dμ + (1 − t)

∫
Ω̄

ϕf (x, η) dμ,

which implies the convexity of f (x, ·) due to the arbitrariness of ϕ.

Third step: Γ -convergence of Fω
n for any open set ω ⊂ Ω .

Let us prove the Γ -liminf and the Γ -limsup properties for the sequence Fω
n (see Definition 1.2). Let u ∈ C1

0(ω).

Let un be a sequence of W
1,1
0 (ω) which strongly converges to u in L∞(ω). Extending u and un by 0 in Ω \ ω, the

Γ -liminf property for Fn implies that

F(u) � lim infFn(un) = lim infFω
n (un).
n→∞ n→∞
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On the other hand, consider a recovery sequence ūn ∈ W 1,1(Ω) for Fn strongly converging to u in L∞(Ω). Then, by
Lemma 2.8 there exist a sequence ũn strongly converging to u in L∞(Ω), such that ũn = 0 in Ω \ ω and Fn(ũn) �
Fn(ūn). Therefore, we obtain that

F(u) = lim
n→∞Fn(ūn)� lim sup

n→∞
Fn(ũn) = lim sup

n→∞
Fω

n (ũn),

which shows the Γ -limsup property. �
3. Conditions for that the Γ -limits in L∞ and in L1 agree

In this section we show the existence of a general class of convex functionals which have the same Γ -limits for the
strong topology of L∞(Ω) and the strong topology of L1(Ω).

Let Ω be a bounded open set of RN , N � 2. Consider a sequence fn : Ω ×RN → [0,∞) satisfying{
fn(·, ξ) are measurable for any ξ ∈ RN,

fn(x, ·) are convex for a.e. x ∈ Ω,
and fn(·,0) = 0. (3.1)

Also consider the associated sequence of functionals Fn defined in L1(Ω) by

Fn(v) :=
{∫

Ω
fn(x,∇v)dx if v ∈ W

1,1
0 (Ω),

∞ if v ∈ L1(Ω) \ W
1,1
0 (Ω).

(3.2)

In addition, we assume that Fn satisfies the following weak coercivity condition:
There exists a real number q with q > N − 1 if N > 2, and q = 1 if N = 2, such that⎧⎪⎨

⎪⎩
∀n ∈N, ∀c > 0, {Fn � c} is sequentially compact in W

1,q

0 (Ω) weak,

∀un ∈ W
1,1
0 (Ω), lim sup

n→∞
Fn(un) < ∞ ⇒ un converges weakly in W

1,q

0 (Ω),

up to a subsequence.

(3.3)

Remark 3.1. Note that for any p ∈ (1,∞), the weak compactness in W 1,p(Ω) is equivalent to the boundedness in
W 1,p(Ω). Therefore, the compactness in assumption (3.3) is actually essential in the case q = 1.

The following result provides a large class of sequences fn which satisfy condition (3.3):

Proposition 3.2. Consider a sequence of functions fn : Ω ×RN → [0,∞) satisfying (3.1) and the following estimate
from below:

• If N > 2, there exist p > N − 1, r > (N − 1)/(p − N + 1), S > 0, and a sequence of nonnegative measurable
functions λn in Ω , with λ−r

n bounded in L1(Ω), such that

fn(x, ξ)� λn(x)|ξ |p − S, ∀ξ ∈ RN, a.e. x ∈ Ω.

• If N = 2, there exist p > 1, S > 0, and a sequence of nonnegative measurable functions λn in Ω , with λ
− 1

p−1
n

weakly compact in L1(Ω), such that

fn(x, ξ)� λn(x)|ξ |p − S, ∀ξ ∈ R2, a.e. x ∈ Ω.

Define q � 1 by

q :=
{ pr

1+r
if N > 2,

1 if N = 2.
(3.4)

Then, the assertions of (3.3) are fulfilled with q .
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Proof. First of all, note that q > N − 1 if N > 2. Let us first prove the second assertion of (3.3). Let un be a sequence
in W

1,1
0 (Ω) such that

lim sup
n→∞

∫
Ω

fn(x,∇un)dx < ∞.

• If N > 2, then by the Hölder inequality we have∫
Ω

|∇un|q dx �
(∫

Ω

λn|∇un|p dx

) r
1+r

(∫
Ω

λ−r
n dx

) 1
1+r

� c. (3.5)

Hence, un is bounded in W
1,q

0 (Ω), for q > N − 1 > 1, thus converges weakly in W 1,q (Ω), up to a subsequence.
• If N = 2, then we get that for any measurable set E ⊂ Ω ,∫

E

|∇un|dx �
(∫

E

λn|∇un|p dx

) 1
p
(∫

E

λ
− 1

p−1
n dx

)1− 1
p

� c

(∫
E

λ
− 1

p−1
n dx

)1− 1
p

. (3.6)

Hence, by virtue of the Dunford–Pettis theorem, un converges weakly in W
1,1
0 (Ω), up to a subsequence.

This establishes the second assertion of (3.3).
Now, let us check the first assertion of (3.3). Fix n ∈ N and c > 0. Consider a sequence vk in W

1,q

0 (Ω) such that
Fn(vk) � c, for any k ∈ N. Proceeding as for (3.5) and (3.6), vk converges weakly, up to a subsequence, to some
function v in W

1,q

0 (Ω). Therefore, due to the convexity of Fn the desired inequality Fn(v) � c follows from the lower

semicontinuity of Fn for the strong topology of W
1,q

0 (Ω). It thus remains to prove the strong lower semicontinuity
of Fn. Since fn is convex with respect to the second argument in RN , fn is continuous with respect to the second
argument. Then, for any sequence wk converging strongly to w in W

1,q

0 (Ω), fn(x,∇wk) converges to fn(x,∇w) for
a.e. x ∈ Ω . Hence, by the Fatou lemma applied to the nonnegative sequence fn(·,∇wk), we get that∫

Ω

fn(x,∇w)dx � lim inf
k→∞

∫
Ω

fn(x,∇wk)dx, (3.7)

which implies the strong lower semicontinuity of Fn. �
Remark 3.3. Consider Fn defined by (3.2) satisfying the assumptions of Proposition 3.2. As a consequence of the
first assertion of (3.3), the nonnegative functional Fn is lower semicontinuous for the strong topology of W

1,q

0 (Ω).

Hence by (3.5) and (3.6), for any G in W−1,q ′
(Ω), the convex functional v �→ Fn(v) − 〈G,v〉 is W

1,q

0 (Ω)-coercive,

and thus has a minimum un in W
1,q

0 (Ω) for any n ∈ N. Thanks to the second assertion of (3.3), the sequence un is

weakly compact in W
1,q

0 (Ω), and is thus compact in L1(Ω). Therefore, the study of the asymptotic behavior of un is
equivalent to study the Γ -convergence of the sequence Fn for the strong topology of L1(Ω).

Then, the main results of this section are the following:

Theorem 3.4. Assume that the conditions (3.1) and (3.3) hold. Consider a function u in C0(Ω̄) ∩ W
1,q

0 (Ω), such that

there exists a sequence un converging weakly to u in W
1,q

0 (Ω) with

lim sup
n→∞

Fn(un) < ∞.

Then, there exists a sequence ûn which converges to u weakly in W
1,q

0 (Ω) and strongly in L∞(Ω), such that

lim inf
n→∞ Fn(ûn) � lim inf

n→∞ Fn(un). (3.8)
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Corollary 3.5. Under the assumptions of Theorem 3.4, the Γ -limit of Fn at any point u in C0(Ω̄) for the strong
topology of L∞(Ω) agrees with its Γ -limit for the strong topology of L1(Ω).

Proof. If u ∈ W
1,q

0 (Ω), the result is an immediate consequence of Theorem 3.4. Otherwise, applying the condi-
tion (3.3) to recovery sequences for Fn of limit u, the two Γ -limits at u are equal to ∞. �

In the sequel we will use the following:

Remark 3.6. Let v ∈ W 1,q (Ω), let x0 ∈ Ω and R > 0 be such that B(x0,R) ⊂ Ω . Denoting by SN−1 the unit sphere
of RN , we have

R∫
0

( ∫
SN−1

∣∣∇v(x0 + rζ ) · ζ ∣∣q dσ

)
rN−1 dr �

R∫
0

( ∫
SN−1

∣∣∇v(x0 + rζ )
∣∣q dσ

)
rN−1 dr

=
∫

B(x0,R)

|∇v|q dx < ∞.

Hence, the function ζ �→ v(x0 + rζ ) belongs to W 1,q (SN−1) for a.e. r ∈ (0,R). Therefore, by the embedding of
W 1,q(SN−1) into C0(SN−1) since q > N − 1, the restriction v|∂B(x0,r) has a continuous representative on ∂B(x0, r).
This gives a sense to the bounds of v on ∂B(x0, r) for a.e. r > 0 such that B(x0, r) ⊂ Ω .

Now, the key ingredient of the proof of Theorem 3.4 is the following:

Lemma 3.7. Consider a sequence un which converges weakly to a function u in W 1,q(Ω), with q > N − 1 if N > 2,
and q = 1 if N = 2. Assume that u belongs to C0(Ω̄), and that un satisfies the following maximum property:

For any x0 ∈ Ω , and for a.e. r > 0 such that B(x0, r) ⊂ Ω , we have

min
{

min
∂B(x0,r)

un, min
B̄(x0,r)

u
}
� inf

B(x0,r)
un � sup

B(x0,r)

un � max
{

max
∂B(x0,r)

un, max
B̄(x0,r)

u
}
. (3.9)

Then, the sequence un converges strongly to u in L∞
loc(Ω).

Proof. Assume for the moment that for any x0 ∈ Ω , and for any r > 0 such that B(x0,2r) ⊂ Ω , we have

lim sup
n→∞

(
sup

B(x0,r)

|un − u|
)
� max

B̄(x0,2r)

u − min
B̄(x0,2r)

u. (3.10)

Given a compact set K ⊂ Ω and ε > 0, there exist r > 0 and x1
0 , . . . , xm

0 ∈ Ω such that

∀i ∈ {1, . . . ,m}, B
(
xi

0,2r
) ⊂ Ω and K ⊂

m⋃
i=1

B
(
xi

0, r
)
,

and due to the uniform continuity of u on Ω̄

∀x, y ∈ Ω, |x − y| < 2r,
∣∣u(x) − u(y)

∣∣ < ε.

Then, by (3.10) we get that

lim sup
n→∞

‖un − u‖L∞(K) � max
1�i�m

[
lim sup
n→∞

(
sup

B(xi
0,r)

|un − u|
)]

� ε,

for any ε > 0, which implies the strong convergence of un to u in L∞(K).
In order to prove (3.10) we distinguish the case N > 2, and the more delicate case N = 2.

Case N > 2: Define the functions vn, v : (r,2r) × SN−1 → R by

vn(s, ζ ) := un(x0 + sζ ), v(s, ζ ) := u(x0 + sζ ), for (s, ζ ) ∈ (r,2r) × SN−1.
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Since the sequence un converges weakly to u in W 1,q (B(x0, r)), the sequence vn converges weakly to v in
Lq(r,2r;W 1,q (SN−1)) and ∂svn converges weakly to ∂sv in Lq(r,2r;Lq(SN−1)). Therefore, taking into account
that, due to q > N − 1, the space W 1,q(SN−1) is compactly embedded in C0(SN−1), and that C0(SN−1) is continu-
ously embedded in Lq(SN−1), the Aubin compactness theorem [3] implies that the sequence vn converges strongly
to v in Lq(r,2r;C0(SN−1)). In particular, using Remark 3.6 this yields, up to a subsequence,

max
∂B(x0,s)

un = max
ζ∈SN−1

vn(s, ζ )
n→∞−−−−→ max

ζ∈SN−1
v(s, ζ ) = max

∂B(x0,s)
u, a.e. s ∈ (r,2r), (3.11)

min
∂B(x0,s)

un = min
ζ∈SN−1

vn(s, ζ )
n→∞−−−−→ min

ζ∈SN−1
v(s, ζ ) = min

∂B(x0,s)
u, a.e. s ∈ (r,2r). (3.12)

Hence, using inequality (3.9) with r replaced by s ∈ (r,2r), we get that

min
B̄(x0,2r)

u − max
B̄(x0,2r)

u� lim inf
n→∞

(
inf

B(x0,r)
(un − u)

)
� lim sup

n→∞

(
sup

B(x0,r)

(un − u)
)
� max

B̄(x0,2r)

u − min
B̄(x0,2r)

u,

which is equivalent to (3.10).

Case N = 2: Denote by T the torus R/(2πZ). Similarly to the functions vn, v defined in the case N > 2, define the
functions wn,w : (r,2r) ×T → R by

wn(s, t) := un

(
x0 + s(cos t, sin t)

)
, w(s, t) := u

(
x0 + s(cos t, sin t)

)
, a.e. (s, t) ∈ (r,2r) ×T.

Fix ε > 0. Since ∇un is equi-integrable, there exists δ > 0 such that∫
E

|∇un|dx < εr, ∀n ∈N, ∀E ⊂ Ω, |E|� δ. (3.13)

Set h := 2δ/(3r2), which can be chosen less than 2π . Let us prove that for any n ∈ N, there exists a Lebesgue point
for wn ∈ L1(r,2r;W 1,1(T)), sn ∈ (r,2r) such that

τ+h∫
τ

∣∣∂twn(sn, t)
∣∣dt < ε, ∀τ ∈ T, ∀n ∈ N. (3.14)

We reason by contradiction. If this assertion is not true, then the multifunction Ψ : (r,2r) → P(T) defined by

Ψ (s) :=
{

τ ∈ T:

τ+h∫
τ

∣∣∂twn(s, t)
∣∣dt � ε

}

takes values in nonempty closed sets of T for a.e. s ∈ (r,2r). The multifunction Ψ is measurable in the sense that for
any closed set C ⊂ T, the set Ψ −1(C) := {s ∈ (r,2r): Ψ (s) ∩ C �= ∅} is measurable. Indeed, we have

Ψ −1(C) = Φ−1([ε,∞)
)

with Φ(s) := max
τ∈C

τ+h∫
τ

∣∣∂twn(s, t)
∣∣dt,

and Φ ∈ L1(r,2r) by the Fubini theorem. Then, by virtue of the Kuratowski, Ryll-Nardzewski selection theorem
[26], there exists a measurable function ψ : (r,2r) → T such that ψ(s) ∈ Ψ (s) for a.e. s ∈ (r,2r). Now, define the
measurable set E by

E := {
x ∈ R2: x = x0 + s(cos t, sin t), s ∈ (r,2r), ψ(s) < t < ψ(s) + h

}
.

By the Fubini theorem we have

|E| = h

2r∫
s ds = δ,
r
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and ∫
E

|∇un|dx =
2r∫

r

ψ(s)+h∫
ψ(s)

s
∣∣∇un

(
x0 + s(cos t, sin t)

)∣∣dt ds �
2r∫

r

ψ(s)+h∫
ψ(s)

|∂twn|dt ds � εr,

which contradicts (3.13).
Up to extract a subsequence we can assume that sn converges to some s̄ ∈ [r,2r]. By the compact embed-

ding of W 1,1((r,2r) × T) into L1((r,2r) × T) = L1(r,2r;L1(T)), the sequence wn converges strongly to w in
L1(r,2r;L1(T)). Hence, from the estimate (3.18) below we deduce that for any γ > 0,

lim sup
n→∞

∥∥∥∥wn(sn, .) − −
∫
Iγ

w(s, .) ds

∥∥∥∥
L1(T)

� lim sup
n→∞

∫
Iγ

‖∂swn‖L1(T) ds, (3.15)

where Iγ := (r,2r) ∩ (s̄ − γ, s̄ + γ ). Using that ∇un is equi-integrable, we get that the right-hand of (3.15) tends to
zero as γ tends to zero. The continuity of the function w also shows that

−
∫
Iγ

w(s, .) ds −→
γ→0

w(s̄, .) in C0(T).

Therefore, passing to the limit in (3.15) as γ tends to zero, we obtain that

wn(sn, .) n→∞−−−−→ w(s̄, .) strongly in L1(T). (3.16)

On the other hand, since wn(sn, .) belongs to W 1,1(T) which is continuously embedded into C0(T), there exists
tn ∈ T such that

wn(sn, tn) = max
t∈T

wn(sn, t).

Due to the compactness of T we can assume that tn converges to some t̄ . Applying the inequality (3.18) below to the
sequence wn(sn, .) ∈ W 1,1(T) with γ < h/2, we get that

lim sup
n→∞

∣∣∣∣∣wn(sn, tn) −
t̄+γ

−
∫

t̄−γ

w(s̄, t) dt

∣∣∣∣∣� lim sup
n→∞

t̄+γ∫
t̄−γ

∣∣∂twn(sn, t)
∣∣dt � ε,

which combined with the continuity of w gives

lim sup
n→∞

∣∣wn(sn, tn) − w(s̄, t̄)
∣∣� ε.

From this equality we deduce that

lim sup
n→∞

(
sup

∂B(x0,sn)

un

)
= lim sup

n→∞
wn(sn, tn) �w(s̄, t̄) + ε � max

∂B(x0,s̄)
u + ε.

Similarly we can prove that

lim inf
n→∞

(
inf

∂B(x0,sn)
un

)
� min

∂B(x0,s̄)
u − ε.

Finally, the two previous inequalities combined with condition (3.9) easily yield

lim sup
n→∞

sup
B(x0,r)

|un − u| � max
B̄(x0,2r)

u − min
B̄(x0,2r)

u + ε,

for any ε > 0, which implies (3.10). �
Proof of Theorem 3.4. Let tn > 0 be a sequence such that tn → ∞ and tn‖un − u‖L1(Ω) → 0. Thanks to the first

assertion of (3.3) combined with the compact embedding of W
1,q

0 (Ω) into Lq(Ω), the nonnegative convex functional

v �→ Fn(v) + tn‖v − u‖L1(Ω) defined in W
1,q

0 (Ω) has a mininum ûn ∈ W
1,q

0 (Ω). From the inequality

lim inf
(
Fn(ûn) + tn‖ûn − u‖L1(Ω)

)
� lim inf

(
Fn(un) + tn‖un − u‖L1(Ω)

) = lim infFn(un),

n→∞ n→∞ n→∞
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we deduce that (3.8) holds and that ûn converges strongly to u in L1(Ω). Hence, by the boundedness of Fn(ûn)

combined with the second assertion of (3.3), the sequence ûn converges weakly to u in W
1,q

0 (Ω).
It thus remains to prove that ûn converges strongly to u in L∞(Ω). Extending ûn and u by zero outside of Ω , and

using Lemma 3.7 applied with an open set Ω̃ containing Ω̄ , we just need to show that ûn satisfies the inequalities (3.9)
for any ball B ⊂ RN , the radius of which belongs to a full measure subset of (0,∞) (see Remark 3.6). To this end,
consider the function

wn := ûn − (ûn − M)+χB where M = max
{

max
∂B

ûn,max
B̄

u
}
,

so that wn ∈ W
1,q

0 (Ω). By the definition of ûn we have∫
Ω

fn(x,∇ûn) dx + tn‖ûn − u‖L1(Ω) �
∫
Ω

fn(x,∇wn)dx + tn‖wn − u‖1
L1(Ω)

=
∫

Ω\(B∩{ûn>M})
fn(x,∇ûn) dx + tn‖ûn − u‖L1(Ω\(B∩{ûn>M}))

+ tn‖M − u‖L1(B∩{ûn>M}). (3.17)

Note that in the set B ∩ {ûn > M}, we have u � M � ûn and thus |M −u| < |ûn −u|. Hence, it follows the inequality

‖M − u‖L1(B∩{ûn>M}) � ‖ûn − u‖L1(B∩{ûn>M}),
where the equality holds only if |B ∩ {ûn > M}| = 0. Therefore, (3.17) implies that ûn � M a.e. in B . This yields the
second inequality of (3.9). The first one can be shown in a similar way. �
Lemma 3.8. Let X be a Banach space, and let a, b ∈ R, with a < b. Consider a sequence zn ∈ W 1,1(a, b;X) which
converges strongly in L1(a, b;X) to some function z. Then, for any s̄ ∈ [a, b], any sn ∈ [a, b] which converges to s̄,
and any γ > 0, we have

lim sup
n→∞

∥∥∥∥zn(sn) − −
∫
Iγ

z ds

∥∥∥∥
X

� lim sup
n→∞

∫
Iγ

∥∥∥∥dzn

ds

∥∥∥∥
X

ds, (3.18)

where Iγ := [a, b] ∩ (s̄ − γ, s̄ + γ ).

Proof. For any n ∈N, consider ζ ′
n ∈ X′ such that∥∥ζ ′

n

∥∥
X′ = 1,

〈
ζ ′
n, zn(sn) − −

∫
Iγ

z ds

〉
X′,X

=
∥∥∥∥zn(sn) − −

∫
Iγ

z ds

∥∥∥∥
X

.

Taking s ∈ Iγ and n large enough, such that sn ∈ Iγ , we have

〈
ζ ′
n, zn(sn) − z(s)

〉
X′,X �

∫
Iγ

∣∣∣∣
〈
ζ ′
n,

dzn

ds

〉
X′,X

∣∣∣∣ds �
∫
Iγ

∥∥∥∥dzn

ds

∥∥∥∥
X

ds.

Integrating this inequality with respect to s in Iγ and dividing by |Iγ |, we get that∥∥∥∥zn(sn) − −
∫
Iγ

zn ds

∥∥∥∥
X

�
∫
Iγ

∥∥∥∥dzn

ds

∥∥∥∥
X

ds.

Finally, taking the limsup in n in the previous inequality and using the strong convergence of zn to z in L1(a, b;X),
it follows (3.18). �
4. An example with loss of compactness

In this section we study a sequence of nonlinear conductivity equations which induces a nonlocal limit behavior
due to the loss of the coercivity condition (3.3).
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4.1. Statement of the problem

Let Ω := ω × (0,1) be the cylinder of RN , for N � 2, the basis of which ω is a regular bounded connected open
set of RN−1 containing the origin. Any point x ∈ Ω is represented by the pair (x′, xN), where x′ ∈ ω and xN ∈ (0,1).
For any 0 < r < s, denote by B ′

r the open ball in RN−1 of radius r , by A′
r,s the open annulus in RN−1 of inner radius r

and outer radius s, by Cr the open cylinder in RN of basis B ′
r and of height 1, and by Cr,s the open cylinder in RN of

basis A′
r,s and of height 1, i.e.{
B ′

r := {
x ∈ RN−1:

∣∣x′∣∣ < r
}
, Cr := B ′

r × (0,1),

A′
r,s := {

x ∈RN−1: r <
∣∣x′∣∣ < s

}
, Cr,s := A′

r,s × (0,1).
(4.1)

Let εn, n ∈ N, be a positive sequence which converges to 0, simply denoted by ε. For a given p > N − 1, consider the
columnar conductivity function aε defined in Ω by

aε(x) = aε

(
x′, xN

) :=
⎧⎨
⎩

ε1−N � 1 if |x′| < ε,

εp−N+1 � 1 if ε � |x ′| � 2ε,

1 if |x′| > 2ε.

(4.2)

Our aim is to derive the Γ -limit for the strong topology of L1(Ω) of the sequence Fε : L1(Ω) → R defined by

Fε(v) :=
{∫

Ω
aε|∇v|p dx, if v ∈ W

1,1
0 (Ω),

∞ if v ∈ L1(Ω) \ W
1,1
0 (Ω).

(4.3)

Remark 4.1. On the one hand, the weak coercivity condition (3.3) is not satisfied by the functionals Fε of (4.3).
Indeed, consider the function vε ∈ W

1,1
0 (Ω) defined by

vε(x) = vε

(
x′, xN

) :=
⎧⎨
⎩

0 if |x′| < ε,

(
|x′|
ε

− 1)θ(x) if ε � |x′|� 2ε,

θ(x) if |x ′| > 2ε,

(4.4)

where θ ∈ C1
0(Ω) and θ ≡ 1 in 1

2ω × ( 1
4 , 3

4 )� Ω . The sequence vε satisfies

Fε(vε)� cθ

(
εp−N+1

2ε∫
ε

ε−prN−2 dr + 1

)
� c,

and for any q > N − 1,

∫
Ω

|∇vε|q dx � c

( 2ε∫
ε

ε−qrN−2 dr − 1

)
� cεN−1−q

ε→0
−−−→ ∞.

Therefore, the sequence vε has a bounded energy, but is not compact in W 1,q(Ω) weak for any q > N − 1. This
contradicts the second assertion of assumption (3.3).

More precisely, it is easy to check that the energy density fn(x, ξ) := aε(x)|ξ |p , defined with aε of (4.2), satisfies
the assumptions (2.1)–(2.4) (with gn = fn), and (2.11), (2.12) (with wi

ε(x) = xi ), of the homogenization Theorem 2.4
about the local Γ -limit for the strong topology of L∞(Ω) of the sequence Fε . However, in contrast with the class of
admissible convex densities defined in Proposition 3.2, a−r

ε is bounded in L1(Ω), with r = (N − 1)/(p − N + 1),
but is not equi-integrable in L1(Ω). Moreover, due to estimates (3.5) and (3.6) any sequence of bounded energy Fε ,
is bounded in W 1,1(Ω) and thus compact in L1(Ω). Therefore, the nonlocal results of Theorem 4.2 and Theorem 4.4
below show that the weak coercivity condition (3.3), or the one of Proposition 3.2, is crucial for deriving the Γ -limit
representation of Theorem 1.1.

On the other hand, Theorem 3.4 of [17] implies that the Γ -limit for the strong topology of L1(Ω) of the se-
quence Fε defined by (4.3), is local if aε is bounded and equi-integrable in L1(Ω). However, the sequence aε defined
by (4.2) is bounded in L1(Ω), but is not equi-integrable in L1(Ω). In dimension N = 2, the result of [17] and Theo-
rem 1.1 with the assumption of Proposition 3.2, prove actually that the Γ -limit for the strong topology of L1(Ω) of the
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sequence Fε is local if aε or a−r
ε = a

1/1−p
ε is equi-integrable in L1(Ω). This is exactly the opposite to the sequence aε

of (4.2). Therefore, the equi-integrability in L1(Ω) of aε or a
1/1−p
ε , is essential for preventing the appearance of

nonlocal effects in dimension two.

We have the following result when N > 2:

Theorem 4.2. Assume that N > 2 and p > N − 1. Then, defining γN,p as the positive constant

γN,p :=
(

q

2q − 1

)p−1

, with q := p − N + 1

p − 1
, (4.5)

and SN−2 as the unit sphere of RN−1, the sequence Fε defined by (4.3) Γ -converges for the strong topology of L1(Ω)

to the functional F defined by⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

F(v) :=
∫
Ω

|∇v|p dx + |SN−2| min
v̂∈W

1,p
0 (0,1)

{ 1∫
0

(
1

N − 1

∣∣∣∣ dv̂

dxN

∣∣∣∣
p

+ γN,p

∣∣v̂ − v(0, xN)
∣∣p)dxN

}
,

if v ∈ W
1,p

0 (Ω),

F (v) := ∞ if v ∈ L1(Ω) \ W
1,p

0 (Ω).

(4.6)

Remark 4.3. Since Lp(0,1;W 1,p(ω)) is embedded in Lp(0,1;C0(ω̄)) for p > N − 1 (recall that ω is regular), so
is W 1,p(Ω) ⊂ Lp(0,1;W 1,p(ω)). This shows that any function v ∈ W 1,p(Ω), with p > N − 1, has a trace v(0, ·) in
Lp(0,1) on the line {x′ = 0} of Ω .

The case N = 2 is different since ω \ {0} (ω is an open interval containing 0) is not connected. Denoting ΩL :=
Ω ∩ {x1 < 0} and ΩR := Ω ∩ {x1 > 0}, we have the following result:

Theorem 4.4. Assume N = 2 and p > 1. Then, the sequence Fε defined by (4.3) Γ -converges for the strong topology
of L1(Ω) to the functional F defined by⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

F(v) :=
∫

ΩL∪ΩR

|∇v|p dx + min
v̂∈W

1,p
0 (0,1)

{ 1∫
0

(
2

∣∣∣∣ dv̂

dx2

∣∣∣∣
p

+ ∣∣û − uL(0, x2)
∣∣p + ∣∣û − uR(0, x2)

∣∣p)dx2

}
,

if v ∈ W 1,p
(
ΩL ∪ ΩL

)
, v = 0 on ∂Ω, v = χΩLvL + χΩRvR,

F (v) := ∞ elsewhere.

(4.7)

The result of Theorem 4.4 is similar to the result of Theorem 4.2 in each connected part of Ω \ {x1 = 0}. As a
consequence we will prove only Theorem 4.2.

Remark 4.5. The asymptotic behavior of Fε induces a nonlocal Γ -limit F . A similar result was obtained in [4] for
N = 3 and p � 2 = N − 1, with a unit conductivity medium reinforced by a periodic distribution of high conductivity
cylinders. Here we have p > N −1, and the nonlocal effect is due to the columnar arrangement of the low conductivity
region separating the unit conductivity region and the high conductivity one. Moreover, our result is not obtained by
a homogenization procedure as in [4], but by a concentration effect on a line.

4.2. Proof of Theorem 4.2

We need the following technical results (using notations (4.1) and (4.5)):

Lemma 4.6. Let p > N − 1 � 2. There exists a constant C > 0 such that for any 0 < 2r � s and any v ∈ W 1,p(Cr,s),
we have, with q := (p − N + 1)/(p − 1),
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1∫
0

∣∣∣∣ −
∫

∂B ′
r

v(·, xN)dσ ′ − −
∫

∂B ′
s

v(·, xN)dσ ′
∣∣∣∣
p

dxN � C
∣∣rq − sq

∣∣p−1
∫

Cr,s

|∇x′v|p dx, (4.8)

∥∥∥∥v − −
∫

∂B ′
s

v dσ ′
∥∥∥∥

p

Lp(0,1;C0(∂B ′
r ))

� Csp−N+1
∫

Cr,s

|∇x′v|p dx. (4.9)

Lemma 4.7. Let u ∈ W
1,p

0 (Ω) with p > N − 1. Then, there exists a sequence ũε which strongly converges to u in

W
1,p

0 (Ω), and such that ũε only depends on the variable xN in C2ε .

Lemma 4.8. Let p > N − 1 � 2. There exists a constant C > 0 such that for any ε > 0, the functional (4.3) satisfies
the estimate from below

∀v ∈ W
1,p

0 (Ω),

∫
Ω

|v|p dx � CFε(v). (4.10)

Lemma 4.9. Let uε be a sequence in W
1,p

0 (Ω) such that Fε(uε) is bounded. Define the rescaled function in the
cylinder C2 by

ûε(y) := uε

(
εy′, yN

)
, for

∣∣y′∣∣ < 2, yN ∈ (0,1). (4.11)

Then, there exist u ∈ W
1,p

0 (Ω), û− ∈ W
1,p

0 (0,1), û+ ∈ Lp(0,1;W 1,p(A′
1,2)), such that the following convergences

hold up to a subsequence:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

uε ⇀ u weakly in Lp(Ω),

uε ⇀ u weakly in W 1,p(Ω \ Cδ) for small enough δ > 0,

ûε ⇀ û− weakly in W 1,p(C1),

ûε ⇀ û+ weakly in Lp
(
0,1;W 1,p

(
A′

1,2

))
,

εûε ⇀ 0 weakly in W 1,p(C1,2),

(4.12)

together with the boundary conditions

û+(
y′, yN

) =
{

û−(yN) if |y′| = 1,

u(0, yN) if |y′| = 2.
(4.13)

Proof of Theorem 4.2. We need to prove the Γ -liminf and the Γ -limsup inequalities (1.6) and (1.7).
Proof of the Γ -liminf inequality. Consider a sequence uε in W

1,p

0 (Ω) which converges strongly to a function u in
L1(Ω), and such that Fε(uε) is bounded. Defining ûε by (4.11) and applying Lemma 4.9 it follows that u belongs to
W

1,p

0 (Ω) and up to a subsequence, there exist û− ∈ W
1,p

0 (0,1) and û+ ∈ Lp(0,1;W 1,p(A′
1,2)) such that (4.12) and

(4.13) hold. Then, the lower semicontinuity of the norm for the weak convergence in Lp implies that

lim inf
ε→0

Fε(uε) = lim inf
ε→0

(∫
C1

(∣∣ε−1∇y′ ûε

∣∣2 + |∂yN
ûε|2

) p
2 dy

+
∫

C1,2

(|∇y′ ûε|2 + |ε∂yN
ûε|2

) p
2 dy +

∫
Ω\C2ε

|∇uε|p dx

)

� |SN−2|
N − 1

1∫
0

∣∣∣∣dû−

dyN

∣∣∣∣
p

dyN +
∫

C

∣∣∇y′ û+∣∣p dy +
∫
Ω

|∇u|p dx.
1,2
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Minimizing the right-hand side of the previous inequality with respect to the functions û− in W
1,p

0 (0,1) and û+ in
Lp(0,1;W 1,p(A′

1,2)) satisfying (4.13), we thus obtain that

lim inf
ε→0

Fε(uε) � F(u).

Proof of the Γ -limsup inequality. For u ∈ W
1,p

0 (Ω), consider the sequence ũε ∈ W
1,p

0 (Ω) defined by (4.15) in

Lemma 4.7 above. Then, from the minimizer û ∈ W
1,p

0 (0,1) of the left-hand side of (4.6) with v replaced by u

and q = (p − N + 1)/(p − 1), we define uε in W
1,p

0 (Ω) by

uε(x) :=

⎧⎪⎨
⎪⎩

û(xN) if |x′| < ε,

û(xN) + ũε(0,xN )−û(xN )
2q−1 (

|x′|q
εq − 1) if ε � |x′|� 2ε,

ũε(x) if 2ε < |x′|.
The sequence uε converges strongly to u in L1(Ω). Moreover, making the change of variable r = |x′|/ε in Cε,2ε , we
get that

Fε(uε) =
∫

Ω\C2ε

|∇ũε|p dx + |SN−2|
N − 1

1∫
0

∣∣∣∣ dû

dxN

∣∣∣∣
p

dxN

+ |SN−2|
1∫

0

2∫
1

(∣∣∣∣ ũε(0, xN) − û

2q − 1
qrq−1

∣∣∣∣
2

+ ε2
∣∣∣∣ dû

dxN

+
(

∂xN
ũε − dû

dxN

)
rq − 1

2q − 1

∣∣∣∣
2) p

2

rN−2 dr dxN .

In the last term of this expression we use that

1∫
0

2∫
1

εp

∣∣∣∣ dû

dxN

+
(

∂xN
ũε − dû

dxN

)
rq − 1

2q − 1

∣∣∣∣
p

rN−2 dr dxN

�
1∫

0

2∫
1

εp

(∣∣∣∣ dû

dxN

∣∣∣∣
p

+ |∂xN
ũε|p

)
rN−2 dr dxN

= 2N−1 − 1

N − 1
εp

1∫
0

∣∣∣∣ dû

dxN

∣∣∣∣
p

dxN + εp−N+1

|SN−1|
∫

Cε,2ε

|∇ũε|p dx
ε→0
−−−→ 0,

which implies

lim
ε→0

1∫
0

2∫
1

rN−2
(∣∣∣∣ ũε(0, xN) − û

2q − 1
qrq−1

∣∣∣∣
2

+ ε2
∣∣∣∣ dû

dxN

−
(

∂xN
ũε − dû

dxN

)
rq − 1

2q − 1

∣∣∣∣
2) p

2

dr dxN

=
(

q

2q − 1

)p

lim
ε→0

1∫
0

2∫
1

r
− N−2

p−1
∣∣ũε(0, xN) − û

∣∣p dr dxN = γN,p

1∫
0

∣∣u(0, xN) − û
∣∣p dxN .

Therefore, we obtain

lim
ε→0

Fε(uε) =
∫
Ω

|∇u|p dx + |SN−2|
1∫

0

(
1

N − 1

∣∣∣∣ dû

dxN

∣∣∣∣
p

+ γN,p

∣∣û − u(0, xN)|p
)

dxN = F(u). �
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4.3. Proof of the technical lemmas

Proof of Lemma 4.6. Let 0 < 2r � s and let v ∈ C1
c (RN−1). By the Hölder inequality we have∣∣∣∣ −

∫
∂B ′

r

v dσ ′ − −
∫

∂B ′
s

v dσ ′
∣∣∣∣
p

=
∣∣∣∣∣ −

∫
SN−2

s∫
r

∇v(ty) · y dt dσ ′
∣∣∣∣∣
p

�
( s∫

r

t
2−N
p−1 dt

)p−1

−
∫

SN−2

s∫
r

∣∣∇x′v(ty)
∣∣ptN−2 dt dσ ′

� c
(
sq − rq

)p−1
∫

A′
r,s

|∇x′v|p dx′. (4.14)

By a density argument estimate (4.14) also holds for v ∈ W 1,p(A′
r,s). Now, for v ∈ W 1,p(Cr,s) and for a.e. xN ∈ (0,1),

the function v(·, xN) belongs to W 1,p(A′
r,s) and satisfies (4.14). Hence, integrating with respect to xN ∈ (0,1) it

follows (4.8).
On the other hand, by the Morrey embedding of W

1,p

loc (RN−1) into C0
loc(R

N−1) for p > N − 1 (see, e.g., [11]),
for a.e. xN ∈ (0,1), the function v(·, xN) is continuous in the closed annulus Ā′

r,s . Then, r-rescaling the inequality
associated with the Morrey embedding W 1,p(A′

1,2) ↪→ C0(Ā′
1,2) we get that for any x′ ∈ ∂B ′

r and for a.e. xN ∈ (0,1),

∣∣∣∣v(x′, xN

) − −
∫

∂B ′
r

v(·, xN)dσ ′
∣∣∣∣
p

� Crp−N+1
∫

A′
r,2r

∣∣∇y′v(·, xN)
∣∣p dy′.

This combined with estimate (4.14) and 2r < s, implies that for any x′ ∈ ∂B ′
r and for a.e. xN ∈ (0,1),∣∣∣∣v(x′, xN

) − −
∫

∂B ′
s

v(·, xN)dσ ′
∣∣∣∣
p

� c

∣∣∣∣v(x′, xN

) − −
∫

∂B ′
r

v(·, xN)dσ ′
∣∣∣∣
p

+ c

∣∣∣∣ −
∫

∂B ′
r

v dσ ′ − −
∫

∂B ′
s

v dσ ′
∣∣∣∣
p

� csp−N+1
∫

A′
r,s

∣∣∇y′v(·, xN)
∣∣p dy′,

which yields estimate (4.9) by integrating over (0,1). �
Proof of Lemma 4.7. Let u ∈ W

1,p

0 (Ω) and let ψε ∈ C1(ω̄; [0,1]) be such that

ψε = 1 in B ′
2ε, ψε = 0 in ω \ B ′

3ε and ‖∇x′ψε‖C0(ω̄) �
c

ε
.

Consider the function ũε ∈ W
1,p

0 (Ω) defined by

ũε(x) := ψε

(
x′) −

∫
∂B ′

6ε

u(·, xN)dσ ′ + (
1 − ψε

(
x′))u(x). (4.15)

It is clear that ũε only depends on xN in C2ε , and converges strongly to u in Lp(Ω). Moreover, using estimate (4.9)
we get that

‖∇ũε − ∇u‖p

Lp(Ω)N
�

∥∥∥∥∇x′ψε

(
u − −

∫
∂B ′

6ε

u dσ ′
)∥∥∥∥

p

Lp(Ω)N
+ ‖ψε∇u‖p

Lp(Ω)N

� ε−p

3ε∫
2ε

∥∥∥∥u − −
∫

∂B ′
6ε

u dσ ′
∥∥∥∥

p

Lp(0,1;C0(∂B ′
r ))

rN−2 dr + ‖ψε∇u‖p

Lp(Ω)N

� c‖∇x′u‖p
p + ‖ψε∇u‖p

p N
L (C2ε,3ε) L (Ω)
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which tends to 0 by virtue of Lebesgue’s dominated convergence theorem. Therefore, the sequence ũε converges
strongly to u in W 1,p(Ω). �
Proof of Lemma 4.8. It is well known that there exists a constant c > 0 such that

∀V ∈ W 1,p(C2),

∫
C1,2

|V |p dy �
∫
C2

|V |p dy � c

∫
C2

|∇V |p dy + c

∫
C1

|V |p dy. (4.16)

Hence, by ε-rescaling (4.16) with the function v(x) = V (x/ε) and noting that aε � εp−N+1 in the cylinder C2ε , it
follows that∫

Cε,2ε

|v|p dx � cεp

∫
C2ε

|∇v|p dx + c

∫
Cε

|v|p dx � cεN−1
∫

C2ε

aε|∇v|p dx + c

∫
Cε

|v|p dx. (4.17)

On the other hand, using that v(x) = ∫ xN

0 ∂tv(x′, t) dt in Ω , for v ∈ W
1,p

0 (Ω), we have∫
Cε

|v|p dx � c

∫
Cε

|∂xN
v|p dx � cεN−1

∫
Cε

aε|∇v|p dx,

∫
Ω\C2ε

|v|p dx � c

∫
Ω\C2ε

|∂xN
v|p dx � c

∫
Ω\C2ε

aε|∇v|p dx.

This combined with (4.17) yields∫
Ω

|v|p dx =
∫
Cε

|v|p dx +
∫

Cε,2ε

|v|p dx +
∫

Ω\C2ε

|v|p dx � C

∫
Ω

aε|∇v|p dx,

which implies the desired estimate (4.10). �
Proof of Lemma 4.9.
Proof of the two first convergences of (4.12) with u ∈ W

1,p

0 (Ω): Let uε be a function in W
1,p

0 (Ω), with Fε(uε) � c.
By estimate (4.10) the sequence uε is bounded in Lp(Ω) and up to a subsequence converges weakly to some u in
Lp(Ω). Moreover, for any δ > 0, uε is clearly bounded in W 1,p(Ω \ Cδ), which implies that u ∈ W 1,p(Ω \ Cδ) and
by lower semicontinuity∫

Ω\Cδ

|∇u|p dx � lim inf
ε→0

∫
Ω\Cδ

|∇uε|p dx � lim inf
ε→0

Fε(uε) � c, (4.18)

where the bound is independent of δ. This establishes the second convergence of (4.12).
It remains to prove that u ∈ W

1,p

0 (Ω). Let ϕ ∈ C1(Ω̄) and let δ > 0 be small enough. By the Hölder inequality we
have for i ∈ {1, . . . ,N},∣∣∣∣

∫
Ω

u∂iϕ dx −
∫

Ω\Cδ

u∂iϕ dx

∣∣∣∣ =
∣∣∣∣
∫
Cδ

u∂iϕ dx

∣∣∣∣� cϕ‖u‖Lp(Ω)|Cδ|
1
p′ � cϕδ

N−1
p′ . (4.19)

Then, integrating by parts, using that u(x′,0) = u(x′,1) = 0 for x′ ∈ ω \ B ′
δ (as a consequence of the second conver-

gence of (4.12)) and the uniform estimate (4.18), we get that∣∣∣∣
∫

Ω\Cδ

u∂iϕ dx −
∫

∂B ′
δ×(0,1)

uϕni dσ ′
∣∣∣∣ =

∣∣∣∣
∫

Ω\Cδ

∂iuϕ dx

∣∣∣∣� c‖ϕ‖
Lp′

(Ω)
, (4.20)

where the constant c is independent of δ. On the other hand, by estimates (4.8), (4.9) the boundary integral satisfies
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∣∣∣∣
∫

∂B ′
δ×(0,1)

uϕni dσ ′
∣∣∣∣�

∣∣∣∣
∫

∂B ′
δ×(0,1)

(
u − −

∫
∂B ′

2δ

u

)
ϕni dσ ′

∣∣∣∣ +
∣∣∣∣

∫
∂B ′

δ×(0,1)

(
−
∫

∂B ′
2δ

u

)
ϕni dσ ′

∣∣∣∣

� cϕ

1∫
0

∥∥∥∥u − −
∫

∂B ′
2δ

u dσ ′
∥∥∥∥

C0(∂B ′
δ)

dxN + cϕ

∣∣∂B ′
δ

∣∣ 1∫
0

∣∣∣∣ −
∫

∂B ′
2δ

u

∣∣∣∣dxN

� cϕ

(
δ

p−N+1
p + δN−2). (4.21)

Therefore, combining estimates (4.19), (4.20), (4.21), and passing to the limit δ → 0, we obtain that there exists a
constant c > 0 such that

∀ϕ ∈ C1(Ω̄),

∣∣∣∣
∫
Ω

u∂iϕ dx

∣∣∣∣� c‖ϕ‖
Lp′

(Ω)
,

which implies that u ∈ W
1,p

0 (Ω).
Now, making the change of variables x′ = εy′ with the function ûε defined by (4.11), we obtain the estimate∫

C1

(
ε−p|∇y′ ûε|p + |∂yN

ûε|p
)
dy +

∫
C1,2

(|∇y′ ûε|p + εp|∂yN
ûε|p

)
dy � Fε(uε) � c, (4.22)

which easily implies the fourth and the fifth convergences of (4.12) up to a subsequence.

Proof of û+(y′, yN) = u(0, yN) for |y′| = 2: Taking into account the fourth convergence of (4.12), it is enough to
prove that∥∥ûε − u(0, ·)∥∥

Lp(0,1;C0(∂B ′
2)) ε→0

−−−→ 0. (4.23)

Let be a fixed δ > 0. By estimate (4.9) and Fε(uε) � c, we have for 4ε < δ,∥∥∥∥uε − −
∫

∂B ′
δ

uε dσ ′
∥∥∥∥

p

Lp(0,1;C0(∂B ′
2ε))

� Cδp−N+1
∫

C2ε,δ

|∇x′uε|p dx � cδp−N+1.

This combined with the strong convergence of uε to u in Lp(∂B ′
δ × (0,1)) (as a consequence of the weak convergence

in W 1,p(Ω \ Cδ)) gives

lim sup
ε→0

∥∥∥∥uε − −
∫

∂B ′
δ

u dσ ′
∥∥∥∥

p

Lp(0,1;C0(∂B ′
2ε))

� cδp−N+1. (4.24)

On the other hand, by the Morrey embedding of W 1,p(B ′
δ) ↪→ C0(B̄ ′

δ) we have

lim
r→0

(
−
∫

∂B ′
r

u(·, xN)dσ ′
)

= u(0, xN) for a.e. xN ∈ (0,1).

Using this limit and the Fatou lemma in (4.8) with s = δ, we get that∥∥∥∥u(0, xN) − −
∫

∂B ′
δ

u(·, xN)dσ ′
∥∥∥∥

Lp(0,1)

� cδp−N+1.

This combined with estimate (4.24) yields

lim sup
ε→0

∥∥uε − u(0, xN)
∥∥p

Lp(0,1;C0(∂B ′
2ε))

� cδp−N+1,

which implies∥∥uε − u(0, xN)
∥∥p

Lp(0,1;C0(∂B ′
2ε)) ε→0

−−−→ 0.

This limit is equivalent to (4.23).
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Proof of the third convergence of (4.12): By estimate (4.22) the sequence ûε is bounded in W 1,p(C1) with ûε(·,0) =
ûε(·,1) = 0, and the sequence ∇y′ ûε strongly converges to 0 in Lp(C1)

N−1. Therefore, ûε converges weakly to
û− ∈ W 1,p(0,1) in W 1,p(C1).

Proof of û(y′, yN) = û−(yN) for |y′| = 1: By the inequality associated with the Morrey embedding W 1,p(B ′
1) ↪→

C0(B̄ ′
1), and by estimate (4.22), we have

1∫
0

∥∥∥∥ûε − −
∫
B ′

1

ûε dy′
∥∥∥∥

p

C0(SN−2)

dyN � c

1∫
0

∫
B ′

1

|∇y′ ûε|p dy′ dyN ε→0
−−−→ 0,

and by the third convergence of (4.12) we also have

−
∫
B ′

1

ûε

(
y′, yN

)
dy′ −→ −

∫
B ′

1

û−(
y′, yN

)
dy′ = û−(yN) strongly in Lp(0,1).

Hence, we deduce that

1∫
0

∥∥ûε(·, yN) − û−(yN)
∥∥p

C0(SN−2)
dyN ε→0

−−−→ 0. (4.25)

Moreover, by the third convergence of (4.12) and the Morrey compactness embedding of W 1,p(A′
1,2) into C0(Ā′

1,2),
we have∥∥ûε(·, yN) − û−(yN)

∥∥
C0(SN−2) ε→0

−−−→ ∥∥û+(·, yN) − û−(yN)
∥∥

C0(SN−2)
for a.e. yN ∈ (0,1).

This combined with the Fatou lemma and the strong convergence (4.25) implies the boundary condition û+(y′, yN) =
û−(yN) for |y′| = 1. �
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