
J. Evol. Equ. 21 (2021), 1779–1807
© 2021 Springer Nature Switzerland AG
1424-3199/21/021779-29, published online January 2, 2021
https://doi.org/10.1007/s00028-020-00656-0

Journal of Evolution
Equations

Exponential behavior and upper noise excitation index of solu-
tions to evolution equations with unbounded delay and tempered
fractional Brownian motions

Yejuan Wang, Yarong Liu and Tomás Caraballo

Abstract. In this paper, we investigate stochastic evolution equations with unbounded delay in fractional
power spaces perturbed by a tempered fractional Brownian motion Bσ,λ

Q (t)with−1/2 < σ < 0 and λ > 0.
We first introduce a technical lemma which is crucial in our stability analysis. Then, we prove the existence
and uniqueness of mild solutions by using semigroup methods. The upper nonlinear noise excitation index
of the energy solutions at any finite time t is also obtained. Finally, we consider the exponential asymptotic
behavior of mild solutions in mean square.

1. Introduction

Tempered fractional Brownianmotion (TFBM) defined by exponentially tempering
the power law kernel in the moving average representation of a fractional Brownian
motion (FBM) was first introduced by Meerschaert and Sabzikar in [27]. Tempered
fractional Gaussian noise (TFGN), the increments in TFBM, can exhibit semi-long
range dependence when the corresponding FGN is long range dependent. Wind speed
data are important for electrical power generation and structural engineering. An im-
portant application to model wind speed near the earth surface was also presented in
[27]. More precisely, TFGN can provide a useful stochastic process model for wind
speed data, see, e.g., [1,11,18,22,31]. Furthermore, the time-changed TFBMhas been
investigated in [8] with potential applications in financial time series, biology and
physics.
Retarded differential equations have attracted much attention in the literature due to

physical reasons with non-instant transmission phenomena such as high velocity fields
in wind tunnel experiments, or other memory processes, or biological motivations like
species growth or incubating time in disease models among many others. Stochastic
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delay differential equations driven by the standard Brownian motion have been widely
investigated in the literature, see, e.g., [6,7,23,25,32,33] and the references therein.
There has, however, been littlemention of SDEs or SPDEswith delay driven byTFBM.
In this paper, we consider the stochastic evolution equations with infinite delay{

du(t) = −Au(t)dt + f (t, ut )dt + g(t, ut )dB
σ,λ
Q (t), t > 0,

u(t) = ϕ(t), t ∈ (−∞, 0], (1.1)

where−A is a closed, densely defined linear operator generating an analytic semigroup
S(t), t ≥ 0, on a separable Hilbert space H, f : [0,∞) × C (Hα) �→ H, g :
[0,∞) × C (Hα) �→ L0

Q(U ,H) are two Lipschitz continuous functions, Bσ,λ
Q (t) is a

tempered fractional Brownian motion with −1/2 < σ < 0 and λ > 0 over a filtered
probability space (Ω,F , (Ft )t≥0, P), ϕ ∈ C (Hα) with ϕ(t) being Ft -measurable,
where Ft = F0 for all t ≤ 0. Here, Hα = D(Aα) and

C (Hα) = {
ψ ∈ C

( − ∞, 0; L2(Ω;Hα)
) : lim

θ→−∞ ψ(θ) exists in L2(Ω;Hα)
}
.

In [15,16], the existence of a unique pathwise solution for stochastic evolution equa-
tions driven by FBM was established when H ∈ (1/3, 1/2]. In [12,13], the existence
and uniqueness of solutions for delayed SDEs driven by FBM have been proved when
H > 1/2. Using rough path theory, the authors gave the existence and uniqueness of
solutions to fractional equations with delay when H > 1/3 (see, e.g., [29]). In [5,17],
the authors investigated the existence, uniqueness and exponential asymptotic behav-
ior of mild solutions to stochastic delay equations perturbed by FBM with H > 1/2.
Controllability of non-autonomous neutral evolution stochastic functional differential
equations driven by FBM with H > 1/2 has been proved in [21]. More recently, the
global existence, uniqueness and viability results to stochastic functional differential
equations in Hilbert spaces driven by FBM when H > 1/2 have been studied in [34].
However, the literature about SDEs or SPDEs driven by TFBM is scarce in both cases
with and without delay.
The purpose of this paper is to investigate the global existence and uniqueness of

mild solutions to stochastic delay evolution equations (1.1) in fractional power spaces,
and to study the effect of nonlinear noise to (1.1) but with f = 0 when the noise is
large, and also to analyze the long time behavior to (1.1) but in the particular case in
which the function g becomes independent of the state variable, in other words, when
g is replaced by φ : [0,∞) �→ L0

Q(U ,H). The reason to consider this particular
situation is explained in details in Sect. 5. “Intermittency” is the property that the
solution ut (x) develops extreme oscillations at some values of x , typically when t is
large. Intermittency has been observed in an enormous number of scientific disciplines
such as “spikes” in neural activity or “shocks” in finance among many others. It is
worth noticing that in NMR spectroscopy, intermittency can be strongly associated
with nonlinear noise excitation (see, e.g., [2,24]). The effect of noise intensity on
stochastic parabolic equations driven byBrownianmotion has been discussed in recent
years; in particular, the relationship between the energy of solutions at time t and the
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level of the noise was established in [14,19,20,26]. However, there has been little
literature about the relationship between the energy of solutions and the level of the
noise for stochastic delay evolution equations even in the case of Brownian motion.
Here, we consider stochastic evolution equations with infinite delay and TFBM, the
upper bound of the upper excitation index of the solution at time t will be presented.
e(t) and e(t), respectively, denote the lower and upper excitation indices of the mild
solution at time t [14,19,20,26], where we may use the notation

e(t) := lim inf
η→∞

log logEt (η)

log η
, e(t) := lim sup

η→∞
log logEt (η)

log η
,

where Et stands for the energy of the solution at time t and η stands for the level of
the noise.

The contents of the paper are as follows. In Sect. 2, some necessary preliminaries
on the stochastic integration with respect to TFBM are established. In particular, a
technical lemma which is crucial in our analysis is proved. In Sect. 3, the global
existence and uniqueness of mild solutions to (1.1) are established. In Sect. 4, we
show an upper bound of the upper excitation index of the mild solution to (1.1) at time
t but with f = 0. The last section is devoted to establish some sufficient conditions
ensuring the exponential decay to zero of the mild solution to (1.1) in mean square,
but in the particular case in which g possesses the form g(t, ut ) = φ(t), with φ :
[0,∞) �→ L0

Q(U ,H).

2. Preliminaries

In this section, we introduce the tempered fractional Brownian motion as well as
the Wiener integral with respect to it; for more details, we refer to [27,28]. We also
establish some important results which will be used throughout the paper.

We denote by H a separable Hilbert space with inner product (·, ·) and norm ‖·‖.
Let U be another separable Hilbert space and L(U ,H) be the space of all bounded
linear operators from U into H. For convenience, we will use the same notation ‖·‖
to denote the norms in U and L(U ,H), and use (·, ·) to denote the inner product of U
without any confusion. Let (Ω,F , P) be a probability space on which an increasing
and right continuous family {Ft }t≥0 of complete sub-σ -algebras of F is defined, and
F0 contains all P-null sets of F .
Now let us recall the definition and some basic properties of tempered fractional

Brownian motion (TFBM). Let {B(t)}t∈R be a two-sided one-dimensional Brownian
motion with mean zero and variance |t | for all t ∈ R. Define an independently scat-
tered Gaussian random measure B(dx) with control measure m(dx) = dx by setting
B[a, b] = B(b) − B(a) for any real numbers a < b, and then extending to all Borel
sets.
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Definition 1. For any σ < 1/2 and λ > 0, a tempered fractional Brownian motion
(TFBM) is defined by the following integral:

Bσ,λ(t) =
∫ ∞

−∞

[
e−λ(t−x)+(t − x)−σ+ − e−λ(−x)+(−x)−σ+

]
B(dx), (2.1)

where (x)+ = x I(x>0), 00 = 0 and λ is called tempered parameter.

It follows from Proposition 2.3 in [27] that TFBM has the covariance function

Cov
[
Bσ,λ(t), Bσ,λ(s)

] = 1

2

[
C2
t |t |2H + C2

s |s|2H − C2
t−s |t − s|2H

]
,

where H = 1/2 − σ , and

C2
t = 2Γ (2H)

(2λ |t |)2H − 2Γ (H + 1
2 )√

π

1

(2λ |t |)H KH (λ |t |), t 
= 0,

in which KH (·) is the modified Bessel function of the second kind, and C2
0 = 0.

When λ = 0 and −1/2 < σ < 1/2, the TFBM (2.1) reduces to a fractional
Brownianmotion (FBM), a self-similar Gaussian stochastic processwithHurst scaling
index H = 1/2 − σ . When λ = 0 and σ < −1/2, TFBM (2.1) does not exist, since
the integrand in the right hand of (2.1) is not in L2(R). However, TFBM with λ > 0
and σ < −1/2 is well-defined, because the exponential tempering keeps the integrand
in L2(R). When σ < −1/2 and λ > 0, or when σ = 0 and λ > 0, TFBM (2.1) is
a continuous semimartingale, so the classical Itô stochastic calculus is applicable to
TFBM in these cases. When σ ∈ (−1/2, 0) ∪ (0, 1/2) and λ > 0, TFBM is neither a
semimartingale nor a Markov process.
We assume that there exists a complete orthonormal basis {ek}k∈N in U , and that

Bσ,λ
Q = {Bσ,λ

Q (t)}t≥0, BH
Q = {BH

Q (t)}t≥0 and BQ = {BQ(t)}t≥0, respectively, are

cylindricalU-valuedTFBM,FBMandBrownianmotiondefinedon
(
Ω,F , {Ft }t≥0, P

)
with afinite trace nuclear covariance operator Q ≥ 0.Denote Tr(Q) = Σ∞

k=1λk < ∞,

which satisfies that Qek = λkek , k ∈ N. Let {Bσ,λ
k }k≥1 be a sequence of two-sided

one-dimensional TFBMs mutually independent on
(
Ω,F , {Ft }t≥0, P

)
such that

Bσ,λ
Q (t) =

∞∑
k=1

√
λk B

σ,λ
k (t)ek, t ≥ 0,

where−1/2 < σ < 0 and λ > 0. In particular, let {BH
k }k≥1 and {Bk}k≥1, respectively,

be the sequences of two-sided one-dimensional standard FBMs andBrownianmotions
mutually independent on

(
Ω,F , {Ft }t≥0, P

)
such that

BH
Q (t) =

∞∑
k=1

√
λk B

H
k (t)ek, t ≥ 0,
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and

BQ(t) =
∞∑
k=1

√
λk Bk(t)ek, t ≥ 0,

where Hurst index H ∈ (1/2, 1).
For ψ, φ ∈ L(U ,H), we define (ψ, φ)Q = Tr(ψQφ∗), where φ∗ is the adjoint of

the operator φ. Then, for any bounded operator φ ∈ L(U ,H),

‖φ‖2Q = Tr(φQφ∗) =
∞∑
k=1

∥∥∥√
λkφek

∥∥∥2 .

If ‖φ‖2Q < ∞, then φ is called a Q-Hilbert–Schmidt operator. Denote by L0
Q(U ,H)

the space of all φ ∈ L(U ,H) such that φ is a Q-Hilbert–Schmidt operator equipped
with the norm ‖·‖Q .
Now, we recall the definitions of tempered fractional integral and stochastic integral

with respect to TFBM; see [28].

Definition 2. For any f ∈ L p(0, T ) (where 1 ≤ p < ∞), and for any a, b ∈ [0, T ]
with b > a, the positive and negative tempered fractional integral on (a, b) are defined
by

I
α,λ
a+ f (t) = 1

Γ (α)

∫ t

a
f (u)(t − u)α−1e−λ(t−u)du (2.2)

and

I
α,λ
b− f (t) = 1

Γ (α)

∫ b

t
f (u)(u − t)α−1e−λ(u−t)du (2.3)

respectively, for any α > 0 and λ > 0, where Γ (α) = ∫ +∞
0 e−x xα−1dx is the Euler

gamma function.

Definition 3. For any −1/2 < σ < 0, λ > 0, and for any a, b ∈ [0, T ] with b > a,
we define∫ b

a
f (t)dBσ,λ(t) := Γ (k + 1)

∫ b

a

(
I
k,λ
b− f (t) − λI

k+1,λ
b− f (t)

)
dB(t) (2.4)

for any f ∈ A1 :=
{
f ∈ L2(a, b) :

∫ b

a

∣∣∣Ik,λb− f (t) − λI
k+1,λ
b− f (t)

∣∣∣2 dt < ∞
}
. Here,

k = −σ , andA1 is a linear space with inner product 〈 f, g〉A1 := 〈F,G〉L2(a,b) where

F(t) = Γ (k + 1)
(
I
k,λ
b− f (t) − λI

k+1,λ
b− f (t)

)
,

G(t) = Γ (k + 1)
(
I
k,λ
b−g(t) − λI

k+1,λ
b− g(t)

)
.

The following inequalities will be used in the proof of our main results in this
section.
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Lemma 1. For any −1/2 < σ < 0, we have

∫ u∧r

0
(u − s)−σ−1(r − s)−σ−1ds ≤ |r − u|−2σ−1 β(1 + 2σ,−σ) (2.5)∫ x∧y

0
(x − s)−σ (y − s)−σds ≤ (x ∨ y)2 |x − y|−2σ−1 β(1 + 2σ, 1 − σ), (2.6)

where β(·, ·) is the beta function.

Proof. It follows from Lemma 2.2 in [30] that

∫ 1

0
tu−1(1 − t)v−1(c − t)−u−vdt = c−v(c − 1)−uβ(u, v) (2.7)

for u, v > 0, c > 1. Consider first the case u > r , by (2.7) we obtain

∫ u∧r

0
(u − s)−σ−1(r − s)−σ−1ds =

∫ r

0
(u − s)−σ−1(r − s)−σ−1ds

=
∫ 1

0

(u
r

− y
)−σ−1

(1 − y)−σ−1 r−2σ−1dy (change of variable y = s/r)

≤
∫ 1

0

(u
r

− y
)−σ−1

(1 − y)−σ−1 y2σ r−2σ−1dy

=
(u
r

− 1
)−2σ−1 (u

r

)σ

β(1 + 2σ,−σ)r−2σ−1

= (u − r)−2σ−1
(u
r

)σ

β(1 + 2σ,−σ) ≤ (u − r)−2σ−1 β(1 + 2σ,−σ).

For the case r > u, in a similar way as above, we have

∫ u∧r

0
(u − s)−σ−1(r − s)−σ−1ds ≤ (r − u)−2σ−1 β(1 + 2σ,−σ),

and consequently

∫ u∧r

0
(u − s)−σ−1(r − s)−σ−1ds ≤ |r − u|−2σ−1 β(1 + 2σ,−σ).
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We want to show now that (2.6) holds true. For the case x > y, we deduce from
(2.7) that

∫ x∧y

0
(x − s)−σ (y − s)−σds =

∫ y

0
(x − s)−σ (y − s)−σds

= y−2σ+1
∫ 1

0

(
x

y
− t

)−σ

(1 − t)−σ dt (change of variable t = s/y)

= y−2σ+1
∫ 1

0

(
x

y
− t

)−σ−2

(1 − t)−σ

(
x

y
− t

)2

dt

≤ y−2σ+1
(
x

y

)2 ∫ 1

0

(
x

y
− t

)−σ−2

(1 − t)−σ t2σdt

= y−2σ−1x2
(
x

y

)σ−1 (
x

y
− 1

)−2σ−1

β(1 + 2σ, 1 − σ)

= x2
(
x

y

)σ−1

(x − y)−2σ−1 β(1 + 2σ, 1 − σ)

≤ x2 (x − y)−2σ−1 β(1 + 2σ, 1 − σ).

For the case y > x , using a similar argument as above, we find that

∫ x∧y

0
(x − s)−σ (y − s)−σds ≤ y2 (y − x)−2σ−1 β(1 + 2σ, 1 − σ).

Thus,

∫ x∧y

0
(x − s)−σ (y − s)−σds ≤ (x ∨ y)2 |x − y|−2σ−1 β(1 + 2σ, 1 − σ).

The proof of this lemma is completed.

Now, we state and prove the following important result, which will be needed
throughout the paper.

Lemma 2. If φ : [0, T ] �→ L0
Q(U ,H) satisfies

∫ T
0 ‖φ(s)‖2Q ds < ∞, then for any

t ∈ [0, T ],

E

∥∥∥∥
∫ t

0
φ(s)dBσ,λ

Q (s)

∥∥∥∥
2

≤
(

(2H − 1)t2H−1β

(
2 − 2H, H − 1

2

)

+ 4λ2t2H+1
β

(
2 − 2H, H + 1

2

)
2H − 1

) ∫ t

0
‖φ(s)‖2Q ds,

where −1/2 < σ < 0, λ > 0, H = 1
2 − σ and β(·, ·) is the beta function.
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Proof. Let {ek}k∈N be the complete orthonormal basis of U introduced above. By
Definition 3 and Lemma 1 we obtain

E

∥∥∥∥
∫ t

0
φ(s)dBσ,λ

Q (s)

∥∥∥∥
2

= E

∥∥∥∥∥
∫ t

0

∞∑
k=1

φ(s)
√

λkekdB
σ,λ
k (s)

∥∥∥∥∥
2

≤
∞∑
k=1

λk E

∣∣∣∣
∫ t

0
‖φ(s)ek‖ dBσ,λ

k (s)

∣∣∣∣
2

=
∞∑
k=1

λk
(
Γ (1 − σ)

)2
E

∣∣∣∣
∫ t

0

(
I
−σ,λ
t− ‖φ(s)ek‖ − λI

1−σ,λ
t− ‖φ(s)ek‖

)
dBk(s)

∣∣∣∣
2

=
∞∑
k=1

λk
(
Γ (1 − σ)

)2
E

∫ t

0

∣∣∣I−σ,λ
t− ‖φ(s)ek‖ − λI

1−σ,λ
t− ‖φ(s)ek‖

∣∣∣2 ds
≤

∞∑
k=1

2λk

∫ t

0

(
σ 2

(∫ t

s
‖φ(u)ek‖ (u − s)−σ−1e−λ(u−s)du

)2

+λ2
(∫ t

s
‖φ(x)ek‖ (x − s)−σ e−λ(x−s)dx

)2 )
ds

=
∞∑
k=1

2λkσ
2
∫ t

0

∫ t

s

∫ t

s
‖φ(u)ek‖ ‖φ(r)ek‖ (u − s)−σ−1(r − s)−σ−1

e−λ(u−s)e−λ(r−s)dudrds

+
∞∑
k=1

2λkλ
2
∫ t

0

∫ t

s

∫ t

s
‖φ(x)ek‖ ‖φ(y)ek‖ (y − s)−σ (x − s)−σ e−λ(y−s)

e−λ(x−s)dxdyds

≤
∞∑
k=1

2λkσ
2
∫ t

0

∫ t

0

∫ u∧r

0
‖φ(u)ek‖ ‖φ(r)ek‖ (u − s)−σ−1(r − s)−σ−1dsdudr

+
∞∑
k=1

2λkλ
2
∫ t

0

∫ t

0

∫ x∧y

0
‖φ(x)ek‖ ‖φ(y)ek‖ (y − s)−σ (x − s)−σdsdxdy

≤
∞∑
k=1

λk

(
2σ 2

∫ t

0

∫ t

0
‖φ(r)ek‖2 |u − r |−2σ−1 β(1 + 2σ,−σ)dudr

+2(λt)2
∫ t

0

∫ t

0
‖φ(y)ek‖2 |y − x |−2σ−1 β(1 + 2σ, 1 − σ)dxdy

)

≤
(

(2H − 1) t2H−1β

(
2 − 2H, H − 1

2

)
+ 4λ2t2H+1 β

(
2 − 2H, H + 1

2

)
2H − 1

)
∫ t

0
‖φ(s)‖2Q ds.
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Therefore, we complete the proof of this lemma.

Since {BH
k }k≥1 and {Bk}k≥1, respectively, are the sequences of two-sided one-

dimensional standard FBMs and Brownian motions mutually independent on (Ω,F ,

{F}t≥0, P), we have the following properties for the stochastic integrals with respect
to BH

Q and BQ (see, e.g., [3,9]).

Lemma 3. If φ : [0, T ] �→ L0
Q(U ,H) satisfies

∫ T
0 ‖φ(s)‖2Q ds < ∞, then for any

t ∈ [0, T ],
E

∥∥∥∥
∫ t

0
φ(s)dBH

Q (s)

∥∥∥∥
2

≤ 2Ht2H−1
∫ t

0
‖φ(s)‖2Q ds,

E

∥∥∥∥
∫ t

0
φ(s)dBQ(s)

∥∥∥∥
2

≤
∫ t

0
‖φ(s)‖2Q ds,

where H ∈ (1/2, 1).

3. Existence and uniqueness of mild solutions to stochastic evolution equations
with unbounded delay and a TFBM

Let (Ω,F , P) be the complete probability space which was introduced in Sect. 2.
Denote Ft = F0, for all t ≤ 0.
Throughout this paper, we shall assume 0 ≤ α < 1/2 and define the Banach space

D(Aα) with the norm ‖y‖α := ‖Aα y‖ for y ∈ D(Aα), where D(Aα) denotes the
domain of the fractional power operator Aα : H → H. Denote Hα = D(Aα). We
denote by C

(
a, b; L2(Ω;Hα)

) = C
(
a, b; L2(Ω,F , P;Hα)

)
the Banach space of

all continuous functions from [a, b] into L2(Ω;Hα) equipped with the sup norm.
Let us also consider a real number T > 0. If x ∈ C

( − ∞, T ; L2(Ω;Hα)
)
for

each t ∈ [0, T ] we denote by xt ∈ C
( − ∞, 0; L2(Ω;Hα)

)
the function defined by

xt (s) = x(t + s), for s ∈ (−∞, 0]. We define the abstract phase space C (Hα) by

C (Hα) =
{
ψ ∈ C

(
−∞, 0; L2(Ω;Hα)

)
: lim

θ→−∞ ψ(θ) exists in L2(Ω;Hα)

}
.

If C (Hα) is endowed with the norm

‖ψ‖C (Hα) =
(

sup
θ∈(−∞,0]

E ‖ψ(θ)‖2α
) 1

2
, ψ ∈ C (Hα),

then
(
C (Hα), ‖·‖C (Hα)

)
is a Banach space.

In this section, we consider the global existence and uniqueness of mild solutions
to the following stochastic evolution equation with infinite delay:{

du(t) = −Au(t)dt + f (t, ut )dt + g(t, ut )dB
σ,λ
Q (t), t > 0,

u(t) = ϕ(t), t ∈ (−∞, 0], (3.1)
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where Bσ,λ
Q (t) is the tempered fractional Brownian motion which was introduced in

the previous section, the initial data ϕ ∈ C (Hα) with ϕ(t) being Ft -measurable with
Ft = F0 for all t ≤ 0, −A is the infinitesimal generator of an analytic semigroup
S(t), t ≥ 0, on the separable Hilbert space H. Furthermore, for the closed, densely
defined linear operator −A, we assume the following conditions:

(A1) There exist a constant G ≥ 1 and a real number δ > 0 such that for any x ∈ H,

‖S(t)x‖ ≤ Ge−δt ‖x‖ , t ≥ 0.

(A2) The fractional power Aα satisfies that for any x ∈ H,∥∥AαS(t)x
∥∥ ≤ Gαe

−δt t−α ‖x‖ , t > 0,

where Gα ≥ 1.
(A3) There exists a constant Qα ≥ 1 such that for any x ∈ Hα ,

‖S(t)x − x‖ ≤ Qαt
α

∥∥Aαx
∥∥ , t > 0.

The delay term f : [0,∞) × C (Hα) �→ H satisfies

(B1) For any ξ ∈ C (Hα), the mapping [0,∞) � t �→ f (t, ξ) ∈ H is measurable.
(B2) There exists l1 > 0 such that for any ξ, η ∈ C (Hα) and t ≥ 0,

E ‖ f (t, ξ) − f (t, η)‖2 ≤ l1 ‖ξ − η‖2C (Hα) .

(B3) There exists l2 > 0 such that for any ξ ∈ C (Hα) and t ≥ 0,

E ‖ f (t, ξ)‖2 ≤ l2
(
1 + ‖ξ‖2C (Hα)

)
.

Moreover, the delay term g : [0,∞) × C (Hα) �→ L0
Q(U ,H) satisfies the following

conditions:

(C1) For any ξ ∈ C (Hα), the mapping [0,∞) � t �→ g(t, ξ) ∈ L0
Q(U ,H) is

measurable.
(C2) There exists a nonnegative function k1 ∈ L∞(R+) such that for any ξ, η ∈

C (Hα) and t ≥ 0,

E ‖g(t, ξ) − g(t, η)‖2Q ≤ k1(t) ‖ξ − η‖2C (Hα)

and ‖k1‖L∞(R+) := K1 < ∞.

(C3) There exist nonnegative functions k2 ∈ L p(R+) with p ∈
(

1
1−2α ,∞

)
and

k3 ∈ L∞(R+) such that for any ξ ∈ C (Hα) and t ≥ 0,

E ‖g(t, ξ)‖2Q ≤ k2(t) + k3(t) ‖ξ‖2C (Hα) ,

and ∫ ∞

0
(k2(t))

pdt := K2 < ∞, ‖k3‖L∞(R+) := K3 < ∞.
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Now, we state the definition of mild solution to problem (3.1).

Definition 4. Let ϕ ∈ C (Hα) be an initial process with Ft = F0 for all t ≤ 0. An
Ft -adapted stochastic process u(t) is called a mild solution of (3.1) if u ∈ C

(−∞, T ;
L2(Ω;Hα)

)
, u(t) = ϕ(t) for t ∈ (−∞, 0], and for t ∈ [0, T ],

u(t) = S(t)ϕ(0)+
∫ t

0
S(t−r) f (r, ur )dr+

∫ t

0
S(t−r)g(r, ur )dB

σ,λ
Q (r) P-a.s. (3.2)

Definition 5. Let
(
Ω,F , {Ft }t≥0, P

)
be a filtered probability space. A stochastic

process {X (t)}t≥0 is said to be predictable if X , considered as amapping fromR
+×Ω ,

ismeasurablewith respect to theσ -algebra generated by all left-continuousFt -adapted
processes.

We also need the following lemma.

Lemma 4. Letψ(t) : R+×Ω �→ L0
Q(U ,H) be a predictable,Ft -adapted process. If

ψ(t)v ∈ Hα , t ≥ 0, for anyv ∈ U and
∫ t
0 E ‖ψ(r)‖2Q dr < ∞,

∫ t
0 E ‖Aαψ(r)‖2Q dr <

∞, then

Aα

∫ t

0
ψ(r)dBσ,λ

Q (r) =
∫ t

0
Aαψ(r)dBσ,λ

Q (r) P-a.s.

Proof. By Proposition 4.22 in [10] there exists a sequence {ψn} of D(Aα)-valued
predictable processes on [0, t] taking only a finite numbers of values such that

E
∫ t

0
‖ψ(r) − ψn(r)‖2Q dr + E

∫ t

0

∥∥Aαψ(r) − Aαψn(r)
∥∥2
Q dr −→ 0 as n → ∞.

(3.3)
This and Lemma 2 imply that

E

∥∥∥∥
∫ t

0
(ψ(r) − ψn(r)) dB

σ,λ
Q (r)

∥∥∥∥
2

+ E

∥∥∥∥
∫ t

0

(
Aαψ(r) − Aαψn(r)

)
dBσ,λ

Q (r)

∥∥∥∥
2

−→ 0,

(3.4)

as n → ∞. From the definition of the integral, we have

Aα

∫ t

0
ψn(r)dB

σ,λ
Q (r) =

∫ t

0
Aαψn(r)dB

σ,λ
Q (r). (3.5)

Thanks to (3.4)–(3.5) and the closedness of Aα , we deduce that

Aα

∫ t

0
ψ(r)dBσ,λ

Q (r) =
∫ t

0
Aαψ(r)dBσ,λ

Q (r) P-a.s.

We now introduce the following notation. Let u ∈ C
(
0, T ; L2(Ω;Hα)

)
with

u(0) = ϕ(0) and ϕ ∈ C (Hα). Then for r ∈ [0, T ], we denote by u ∨r ϕ the mapping
from R

− to L2(Ω;Hα) defined by

u ∨r ϕ(s) =
{
u(r + s), s ∈ (−r, 0],
ϕ(r + s), s ≤ −r.

(3.6)

It follows from [4] that, for such function u, the integral in (3.2) is well defined.
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Theorem 1. Let 0 < α < 1
2 . Suppose that assumptions (A1)-(A3), (B1)-(B3) and

(C1)-(C3) hold. Then for each ϕ ∈ C (Hα), there exists a unique local mild solution
u to (3.1) on [0, h] for some h > 0.

Proof. Let us fix some ϕ ∈ C (Hα), and let R := 3G2
(
E ‖ϕ(0)‖2α + 1

)
. Assume

h ∈ (0, T ) is a fixed time which has been chosen such that

3G2
αl2

(
1 + R + ‖ϕ‖2C (Hα)

) h2−2α

1 − 2α

+ 3

(
(2H − 1)h2H−1β

(
2 − 2H, H − 1

2

)
+ 4λ2h2H+1

β

(
2 − 2H, H + 1

2

)
2H − 1

)
G2

α

(
K3

(
R + ‖ϕ‖2C (Hα)

) h1−2α

1 − 2α
+

( h1−2αq

1 − 2αq

) 1
q
K

1
p
2

)
≤ 3G2,

and

2G2
αl1

h1−2α

1 − 2α
+ 2

(
(2H − 1)h2H−1β

(
2 − 2H, H − 1

2

)
+ 4λ2h2H+1

×
β

(
2 − 2H, H + 1

2

)
2H − 1

)
G2

αK1
h1−2α

1 − 2α
< 1.

Consider

B(R) =
{
u ∈ C

(
0, h; L2(Ω;Hα)

)
: u(0) = ϕ(0), sup

t∈[0,h]
E ‖u(t)‖2α ≤ R

}
.

B(R) is a bounded set in C
(
0, h; L2(Ω;Hα)

)
. We introduce the mapping Φ defined

by

(Φu) (t) = S(t)ϕ(0) +
∫ t

0
S(t − r) f (r, u ∨r ϕ)dr

+
∫ t

0
S(t − r)g(r, u ∨r ϕ)dBσ,λ

Q (r), t ∈ [0, h].

We split the proof into three steps.

Step 1. Φ maps B(R) into C
(
0, h; L2(Ω;Hα)

)
.
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Let 0 < t < h and u ∈ B(R) be given arbitrarily. Then for τ > 0 small enough,
we have

E ‖(Φu) (t + τ) − (Φu) (t)‖2α
≤ 5E ‖S(t + τ)ϕ(0) − S(t)ϕ(0)‖2α

+ 5E

∥∥∥∥
∫ t

0

(
S(t + τ − r) − S(t − r)

)
f (r, u ∨r ϕ)dr

∥∥∥∥
2

α

+ 5E

∥∥∥∥
∫ t+τ

t
S(t + τ − r) f (r, u ∨r ϕ)dr

∥∥∥∥
2

α

+ 5E

∥∥∥∥
∫ t+τ

t
S(t + τ − r)g(r, u ∨r ϕ)dBσ,λ

Q (r)

∥∥∥∥
2

α

+ 5E

∥∥∥∥
∫ t

0

(
S(t + τ − r) − S(t − r)

)
g(r, u ∨r ϕ)dBσ,λ

Q (r)

∥∥∥∥
2

α

:= I1 + I2 + I3 + I4 + I5.

(3.7)

Using conditions (A2)-(A3), we obtain

I1 = 5E
∥∥∥Aα

(
S(t)S(τ )ϕ(0) − S(t)ϕ(0)

)∥∥∥2
≤ 5G2

αe
−2δt t−2αE ‖S(τ )ϕ(0) − ϕ(0)‖2

≤ 5G2
αQ

2
αe

−2δt t−2ατ 2α ‖ϕ‖2C (Hα) −→ 0 as τ → 0.

(3.8)

Let ε > 0 be given arbitrarily. Then by Lemma 2, conditions (A1)-(A3), (B3), (C3)
and Hölder’s inequality, we can choose τ and η sufficiently small such that

I2 ≤ 10E

∥∥∥∥
∫ t

t−η

AαS(t − r)
(
S(τ ) − I

)
f (r, u ∨r ϕ)dr

∥∥∥∥
2

+10E

∥∥∥∥
∫ t−η

0
AαS(t − r − η)

(
S(τ ) − I

)
S(η) f (r, u ∨r ϕ)dr

∥∥∥∥
2

≤ 10G2
αE

(∫ t

t−η

e−δ(t−r)(t − r)−α
∥∥(
S(τ ) − I

)
f (r, u ∨r ϕ)

∥∥ dr)2

+10G2
αQ

2
αE

(∫ t−η

0
e−δ(t−r−η)(t − r − η)−ατα

∥∥AαS(η) f (r, u ∨r ϕ)
∥∥ dr)2

≤ 10G2
αE

∫ t

t−η

∥∥(
S(τ ) − I

)
f (r, u ∨r ϕ)

∥∥2 dr ∫ t

t−η

(t − r)−2αdr

+10G2
αQ

2
ατ 2αE

∫ t−η

0

∥∥AαS(η) f (r, u ∨r ϕ)
∥∥2 dr ∫ t−η

0
(t − r − η)−2αdr

≤ 10G2
α (G + 1)2 l2

(
1 + R + ‖ϕ‖2C (Hα)

) η2−2α

1 − 2α

+10G4
αQ

2
αl2

(
1 + R + ‖ϕ‖2C (Hα)

)
τ 2αη−2α (t − η)2−2α

1 − 2α
< ε, (3.9)

I5 ≤ 5Nt

∫ t

t−η

E
∥∥AαS(t − r)

(
S(τ ) − I

)
g(r, u ∨r ϕ)

∥∥2
Q dr
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+5Nt

∫ t−η

0
E

∥∥AαS(t − r − η)
(
S(τ ) − I

)
S(η)g(r, u ∨r ϕ)

∥∥2
Q dr

≤ 5NtG
2
α

∫ t

t−η

e−2δ(t−r)(t − r)−2αE
∥∥(
S(τ ) − I

)
g(r, u ∨r ϕ)

∥∥2
Q dr

+5NtG
2
αQ

2
α

∫ t−η

0
e−2δ(t−r−η)(t − r − η)−2ατ 2αE

∥∥AαS(η)g(r, u ∨r ϕ)
∥∥2
Q dr

≤ 5NtG
2
α(G + 1)2

∫ t

t−η

(t − r)−2α
(
k2(r) + k3(r) ‖u ∨r ϕ‖2C (Hα)

)
dr

+5NtG
4
αQ

2
α

∫ t−η

0
(t − r − η)−2ατ 2αη−2α

(
k2(r) + k3(r) ‖u ∨r ϕ‖2C (Hα)

)
dr

≤ 5NtG
2
α(G + 1)2

(
η1−2αq

1 − 2αq

) 1
q

K
1
p
2 + 5NtG

2
α(G + 1)2K3

(
R + ‖ϕ‖2C (Hα)

) η1−2α

1 − 2α

+5NtG
4
αQ

2
ατ 2αη−2α

(
(t − η)1−2αq

1 − 2αq

) 1
q

K
1
p
2

+5NtG
4
αQ

2
ατ 2αη−2α

(
R + ‖ϕ‖2C (Hα)

) (t − η)1−2α

1 − 2α
< ε, (3.10)

where 1
q + 1

p = 1, p is given in condition (C3), and we have used the notation

Nt := (2H − 1)t2H−1β

(
2 − 2H, H − 1

2

)
+ 4λ2t2H+1 β

(
2 − 2H, H + 1

2

)
2H − 1

.

For I3 and I4, in a similar way as above, we find that

I3 ≤ 5G2
αE

(∫ t+τ

t
e−δ(t+τ−r)(t + τ − r)−α ‖ f (r, u ∨r ϕ)‖ dr

)2

≤ 5G2
αE

∫ t+τ

t
‖ f (r, u ∨r ϕ)‖2 dr

∫ t+τ

t
(t + τ − r)−2αdr

≤ 5G2
αl2

(
1 + R + ‖ϕ‖2C (Hα)

) τ 2−2α

1 − 2α
−→ 0 as τ → 0,

(3.11)

and

I4 ≤ 5Nτ

∫ t+τ

t
E

∥∥AαS(t + τ − r)g(r, u ∨r ϕ)
∥∥2
Q dr

≤ 5NτG
2
α

∫ t+τ

t
e−2δ(t+τ−r)(t + τ − r)−2αE ‖g(r, u ∨r ϕ)‖2Q dr

≤ 5NτG
2
α

∫ t+τ

t
(t + τ − r)−2α

(
k2(r) + k3(r) ‖u ∨r ϕ‖2C (Hα)

)
dr

≤ 5NτG
2
α

(
τ 1−2αq

1 − 2αq

) 1
q

K
1
p
2

+5NτG
2
αK3

(
R + ‖ϕ‖2C (Hα)

) τ 1−2α

1 − 2α
−→ 0 as τ → 0, (3.12)
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where q and Nτ are given in (3.10). Thus, it follows from (3.7)-(3.12) that
E‖ (Φu) (t + τ) − (Φu) (t)‖2α tends to zero as τ → 0, and consequently Φu ∈
C

(
0, h; L2(Ω;Hα)

)
.

Step 2. Φ maps B(R) into itself.
Let u ∈ B(R). Then we have for t ∈ [0, h],

E ‖(Φu) (t)‖2α ≤ 3E ‖S(t)ϕ(0)‖2α + 3E

∥∥∥∥
∫ t

0
S(t − r) f (r, u ∨r ϕ)dr

∥∥∥∥
2

α

+ 3E

∥∥∥∥
∫ t

0
S(t − r)g(r, u ∨r ϕ)dBσ,λ

Q (r)

∥∥∥∥
2

α

:= I6 + I7 + I8.

(3.13)

Thanks to conditions (A1)–(A2) and (B3), we obtain

I6 ≤ 3G2e−2δt E ‖ϕ(0)‖2α ≤ 3G2E ‖ϕ(0)‖2α , (3.14)

and

I7 ≤ 3G2
αE

(∫ t

0
e−δ(t−r)(t − r)−α ‖ f (r, u ∨r ϕ)‖ dr

)2

≤ 3G2
αE

∫ t

0
‖ f (r, u ∨r ϕ)‖2 dr

∫ t

0
(t − r)−2αdr

≤ 3G2
αl2

(
1 + R + ‖ϕ‖2C (Hα)

) t2−2α

1 − 2α
.

(3.15)

Applying Lemma 2 to I8, we deduce from conditions (A2), (C3) and Hölder’s in-
equality that

I8 ≤ 3Nt

∫ t

0
E

∥∥AαS(t − r)g(r, u ∨r ϕ)
∥∥2
Q dr

≤ 3NtG
2
α

∫ t

0
e−2δ(t−r)(t − r)−2α

(
k2(r) + k3(r) ‖u ∨r ϕ‖2C (Hα)

)
dr

≤ 3NtG
2
α

(
t1−2αq

1 − 2αq

) 1
q

K
1
p
2 + 3NtG

2
αK3

(
R + ‖ϕ‖2C (Hα)

) t1−2α

1 − 2α
,

(3.16)

where q and Nt are given in (3.10). Hence,

sup
t∈[0,h]

E ‖(Φu) (t)‖2α ≤ 3G2E ‖ϕ(0)‖2α + 3G2
αl2

(
1 + R + ‖ϕ‖2C (Hα)

) h2−2α

1 − 2α

+ 3

(
(2H − 1)h2H−1β

(
2 − 2H, H − 1

2

)
+ 4λ2h2H+1

β

(
2 − 2H, H + 1

2

)
2H − 1

)

× G2
α

(
K3

(
R + ‖ϕ‖2C (Hα)

) h1−2α

1 − 2α
+

( h1−2αq

1 − 2αq

) 1
q
K

1
p
2

)
≤ R.

Step 3. We show that Φ : B(R) �→ B(R) is a contraction mapping.
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Let u, v ∈ B(R), then we obtain that for any t ∈ [0, h],

E
∥∥ (Φu) (t) − (Φv) (t)

∥∥2
α

≤ 2E

∥∥∥∥
∫ t

0
S(t − r)

(
f (r, u ∨r ϕ) − f (r, v ∨r ϕ)

)
dr

∥∥∥∥
2

α

+ 2E

∥∥∥∥
∫ t

0
S(t − r)

(
g(r, u ∨r ϕ) − g(r, v ∨r ϕ)

)
dBσ,λ

Q (r)

∥∥∥∥
2

α

≤ 2G2
αE

(∫ t

0
e−δ(t−r)(t − r)−α ‖ f (r, u ∨r ϕ) − f (r, v ∨r ϕ)‖ dr

)2

+ 2Nt

∫ t

0
E

∥∥∥AαS(t − r)
(
g(r, u ∨r ϕ) − g(r, v ∨r ϕ)

)∥∥∥2
Q
dr

≤ 2G2
αE

∫ t

0
‖ f (r, u ∨r ϕ) − f (r, v ∨r ϕ)‖2 dr

∫ t

0
(t − r)−2αdr

+ 2NtG
2
α

∫ t

0
e−2δ(t−r)(t − r)−2αE ‖g(r, u ∨r ϕ) − g(r, v ∨r ϕ)‖2Q dr

≤ 2G2
αl1

t1−2α

1 − 2α
sup

r∈[0,t]
E ‖u(r) − v(r)‖2α

+ 2NtG
2
αK1

t1−2α

1 − 2α
sup

r∈[0,t]
E ‖u(r) − v(r)‖2α ,

(3.17)
due to conditions (A2), (B2), (C2) and Hölder’s inequality, where Nt and q are given
in (3.10). This implies that

sup
t∈[0,h]

E ‖(Φu) (t) − (Φv) (t)‖2α ≤
(
2G2

αl1
h1−2α

1 − 2α
+ 2NhG

2
αK1

h1−2α

1 − 2α

)

sup
t∈[0,h]

E ‖u(t) − v(t)‖2α .

Therefore, by the Banach fixed point theorem, we obtain the existence of a unique
local mild solution to (3.1) on [0, h], and thus the proof of this theorem is completed.

Now, we show the global existence of mild solutions to (3.1).

Theorem 2. Let 0 < α < 1
2 and assume that assumptions (A1)-(A3), (B1)-(B3) and

(C1)-(C3) hold. Then for each ϕ ∈ C (Hα) there exists a unique global mild solution
u(t) to (3.1).

Proof. For any initial data ϕ ∈ C (Hα), it follows from Theorem 1 that there exists a
unique local mild solution u to (3.1). Consider

H(ω) := {T ∈ [0,∞) : u(·, ω) is a unique local mild solution to (3.1) on [0, T ]} .

Let supH(ω) = Tmax(ω). To show that u(·) is a global mild solution, we need to prove
that Tmax = ∞ a.s.
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For sufficiently large k, let us define the stopping time

tk(ω) = inf {t ∈ [0, Tmax(ω)) : ‖u(t, ω)‖α > k}

with the usual convention inf ∅ := ∞, where ∅ denotes the empty set. It is clear that
tk is a nondecreasing sequence and tk → t∞ ≤ Tmax almost surely as k → ∞. If we
can show that t∞ = ∞ a.s., then Tmax = ∞ a.s., which implies that u(t) is globally
defined. Since the sequence tk is increasing, t∞ = ∞ a.s. is equivalent to proving that
for any T̃ > 0, P(tk ≤ T̃ ) → 0 as k → ∞.

By conditions (A1)-(A2), (B3), (C1)-(C3), Hölder’s inequality and Lemma 2, we
find that for any t ∈ [0, T̃ ],

E ‖u(t ∧ tk)‖2α
≤ 3E ‖S(t ∧ tk)ϕ(0)‖2α + 3E

∥∥∥∥
∫ t∧tk

0
S(t ∧ tk − r) f (r, u ∨r ϕ)dr

∥∥∥∥
2

α

+3E

∥∥∥∥
∫ t∧tk

0
S(t ∧ tk − r)g(r, u ∨r ϕ)dBσ,λ

Q (r)

∥∥∥∥
2

α

≤ 3G2E ‖ϕ(0)‖2α + 3G2
αE

(∫ t∧tk

0
e−δ(t∧tk−r)(t ∧ tk − r)−α ‖ f (r, u ∨r ϕ)‖ dr

)2

+3Nt∧tk G2
α

∫ t∧tk

0
e−2δ(t∧tk−r)(t ∧ tk − r)−2αE ‖g(r, u ∨r ϕ)‖2Q dr

≤ 3G2E ‖ϕ(0)‖2α + 3G2
α

(t ∧ tk)1−2α

1 − 2α
l2

∫ t∧tk

0(
1 + ‖ϕ‖2C (Hα) + sup

s∈[0,r ]
E ‖u(s)‖2α

)
dr

+3Nt∧tk G2
α

∫ t∧tk

0
(t ∧ tk − r)−2α

(
k2(r) + k3(r) ‖ϕ‖2C (Hα) + k3(r) sup

s∈[0,r ]
E ‖u(s)‖2α

)
dr

≤ 3G2E ‖ϕ(0)‖2α + 3G2
αl2

(
1 + ‖ϕ‖2C (Hα)

) T̃ 2−2α

1 − 2α

+3G2
αl2

T̃ 1−2α

1 − 2α

∫ t

0
sup

s∈[0,r ]
E ‖u(s ∧ tk)‖2α dr + 3NT̃ G

2
α

( T̃ 1−2αq

1 − 2αq

) 1
q K

1
p
2

+3NT̃ G
2
αK3 ‖ϕ‖2C (Hα)

T̃ 1−2α

1 − 2α
+ 3NT̃ G

2
αK3

∫ t∧tk

0
(t ∧ tk − r)−2α

sup
s∈[0,r ]

E ‖u(s)‖2α dr, (3.18)
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which implies that

E ‖u(t ∧ tk)‖2α ≤ Π1T̃ + 3G2
αl2

T̃ 1−2α+ 1
q

1 − 2α

(∫ t

0

(
sup

s∈[0,r ]
E ‖u(s ∧ tk)‖2α

)p
dr

) 1
p

+3NT̃ G
2
αK3

( T̃ 1−2αq

1 − 2αq

) 1
q
(∫ t∧tk

0

(
sup

s∈[0,r ]
E ‖u(s)‖2α

)p
dr

) 1
p

, (3.19)

where we have used the notation

Π1T̃ := 3G2E ‖ϕ(0)‖2α + 3G2
αl2

(
1 + ‖ϕ‖2C (Hα)

) T̃ 2−2α

1 − 2α

+ 3NT̃ G
2
α

( T̃ 1−2αq

1 − 2αq

) 1
q K

1
p
2 + 3NT̃ G

2
αK3 ‖ϕ‖2C (Hα)

T̃ 1−2α

1 − 2α
.

It follows from (3.19) that for any t ∈ [0, T̃ ],(
sup

s∈[0,t]
E ‖u(s ∧ tk)‖2α

)p ≤ 3p−1 (
Π1T̃

)p

+3pG2p
α l p2

( T̃ 1−2α+ 1
q

1 − 2α

)p ∫ t

0

(
sup

s∈[0,r ]
E ‖u(s ∧ tk)‖2α

)p
dr

+3pN p
T̃
G2p

α K p
3

( T̃ 1−2αq

1 − 2αq

) p
q

∫ t∧tk

0

(
sup

s∈[0,r ]
E ‖u(s)‖2α

)p
dr

= 3p−1 (
Π1T̃

)p + Π2T̃

∫ t

0

(
sup

s∈[0,r ]
E ‖u(s ∧ tk)‖2α

)p
dr, (3.20)

where

Π2T̃ := 3pG2p
α l p2

( T̃ 1−2α+ 1
q

1 − 2α

)p + 3pN p
T̃
G2p

α K p
3

( T̃ 1−2αq

1 − 2αq

) p
q .

Applying Gronwall’s lemma to (3.20) we obtain that for all t ∈ [0, T̃ ],(
sup

s∈[0,t]
E ‖u(s ∧ tk)‖2α

)p ≤ 3p−1Π
p
1T̃
eΠ2T̃ t ,

and consequently,

sup
s∈[0,T̃ ]

E ‖u(s ∧ tk)‖2α ≤ 3
p−1
p Π1T̃ e

Π2T̃ T̃
p .

According to the definition of tk , ‖u(tk)‖α = k. This implies

k2P(tk ≤ T̃ ) ≤ E ‖u(tk)‖2α I{tk≤T̃ } = E
∥∥u(T̃ ∧ tk)

∥∥2
α
I{tk≤T̃ }

≤ E
∥∥u(T̃ ∧ tk)

∥∥2
α

≤ 3
p−1
p Π1T̃ e

Π2T̃ T̃
p .

Since Π1T̃ and Π2T̃ are independent of k, we have limk→∞ P(tk ≤ T̃ ) = 0. This
implies that (3.1) has a unique global solution u(t) on [0,∞).
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Thanks to Lemma 3, the following result is obtained by similar arguments to those
in theorems 1 and 2.

Corollary 1. Let 0 < α < 1
2 and assume that assumptions (A1)-(A3), (B1)-(B3)

and (C1)-(C3) hold. Then for each ϕ ∈ C (Hα), there exists a unique global mild
solution to (3.1) with cylindrical U-valued FBM BH

Q or Brownian motion BQ instead

of Bσ,λ
Q .

In particular, as we analyze in Sect. 5, the long time behavior of our model in the
particular case of additive noise, i.e., when we replace g by φ : [0,∞) �→ L0

Q(U ,H)

in (3.1), we will state now how the previous results read in this case. For φ : [0,∞) �→
L0
Q(U ,H) we assume the following condition:

(D1) There exists a constant p ∈
(

1
1−2α ,∞

)
such that

∫ ∞

0
‖φ(r)‖2pQ dr := K < ∞.

By modifying slightly the proofs of theorems 1 and 2, we have

Corollary 2. Let 0 < α < 1
2 and assume that assumptions (A1)-(A3) and (B1)-(B3)

hold true. If φ : [0,∞) �→ L0
Q(U ,H) satisfies (D1), then for each ϕ ∈ C (Hα), there

exists a unique global mild solution to (3.1) but with g replaced by φ.

Similar to Corollary 1, we have

Corollary 3. Let 0 < α < 1
2 and assume that assumptions (A1)-(A3), (B1)-(B3)

and (D1) hold. Then for each ϕ ∈ C (Hα), there exists a unique global mild solution
to (3.1) with φ instead of g and cylindrical U-valued FBM BH

Q or Brownian motion

BQ instead of Bσ,λ
Q .

Remark 1. Notice that our results concerning infinite delays can easily cover the case
of bounded ones.More precisely, in the case of bounded delay, we consider the Banach
space C

( − r, 0; L2(Ω;Hα)
)
with the norm

‖ψ‖
C
(
−r,0;L2(Ω;Hα)

) =
(

sup
θ∈[−r,0]

E ‖ψ(θ)‖2α
) 1

2
, ψ ∈ C

( − r, 0; L2(Ω;Hα)
)
,

where r is a fixed number. Then, we replace C (Hα) by C
( − r, 0; L2(Ω;Hα)

)
, and

by a similar argument as above, the existence and uniqueness of global mild solutions
to (3.1) also hold true for bounded delay case.

Now, we present an example to illustrate the type of delays that can be considered in
our framework, namelywewill consider two functions f and g containing a distributed
delay and a variable delay, respectively.
Let O be a bounded open domain in R

n with smooth boundary ∂O. Let U = H =
L2(O), and let A = −Δ on the domain O with Dirichlet boundary condition.
Let F : [0,∞)×(−∞, 0]×O �→ O andG : [0,∞)×L2(O) �→ L(

L2(O), L2(O)
)

be measurable functions satisfying the following assumptions:
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(a) There exists a function L1 : (−∞, 0] �→ [0,∞) such that

|F(t, s, u) − F(t, s, w)| ≤ L1(s) |u − w| , ∀t ≥ 0, s ≤ 0, u, w ∈ O,

where |·| denotes the norm of Rn and
∫ 0
−∞ L1(s)ds < ∞.

(b) There exists a function L2 : (−∞, 0] �→ [0,∞) such that

|F(t, s, v)| ≤ L2(s) (1 + |v|) , ∀t ≥ 0, s ≤ 0, v ∈ O,

where
∫ 0
−∞ L2(s)ds < ∞.

(c) There exists a constant K1 > 0 such that

‖G(t, v) − G(t, w)‖L(
L2(O),L2(O)

) ≤ K1 ‖v − w‖ , ∀t ≥ 0, v, w ∈ L2(O),

where ‖·‖L(
L2(O),L2(O)

) denotes the norm of L(
L2(O), L2(O)

)
.

(d) There exist a nonnegative function K2 ∈ L p(R+) with p ∈ ( 1
1−2α ,∞)

and a
constant K3 > 0 such that

‖G(t, v)‖ ≤ K2(t) + K3 ‖v‖ , ∀t ≥ 0, v ∈ L2(O).

Then we define

f (t, ξ)(x) :=
∫ 0

−∞
F

(
t, s, ξ(s)(x)

)
ds

and
g(t, ξ) := G

(
t, ξ(−ρ(t))

)
with ρ ∈ C

(
R; [0,∞)

)
, for each t ∈ [0,∞), ξ ∈ C (Hα) and x ∈ O. In this case, the

delay terms f and g in (3.1) become

f (t, ut ) :=
∫ 0

−∞
F

(
t, s, u(t + s)

)
ds

and
g(t, ut ) := G

(
t, u(t − ρ(t))

)
.

In the sequel,C denotes an arbitrary positive constant, which may be different from
line to line and even in the same line.
For any ξ , η ∈ C (Hα), by conditions (a) and (b), we obtain

E ‖ f (t, ξ) − f (t, η)‖2 = E

∥∥∥∥
∫ 0

−∞

(
F

(
t, s, ξ(s)

) − F
(
t, s, η(s)

))
ds

∥∥∥∥
2

≤ E

∥∥∥∥
∫ 0

−∞
L1(s) |ξ(s) − η(s)| ds

∥∥∥∥
2

≤
∫ 0

−∞
L1(s)ds

∫ 0

−∞
L1(s)E ‖ξ(s) − η(s)‖2 ds

≤
( ∫ 0

−∞
L1(s)ds

)2 ‖ξ − η‖2C (Hα)



Vol. 21 (2021) Exponential behavior and upper noise excitation index 1799

and

E ‖ f (t, ξ)‖2 = E

∥∥∥∥
∫ 0

−∞
F

(
t, s, ξ(s)

)
ds

∥∥∥∥
2

≤ E

∥∥∥∥
∫ 0

−∞
L2(s) (1 + |ξ(s)|) ds

∥∥∥∥
2

≤ C
( ∫ 0

−∞
L2(s)ds

)2 + C
∫ 0

−∞
L2(s)ds

∫ 0

−∞
L2(s)E ‖ξ(s)‖2 ds

≤ C + C ‖ξ‖2C (Hα) .

Hence, f satisfies (B1)-(B3).
For g, by using conditions (c) and (d), we have

E ‖g(t, ξ) − g(t, η)‖2Q = E
∥∥G(

t, ξ(−ρ(t))
) − G

(
t, η(−ρ(t))

)∥∥2
Q

≤ CE
∥∥G(

t, ξ(−ρ(t))
) − G

(
t, η(−ρ(t))

)∥∥2
L
(
L2(O),L2(O)

)
≤ CE

∥∥ξ
( − ρ(t)

) − η
( − ρ(t)

)∥∥2
≤ C ‖ξ − η‖2C (Hα)

and

E ‖g(t, ξ)‖2Q = E
∥∥G(

t, ξ(−ρ(t))
)∥∥2

Q

≤ CE
∥∥G(

t, ξ(−ρ(t))
)∥∥2

L
(
L2(O),L2(O)

)
≤ CE

(K2(t) + K3
∥∥ξ

( − ρ(t)
)∥∥)2

≤ C(K2(t))
2 + C ‖ξ‖2C (Hα) ,

where ‖·‖Q denotes the norm of L0
Q

(
L2(O), L2(O)

)
. Then (C1)-(C3) hold true

for g.

4. The effect of noise on SPDEs with delay

In this section, we consider the effect of nonlinear noise on the following stochastic
evolution equation with infinite delay:{

du(t) = −Au(t)dt + ηg(t, ut )dB
σ,λ
Q (t), t > 0,

u(t) = ϕ(t), t ∈ (−∞, 0], (4.1)

where A, ϕ and Bσ,λ
Q are as in problem (3.1), g satisfies conditions (C1)-(C2) and

g(t, 0) = 0 for any t > 0, and the number η is a positive parameter; this is the so-called
level of the noise.
The following theorem shows that the upper excitation index of the solution u of

(4.1) at time t is less than 2 p̃.
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Theorem 3. Let 0 < α < 1
2 . Suppose that assumptions (A1)-(A3), (C1)-(C2) and

g(t, 0) = 0 for any t > 0 hold. Then, there exists a constant p̃ ∈ ( 1
1−2α ,∞)

such that
for each ϕ ∈ C (Hα),

lim sup
η→∞

log log ‖ut‖C (Hα)

log η
≤ 2 p̃, (4.2)

where u(·) denotes the solution of (4.1).

Proof. Firstly, observe that (C2) and g(t, 0) = 0 (∀t > 0) ensure that

E ‖g(t, ξ)‖2Q ≤ k1(t) ‖ξ‖2C (Hα) . (4.3)

Combining this with (A1)-(A2), we deduce from Lemma 2 and Hölder’s inequality
that

E ‖u(t)‖2α ≤ 2E ‖S(t)ϕ(0)‖2α + 2η2E

∥∥∥∥
∫ t

0
S(t − r)g(r, ur )dB

σ,λ
Q (r)

∥∥∥∥
2

α

≤ 2G2e−2δt E ‖ϕ(0)‖2α
+2η2G2

αNt

∫ t

0
e−2δ(t−r)(t − r)−2αE ‖g(r, ur )‖2Q dr

≤ 2G2e−2δt E ‖ϕ(0)‖2α + 2η2G2
αNt K1

(∫ t

0
e−2δq̃(t−r)(t − r)−2αq̃dr

) 1
q̃

×
(∫ t

0
‖ur‖2 p̃C (Hα)

dr

) 1
p̃

≤ 2G2e−2δt E ‖ϕ(0)‖2α + 2η2G2
αNt K1 (2δq̃)

2αq̃−1
q̃

(
Γ (1 − 2αq̃)

) 1
q̃

×
(∫ t

0
‖ur‖2 p̃C (Hα)

dr

) 1
p̃

, (4.4)

where Nt is given in (3.10) and 1
p̃ + 1

q̃ = 1. Replacing t by t + θ in (4.4), we obtain
that

sup
θ∈[−t,0]

E ‖u(t + θ)‖2α ≤ 2G2E ‖ϕ(0)‖2α + 2η2G2
αNt K1 (2δq̃)

2αq̃−1
q̃

× (
Γ (1 − 2αq̃)

) 1
q̃

(∫ t

0
‖ur‖2 p̃C (Hα)

dr

) 1
p̃

.

Therefore,

‖ut‖2C (Hα) ≤
(
2G2 + 1

)
‖ϕ‖2C (Hα) + 2η2G2

αNt K1 (2δq̃)
2αq̃−1

q̃

× (
Γ (1 − 2αq̃)

) 1
q̃

(∫ t

0
‖ur‖2 p̃C (Hα)

dr

) 1
p̃

,
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and consequently,

‖ut‖2 p̃C (Hα)
≤ 2 p̃−1

(
2G2 + 1

) p̃ ‖ϕ‖2 p̃C (Hα)

+ 22 p̃−1η2 p̃G2 p̃
α N p̃

t K
p̃
1 (2δq̃)

(2αq̃−1) p̃
q̃

(
Γ (1 − 2αq̃)

) p̃
q̃

∫ t

0
‖ur‖2 p̃C (Hα)

dr.
(4.5)

Gronwall’s lemma conduces us to

‖ut‖2 p̃C (Hα)
≤ Π5e

Π6η
2 p̃ N p̃

t t , (4.6)

where we have used the notations

Π5 := 2 p̃−1
(
2G2 + 1

) p̃ ‖ϕ‖2 p̃C (Hα)

and

Π6 := 22 p̃−1G2 p̃
α K p̃

1 (2δq̃)
(2αq̃−1) p̃

q̃
(
Γ (1 − 2αq̃)

) p̃
q̃ .

The conclusion (4.2) follows immediately from (4.6), and thus the proof is complete.

Remark 2. In particular, let α = 0 in Theorem 3, then for each ϕ ∈ C (H) the unique
mild solution u to (4.1) satisfies

lim sup
η→∞

log log ‖ut‖C (H)

log η
≤ 2,

where

‖ψ‖C (H) =
(

sup
θ∈(−∞,0]

E ‖ψ(θ)‖2
) 1

2
, ψ ∈ C (H).

As a simple consequence of Theorem 3, in view of Lemma 3, we obtain

Corollary 4. Let 0 < α < 1
2 and assume that assumptions (A1)-(A3), (C1)-(C2)

and g(0) = 0 hold. Then there exists a constant p′ ∈ ( 1
1−2α ,∞) such that for each

ϕ ∈ C (Hα), the unique mild solution u to (4.1) with cylindrical U-valued FBM BH
Q

or Brownian motion BQ instead of Bσ,λ
Q satisfies

lim sup
η→∞

log log ‖ut‖C (Hα)

log η
≤ 2p′.

Remark 3. If we replace C (Hα) by C
( − r, 0; L2(Ω;Hα)

)
, then the results in this

section also hold true for bounded delay case.

5. Exponential decay of solutions in mean square

In this section we are interested in the exponential decay to zero in mean square of
the mild solutions.
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Observe that in Lemmas 2 and 3, the right hand side of inequalities for the stochastic
integrals with respect to TFBM and FBM, respectively, are

(2H − 1)t2H−1β

(
2 − 2H, H − 1

2

)
+ 4λ2t2H+1 β

(
2 − 2H, H + 1

2

)
2H − 1

(5.1)

and
2Ht2H−1. (5.2)

Comparing with the stochastic integral with respect to Brownian motion, (5.1) and
(5.2) are dependent on t and tend to infinity as t → ∞. It is difficult to prove that
the mild solutions to problem (3.1) with cylindrical U-valued TFBM Bσ,λ

Q or FBM

BH
Q exponentially decay to zero in mean square. Hence in this section we consider the

following stochastic evolution equation with infinite delay:{
du(t) = −Au(t)dt + f (t, ut )dt + φ(t)dBσ,λ

Q (t), t > 0,
u(t) = ϕ(t), t ∈ (−∞, 0], (5.3)

where A and Bσ,λ
Q are as in problem (3.1).

On the other hand, if we still consider the space C (Hα) given in Sect. 3, then we
need to replace t by t + θ in (5.10) and take the sup norm supθ∈[−t,0] E ‖u(t + θ)‖2α ,
but the exponential decay terms e−2δt and e−δt disappear when we take the sup norm.
In this case, we cannot obtain the exponential decay property for the mild solutions.
However, this problem can be overcome if we use another space C γ (Hα) given later,
which was extensively applied to investigate infinite delay case, see, e.g., [4,23] and
the references therein. It is worth mentioning that considering this new spaceC γ (Hα)

will allow us to prove exponential decay of solutions, but will restrict the type of
unbounded delay terms which can appear in the function f , for instance, general
variable delay terms cannot be considered, but with our current space C (Hα) we can
include both variable and distributed infinite unbounded delays but, in general, we
may not be able to prove exponential decay of solutions, as it is shown in [25] for the
case of stochastic 2D-Navier Stokes with infinite delay.
We define the abstract phase space C γ (Hα) by

C γ (Hα) =
{
ψ ∈ C

(
−∞, 0; L2(Ω;Hα)

)
: lim

θ→−∞ eγ θ E ‖ψ(θ)‖2α exists

}
,

where the parameter γ > 0. If C γ (Hα) is endowed with the norm

‖ψ‖C γ (Hα) =
(

sup
θ∈(−∞,0]

eγ θ E ‖ψ(θ)‖2α
) 1

2

, ψ ∈ C γ (Hα),

then
(
C γ (Hα), ‖·‖C γ (Hα)

)
is a Banach space.

We now need to state the following conditions:

(B1)′ For any ξ ∈ C γ (Hα), the mapping [0,∞) � t �→ f (t, ξ) ∈ H is measurable.
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(B2)′ There exists a nonnegative function l4 ∈ L∞(R+) such that for any ξ, η ∈
C γ (Hα) and t ≥ 0,

E ‖ f (t, ξ) − f (t, η)‖2 ≤ l4(t) ‖ξ − η‖2C γ (Hα) ,

and ‖l4‖L∞(R+) := L4 < ∞.
(B3)′ There exist nonnegative functions l5 ∈ L1(R+) and l6 ∈ L∞(R+) such that for

any ξ ∈ C γ (Hα) and t ≥ 0,

E ‖ f (t, ξ)‖2 ≤ l5(t) + l6(t) ‖ξ‖2C γ (Hα) ,

and ∫ ∞

0
eδr l5(r)dr := L5 < ∞, ‖l6‖L∞(R+) := L6 < ∞.

(C1)′ There exists a constant p ∈ ( 1
1−2α ,∞) such that∫ ∞

0
eδpr ‖φ(r)‖2pQ dr := Λ < ∞.

Theorem 4. Let 0 < α < 1
2 . Assume that the assumptions (A1)-(A3), (B1)′-(B3)′,

(C1)′ and
γ > 2δ > 2Π9 (5.4)

hold, where Π9 := 3G2
αδ2α−1Γ (1− 2α)L6. Then, there exists a constant a > 0 such

that for any mild solution u of (5.3) with the initial condition ϕ ∈ C γ (Hα),

lim sup
t→∞

(1
t

)
log ‖ut‖2C γ (Hα) ≤ −a. (5.5)

Proof. Thanks to (3.2), we have

E ‖u(t)‖2α ≤ 3E ‖S(t)ϕ(0)‖2α + 3E

∥∥∥∥
∫ t

0
S(t − r) f (r, ur )dr

∥∥∥∥
2

α

+3E

∥∥∥∥
∫ t

0
S(t − r)φ(r)dBσ,λ

Q (r)

∥∥∥∥
2

α

:= I9 + I10 + I11. (5.6)

By condition (A1), we obtain

I9 ≤ 3G2e−2δt E ‖ϕ(0)‖2α . (5.7)

For I10, by conditions (A2), (B3)′ and Hölder’s inequality, we deduce that

I10 ≤ 3G2
αE

(∫ t

0
e−δ(t−r)(t − r)−α ‖ f (r, ur )‖ dr

)2

≤ 3G2
α

∫ t

0
e−δ(t−r)(t − r)−2αdr

∫ t

0
e−δ(t−r)E ‖ f (r, ur )‖2 dr

≤ 3G2
αδ2α−1Γ (1 − 2α)

∫ t

0
e−δ(t−r)

(
l5(r) + l6(r) ‖ur‖2C γ (Hα)

)
dr

≤ 3G2
αδ2α−1Γ (1 − 2α)e−δt L5 + 3G2

αδ2α−1Γ (1 − 2α)e−δt L6∫ t

0
eδr ‖ur‖2C γ (Hα) dr.

(5.8)
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For I11, it follows from conditions (A2), (C1)′, Hölder’s inequality and Lemma 2 that

I11 ≤ 3NtG
2
α

∫ t

0
e−2δ(t−r)(t − r)−2α ‖φ(r)‖2Q dr

≤ 3NtG
2
αe

−δt
(∫ t

0
(t − r)−2αqe−δq(t−r)dr

) 1
q

(∫ t

0
eδpr ‖φ(r)‖2pQ dr

) 1
p

≤ 3NtG
2
αe

−δt (δq)
2αq−1

q
(
Γ (1 − 2αq)

) 1
q Λ

1
p ,

(5.9)

where q and Nt are given in (3.10). Therefore,

E ‖u(t)‖2α ≤ 3G2e−2δt E ‖ϕ(0)‖2α + 3G2
αδ2α−1Γ (1 − 2α)e−δt L5

+ 3G2
αδ2α−1Γ (1 − 2α)e−δt L6

∫ t

0
eδr ‖ur‖2C γ (Hα) dr

+ 3NtG
2
αe

−δt (δq)
2αq−1

q
(
Γ (1 − 2αq)

) 1
q Λ

1
p .

(5.10)

By assumption (5.4), we have e(γ−2δ)θ ≤ 1 for θ ≤ 0. Multiplying (5.10) by eγ θe−γ θ

and replacing t by t + θ , we obtain that

sup
θ∈[−t,0]

eγ θ E ‖u(t + θ)‖2α ≤ 3G2e−2δt E ‖ϕ(0)‖2α + 3G2
αδ2α−1Γ (1 − 2α)e−δt L5

+ 3G2
αδ2α−1Γ (1 − 2α)e−δt L6

∫ t

0
eδr ‖ur‖2C γ (Hα) dr

+ 3NtG
2
αe

−δt (δq)
2αq−1

q
(
Γ (1 − 2αq)

) 1
q Λ

1
p .

(5.11)
Note that γ > 2δ, hence for all θ ∈ (−∞,−t],

eγ θ E ‖u(t + θ)‖2α ≤ e−γ t eγ (t+θ)E ‖ϕ(t + θ)‖2α ≤ e−γ t ‖ϕ‖2C γ (Hα)

≤ e−2δt ‖ϕ‖2C γ (Hα) .
(5.12)

(5.11) and (5.12) imply that

eδt ‖ut‖2C γ (Hα) ≤ Π7 + Π8Nt + Π9

∫ t

0
eδr ‖ur‖2C γ (Hα) dr, (5.13)

where we have used the notations

Π7 :=
(
3G2 + 1

)
‖ϕ‖2C γ (Hα) + 3G2

αδ2α−1Γ (1 − 2α)L5,

Π8 := 3G2
α (δq)

2αq−1
q

(
Γ (1 − 2αq)

) 1
q Λ

1
p ,

and
Π9 := 3G2

αδ2α−1Γ (1 − 2α)L6.

Applying Gronwall’s lemma to (5.13), we have

‖ut‖2C γ (Hα) ≤ (Π7 + Π8Nt ) e
(Π9−δ)t = (Π7 + Π8Nt ) e

−at ,

where a = δ − Π9. The proof is therefore complete.
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Corollary 5. Let 0 < α < 1
2 . Assume that assumptions (A1)-(A3), (B1)′-(B3)′,

(C1)′ and (5.4) hold. Then, there exists a constant a′ > 0 such that for any mild
solution u of (5.3) with cylindricalU-valued FBM BH

Q or Brownianmotion BQ instead

of Bσ,λ
Q and the initial condition ϕ ∈ C γ (Hα),

lim sup
t→∞

(1
t

)
log ‖ut‖2C γ (Hα) ≤ −a′.

Remark 4. If we consider C
(−r, 0; L2(Ω;Hα)

)
instead of C γ (Hα) in this section,

then by slightly modifying the proofs in Theorem 4 and Corollary 5, we can obtain the
exponential decay property of the mild solutions to (5.3) in the bounded delay case.
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