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NON NULL CONTROLLABILITY OF STOKES EQUATIONS WITH

MEMORY

Enrique Fernández-Cara1,*, José Lucas F. Machado2,†

and Diego A. Souza2,‡,§

Abstract. In this paper, we consider the null controllability problem for the Stokes equations with
a memory term. For any positive final time T > 0, we construct initial conditions such that the null
controllability does not hold even if the controls act on the whole boundary. We also prove that this
negative result holds for distributed controls.
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1. Introduction

Let Ω ⊂ R3 be a smooth bounded domain and let T > 0 be a prescribed final time. Let us introduce the
Hilbert spaces

H(Ω) := {w ∈ L2(Ω)3 : ∇ · w = 0 in Ω, w · n = 0 on ∂Ω }

and

V (Ω) := {w ∈ H1
0 (Ω)3 : ∇ · w = 0 in Ω },

where n = n(x) is the outward unit normal vector at x ∈ ∂Ω. It is well known that V (Ω) ↪→ H(Ω) with a
compact and dense embedding. Consequently, after identification of H(Ω) and its dual H(Ω)′, we have

V (Ω) ↪→ H(Ω) ↪→ V (Ω)′,

where the second embedding is again dense and compact.
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In the sequel, we will use the notation Q := Ω× (0, T ) and Σ := ∂Ω× (0, T ). The usual scalar products and
norms in the spaces L2(Ω)m will be denoted by (· , ·) and ‖ · ‖, respectively. The symbols C,C0, C1, . . . will be
used to design generic positive constants.

In this paper, we will consider the controlled Stokes equations with memory:
yt −∆y − b

∫ t

0

e−a(t−s)∆y(· , s) ds+∇p = 0 in Q,

∇ · y = 0 in Q,
y = v1γ on Σ,

y(· , 0) = y0 in Ω,

(1.1)

where a, b > 0 and γ ⊂ ∂Ω is a non-empty open subset of the boundary. Here, v ∈ L2(γ × (0, T ))3 is a control
acting on γ during the whole interval (0, T ) and y0 ∈ H(Ω) is an initial state.

For any y0 ∈ H(Ω) and any v ∈ L2(γ × (0, T ))3, there exists exactly one solution to (1.1), in the sense of
transposition. This means the following: there exists a unique y ∈ L2(0, T ;H(Ω)) ∩ C0([0, T ];V (Ω)′) satisfying

∫ T

0

(y(· , t), g(· , t)) dt=(y0, ψ(· , 0))−
∫∫

γ×(0,T )

v

(
−πn+

∂ψ

∂n
+b

∫ T

t

e−a(s−t) ∂ψ

∂n
(· , s) ds

)
dΓ dt (1.2)

for all g ∈ L2(0, T ;H(Ω)), where ψ is, together with some pressure π, the unique (strong) solution to
−ψt −∆ψ − b

∫ T

t

e−a(s−t)∆ψ(· , s) ds+∇π = g in Q,

∇ · ψ = 0 in Q,
ψ = 0 on Σ,

ψ(· , T ) = 0 in Ω.

(1.3)

Of course, if v1γ is regular enough (for instance, v = y|γ×(0,T ) with y ∈ L2(0, T ;V (Ω)) and yt ∈
L2(0, T ;V (Ω)′)), then y is, together with some pressure p, the unique weak solution to (1.1).

These assertions are justified at the end of the paper, in an Appendix (see Sect. A).
The boundary null controllability property for (1.1) reads as follows: for each y0 ∈ H(Ω), find a boundary

control v ∈ L2(γ × (0, T ))3 such that the associated solution satisfies y(·, T ) = 0.
When b = 0, (1.1) is the Stokes equations and it is well known that the null controllability holds. In the

general case, the presence of the memory term brings difficulties to the analysis of the controllability for (1.1).
By a duality argument, it is not difficult to see that the null controllability of (1.1) is equivalent to prove an

observability inequality for the adjoint system:
−ϕt −∆ϕ− b

∫ T

t

e−a(s−t)∆ϕ(· , s) ds+∇q = 0 in Q,

∇ · ϕ = 0 in Q,
ϕ = 0 on Σ,

ϕ(· , T ) = ϕ0 in Ω.

(1.4)

The usual way to deduce such an observability estimate is to first prove a global Carleman inequality. But it
seems difficult to adapt this approach in the presence of an integro-differential term.

In the last decades, many researchers have been interested by the controllability of systems governed by linear
and nonlinear PDEs. For linear PDEs, the first relevant contributions were obtained in [19, 25, 26, 33–35]. For
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instance, in [34], Russell presented a rather complete survey on the most relevant results available at that time.
There, the author described several tools developed to address controllability problems, in some cases related
to other subjects concerning PDEs: multipliers, moment problems, nonharmonic Fourier series, etc. On the
other hand, in [26], Lions introduced a very useful technique, the so called Hilbert Uniqueness Method (HUM
for short). Among other things, this allows to reformulate the solution to an exact controllability problem as a
Lax-Milgram problem in an “abstract” Hilbert space that can be identified for instance in the case of the wave
PDE.

For semilinear systems, one can find the first contributions in [8, 13, 24, 38] and some other related results
can be found in [3, 16].

In the context of fluid mechanics, the main controllability results are related to the Burgers, Stokes, Euler
and Navier-Stokes equations. For Stokes equations, the approximate and null controllability with distributed
controls have been established in [9, 20], respectively. For the Euler equations, global controllability results
are proved in [2, 15]. On the other hand, for the Navier-Stokes equations with initial and Dirichlet boundary
conditions, only local exact controllability results are available; see for instance [11, 12, 14, 20]. For Navier-Stokes
equations with Navier-slip (friction) boundary conditions a global exact controllability result is available in [5].

For 1D heat equations with memory, the lack of null controllability for a large class of memory kernels and

controls was established in [21], where the notion of null controllability also requires that
∫ T

0
y(·, t) dt = 0. In a

higher dimensional situation, Guerrero and Imanuvilov proved in [17] that null controllability does not hold for
the following system: 

yt −∆y −
∫ t

0

∆y(· , s) ds = 0 in Q,

y = v1γ on Σ,

y(· , 0) = y0 in Ω.

(1.5)

A similar result was obtained in [37] by Zhou and Gao for
yt −∆y − b

∫ t

0

e−a(t−s)y(· , s) ds = 0 in Q,

y = v on Σ,

y(· , 0) = y0 in Ω.

Our main goal in this work is to prove that the null controllability of (1.1) does not hold. More precisely, we
have the following result:

Theorem 1.1. Let T > 0 be given. There exists initial data y0 ∈ H(Ω) such that, for any control v ∈ L2(γ ×
(0, T ))3, the associated solution to (1.1) is not identically zero at time T .

The proof of this theorem follows some ideas of [17]. Thus, we prove that the required observability inequality
does not hold and then, using this fact, we construct explicit initial data that cannot be steered to zero.

We also have a negative result for distributed controlled systems of the kind
yt −∆y − b

∫ t

0

e−a(t−s)∆y(· , s) ds+∇p = v1ω in Q,

∇ · y = 0 in Q,
y = 0 on Σ,

y(· , 0) = y0 in Ω,

(1.6)

where ω ⊂ Ω is an open subset. Specifically, as an immediate consequence of Theorem 1.1, we get the following
result:
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Corollary 1.2. Let T > 0 be given and let ω be a non-empty open set with ω ⊂ Ω. There exist initial data
y0 ∈ H(Ω) such that, for any v ∈ L2(ω× (0, T ))3, the associated solution to (1.6) is not identically zero at time
T .

Remark 1.3. Theorem 1.1 and Corollary 1.2 still hold if we replace in (1.1) or (1.6) the integral (memory)
term by

∫ t

0

e−a(t−s)y(· , s) ds.

The analysis of the control of (1.1) and (1.6) is motivated by the interest to understand the limits of controlling
viscoelastic fluids of the Oldroyd kind. Thus, let us consider the following systems:



yt − ν∆y + (y · ∇)y +∇p = ∇ · τ in Q,

τt + (y · ∇)τ + g(∇y, τ) + aτ = 2bD(y) in Q,

∇ · y = 0 in Q,

y = v1γ on Σ,

y(· , 0) = y0, τ(· , 0) = τ0 in Ω

(1.7)

and



yt − ν∆y + (y · ∇)y +∇p = ∇ · τ + v1ω in Q,

τt + (y · ∇)τ + g(∇y, τ) + aτ = 2bD(y) in Q,

∇ · y = 0 in Q,

y = 0 on Σ,

y(· , 0) = y0, τ(· , 0) = τ0 in Ω,

(1.8)

where g(∇y, τ) := τW (y) −W (y)τ − k[D(y)τ + τD(y)], k ∈ [−1, 1] and we have used the nootation D(y) :=
1
2 (∇y+∇yt) and W (y) := 1

2 (∇y−∇yt). The functions y, p and τ are respectively the velocity field, the pressure
distribution and the elastic extra-stress tensor of the fluid; y0 ∈ H(Ω) and τ0 ∈ L2(Ω;Ls(R3)).1 For the physical
meaning of these systems, see for instance [22, 32].

The theoretical analysis of the Oldroyd systems (1.7) and (1.8) has been the subject of considerable work.
Note that these systems are more difficult to solve than the usual Navier-Stokes equations. The main reason is
the presence of the nonlinear term g(∇y, τ); for details, see [10, 27, 31].

It is worth mentioning that, in [6], the authors studied a linear version of (1.8):



yt −∆y +∇p = ∇ · τ + v1ω in Q,

τt + aτ = 2bD(y) in Q,

∇ · y = 0 in Q,

y = 0 on Σ,

y(· , 0) = y0, τ(· , 0) = τ0 in Ω.

(1.9)

1Ls(R3) is the space of symmetric real 3 × 3 matrices.
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Plugging the explicit solution τ of (1.9)2 into (1.9)1, it is easy to see that the previous system can be
equivalently rewritten as an integro-differential equation in y:


yt −∆y − b

∫ t

0

e−a(t−s)∆y(· , s) ds+∇p = e−at∇ · τ0 + v1ω in Q,

∇ · y = 0 on Q,

y = 0 on Σ,

y(· , 0) = y0 on Ω.

(1.10)

In ([6], Thms 1.1 and 1.2), approximate controllability results are established for (1.9). Notice that, if τ0 is
the null matrix, then (1.10) and (1.6) are exactly the same.

The system (1.9) governs the behavior of viscoelastic fluids of the so called linear Jeffreys kind. If we
neglect the viscosity term, we find a linear Maxwell fluid, for which large time controllability results have
been established, see [1]; see also [29, 30].

Recall that, in [6], the null controllability of linear Jeffreys fluids is formulated as an open problem. Hence,
Theorem 1.1 and Corollary 1.2 solve this open question proving that the null controllability does not hold.

This paper is organized as follows. In Section 2, we compute the eigenfunctions and eigenvalues of the Stokes
operator in a ball and we prove some relevant estimates. In Section 3, we prove Theorem 1.1. In Section 4,
we present some additional comments and open problems. Finally, in Appendix A, we prove the existence of
solution by transposition.

2. The radically symmetric eigenfunctions
of the Stokes operator

In this section, we will assume that Ω is the ball of radius R centered at the origin. We will compute explicitly
the eigenfunctions and eigenvalues of the Stokes operator and, then, we will deduce some crucial estimates that
will be used to prove Theorem 1.1. For simplicity, the coordinates of a generic point in Ω will be denoted by x,
y and z.

Let us compute nontrivial couples (ϕ, q) and positive real numbers λ such that


−∆ϕ+∇q = λϕ in Ω,

∇ · ϕ = 0 in Ω,

ϕ = 0 on ∂Ω.

(2.1)

Let us look for eigenfunctions as the curl of radial stream functions, i.e. ϕ = ∇× ψ, for some radial stream
function ψ. Setting w = ∇ × ϕ, we can easily deduce that if (w,ψ) solves, together with λ, the eigenvalue
problem


−rw′′ − 2w′ = λrw in (0, R),

−rψ′′ − 2ψ′ = rw in (0, R),

ψ(R) = 0, ψ′(R) = 0, λ > 0

(2.2)

then ϕ = ∇ × ψ is, together with λ and some q, a solution to (2.1). Here, we are using the notation r =√
x2 + y2 + z2 for any (x, y, z) ∈ Ω.
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In order to compute the solutions to (2.2), let us make the following change of variables: ζ = rw and φ = rψ.
Then, from (2.2), we see that ζ, φ and λ satisfy

−ζ ′′ = λζ, −φ′′ = ζ in (0, R),

ζ(0) = 0, φ(0) = 0,

φ(R) = 0, φ′(R) = 0, λ > 0.

This way, it is not difficult compute explicitly the eigenvalues λn and the corresponding eigenfunctions
(ϕn, qn) for (2.1):


ϕn(x, y, z) =

1

λ
1/2
n r2

(
cos(λ1/2

n r)− 1

λ
1/2
n r

sin(λ1/2
n r)

)
(y − z, z − x, x− y),

qn ≡ 0,

λ1/2
n R = tg(λ1/2

n R).

(2.3)

Note that

λn =
π2

R2
(n+ 1/2)2 − εn, for some εn > 0 with εn → 0. (2.4)

It is not difficult to see that {ϕn}n∈N is an orthogonal family in H(Ω). Also, using (2.3)3, we can compute
the L2-norm of ϕn:

‖ϕn‖2 = 8π

∫ R

0

(
cos(λ

1/2
n r)

λ
1/2
n

− sin(λ
1/2
n r)

λnr

)2

dr

=
8π

λ
3/2
n

[
λ

1/2
n R

2
+ sin(λ1/2

n R)

(
cos(λ

1/2
n R)

2
− sin(λ

1/2
n R)

λ
1/2
n R

)]

=
2πR

λn
(1− cos(2λ1/2

n R)).

(2.5)

From (2.4) and (2.5), we see that, if n is large enough, cos(2λ
1/2
n R) < 0 and, consequently,

‖ϕn‖2 ≥
2πR

λn
. (2.6)

On the other hand, we can deduce some estimates for the normal derivatives of ϕn. Indeed, using (2.3)1

and (2.3)3, we get:

∂ϕ1
n

∂n

∣∣∣∣
∂Ω

=

(
− sin(λ

1/2
n R)

R2
− 3

cos(λ
1/2
n R)

λ
1/2
n R3

+ 3
sin(λ

1/2
n R)

λnR4

)
(y − z),

∂ϕ2
n

∂n

∣∣∣∣
∂Ω

=

(
− sin(λ

1/2
n R)

R2
− 3

cos(λ
1/2
n R)

λ
1/2
n R3

+ 3
sin(λ

1/2
n R)

λnR4

)
(z − x),

∂ϕ3
n

∂n

∣∣∣∣
∂Ω

=

(
− sin(λ

1/2
n R)

R2
− 3

cos(λ
1/2
n R)

λ
1/2
n R3

+ 3
sin(λ

1/2
n R)

λnR4

)
(x− y).
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But, thanks to (2.3)3, the following relations hold:

−3
cos(λ

1/2
n R)

λ
1/2
n R3

+ 3
sin(λ

1/2
n R)

λnR4
= 0.

Therefore,

∂ϕn
∂n

∣∣∣∣
∂Ω

=− sin(λ
1/2
n R)

R2
(y − z, z − x, x− y). (2.7)

3. The lack of null controllability

In this section, we prove Theorem 1.1. As already said, we will follow some ideas presented in [17].
Notice that it is sufficient to consider the case where Ω is a ball and the solution is radially symmetric. Indeed,

if Ω is a general bounded domain in R3, we fix an open ball B ⊂ Ω. If the result is established for any ball,
we see that B can be chosen such that, for any T > 0, there exist initial states ŷ0 ∈ H(B) with the following
property: for any boundary control v ∈ L2(∂B × (0, T ))3, the associated solution ŷ is not identically equal to
zero at time T . Now, by extending ŷ0 by zero to the whole domain Ω, considering the extended system (1.1)
in Q and arguing by contradiction, we find that the null controllability at time T also fails in Ω× (0, T ).

Accordingly, we will assume in the sequel that Ω is a ball of radius R.
It is well known that the null controllability of (1.1) is equivalent to the following observability inequality for

the solutions to (1.4):

‖ϕ( · , 0)‖2 ≤ C
∫∫

Σ

∣∣∣(−qId +∇ϕ+ b

∫ T

t

e−a(s−t)∇ϕ(·, s) ds

)
· n
∣∣∣2 dΓ dt ∀ϕ0 ∈ H(Ω). (3.1)

Our goal is to show that there is no positive constant C such that (3.1) holds. To this purpose, we will construct
a family of solutions to (1.4), denoted ϕM , such that, for all sufficiently large M , one has

‖ϕM ( · , 0)‖ ≥ C1

M6
(3.2)

and ∫∫
Σ

∣∣∣(−qId +∇ϕM + b

∫ T

t

e−a(s−t)∇ϕM (·, s) ds

)
· n
∣∣∣2dΓ dt ≤ C2

M10
, (3.3)

where C1 and C2 are independent of M . Then, using these properties of the ϕM , we will be able to construct
initial data y0 in H(Ω) such that the solution to (1.1) cannot be steered to zero, no matter the control is.

3.1. The structure of the ϕM

For simplicity, the superindex M will be omited in this section (and also in Sects. 3.2 and 3.3).
Let us set

ϕ0 :=
∑
n≥1

βnϕn,

where {βn} is a real sequence with only a finite amount of non-zero terms, see (3.10). We try to find some
particular βn such that the quotient of (3.9) over (3.16) becomes large, see (3.2) and (3.3).
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The solution to (1.4) associated with ϕ0 can be written in the form

ϕ( · , t) =
∑
n≥1

αn(t)ϕn, q ≡ 0, ∀t ∈ (0, T ), (3.4)

where the αn satisfy the following second-order Cauchy problem:
−α′′n + (λn + a)α′n − λn(a+ b)αn = 0 in (0, T ),

αn(T ) = βn,

α′n(T ) = λnβn.

(3.5)

It is clear that there exists n0 ∈ N such that, if n ≥ n0, then Dn := (λn + a)2 − 4(a + b)λn > 0. This way,
taking βn = 0 for n < n0, we have{

αn(t) ≡ 0 ∀n < n0,

αn(t) ≡ C1,ne
µ+
n (T−t) + C2,ne

µ−
n (T−t) ∀n ≥ n0,

(3.6)

where

µ+
n = − (λn + a) +

√
Dn

2
and µ−n = − (λn + a)−

√
Dn

2
(3.7)

and the coefficients C1,n and C2,n are given by

C1,n = βn
λn − a+

√
Dn

2
√
Dn

and C2,n = βn
a− λn +

√
Dn

2
√
Dn

. (3.8)

It is not difficult to check that µ+
n → −∞ and µ−n → −(a+ b) as n→ +∞. Also, using (2.6), (3.4), (3.6) and

the orthogonality of ϕn, we see that

‖ϕ( · , 0)‖2 =
∑
n≥n0

(C1,ne
µ+
nT + C2,ne

µ−
n T )2‖ϕn‖2

≥
∑
n≥n0

2πR

λn
(C1,ne

µ+
nT + C2,ne

µ−
n T )2.

(3.9)

Let M be a large integer (such that 8M ≥ n0) and let us take

βn = 0 ∀n 6∈ {8M + k : 1 ≤ k ≤ 8}. (3.10)

The coefficients βn for n ∈ {8M + k : 1 ≤ k ≤ 8} will be chosen below, in Section 3.3. Then, one has

ϕ(· , t) =
∑
M

αn(t)ϕn ∀t ∈ (0, T ), (3.11)

where
∑
M

stands for the sum extended to all indices of the form n = 8M + k with 1 ≤ k ≤ 8.
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3.2. The estimates from below

Let us use (3.9) to prove (3.2). To do this, let us begin with the inequality

∑
M

1

λn

(
C1,ne

µ+
nT + C2,ne

µ−
n T
)2

≥
∑
M

1

λn

(
3

4
C2

2,ne
2µ−
n T − 3C2

1,ne
2µ+
nT

)
.

Let us assume for the moment that the β8M+k and the corresponding C1,8M+k have been chosen bounded
independently of M . This choice will be justified below, see Remarks 3.2 and 3.4. Then, from (2.4) and (3.7),
we have that

C2
1,8M+ke

2µ+
8M+kT ≤ Ce−CM

2T ∀k = 1, . . . , 8. (3.12)

Here and in the sequel, the generic constant denoted by C is independent of M . On the other hand, using the
notations

(k − 1/2)! = (k − 1/2)(k − 3/2) · · · 1/2 and (−1/2)! = 1,

we can expand the quotient (a− λn +
√
Dn)/

√
Dn in the definition of C2,n and get:

a− λn +
√
Dn√

Dn

=

 2a

λn + a
− 2λn(λn − a)(a+ b)

(λn + a)3
− λn − a
λn + a

∑
k≥2

(k − 1/2)!

k!

(
4λn(a+ b)

(λn + a)2

)k
=

[
2a

λn + a
− 2λn(λn − a)(a+ b)

(λn + a)3
− 6λ2

n(λn − a)(a+ b)2

(λn + a)5
+O(λ−3

n )

]
≈ O(λ−1

n ),

(3.13)

for n large enough and, taking into account (2.4), we see that

inf
1≤k≤8

(
a− λ2,8M+k +

√
D2,8M+k√

D2,8M+k

)2

≥ C

M4
(3.14)

for M large enough. Finally, combining (3.9), (2.4), (3.12), (3.14) and the fact that µ−n → −(a+ b), one has:

‖ϕM ( · , 0)‖2 ≥ C1

M6
(3.15)

for M large enough and some positive C1 independent of M .

3.3. The estimates from above

In order to estimate the right hand side of (3.1) from above, it is sufficient to find an upper bound of the
integral

∫∫
Σ

∣∣∣∣∂ϕ∂n
∣∣∣∣2 dΓ dt.
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To simplify the computations, let us introduce the weight e2(a+b)(T−t) in the above integral and consider
instead this one: ∫∫

Σ

e2(a+b)(T−t)
∣∣∣∣∂ϕ∂n

∣∣∣∣2 dΓ dt.

Taking into account (2.7), the following estimate holds:

∣∣∣∣∂ϕ∂n
∣∣∣∣2 ≤ 12

∣∣∣∣∣∣
∑
n≥n0

γnαn(t)

∣∣∣∣∣∣
2

,

where γn := sin(λ
1/2
n R)/R for all n. Therefore,

∫∫
Σ

e2(a+b)(T−t)
∣∣∣∣∂ϕ∂n

∣∣∣∣2 dΓ dt ≤ 48πR2

∫ T

0

e2(a+b)(T−t)

∣∣∣∣∣∣
∑
n≥n0

αn(t)γn

∣∣∣∣∣∣
2

dt

≤ A1 +A2,

(3.16)

where we have set

A1 :=96πR2

∫ T

0

(∑
M

γnC1,ne
(a+b+µ+

n )(T−t)

)2

dt, A2 :=96πR2

∫ T

0

(∑
M

γnC2,ne
(a+b+µ−

n )(T−t)

)2

dt.

Let us establish estimates of A1 and A2 separately.

Lemma 3.1. There exists C > 0 such that, for M large enough, one has

A1 ≤
C

M10
. (3.17)

Proof. Let us begin using (3.7) and noting that e(a+b+µ+
n )(T−t) = e(a+2b−λn)(T−t)eBn(T−t)), where Bn := −µ−n −

a− b→ 0 as n→ +∞. Also, from (2.4), we have

e(a+2b−λ8M+k)(T−t) = e

[
a+2b− π2

R2 (8M+ 1
2 )

2
]
(T−t)

e

[
− π2

R2 (16Mk+k+k2)+ε8M+k

]
(T−t)

.

Let us rewrite A1 as follows:

A1 = 96πR2

∫ T

0

e(2a+4b−2 π
2

R2 (8M+ 1
2 )2)(T−t)gM (t) dt,

where gM (t) := fM (t)2 and fM is given by

fM (t) :=

8∑
k=1

γ8M+kC1,8M+k exp

([
− π

2

R2
(16Mk + k + k2) + ε8M+k +B8M+k

]
(T − t)

)
.
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After integrating by parts ten times, we get:

∫ T

0

e(2a+4b− 2π2

R2 (8M+ 1
2 )2)(T−t)gM (t) dt =

9∑
j=0

e(2a+4b− 2π2

R2 (8M+ 1
2 )2)T g

(j)
M (0)− g(j)

M (T )

(2a+ 4b− 2π2

R2 (8M + 1
2 )2)j+1

+

∫ T

0

e(2a+4b− 2π2

R2 (8M+ 1
2 )2)(T−t)

(2a+ 4b− 2π2

R2 (8M + 1
2 )2)10

g
(10)
M (t) dt.

(3.18)

The quantities ε8M+k, B8M+k and γ8M+k are bounded independently of M . If the same happens to the

C1,8M+k, we have |f (j)
M | = O(M j) and g

(j)
M = O(M j) for all j ≥ 1 and all sufficiently large M , whence

9∑
j=0

g
(j)
M (T )

(2a+ 4b− 2π2

R2 (8M + 1
2 )2)j+1

= O(M−2).

Thus, in order to obtain (3.17), we impose the following conditions to the g
(j)
M (T ):

g
(0)
M (T ) = g

(1)
M (T ) = · · · = g

(8)
M (T ) = g

(9)
M (T ) = 0. (3.19)

Note that these conditions are fulfilled if the constants C1,8M+k (1 ≤ k ≤ 8) satisfy five linear equations cor-

responding to the identities f
(0)
M (T ) = f

(1)
M (T ) = f

(2)
M (T ) = f

(3)
M (T ) = f

(4)
M (T ) = 0. More precisely, the constants

C1,8M+k (1 ≤ k ≤ 8) should satisfy:


8∑
k=1

γ8M+k

(
− π

2

R2
(16Mk + k + k2) + ε8M+k +B8M+k

)j
C1,8M+k = 0,

for j = 0, 1, 2, 3, 4.

(3.20)

Remark 3.2. In this homogeneous system, there are 5 linear equations for the 8 unknowns C1,8M+k. Hence,
the space of solutions has, at least, dimension 3 and it is possible to choose a nontrivial solution bounded
independently of M . Of course, this is what we do.

Finally, using (3.18), (3.19) and the bounds

e(2a+4b− 2π2

R2 (8M+ 1
2 )2)T

(2a+ 4b− 2π2

R2 (8M + 1
2 )2)j+1

|g(j)
M (0)| ≤ Ce−CM

2 1

M j+2
<

C

M10
for 0 ≤ j ≤ 9

and ∣∣∣∣∣∣
∫ T

0

e(2a+4b− 2π2

R2 (8M+ 1
2 )2)(T−t)

(2a+ 4b− 2π2

R2 (8M + 1
2 )2)10

g
(10)
M (t) dt

∣∣∣∣∣∣ ≤
∫ T

0

1

(CM)20
CM10 dt =

C

M10
,

that hold for M large enough, we deduce (3.17).

Lemma 3.3. There exists C > 0 such that, for M large enough, one has

A2 ≤
C

M12
. (3.21)
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Proof. First, note that

µ−n =
λn + a

2

(
−1 +

√
1− 4λm(a+ b)

(λn + a)2

)
= −λn + a

4

∑
k≥1

(k − 3/2)!

k!

[
4λn(a+ b)

(λn + a)2

]k
.

On the other hand, the exponent in the expression of A2 can be split as follows:

e(a+b+µ−
n )(T−t) = e

a(a+b)
λn+a (T−t)eYn(T−t),

where

Yn := −λn + a

4

∑
k≥2

(k − 3/2)!

k!

[
4λn(a+ b)

(λn + a)2

]k
.

Since ex = 1 + x+O(x2) for |x| < 1, we see that

e
a(a+b)
λn+a (T−t) = 1 +

a(a+ b)

λn + a
(T − t) +O(λ−2

n ), (3.22)

for n large enough.
Now, since µ−n → −(a+ b), we have

|Yn(T − t)| =
∣∣∣∣(a+ b+ µ−n −

a(a+ b)

λn + a

)
(T − t)

∣∣∣∣ < 1

and

eYn(T−t) = 1− λ2
n(a+ b)2

(λn + a)3
(T − t) +O(λ−2

n ), (3.23)

where we have used that Yn = −λ
2
n(a+b)2

(λn+a)3 +O(λ−2
n ) for n large enough. The following is obtained from (3.22)

and (3.23):

e(a+b+µ−
n )(T−t) = 1− λ2

n(a+ b)2

(λn + a)3
(T − t) +

a(a+ b)

λn + a
(T − t) +O(λ−2

n ). (3.24)

Using (3.13) and (3.24), we see that

γnC2,ne
(a+b+µ−

n )(T−t) = γn
βn
2

[(
2a

λn + a
− 2λn(λn − a)(a+ b)

(λn + a)3
− 6λ2

n(λn − a)(a+ b)2

(λn + a)5

)
+ (T − t)

(
− 2λ2

n(a+ b)2a

(λn + a)4
+

2λ3
n(λn − a)(a+ b)3

(λn + a)6
+

2a2(a+ b)

(λn + a)2

− 2λn(λn − a)a(a+ b)2

(λn + a)4

)
+O(λ−3

n )

]
,

(3.25)
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for n large enough. Thus, in order to deduce (3.21), we impose these two conditions:

∑
M

γn

(
a

λn + a
− λn(λn − a)(a+ b)

(λn + a)3
− 3λ2

n(λn − a)(a+ b)2

(λn + a)5

)
βn = 0 (3.26)

and ∑
M

γn

(
λ2
n(a+ b)2a

(λn + a)4
− λ3

n(λn − a)(a+ b)3

(λn + a)6
− a2(a+ b)

(λn + a)2
+
λn(λn − a)a(a+ b)2

(λn + a)4

)
βn = 0. (3.27)

Remark 3.4. In view of (3.8), we see that (3.20), (3.26) and (3.27) together form a linear homogeneous system
of 7 equations for the 8 unknowns C1,8M+k. Accordingly, as before, the solution (and also the associated β8M+k)
can be chosen bounded independently of M and this will be our choice.

Finally, from (3.25), (3.26) and (3.27), we observe that∣∣∣∣∣∑
M

γnC2,ne
(a+b+µ−

n )(T−t)

∣∣∣∣∣ ≤ C

M6

for M large enough, which leads to (3.21).

An immediate consequence of the estimates (3.17) and (3.21) is that

∫∫
Σ

e2(a+b)(T−t)
∣∣∣∣∂ϕM∂n

∣∣∣∣2 dΓ dt ≤ C

M10
(3.28)

for M large enough.

3.4. Construction of non-controllable initial data

From the results obtained in Sections 3.1, 3.2 and 3.3, it becomes clear that there is no C such that (3.1)
holds. Consequently, (1.1) is not null-controllable.

For the sake of completeness, let us construct explicitly initial states y0 ∈ H(Ω) such that, for all v ∈ L2(Σ)3,
the associated solutions to (1.1) do not vanish at t = T .

Let M be large enough (to be fixed below). In view of (3.9) and (3.15), there exists an integer k0 with
1 ≤ k0 ≤ 8 and

‖ϕ8M+k0‖2
(
C1,8M+k0e

µ+
8M+8k0

T + C2,8M+k0e
µ−
8M+k0

T
)2

≥ C0

8M6
. (3.29)

Let us introduce

y0 :=
∑
`≥1

1

`3/4
ϕ8`+k0

‖ϕ8`+k0‖
. (3.30)

Then, it is not difficult to see that y0 ∈ H(Ω).
Let us check that y0 cannot be steered to zero. We will argue by contradiction. Thus, let v ∈ L2(Σ)3 be such

that the solution to (1.1) associated with y0 satisfies y(· , T ) = 0. Then, we must have∫
Ω

y0(x)ϕM (x, 0) dx =

∫∫
Σ

v
∂ϕM

∂n
dΓ dt+ b

∫ T

0

∫ t

0

e−a(t−s)
(∫

∂Ω

v(σ, s)
∂ϕM

∂n
(σ, t) dΓ

)
dsdt, (3.31)
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where ϕM is defined in (3.11).
Using (3.30) and the orthogonality of the ϕn, we get the identity∫

Ω

y0(x)ϕM (x, 0) dx =
1

M3/4
‖ϕ8M+k0‖

(
C1,8M+k0e

µ+
8M+k0

T + C2,8M+k0e
µ−
8M+k0

T
)

and, in view of (3.29), we find that ∣∣∣∣∫
Ω

y0(x)ϕM (x, 0) dx

∣∣∣∣ ≥ C1

M15/4
, (3.32)

for some positive constant K1 independent of M .
On the other hand, taking into account (3.28), we see that the other terms in (3.31) can be bounded as

follows ∣∣∣∣∫∫
Σ

v(σ, t)
∂ϕM

∂n
(σ, t) dΓ dt

∣∣∣∣ ≤ ‖v‖L2(Σ)

∥∥∥∥∂ϕM∂n
∥∥∥∥
L2(Σ)

≤ K2

M5
(3.33)

and ∣∣∣∣∣
∫ T

0

∫ t

0

e−a(t−s)
(∫

∂Ω

v(σ, s)
∂ϕM

∂n
(σ, t)dΓ

)
ds dt

∣∣∣∣∣ ≤ C‖v‖L2(Σ)

∥∥∥∥∂ϕM∂n
∥∥∥∥
L2(Σ)

≤ K3

M5
, (3.34)

for some positive K2 and K3, again independent of M .
Consequently, (3.32), (3.33) and (3.34) lead to

C1

M15/4
≤ C4

M5
,

which is an absurd if M is sufficiently large.

4. Some additional comments and questions

4.1. The lack of null controllability for the 2D Stokes equations with a memory term

A result identical to Theorem 1.1 can be established for the two-dimensional Stokes system. As before, it
suffices to consider the case where Ω is a ball of radius R centered at the origin. Now, the eigenfunctions (ϕn, qn)
and eigenvalues λn are given by 

λ
1/2
n R = j1,n

ψn(r) =
1

λn

∫ λ1/2
n R

λ
1/2
n r

J1(σ) dσ

qn ≡ 0

ϕn(x, y) =
J1(λ

1/2
n r)

λ
1/2
n r

(−y, x) ,

(4.1)

where J1 is the first order Bessel function of the first kind and j1,n is the n-th positive root of J1 (for simplicity,
x and y denote the coordinates of a generic point in Ω).
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Thanks to ([28], Lem. 1), λn satisfies the following inequality:

π2

R2

(
n+

1

8

)2

≤ λn ≤
π2

R2

(
n+

1

4

)2

∀n ≥ 1. (4.2)

Taking into account (4.1)1, a simple computation gives:

∂ϕn
∂n

∣∣∣∣
∂Ω

= J ′1(λ1/2
n R)

(
− y
R
,
x

R

)
. (4.3)

On the other hand, thanks to (4.2), the following estimates also hold:

‖ϕn‖2 =
1

λn

∫
Ω

[J1(λ1/2
n r)]2 dx dy

=
2π

λ2
n

∫ j1,n

0

[J1(s)]2sds

≥ 2π

λ2
n

∫ 1

0

J2
1 (r)r dr

≥ 2πC

λ2
n

.

(4.4)

Then, as in the 3D case, we can define γn := J ′1(λ
1/2
n R). Thanks to (4.1)1, it is not difficult to see that

γn = J0(λ
1/2
n R) and, consequently, it is bounded independently of n. In view of (4.2), (4.3), (4.4) and the

boundedness of γn, the proof of Theorem 1.1 can be adapted and the desired non-controllability result is
deduced.

4.2. The heat equation with memory

Using arguments similar to those in the previous sections, the non-controllability results obtained in [17] for
(1.5) can be extended to more general situations. More precisely, the following problem for the heat equation
with memory can be considered:


yt −∆y − b

∫ t

0

e−a(t−s)∆y(· , s) ds = 0 in Q,

y = v on Σ,

y(· , 0) = y0 in Ω.

It would be interesting to investigate which are the most general conditions for a time-dependent memory
kernel K under which Theorem 1.1 still holds for the corresponding system


yt −∆y −

∫ t

0

K(t− s)∆y(· , s) ds = 0 in Q,

y = v on Σ,

y(· , 0) = y0 in Ω.

Some results in the one-dimensional case have been obtained in [18].



16 E. FERNÁNDEZ-CARA ET AL.

4.3. Hyperbolic equations with memory

Differently to the case of the heat and Stokes equations, the wave equation with memory is exactly controllable
if the usual geometric control conditions are satisfied.

This is true, for instance, for a hyperbolic integro-differential equation of the form
ytt − a(t)∆y + b(t)yt + c(t)y −

∫ t

0

K(t, s)∆y(· , s) ds = 0 in Ω× (0, T ),

y = v1γ on ∂Ω× (0, T ),

y(· , 0) = 0, yt(·, 0) = 0 in Ω,

as long as the kernel K = K(t, s) is assumed to belong to C2(R2
+); for details, see [23]. It would be interesting

to analyze if the exact controllability results obtained there can be extended to the hyperbolic Stokes equation
with memory: 

ytt −∆y −
∫ t

0

K(t, s)∆y(· , s) ds+∇p = 0 in Q,

∇ · y = 0 in Q,
y = v1γ on Σ,

y(· , 0) = 0, yt(· , 0) = 0 in Ω.

4.4. Nonlinear systems with memory

Recall that the null and approximate controllability of (1.7) and (1.8) are open questions. It would be very
interesting to see whether or not the effect of the nonlinear terms is sufficient to modify the controllability
properties of the linearized systems. This is the case, for instance, for the equation studied in [4].

Appendix A. The existence and uniqueness of a solution to (1.1)

Let us denote by A the usual Stokes operator, with domain D(A) := H2(Ω)3 ∩ V (Ω). Recall that D(A) ↪→
V (Ω) ↪→ H(Ω), with dense and compact embeddings. Consequently, after identification of H(Ω) and its dual
space, we also have H(Ω) ↪→ V (Ω)′ ↪→ D(A)′, where the embeddings are again dense and compact.

Let us prove that, for each g ∈ L2(0, T ;H(Ω)), there exists exactly one strong solution to (1.3). This can be
seen (for example) as follows.

Let us introduce the change of variables

ϕ =

∫ T

t

e−asψ(· , s) ds, η = e−atπ(· , t). (A.1)

Then, at least formally, we see that (ψ, π) solves (1.3) if and only if (ϕ, η) solves the system
ϕtt + aϕt + b∆ϕt −∆ϕ+∇η = g̃ in Q,

∇ · ϕ = 0 in Q,
ϕ = 0 on Σ,

ϕ(· , T ) = 0, ϕt(· , T ) = 0 in Ω,

(A.2)

where g̃(· , t) := e−atg(· , t).
The existence and uniqueness of a solution to (A.2) can be deduced in a completely standard way, for

instance via the Galerkin method. Thus, we first introduce an orthogonal basis in V (Ω) (for instance, the basis
formed by the eigenfunctions of the Stokes operator), we solve the associated finite dimensional problems, we
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deduce uniform estimates for the corresponding solutions in L∞(0, T ;D(A)), for their first-order time derivatives
in L∞(0, T ;V (Ω)) and L2(0, T ;D(A)) and also for their second-order time derivatives in L2(0, T ;H(Ω)), we
extract convergent subsequences and we finally take limits and check that (A.2) is satisfied for some η ∈
L2(0, T ;H1(Ω)). We also get estimates in these spaces that prove linear and continuous dependence of g.
The process is described with detail for general second-order in time systems for instance in ([7], Chap. 7,
pp. 380–394); see also ([36], Chap. 3, pp. 255–265).

With the help of (A.1), we deduce that there exists exactly one solution to (1.3), with

ψ ∈ L∞(0, T ;V (Ω)) ∩ L2(0, T ;D(A)), ψt ∈ L2(0, T ;H(Ω)), π ∈ L2(0, T ;H1(Ω))

and, consequently,

ψ ∈ C0([0, T ];V (Ω)) and
(
−πn+

∂ψ

∂n
+b

∫ T

·
e−a(s−t) ∂ψ

∂n
(· , s) ds

)∣∣∣
Σ
∈ L2(0, T ;H1/2(∂Ω)3),

with appropriate estimates.
Now, let y0 ∈ H(Ω) and v ∈ L2(γ× (0, T ))3 be given. For any g ∈ L2(0, T ;H(Ω)), the right hand side of (1.2)

(where (ψ, π) solves the corresponding system (1.3)) makes sense and is linearly and continuously dependent
of g. Consequently, there exists a unique y ∈ L2(0, T ;H(Ω)) satisfying (1.2) for all g ∈ L2(0, T ;H(Ω)) (by
definition, this is the solution by trasposition to (1.1)).

Note that y solves, together with some p, (1.1)1 in the distributional sense in Q (this is immediate if we first
compute the action of the left hand side of (1.1)1 on a test function in Q with zero divergence and, then, we
apply De Rham’s Lemma). Therefore, yt ∈ L2(0, T ;D(A)′), whence we deduce that y ∈ C0([0, T ];V (Ω)′).

Finally, note that the solution by transposition to (1.1) can actually be defined for more general y0 and v: in
view of the previous argument, it suffices y0 ∈ V (Ω)′ and v ∈ L2(0, T ;H−1/2(γ)3).
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