
Ann. Inst. Hem-i Poincark, 

Vol. 14, no 5, 1997, p. 669-686 Analyse non lirkaire 

Homogenization of a quasi-linear problem with 
quadratic growth in perforated domains: An example 

Juan CASADO-DfAZ 
Departamento de Ecuaciones Diferenciales y Analisis NumCrico, 

Facultad de Matemhticas, C. Tarffa s/n, 41012 Sevilla, Spain. 
E-mail: jcasado@numer.us.es 

ABSTRACT. - We study the homogenization of Dirichlet problems for a 
fixed quasi-linear operator which is the perturbation of the Laplace operator 
by the square of the gradient, when the domain varies arbitrarily. With 
respect to the Dirichlet problem for the linear Laplace operator posed 
on the same domains, a new nonlinear zeroth order term appears in the 
homogenized problem. We also give a corrector result. 

Key words; Quasi-linear problem, perforated domain. 

RBsuMB. - On Ctudie l’homogeneisation de problbmes de Dirichlet pour 
un operateur quasi-lineaire fixe qui est la perturbation de l’operateur de 
Laplace par le cart-6 du gradient, pour une suite de domaines qui varient 
arbitrairement. Par rapport au probleme de Laplace avec des conditions 
de Dirichlet pose sur les memes domaines, il apparait un nouveau terme 
non-lineaire d’ordre zero dans le probleme homogeneise. On obtient aussi 
un resultat de correcteur. 

INTRODUCTION 

We consider in the present paper the following homogenization ,problem: 
Let R, be a sequence of open sets which are included in a fixed bounded 
open set 0 of Rd. For y, X E W, (A > 0) and for f E L”(R), we consider 
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the solution U, of the problem: 

(0.1) 
i 

-Au, + Au, = f + y]V u,]’ in D’(62,) 

u, E H,l(O,) n L”(R,). 

The existence of a solution for this type of problems has been proved in 
[4] and its uniqueness in [I] (In the present case, it can also easily be 
obtained by the change of unknown fontion (0.5) below). It is also shown 
in [4] that the norm of U, in Ht(R,) n Lco(Q2,) is a bounded sequence 
in Iw. Identifying the function U, with its extension by zero in R \ R,, 
we conclude that II,, is a bounded sequence in Hi (0) n L” (0) and so, 
extracting a subsequence, we deduce that ‘uu, converges to a function U, 
weakly in Hi (0) and weakly-* in L” (0). Our problem is to find the 
equation satisfied by the function U. 

The answer to this homogenization problem is well known in the linear 
case (see [9], [ll], [12], [lo]) where the problem satisfied by U, is now 

(0.2) 
1 

- au,, = f in D’(C&) 

UT, E H,1(%,). 

In this linear case, u,, is still bounded in H,1 (fl) and there exists a 
nonnegative measure h which vanishes on the sets of zero capacity such 
that U, converges in Hi (0) weakly to the unique solution u of the 
homogenized equation 

I 

11, E H:(0) n L;&(R) 

(0.3) I 
‘ViLVUdS+/lilldli=~~f~idl 

‘dz E Hi(R) n Lz(y2). 

In the case where ,CL is a Radon measure, the functions of D(0) belong to 
L;(R). This implies that the solution of (0.3) satisfies 

(0.4) 
- Au + pu = f in D’(0) 

u E H;(Q) n L;$2). 

Therefore, the problem satisfied by the function u is not yet (0.2) and a 
new term, ,UU, appears. Let us emphasize that this term only depends on the 
values of u, and not of its gradient. It is moreover linear with respect to U. 

To carry out the homogenization of (O.l), the idea is to make the change 
of unknown function 
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A QUASI-LINEAR PROBLEM IN PERFORATED DOMAINS 671 

The new problem we obtain is nothing but 

{ 

- AZ, = (f - Xu,)yeYun in D/(0,) 

& E &@%a) r-l L”(%), 

in which we can pass to the limit using the result of the linear case. Coming 
back to the old unknown functions, we will prove that the function u now 
satisfies the homogenized equation 

(u E H,1(R) n LO”(R) n L;(R) 

I VV E H,1(R) n L”(R) n L;(R). 

In the case where p is a Radon measure, the solution of (0.6) satisfies 

(0.7) 
i 

-Au+Xu+--- l e7u7; l p, = yp u12 + f in D’(0) 

u E H,l(O) n L:(Oy n L;(R). 

As in the linear case, there is here a new term (eT” - l)p/(reY”) (,u is 
the same measure as in the linear case), which depends only on the values 
of u, but it is no more linear. This means that the perturbation of the 
linear problem (0.2) by a nonlinear term of the form y(V u, 1’ changes the 
structure of the new term in the limit equation. 

This result is proved in Section 2 below. The same result is proved in [6] 
in the case in which the nonlinear perturbation of (0.2) is a general function 
of the form H(z, u, V u), where H has a (at most) quadratic growth in the 
gradient variable. In this case the homogenized equation reads as 

(0.8) 
{ 

-~u+Xu+g(z,u)~=f+H(~,u,Vu) inD’(fl) 
u E H;(R) n L”(R) n L;(R). 

Note that as in (0.7) the nonlinear perturbation H(z, u, V u) remains the 
same after passing at the limit, but that a new term, g(lc, u)~, appears, 
which is no more explicit but involves the measure b and a new function 
g(z, u) which results from the interaction of the homogenization and of 
the nonlinear perturbation. (In this paper, [6], we restrict ourselves for the 
sake of simplicity to the case where the measure b which appears in (0.3) 
and (0.4) is a Radon measure.) 
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In Section 3 below we obtain a corrector result, i.e. an approximation (or 
more exactly a representation) of Vu, in the strong topology of L*(o)“. 
Indeed, we establish (see Theorem 3.1) the existence of a sequence of 
Caratheodory functions F, : 0 x R H Rd such that 

lim 
J .I 

v ‘Uu, 
IL’Oo (1 

- V t/. - F,(z, u) I* d:l: = 0. 

For the linear problem (0.2) a similar result is well known to hold (see for 
example [9], [lo], [5]). In this case the functions F,(z, s) are linear in s, 
which is no more the case for problem (0.1). 

In Section 4, we compare the homogenization problem (0.1) (in which 
the open set R, is varying) with the following homogenization problem (in 
which the coefficients of the equation are varying) 

WC 
{ 

- diu (A,, V pun) + Au,, = H(x:, Vu,) in D’(a) 

u,, E f&j(R) n L”(0): 

where A, = A,(, ) J is a sequence of matrices which H-converges to a 
matrix A (see [21] for the definition of H-convergence) and where H(z: I) 
is a Caratheodory function with a quadratic growth in < (for example 
H(z,I) = f(x) + rlE12, f E L”(6L)). 

The homogenization of (0.9) has been studied in [2] (see also [3]). In that 
case IV u,l* is equi-integrable and this plays a very important role in the 
proof. In constrast, the sequence IV u,/* is not equi-integrable in problem 
(O.l), which explains why the homogenized problems obtained from (0.1) 
and (0.9) are very differents. 

1. PRELIMINARIES 

In this Section, we recall some results concerning the homogenization of 
the linear problem (0.2) in varying domains, which will be used in the next 
Section to homogenize the quasi-linear problem (0.1). The homogenization 
of the linear problem (0.2) has been studied by many authors, see for 
example [9], [Ill, [lo]. The results presented here are mostly due to G. 
Dal Maso and A. Garroni, [lo] (see also [13], [14] and [8]). 

Consider a sequence $2, of arbitrary open sets which are included in a 
bounded open set 0 of Rd. In order to define them on the fixed open set 
0, the functions of Hd (n,,) will always be extended by zero in R \ R,,. 
So, they will be considered as elements of Hi (a). Define the function w,, 

as the solution of the problem 
-Awn= 1 in ZY(62,) 

711, E H,1(R,). 
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It is easy to prove that 20, is bounded in H,j (0). It can also be proved that 

(1.2) 0 5 w, < A4 a.e. in R 

for some constant M. Therefore there exists a subsequence (that for the sake 
of simplicity, we will still denote by n) and some w E Hi(R) such that w, 
converges weakly in Hi (0) to w. Define a distribution v E H-‘(R) by 

It can be proved by the maximum principle that the distribution v is 
a nonnegative Radon measure in R. Define finally for every Bore1 set 
B c R, the Bore1 measure p by 

(1.3) ifcup(Bn{w=O})=O 

ifcap(B n {w = 0)) > 0, 

where cap(A) denotes the capacity of the set A with respect to R, which 
is defined in the following way: If A is a compact set, the capacity of 
A is defined by 

cap(A) = inf 
{./ 

IV$+dz: vED(fl), p>XA . 
R > 

If A is an open set, the capacity of A is defined by 

cap(K) : K c A, K compact 

If A is an arbitrary set, the capacity of A is defined by 

cup(A) = inf cup(G) : A C G c R, G open . 
C I 

By definition p vanishes on the Bore1 sets of zero capacity. It is well known 
(see e.g. [16], [23], [15]) that a function of H;(0) has a representative 
which is defined quasi-everywhere (q.e.), i.e. defined except on a set of 
zero capacity. We will always use this representative for the functions of 
Hi(a), which are thus defined p almost everywhere. It can be shown (see 
[lo]) that the function w and the measure h are related by 

(1.4) 

w E H;(R) n L;(R) 

.I 
VwVvdzi- f wodp=lllidx 

V: E H;(R) ” &I). 
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With these definitions, G. Dal Maso and A. Garroni ([lo]) have shown the 
following homogenization result for the linear problem (0.2): 

THEOREM 1.1. - Consider a sequence fiL of H-l(0) which converges to 
some f strongly in H-‘(iI). Let u, be the solution of the problem 

(1.5) 
- AU,, = fn in D’(0,) 
IL, E H;(Q,). 

Then (the whole sequence) 71,~ converges weakly in Hi (62) and strongly in 
W’~~(O), 1 5 p < 2, to th e unique solution u of the problem 

u E H;(0) n L;(R) 

(1.6) 

I 

.I 
U u V 71 dx + 

I 
uu dp = (f, 71) 

V:1 E H;(0) ” ,,;;I). 

REMARK 1.1. - The problem satisfied by the limit u is similar to the 
problem satisfied by the function w,, but a new term, pu, appears. This is 
the “strange term” in the terminology of D. Cioranescu and F. Murat ([9]). 
However, if, following G. Dal Maso and U. Mosco ([ll], [12]), we define 
for every Bore1 set B c (2 the measures pL, by 

(1.7) ~43) = C 
0 if cap(B n (fl \ SITL)) = 0 

fm if cup(B n ((1 \ &)) > 0, 

problem (1.5) can be written in a form similar to (1.61, i.e. 

Let us conclude this Section by recalling the corrector result for the 
linear problem (0.2) (or (1.5)). The following theorem has been established 
in [lo] (see also [9], [13], [14], [5] and [8] for related results). 

THEOREM 1.2. - Let u,, u! fiL and f be as in Theorem 1.1, with f in 
L”(R). Define R, by 
$9) 

vu = Ou+$C(w,,-w)+R, a.e.on{xEft: 7u(x)>O} 
11 

C R.7, a.e. on {x E f2 : I = O}. 

Then the sequence R,, converges strongly to zero in L2(R)d. 
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REMARK 1.2. - An important step in the proof of Theorem 1.2, which 
we will use below. is to note that 

(1.10) 

a result which is easily proved by the maximum principle, using (1.4) and 
(1.6). In view of (1.10) it is clear that t belongs to L”({z E R : W(X) > 
0)) and thus that ZV (wn- w) and R, belong to L2({z E 0 : w(z) > 0)). 

From (l.lO), we deduce that 

(1.11) Vu = 0 a.e. in {CC E R : W(X) = O}. 

For our purpose, it is better to modify in Theorem 1.2 the sequence w, 
and to replace it by another sequence 6, which is defined by 

(1.12) ulr,, = min{w,, w}. 

which has the advantage that 

(1.13) 0 5 GT, < w q.e. in 0. 

Using the sequence CI,, we have 

LEMMA 1.1. - Let u,, IL, fn and f be as in Theorem 1.2. Then the 
sequence G,,, dejined by 

(1.14) G,, = ‘o 
C 

u+ q.e. on {x E R : w(x) > 0) 

q.e. on {x E R : w(z) = 0} 

belongs to Ht(Q,) f~ L”(0) and satisjies 

(1.15) If&I 5 /ul q.e. in R 

(1.16) iL,,u > 0 q.e. in Cl 

(1.17) vu,, = y + :vw,, 
i- 

-+Vw a.e.on{zEfl: w(2)>0} 

ae. on {Lc E R : w(z) = 0). 

Proof. - From ( 1.10) and (1.13), it is clear that U,, E L” (0) and satisfies 
(1.15) and (l.l6).For E > 0 define Gi by 

-E W, u,=u- 
W+&’ 
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The sequence 11: belongs to Hi(&) and converges pointwise to Gn when 
F tends to zero. Its gradient is 

(1.18) V;i:, = &VU+ LVG,, - (wu~‘;)2vw. 
111 + & 

By (1. lo), ( 1.13) and the Lebesgue’s dominated convergence theorem, V U:, 
converges strongly in L2(R)d, when E tends to zero, to the expression of 
V G, given in (1.17). Therefore, we conclude that U, belongs to Hi(R,) 
and that its gradient is given by (1.17). n 

We have now in position to establish the following version of the 
corrector result (compare with Theorem 1.2). 

THEOREM 1.3. - Let u,: ‘1~; fn and f be as in Theorem 1.2 and let G, 
be dejked by (1.14). Define f,, and &, by 

(1.19) u, Sin+?, q.e. inQ 

(1.20) vun = i 
Vu+$V(G,-w)+& a.e.on{sER: zu(z)>O} R 71 a.e. on {x E 0 : w(x) = 0} 

Then the sequences FrL and fi, converge strongly to zero in Hi(G) and 
L2 (Cl)” respectively. 

Proof. - Let us first prove that 

(1.21) w,, - ti,, --+ 0 in H;(0). 

Since 1zI, = w, - (wn - w)+, it is enough to prove that (w, - w)+ 
converges to zero in HJ (R). The function (w,, - w)+ belongs to Ht (0,) 
and is thus an admisible test function for (1.1). This yields 

V w, V (w,, - w)+ dx = 
J’ 

Vw,V(w, - w)+dx 
PI 

(w, - w)+ drc = ’ (wn’- w)+ dz + 0. 
n J 12 

Since (WJ~ - w)+ converges weakly to zero in Hd (Q) it is also clear that 

(1.23) 
i’ 

V w V (w,, - w)+ dz + 0. 
. Yi2 

Taking the difference of (1.22) and (1.23), we have proved (1.21). 
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Let now u,, u, fn and f be as in Theorem 1.2. In view of the definitions 
(1.9) and (1.20) of R, and R,, and of Theorem 1.2, it is enough, in order 
to prove that fi, converges strongly to zero in L2(R)d, to show that 

lim 
J’ 

5,V(Gn -w,)12dx = 0 
lL-m {w>O} w2 

which easily follows from (1.10) and (1.21). 
Using (1.17) and (1.20), we have 

v (% 4) 
I= 

{ 

Vu,-~Vu-~Vzi~~+~Vw a.e.in{xEQ: w(x)>O} 

V&l a.e. in {x E R : ,(0(x) = 0) 

= 

i 

(I-+)Vu+$(+-l)Vw+R, a.e.in{xER: w(x)>O} 

Rx a.e. in {x E 62 : w(x) = O}. 

By the strong convergence to zero in L2(0)d of &,, (l.lO), (1.13) and the 
Lebesgue’s dominated convergence theorem, the right-hand side converges 
strongly in L2(fl)d to zero. This proves the strong convergence of Yn to 
zero in Hi(R). n 

We complete this Section with the following lemma which will be used 
later. 

LEMMA 1.2. - ([S], see also [ll], [9], [5]). If’z~, E Hi(%) converges 
weakly in Hi (0) to a function u, then u E LE (0). 

2. HOMOGENIZATION OF THE NONLINEAR PROBLEM (0.1) 

In this Section, we use Theorem 1.1 to pass to the limit in (0.1). Assume 
that R, is such that, for the whole sequence n, the solution ww, of (1.1) 
converges weakly in Hi(Q) to a function w and define ,G by (1.3). 

THEOREM 2.1. - Let A, y be real constants with X > 0. For any f E L” (Cl), 
&jine uu, as the buzique solution of the problem 

(2.1) 
i 

- AU, + AU, = y(Vu,j’+ f in D’(f12,) 

u, E H,1(cQ n L”(R,). 

Vol. 14, no 5.1997. 
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Then, the sequence u,, converges weakly in Hi (Cl), weakly-* in L” (0) and 
strongly in W’J’(O), 1 < p < 2, to the unique solution u of the problem 

‘u E H;(R) n L”(O) r-L;(G) 

(2.2) 

Proof. - It has been shown in [4] that (2.1) has a (at least) solution 
(this solution is proved in [l] to be unique) and that the norm of u,, in 
Hi (0,) n L”(R,,) is bounded. Indeed, it follows from an estimate along 
the lines of the maximum principle (see [4]) that 

(2.3) co 
II w7 llL-(o,,)L X’ where CO =/I f III,-(~) 

while the Hi(12,,) estimate is more difficult to state. Actually, in the 
present case, the change of unknown function (2.4), which will be used 
below, allows one to retrieve these existence and boundedness results in 
a simple way. These estimates imply the existence of a subsequence of 
‘II. (still denoted by n) such that TL,, converges weakly in Hi (0) and 
weakly-* in L”(R) to a function 11, which by Lemma 1.2 belongs to 
Hi(R) n L;(O) n L”(O). A n argument similar to the one used in [l] 
implies that problem (2.2) has a unique solution. This uniqueness result 
implies that it is not necessary to extract any subsequence of n, whenever 
‘u is proved to satisfy (2.2). 

Define the function z,, by 

(2.4) ,-Yun z,, = f, 
_ 1. 

Using (2.3), we have the following estimate for z,: 

(2.5) 
icg 

e !+ > 1 + z,, = eYUn > e-q a.e. in R. 

Note that z, E Hi (0,) n L” (62,). From 

v z, = ye-v un 

and from (2.4), we deduce that 

(2.6) vu, = v & 
7(1+ 2,) 

Andes de I’lnstirur Henri P&care Analyse non IinCaire 
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while 
IL, = ; log(1 + 2,). 

We therefore deduce from (2.1) that for every 11 E Hi (fl,) n L”(fl,,) 
one has 

(2.7) 
1 

s 
vz,vv x 

r R, (1+ G-l) dx + r R, J 
log( 1 + z,,)v dx 

1 IV &I2 =- 
y R,, (I+ Zn)2rudx + J .I 

fvdx. 
R 

Using v = $1 + zn)p, with cp E H,1(R,) fl L”(R,) (this function ‘u 
belongs to Ht (0,) n L” ( f12,)) as test function in (2.7), we obtain 

(2.8) I’ Vz,Vvdx = 
I 

(l+ 2n)C-y.f - Xlog(l + Zn))pdx, 
- % . 0, 

Using (2.8) it is now easy to show that z, is bounded in HJ(R,) (which also 
follows from u, bounded in Ht(R,)). Indeed, taking cp = z, in (2.8) gives 

IVz,12dx+ 
J 

’ (Xl0g(l+z,)-y,f)(l+2,)~dx 
R, 

l= /’ X (l+z,)log(l+z,)dx-y 
I’ 

f( 1 + z,) dx; 
. Q, * Q,, 

which, together with (2.5) implies that 11 z, IIH;cn,=Ij z, IIH;crs,, is 
bounded. 

Rellich-Kondrachov’s theorem, (2.5), and Lebesgue’s dominated 
convergence theorem imply that the sequence (1 + zn)(rf - X log( 1 + 2,)) 
converges strongly in L2( fi) to the function (1 + 2) (rf - X log( 1 + z)), 
where z = ey” - 1 (see (2.4)). Therefore Theorem 1.1 applied to (2.8) 
implies that the function z is solution of 

1 

z E HA(R) n L”(O) n L:(O) 

(2.9) .I VzVvdx+/zvd~=~(l+z)(+Xlog(l+z)),i 

Vi E Hi(R) n Li;O). 

Using v = * with ‘p E Hi (0) n L”(R) n L:(R) as test function 
in (2.9) implies that u satisfies (2.2), which finishes the proof. n 

Vol. 14, no 5-1997. 
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REMARK 2.1. - If y = 0, Theorem 1.1 applied to Problem (2.1) implies 
that u satisfies 

In fact 

1 PYU - 1 linl -L--..- = u 
y-0 Y f<-fU 

and Theorem 2.1 is thus consistent with Theorem 1.1. 

3. CORRECTOR 

The aim of this Section is to prove the following corrector result. 

THEOREM 3.1. - In the framework of Theorem 2.1, let u,, u, w,, 6, 
and w be respectively dejined by (2.1), (2.2), (l.l), (1.12) and (1.4). Dejine 
R,, and r, by 

(3.1) u,, = 
1 

f log 1 + c$ (c’i 1’ - 
( 1)) + r7, y.e. on {tr E 62 : -w(Ic) > 0) 

1'n y.e. on {:I: E 62 : w(x) = 0) 

(3.21 vu,, = ~~+i,+-,,(,-..-i)V(rh~, -wu)+Rx 

{ 

,'"-, ae. on {Lc E 12 : '71~(2-) > 0) 

"1 u.e. on (2; E 12 : Ul(.Z~) = 0). 

Then the sequences r, and R, converge strongly to zero in H,j (a) and 
L2 ( O)d respectively. 

REMARK 3.1. - From (1.13) and (2.5), we deduce that 
(3.3) x x 
1+ %z = 1+ 2(e7” - 1) 2 1+ %(e-p - 1) 2 e-q q.e. in 62. 

Therefore, the logarithm in (3.1) and the denominator in (3.2) are well 
defined. Here the use of 6, in place of ~1, proves to be useful. 

Proof of Theorem 3. I. - To simplify the notation, let us denote by 0, any 
sequence of functions of L2 (a)” which can change from a line to another, 
such that 0, converges strongly to zero in L”(C!)d. We want to prove in 
particulat that R, defined by (3.2) is such an 0,. 
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First step. - Since Z, satisfies (2.8), and since (1 +zn) (rf - X log( 1 +z~&)) 
is bounded in L”(R), Theorem 1.3 implies that defining Pn and fi, by 

(3.4) 2, = 
C 

25% + f, q.e. on {X E R : W(X) > 0) 
r, q.e. on {X E fl : W(X) = 0} 

(3.5) v zn = i 

Vz+~V(l&-w)+R, a.e. on {Z E R : w(z) > 0) 
R n a.e. on {X E R : w(z) = 0}, 

the sequences 7, and &, converge strongly to zero in Hi (0) and L2 (R)d 
respectively. By (1. lo), we also know that there exists a constant C > 0 
such that 

(3.6) 121 5 Cw q.e. in R 

and by Lemma 1.1, that the function & defined by 

&L = 
- 1 

2% q.e. on {X E R : W(X) > 0} 
0 q.e. on {X E R : 211(x) = 0) 

belongs to H,‘(R) fl L”(R). 
Using (2.6), and taking into account (2.5), we deduce from (3.5) that 

on {X E R : W(X) > 0} 

(3.7) 

lV.25, 11 vu,=---= 
Yl+& 

YE(V z + ;v (73, - 20) + ii,) 
n 

1 VZ -- 
= yl+z 

+1 y+v(w”-w)+o, 
n 

=vu+: _1 ~V(&-w)+O,, 
?I+.$+?,,“: 

while on [x E R : W(X) = 0) 

lVz, lR, vu,=--= 
Yl+& 

-- = 0,. 
Yl+&l 

Second step. - We will now improve (3.7) by removing F,. Indeed, 
in order to prove that R, defined by (3.2) converges strongly to zero in 
L2 ( b2)d, it is enough to show that 

lim 
J n-cc {w>O} 

Vol. 14, no s-1997. 
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By (3.6), (2.5) and (3.3) we have on {X E Q : ?~I(x) > 0} 

Thus 

lim sup 
J n-cc {w>O} 

2 
1 1 

- 
1+zuI”+i;, 

111, ; V (Gn - w) dx 

w 1+2; 

where in the last equality, we use the fact that the sequence V,, is bounded 
in L”(Q). It is then enough to show that 

(3.8) lim 
.I 

?;IVW,,12 dx = 0. lJiix, iI 

Third step. - Proof of (3.8). 

Since I& and Y,, belong to Hi(bt,) rl ,Cm(O,,), the function Tzti,, 
belongs to HJ(s2,). We can therefore use it as test function in (1.1) or 
more exactly in 

--a& = 1 - A (6, - w,) in D’(f12,). 

We obtain 

Using Rellich-Kondrachov’s theorem, the fact that W, and ?, are bounded 
in L”(n) and that F, and ti, - w, converge strongly to zero in HA (52) 
(see (1.21)), we easily deduce that the second, third and fourth terms tend 
to zero. This gives (3.8). We have thus proved that R, defined by (3.2) 
converges to zero strongly in L2( 0)“. 

Fourth step. - Let us now prove that the sequence r, defined by (3.1) 
converges strongly to zero in Hi(n). 
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By (3.3) we have 1 +-%.z 2 e* quasi everywhere on {X E R : 
W(X) > 0}, thus log( 1 + 2 ,z) is well defined. By Lemma 1.1 the sequence 
v, defined by 

{ 

$log(l + %Z) q. e. on {X E Q : W(Z) > 0) 
v, = 

0 q.e. on {Z E R : W(X) = 0} 

belongs to Hi (a) n L”(a) and its gradient is given by 
(3.10) 

v v,, = 
{ 

$& ~vz+;vw,, 
w ( 

- +gw) a.e. on {Z E 0 : W(X) > 0) 

0 a.e. on {X E s2 : W(Z) = 0). 

From TV = U, - vn it follows that T, E HJ (R) n L”(R). As 
V T, = V u, = R, almost everywhere in {X E 0 : W(X) = 0}, we 
deduce that VT, converges strongly to zero in L2({x E fl : W(X) = 0))“. 

On the other hand, on {Z E R : W(Z) > 0}, we use T, = U, - ?I,, 
(3.10), (3.2), then (1.21), (3.3) and (3.6) and finally (1.13); we obtain 

vr, = vu,-- I_ (%7z+~v,~,-~vw> y1+w”, ‘w W 1112 

70 

1 - =vrl-l l- lunvz+’ _ z 3-l vw+o, 
Q+%, w 71 1 wyJ ( > ‘10 

w w 
=vu--- l l v.zton=on Yl+Z 

which completes the proof of Theorem 3.1. n 

4. COMPARISON WITH THE ANALOGOUS 
PROBLEM WITH OSCILLATING COEFFICIENTS 

In this Section, we compare the results obtained in the above Sections 
2 and 3 with the results obtained by A. Bensoussan, L. Boccardo and F. 
Murat [2] for the analogous problem with varying coefficients (see also [3]). 

Consider a bounded open set R c Wd and a Caratheodory function 
H : R x Rd H R such that for almost every z E 0 we have 

where C is a positive constant; the model example is the case H(z, I) = 
co + r1112. 
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We consider the problem 

(4.1) 
- div (A,, V ?I,,,) + XU,, = H(z, VU,,) in D’(0) 

71, E H,1(12) n LLX(i2). 

where X > 0 and A, = A,,(x) IS a sequence of matrices which satisfy 
A,, 2 a1, (ArL)-l 2 &I, (~2, p > 0), and which H-converges to a matrix A 
(see [21] for the definition of H-convergence). In constrast with problem 
(2.1), here the domain is fixed and it is the operator -&I (A,V) which 
varies. It has been proved in [4] that there exists a solution of (4.1) which is 
bounded in Ht (0) n L”(R) independently of 71. This solution is moreover 
unique, (see [l]). Therefore, we can suppose (extracting a subsequence 
if necessary) that the sequence uL, converges weakly to a function u in 
Hi(R) and weakly-* in L”(b2). 

Following [2] define now ‘ii, as the solution of the problem 

(4.2) 
- div (A, V G,,) = - div (A V U) in D’(n) 

u, E H,1(R). 

It has been proved in [2] that 

(4.3) ‘WI - G,, t 0 in H,1(62) strongly. 

This means that the corrector for the linear problem (4.2) is still a corrector 
for the nonlinear problem (4.1). The proof of (4.3) is based on the fact that 
IV G,]’ is equi-integrable because of Meyers’ regularity theorem (see [20] 
or the appendix of [22]). This implies that IV U, I2 is also equi-integrable. 
As a result of this, the limit problem of (4.1) reads as 

Note that in (4.4) the limit operator -div (A V) is the same as in the linear 
case, but that the perturbation fi(z, V U) is no more H(z, VU) in general. 

In the case of varying open sets R, that we considered in Sections 2 and 3, 
the result is different: the nonlinear perturbation H(z, V U) (which was there 
ylV u12) remains the same, but the limit operator -A v+(eY” - l)p/(yeY”) 
is no more the operator which appears in the linear case (y = 0) where it 
is -A u + pu. This is due to the fact that in the nonlinear case (y # 0) the 
corrector result (3.2) really differs from the corrector result (1.9) or (1.20) 
of the linear case. It should also be emphasized that a careful study of the 
corrector result (3.2) shows that IV u,j2 is not equi-integrable in general. 
This is due to the fact that IV w,j2 (and thus IV u,/~) is not equi-integrable 
in general, as it can be proved by considering special examples (see [9]>. 
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