
Journal of Pure and Applied Algebra 224 (2020) 320–361
Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

Rings of differential operators as enveloping algebras of 
Hasse–Schmidt derivations

Luis Narváez Macarro 1

Departamento de Álgebra & Instituto de Matemáticas (IMUS), Facultad de Matemáticas, Universidad de 
Sevilla, Calle Tarfia s/n, 41012 Sevilla, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 December 2018
Received in revised form 13 April 
2019
Available online 7 May 2019
Communicated by S. Iyengar

MSC:
14F10; 13N10; 13N15

Keywords:
Hasse–Schmidt derivation
Integrable derivation
Differential operator
Substitution map
Power divided algebra

Let k be a commutative ring and A a commutative k-algebra. In this paper we 
introduce the notion of enveloping algebra of Hasse–Schmidt derivations of A over 
k and we prove that, under suitable smoothness hypotheses, the canonical map 
from the above enveloping algebra to the ring of differential operators DA/k is an 
isomorphism. This result generalizes the characteristic 0 case in which the ring 
DA/k appears as the enveloping algebra of the Lie-Rinehart algebra of the usual 
k-derivations of A provided that A is smooth over k.
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Il semble donc (et c’est le point de vue de H. Hasse, 
F.K. Schmidt et O. Teichmüller) que l’on ne puisse 
étudier les opérateurs Δk isolement, mais uniquement le 
système qu’ils forment avec les relations qui les relient.

[Jean Dieudonné [3]]

0. Introduction

In classical D-module theory, left DX-modules on a smooth space X (e.g. a smooth algebraic variety 
over a field of characteristic 0, or a complex smooth analytic manifold, or a smooth rigid analytic space 
over a complete ultrametric field of characteristic 0, etc.) are the same as modules over the structure sheaf 
OX endowed with an integrable connection, which is equivalent to an OX-linear action of the module of 
derivations Derk(OX) satisfying Leibniz rule and compatible with Lie brackets. A similar result holds for 
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right DX -modules. This fact plays a basic role in classical D-module theory, for instance in the definition 
of various operations or in the canonical right DX-module structure on top differential forms on X. It can 
be conceptually stated as saying that the sheaf DX is the enveloping algebra of the Lie algebroid Derk(OX)
and it is strongly related with the canonical isomorphism of graded OX-algebras:

SymOX
Derk(OX) ∼−→ gr DX/k . (1)

The main motivation of this paper is the existence of a canonical isomorphism:

ΓA Derk(A) ∼−→ gr DA/k (2)

for any commutative ring k (of arbitrary characteristic) and any HS-smooth k-algebra A (see Defini-
tion 2.3.11), where ΓA denotes the power divided algebra functor (remember that ΓA = SymA if Q ⊂ A). 
The proof of (2) in [11] depends on the fact that for a HS-smooth k-algebra A, any k-derivation δ : A → A

is integrable in the sense of Hasse–Schmidt (see Definition 2.3.1). This result suggests that, under these 
hypotheses, the ring of differential operators DA/k should be recovered in some canonical way from Hasse–
Schmidt derivations. This paper is devoted to answering this question.

The main difficulty is that Hasse–Schmidt derivations have a much less transparent algebraic structure 
than usual derivations. The module of usual derivations Derk(A) carries an A-module structure and a k-Lie 
algebra structure, and both are mixed on a Lie-Rinehart algebra structure, enough to recover the ring of 
differential operators as its enveloping algebra provided that Q ⊂ k and A is smooth over k (see [15]), 
although Hasse–Schmidt derivations were only known to carry a (non-commutative) group structure. In our 
previous paper [13], we introduced and studied the action of substitution maps (between power series rings) 
on Hasse–Schmidt derivations, to be thought as a substitute of the A-module structure on usual derivations.

In this paper we prove that both the group structure and the action of substitution maps allow us to 
define the enveloping algebra of Hasse–Schmidt derivations and to prove that, under smoothness hypotheses, 
this enveloping algebra is canonically isomorphic to the ring of differential operators without any assumption 
on the characteristic of k. A key step in the proof is the existence of a canonical map of graded algebras 
from the power divided algebra of the module of integrable derivations (in the sense of Hasse–Schmidt) to 
the graded ring of the enveloping algebra of Hasse–Schmidt derivations.

Let us now comment on the content of this paper.
In section 1 we recall and adapt, for the ease of the reader, the material in [13, §1, §2, §3]. We will 

concentrate ourselves in the case of power series rings and modules in a finite number of variables, which 
will be enough for our main results in section 3. In the last sub-section we recall the notions of exponential 
type series and power divided algebras.

In section 2 first we recall the notion of Hasse–Schmidt derivation and its basic properties. As we already 
did in [13, §4], we need to study, not only uni-variate Hasse–Schmidt derivations, but also multivariate 
ones: a (p, Δ)-variate Hasse–Schmidt derivation of our k-algebra A is a family D = (Dα)α∈Δ of k-linear 
endomorphisms of A such that D0 is the identity map and

Dα(xy) =
∑

β+γ=α

Dβ(x)Dγ(y), ∀α ∈ Δ, ∀x, y ∈ A,

where Δ ⊂ Np is a non-empty co-ideal, i.e. a subset of Np such that everytime α ∈ Δ and α′ ≤ α we 
have α′ ∈ Δ. An important idea is to think of Hasse–Schmidt derivations as series D =

∑
α∈Δ Dαsα in 

the quotient ring R[[s]]Δ of the power series ring R[[s]] = R[[s1, . . . , sp]], R = Endk(A), by the two-sided 
monomial ideal generated by all sα with α ∈ Np \ Δ. In the second sub-section we recall [13, §5] on the 
action of substitution maps on Hasse–Schmidt derivations. The starting point is simple: given a substitution 
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map ϕ : A[[s1, . . . , sp]]Δ → A[[t1, . . . , tq]]∇ and a (p, Δ)-variate Hasse–Schmidt derivation D =
∑

α∈Δ Dαsα
we may consider a new (q, ∇)-variate Hasse–Schmidt derivation given by:

ϕ•D :=
∑
α∈Δ

ϕ(sα)Dα.

In the last sub-section, we first recall the notion of integrable derivation: a k-derivation δ : A → A is said 
to be m-integrable if there is a uni-variate Hasse–Schmidt derivation D = (Di)mi=0 such that D1 = δ, and 
second we recall the main results in [11].

Section 3 contains the original results of this paper. First, we introduce the notion of HS-module, as 
a generalization of the classical notion of module with an integrable connection. Roughly speaking, a left 
HS-module is a module M over our k-algebra A on which Hasse–Schmidt derivations act “globally”, in a 
compatible way with the group structure and the action of substitution maps, and satisfying a Leibniz rule. 
More precisely, for each (p, Δ)-variate Hasse–Schmidt derivation D =

∑
α∈Δ Dαsα of A, M is endowed with 

a k[[s]]Δ-linear automorphism Ψp
Δ(D) : M [[s]]Δ → M [[s]]Δ congruent to the identity modulo 〈s〉, in such a 

way that:

-) The Ψp
Δ(−) are group homomorphism.

-) For each substitution map ϕ : A[[s]]Δ → A[[t]]∇ we have Ψq
∇(ϕ•D) = ϕ•Ψp

Δ(D).
-) (Leibniz rule) For each a ∈ A we have Ψp

Δ(D)a = D(a)Ψp
Δ(D).

Any DA/k-module is obviously a HS-module, since Hasse–Schmidt derivations act through their components, 
which are differential operators. Namely, if M is a left DA/k-module, for each (p, Δ)-variate Hasse–Schmidt 
derivation D =

∑
α∈Δ Dαsα of A we define Ψp

Δ(D) as:

Ψp
Δ(D)(m) =

∑
α∈Δ

(Dαm)sα, ∀m ∈ M.

The basic question is whether a HS-module structure can be lifted to a DA/k-module structure or not.
To illustrate the notion of HS-module, or more precisely, the notion of pre-HS-module structure (i.e. 

the compatibility with substitution maps only holds for substitution maps with constant coefficients), we 
give natural actions of Hasse–Schmidt derivations on ΩA/k and on Derk(A) generalizing, respectively, the 
classical Lie derivative and the adjoint representation of classical derivations.

In the second sub-section we generalize the well known ⊗ and Hom operations on modules with an 
integrable connection to the setting of HS-modules. In the last two sub-sections we define the enveloping 
algebra of Hasse–Schmidt derivations of a commutative algebra, and we prove, by imitating [11], that there 
is a canonical map of graded algebras from the power divided algebra of the module of integrable derivations 
to the graded ring of the enveloping algebra of Hasse–Schmidt derivations. We finally prove that, under the 
HS-smoothness hypothesis, the former map is an isomorphism and we deduce that the canonical map from 
the enveloping algebra of Hasse–Schmidt derivations to the ring of differential operators is an isomorphism. 
As a corollary, HS-modules coincide with D-modules for HS-smooth algebras.

I would like to thank the referee for the careful reading of the paper.

1. Notations and preliminaries

1.1. Notations

Throughout the paper we will use the following notations:
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-) k is a commutative ring and A a commutative k-algebra.
-) DA/k is the ring of k-linear differential operators of A (see [4]).
-) s = {s1, . . . , sp}, t = {t1, . . . , tq}, . . . are sets of variables.
-) k-algebra over A: see Definition 1.2.1.
-) nβ := {α ∈ Np | α ≤ β}) for β ∈ Np.
-) tm := {α ∈ Np | |α| ≤ m} with m ≥ 0.
-) CI (Np) is the set of all non-empty co-ideals of Np: see Notation 1.2.3.
-) τΔ′Δ is a truncation map: see (4).
-) U p(R; Δ), U p

fil(R; Δ), U p
gr(R; Δ): see Notation 1.2.4.

-) r � r′: see Definition 1.2.5.
-) r �→ r̃: see (7); g �→ ge: see (8).
-) Hom ◦

k (−, −), Aut ◦
k[[s]]Δ(−): see Notation 1.2.11.

-) S A(p, q; Δ, ∇) is the set of substitution maps: see Definition 1.3.1.
-) Ce(ϕ, α): see (13).
-) ϕM , Mϕ: see 1.3.6; ϕ•r, r •ϕ: see 1.3.7.
-) ϕ∗, ϕ∗: see (16) and (17).
-) E m(B) is the set of exponential type series: see Definition 1.4.1.
-) SymA M is the symmetric algebra of the A-module M .
-) ΓAM is the power divided algebra of the A-module M : see Definition 1.4.3.
-) HSp

k(A; Δ) is the set of (p, Δ)-variate Hasse–Schmidt derivations: see Definition 2.1.1.
-) a•D: see Definition 2.1.3.
-) ϕD, for ϕ a substitution map and D a Hasse–Schmidt derivation: see Proposition 2.2.3.
-) UA/k = TA/k/I is the enveloping algebra of the Hasse–Schmidt derivations of A over k: see Definition 3.3.7.

1.2. Rings and modules of power series

Throughout this section, k will be a commutative ring, A a commutative k-algebra and R a ring, not-
necessarily commutative.

Let p ≥ 0 be an integer and let us call s = {s1, . . . , sp} a set of p variables. The support of each α ∈ Np

is defined as suppα := {i | αi = 0}. The monoid Np is endowed with a natural partial ordering. Namely, 
for α, β ∈ Np, we define

α ≤ β
def.⇐⇒ ∃γ ∈ Np such that β = α + γ ⇐⇒ αi ≤ βi ∀i = 1 . . . , p.

We denote |α| := α1 + · · · + αp. If α ≤ β then |α| ≤ |β|. Moreover, if α ≤ β and |α| = |β|, then α = β.
Let M be an abelian group and M [[s]] the abelian group of power series with coefficients in M . The 

support of a series m =
∑

α mαsα ∈ M [[s]] is supp(m) := {α ∈ Np | mα = 0} ⊂ Np. It is clear that 
m = 0 ⇔ supp(m) = ∅. The order of a non-zero series m =

∑
α mαsα ∈ M [[s]] is

ord(m) := min{|α| | α ∈ supp(m)} ∈ N.

If m = 0 we define ord(0) := ∞. If M is an A-module, then M [[s]] is naturally an A[[s]]-module and for a ∈
A[[s]] and m, m′ ∈ M [[s]] we have supp(m +m′) ⊂ supp(m) ∪ supp(m′), supp(am), supp(ma) ⊂ supp(m) +
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supp(a), ord(m + m′) ≥ min{ord(m), ord(m′)} and ord(am), ord(ma) ≥ ord(a) + ord(m). Moreover, if 
ord(m′) > ord(m), then ord(m + m′) = ord(m).

The abelian group M [[s]] is the completion of the abelian group M [s] of polynomials with coefficients in 
s with respect to the 〈s〉-adic topology, and its natural topology is also the 〈s〉-adic topology.

When M = R is a ring, R[[s]] is a topological ring. If M is an A-module, there is a natural A[[s]]-linear 
bicontinuous isomorphism:

A[[s]]⊗̂AM
∼−→ M [[s]], (3)

where ⊗̂A indicates the completed tensor product with respect to the natural topology on A[[s]].

Definition 1.2.1. A k-algebra over A is a (not-necessarily commutative) k-algebra R endowed with a map of 
k-algebras ι : A → R. A map between two k-algebras ι : A → R and ι′ : A → R′ over A is a map g : R → R′

of k-algebras such that ι′ = g ◦ ι. A filtered k-algebra over A is a k-algebra (R, ι) over A, endowed with a 
ring filtration (Rk)k≥0 such that ι(A) ⊂ R0.

A k-algebra over A is obviously an (A; A)-bimodule. If R is a k-algebra over A, then the power series 
ring R[[s]] is a k[[s]]-algebra over A[[s]].

Definition 1.2.2. We say that a subset Δ ⊂ Np is an ideal (resp. a co-ideal) of Np if everytime α ∈ Δ and 
α ≤ α′ (resp. α′ ≤ α), then α′ ∈ Δ.

It is clear that Δ is an ideal if and only if its complement Δc is a co-ideal, and that the union and 
the intersection of any family of ideals (resp. of co-ideals) of Np is again an ideal (resp. a co-ideal) of Np. 
Examples of ideals (resp. of co-ideals) of Np are the β + Np (resp. the nβ := {α ∈ Np | α ≤ β}) with 
β ∈ Np. The tm defined as tm := {α ∈ Np | |α| ≤ m} with m ≥ 0 are also co-ideals. Notice that a co-ideal 
Δ ⊂ Np is non-empty if and only if (t0 = n0 =){0} ⊂ Δ.

Notation 1.2.3. The set of all non-empty co-ideals of Np will be denoted by CI (Np).

For a co-ideal Δ ⊂ NP and an integer m ≥ 0, we denote Δm := Δ ∩ tm. If Δ ⊂ NP is a finite non-empty 
co-ideal, we define its height as ht(Δ) := min{m ∈ N | Δ ⊂ tm} = max{|α| | α ∈ Δ}.

Let M be an (A; A)-bimodule central over k. For each co-ideal Δ ⊂ Np, we denote by ΔM the closed 
sub-(A[[s]; A[[s]])-bimodule of M [[s]] whose elements are the formal power series 

∑
α∈Np mαsα such that 

mα = 0 whenever α ∈ Δ, i.e.

ΔM = {m ∈ M [[s]], supp(m) ⊂ Δc} =

⎧⎨⎩m ∈ M [[s]], supp(m) ⊂
⋂
β∈Δ

ncβ

⎫⎬⎭ =

⋂
β∈Δ

{
m ∈ M [[s]], supp(m) ⊂ ncβ

}
=

⋂
β∈Δ

(nβ)M .

For m ∈ N we have (tm)M = 〈s〉m+1M [[s]]. Let us denote by M [[s]]Δ := M [[s]]/ΔM endowed with the 
quotient topology (it coincides with the 〈s〉-adic topology regarded as a k[[s]]-module), for which it is a 
topological bimodule over (A[[s]]Δ; A[[s]]Δ).

When Δ = nα, for some α ∈ Np, we will simply denote M [[s]]α := M [[s]]nα
. Similarly, when Δ = tm, for 

some m ≥ 0, we will simply denote M [[s]]m := M [[s]]tm .
The elements in M [[s]]Δ are power series of the form∑

mαsα, mα ∈ M.

α∈Δ
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The additive isomorphism ∑
α∈Δ

mαsα ∈ M [[s]]Δ �→ {mα}α∈Δ ∈ MΔ

is a homeomorphism, where MΔ is endowed with the product of discrete topologies on each copy of M .
For Δ ⊂ Δ′ co-ideals of Np, we have natural (A[[s]]Δ′ ; A[[s]]Δ′)-linear projections τΔ′Δ : M [[s]]Δ′ −→

M [[s]]Δ, that we call truncations:

τΔ′Δ :
∑
α∈Δ′

mαsα ∈ M [[s]]Δ′ �−→
∑
α∈Δ

mαsα ∈ M [[s]]Δ. (4)

When Δ = tm, Δ′ = tm′ , m ≤ m′, we will simply denote τm′m := τtm′ tm . We have (A; A)-linear scissions:∑
α∈Δ

mαsα ∈ M [[s]]Δ �−→
∑
α∈Δ

mαsα ∈ M [[s]]Δ′

which are topological immersions. In particular we have natural (A; A)-linear topological embeddings 
M [[s]]Δ ↪→ M [[s]] and we define the support (resp. the order) of any element in M [[s]]Δ as its support 
(resp. its order) as element of M [[s]]. We have a bicontinuous isomorphism of (A[[s]]Δ; A[[s]]Δ)-bimodules

M [[s]]Δ = lim
←−

m∈N
M [[s]]Δm ,

where transition maps in the inverse system are given by truncations. For a ring R, the ΔR are closed 
two-sided ideals of R[[s]] and we have a bicontinuous ring isomorphism

R[[s]]Δ = lim
←−

m∈N
R[[s]]Δm .

As in (3), for A[[s]]Δ ⊗A M (resp. M ⊗A A[[s]]Δ) endowed with the natural topology, we have that the 
natural map A[[s]]Δ ⊗A M → M [[s]]Δ (resp. M ⊗A A[[s]]Δ → M [[s]]Δ) is continuous and gives rise to a 
(A[[s]]Δ; A)-linear (resp. to a (A; A[[s]]Δ)-linear) isomorphism

A[[s]]Δ⊗̂AM
∼−→ M [[s]]Δ (resp. M⊗̂AA[[s]]Δ

∼−→ M [[s]]Δ).

Each (A; A)-linear map h : M → M ′ between two bimodules induces a linear map (over ((A[[s]]Δ; A[[s]]Δ))

h :
∑
α∈Δ

mαsα ∈ M [[s]Δ �−→
∑
α∈Δ

h(mα)sα ∈ M [[s]Δ. (5)

We have a commutative diagram

A[[s]]Δ⊗̂AM M [[s]]Δ M⊗̂AA[[s]]Δ

A[[s]]Δ⊗̂AM
′ M ′[[s]]Δ M ′⊗̂AA[[s]]Δ.

	

Id⊗̂h h

	

h⊗̂Id

	 	

Clearly, if R is a k-algebra over A, then R[[s]]Δ is a k[[s]]Δ-algebra over A[[s]]Δ.

Notation 1.2.4. Let R be a ring, p ≥ 1 and Δ ⊂ Np a non-empty co-ideal. We denote by U p(R; Δ) the 
multiplicative sub-group of the units of R[[s]]Δ whose 0-degree coefficient is 1. The multiplicative inverse 
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of a unit r ∈ R[[s]]Δ will be denoted by r∗. Clearly, U p(R; Δ)opp = U p(Ropp; Δ). For Δ ⊂ Δ′ co-ideals 
we have τΔ′Δ (U p(R; Δ′)) ⊂ U p(R; Δ) and the truncation map τΔ′Δ : U p(R; Δ′) → U p(R; Δ) is a group 
homomorphism. Clearly, we have:

U p(R; Δ) = lim
←−

m∈N
U p(R; Δm) = lim

←−
Δ′⊂Δ
�Δ′<∞

U p(R; Δ′). (6)

If p = 1 and Δ = tm = {i ∈ N | i ≤ m} we will simply denote U (R; m) := U 1(R; tm).

If R = ∪d≥0Rd is a filtered ring, we denote:

U p
fil(R; Δ) :=

{∑
α∈Δ

rαsα ∈ U p(R; Δ)
∣∣ rα ∈ R|α| ∀α ∈ Δ

}
.

It is clear that U p
fil(R; Δ) is a subgroup of U p(R; Δ).

If R =
⊕

d∈N Rd is a graded ring, we denote:

U p
gr(R; Δ) :=

{∑
α∈Δ

rαsα ∈ U p(R; Δ)
∣∣ rα ∈ R|α| ∀α ∈ Δ

}
.

It is clear that U p
gr(R; Δ) is a subgroup of U p(R; Δ).

If R be a filtered ring, we will denote by σ : U p
fil(R; Δ) −→ U p

gr(grR; Δ) the total symbol map defined as:

σ

(∑
α∈Δ

rαsα
)

:=
∑
α∈Δ

σ|α|(rα)sα.

It is clear that σ is a group homomorphism compatible with truncations.
For any ring homomorphism f : R → R′, the induced ring homomorphism f : R[[s]]Δ → R′[[s]]Δ sends 

U p(R; Δ) into U p(R′; Δ) and so it induces natural group homomorphisms U p(R; Δ) → U p(R′; Δ). Similar 
results hold for the filtered or graded cases.

Definition 1.2.5. Let R be a ring, p, q ≥ 0, s = {s1, . . . , sp}, t = {t1, . . . , tq} disjoint sets of variables and 
∇ ⊂ Np, Δ ⊂ Nq non-empty co-ideals. For each r ∈ R[[s]]∇, r′ ∈ R[[t]]Δ, the external product r � r′ ∈
R[[s � t]]∇×Δ (notice that ∇ × Δ ⊂ Np+q is a non-empty co-ideal) is defined as

r � r′ :=
∑

(α,β)∈∇×Δ

rαr
′
βsαtβ .

The above definition is consistent with the existence of natural isomorphism of (R; R)-bimodules 
R[[s]]∇⊗̂RR[[t]]Δ � R[[s � t]]∇×Δ � R[[t � s]]Δ×∇ � R[[t]]Δ⊗̂RR[[s]]∇. Let us also notice that 1 � 1 = 1
and r� r′ = (r� 1)(1 � r′). Moreover, if r ∈ U p(R; ∇), r′ ∈ U q(R; Δ), then r� r′ ∈ U p+q(R; ∇ ×Δ) and 
(r � r′)∗ = r′∗ � r∗.

Let E, F be two A-modules and Δ ⊂ Np a non-empty co-ideal. The proof of the following proposition is 
straightforward.

Proposition 1.2.6. Under the above hypotheses, any k[[s]]Δ-linear map f : E[[s]]Δ → F [[s]]Δ is continuous 
for the natural topologies, and for any co-ideal Δ′ ⊂ Np with Δ′ ⊂ Δ we have f (Δ′

E/ΔE) ⊂ Δ′
F /ΔF and so 

there is a unique k[[s]]Δ′-linear map f : E[[s]]Δ′ → F [[s]]Δ′ such that the following diagram is commutative:
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E[[s]]Δ F [[s]]Δ

E[[s]]Δ′ F [[s]]Δ′ .

f

trunc. trunc.
f

1.2.7. For each r =
∑

β rβsβ ∈ Homk(E, F )[[s]]Δ we define r̃ : E[[s]]Δ → F [[s]]Δ by

r̃

(∑
α∈Δ

eαsα
)

:=
∑
α∈Δ

( ∑
β+γ=α

rβ(eγ)
)

sα,

which is obviously a k[[s]]Δ-linear map.

Let us notice that r̃ =
∑

β sβ r̃β . It is clear that the map

r ∈ Homk(E,F )[[s]]Δ �−→ r̃ ∈ Homk[[s]]Δ(E[[s]]Δ, F [[s]]Δ) (7)

is (A[[s]]Δ; A[[s]]Δ)-linear.
If f : E[[s]]Δ → F [[s]]Δ is a k[[s]]Δ-linear map, let us denote by fα : E → F , α ∈ Δ, the k-linear maps 

defined by

f(e) =
∑
α∈Δ

fα(e)sα, ∀e ∈ E.

If g : E → F [[s]]Δ is a k-linear map, we denote by ge : E[[s]]Δ → F [[s]]Δ the unique k[[s]]Δ-linear map 
extending g to E[[s]]Δ = k[[s]]Δ⊗̂kE. It is given by

ge

(∑
α

eαsα
)

:=
∑
α

g(eα)sα. (8)

We have a k[[s]]Δ-bilinear and A[[s]]Δ-balanced map

〈−,−〉 : (r, e) ∈ Homk(E,F )[[s]]Δ × E[[s]]Δ �−→ 〈r, e〉 := r̃(e) ∈ F [[s]]Δ.

Lemma 1.2.8. With the above hypotheses, the following properties hold:

1) The map (7) is an isomorphism of (A[[s]]Δ; A[[s]]Δ)-bimodules. When E = F it is an isomorphism of 
k[[s]]Δ-algebras over A[[s]]Δ.

2) The restriction map

f ∈ Homk[[s]]Δ(E[[s]]Δ, F [[s]]Δ) �→ f |E ∈ Homk(E,F [[s]]Δ)

is an isomorphism of (A[[s]]Δ; A)-bimodules.
3) For r ∈ Homk(A, F )[[s]]Δ, we have

r ∈ Derk(A,F )[[s]]Δ ⇐⇒ r̃ ∈ Derk[[s]]Δ(A[[s]]Δ, F [[s]]Δ),

and so the map (7) for E = A induces an isomorphism of A[[s]]Δ-modules

Derk(A,F )[[s]]Δ
∼−→ Derk[[s]]Δ(A[[s]]Δ, F [[s]]Δ).
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Proof. Parts 1) and 2) are proven in [13, Lemma 3]. For part 3), let us write r =
∑

β rβsβ .

(⇒) For all a =
∑

α, b =
∑

α ∈ A[[s]]Δ we have:

r̃(ab) = · · · =
∑
α∈Δ

( ∑
β+γ+δ=α

rβ(aγbδ)
)

sα =

∑
α∈Δ

( ∑
β+γ+δ=α

(bδrβ(aγ) + aγrβ(bδ))
)

sα = · · · = b r̃(a) + a r̃(b).

(⇐) For all a, b ∈ A we have:∑
β∈Δ

rβ(ab)sβ = r̃(ab) = b r̃(a) + a r̃(b) = · · · =
∑
β∈Δ

(b rβ(a) + a rβ(b))sβ

and so rβ ∈ Derk(A, F ) for all β ∈ Δ. �
Let us call R = Endk(E). As a consequence of the above lemma, the composition of the maps

R[[s]]Δ
r �→r̃−−−→ Endk[[s]]Δ(E[[s]]Δ) f �→f |E−−−−−→ Homk(E,E[[s]]Δ) (9)

is an isomorphism of (A[[s]]Δ; A)-bimodules, and so Homk(E, E[[s]]Δ) inherits a natural structure of 
k[[s]]Δ-algebra over A[[s]]Δ. Namely, if g, h : E → E[[s]]Δ are k-linear maps with

g(e) =
∑
α∈Δ

gα(e)sα, h(e) =
∑
α∈Δ

hα(e)sα, ∀e ∈ E, gα, hα ∈ Homk(E,E),

then the product hg ∈ Homk(E, E[[s]]Δ) is given by

(hg)(e) =
∑
α∈Δ

( ∑
β+γ=α

(hβ ◦ gγ)(e)
)

sα. (10)

Definition 1.2.9. Let p, q ≥ 0, s = {s1, . . . , sp}, t = {t1, . . . , tq} disjoint sets of variables and Δ ⊂ Np, ∇ ⊂ Nq

non-empty co-ideals. For each f ∈ Endk[[s]]Δ(E[[s]]Δ) and each g ∈ Endk[[t]]∇(E[[t]]∇), with

f(e) =
∑
α∈Δ

fα(e)sα, g(e) =
∑
β∈∇

gβ(e)tβ ∀e ∈ E,

we define f � g ∈ Endk[[st]]Δ×∇(E[[s � t]]Δ×∇) as f � g := he, with:

h(x) :=
∑

(α,β)∈Δ×∇

(fα ◦ gβ)(x)sαtβ ∀x ∈ E.

The proof of the following lemma is clear and it is left to the reader.

Lemma 1.2.10. With the above hypotheses, for each r ∈ R[[s]]Δ, r′ ∈ R[[t]]∇, we have ˜r � r′ = r̃ � r̃′ (see 
Definition 1.2.5).

Notation 1.2.11. We denote:

Hom ◦
k (E,E[[s]]Δ) := {f ∈ Homk(E,E[[s]]Δ), f(e) ≡ e mod (n0) ∀e ∈ E} ,
E
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Aut ◦
k[[s]]Δ(E[[s]]Δ) :=

{
f ∈ Autk[[s]]Δ(E[[s]]Δ), f(e) ≡ e0 mod (n0)E ∀e ∈ E[[s]]Δ

}
.

Let us notice that a f ∈ Homk(E, E[[s]]Δ), given by f(e) =
∑

α∈Δ fα(e)sα, belongs to Hom ◦
k (E, E[[s]]Δ) if 

and only if f0 = IdE .

The isomorphism in (9) gives rise to a group isomorphism

r ∈ U p(Endk(E); Δ) ∼�−→ r̃ ∈ Aut ◦
k[[s]]Δ(E[[s]]Δ) (11)

and to a bijection

f ∈ Aut ◦
k[[s]]Δ(E[[s]]Δ) ∼�−→ f |E ∈ Hom ◦

k (E,E[[s]]Δ). (12)

So, Hom ◦
k (E, E[[s]]Δ) is naturally a group with the product described in (10).

1.3. Substitution maps

In this section we give a summary of sections 2 and 3 of [13]. Let k be a commutative ring, A a commutative 
k-algebra, s = {s1, . . . , sp}, t = {t1, . . . , tq} two sets of variables and Δ ⊂ Np, ∇ ⊂ Nq non-empty co-ideals.

Definition 1.3.1. An A-algebra map ϕ : A[[s]]Δ −→ A[[t]]∇ will be called a substitution map whenever 
ord(ϕ(si)) ≥ 1 for all i = 1, . . . , p. A such map is continuous and uniquely determined by the family 
c = {ϕ(ti), i = 1, . . . , p}.

If ϕ : A[[s]]Δ −→ A[[t]]∇ is a substitution map, its order is defined as

ord(ϕ) := min{ord(ϕ(si)) | i = 1, . . . , p} ≥ 1.

The set of substitution maps A[[s]]Δ −→ A[[t]]∇ will be denoted by S A(p, q; Δ, ∇). The trivial substitution 
map A[[s]]Δ −→ A[[t]]∇ is the one sending any si to 0 (ord(0) = ∞). It will be denoted by 0.

The composition of substitution maps is obviously a substitution map. Any substitution map ϕ :
A[[s]]Δ −→ A[[t]]∇ determines and is determined by a family

{Ce(ϕ, α), e ∈ ∇, α ∈ Δ, |α| ≤ |e|} ⊂ A, with C0(ϕ, 0) = 1,

such that:

ϕ

(∑
α∈Δ

aαsα
)

=
∑
e∈∇

⎛⎜⎝ ∑
α∈Δ

|α|≤|e|

Ce(ϕ, α)aα

⎞⎟⎠ te. (13)

In section 3, 2. of [13] the reader can find the explicit expression of the Ce(ϕ, α) in terms of the ϕ(si). The 
following lemma is clear.

Lemma 1.3.2. If Δ ⊂ Δ′ ⊂ Np are non-empty co-ideals, the truncation τΔ′Δ : A[[s]]Δ′ → A[[s]]Δ is clearly 
a substitution map and Cβ (τΔ′Δ, α) = δαβ for all α ∈ Δ and for all β ∈ Δ′ with |α| ≤ |β|.

Definition 1.3.3. We say that a substitution map ϕ : A[[s]]Δ −→ A[[t]]∇ has constant coefficients if ϕ(si) ∈
k[[t]]∇ for all i = 1, . . . , p. This is equivalent to saying that Ce(ϕ, α) ∈ k for all e ∈ ∇ and for all α ∈ Δ with 
|α| ≤ |e|. Substitution maps with constant coefficients are induced by substitution maps k[[s]]Δ −→ k[[t]]∇.
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We say that a substitution map ϕ : A[[s]]Δ −→ A[[t]]∇ is combinatorial if ϕ(si) ∈ t for all i = 1, . . . , p. 
A combinatorial substitution map has constant coefficients and is determined by (and determines) a map 
s → t. If ι : s → t is such a map, we will also denote by ι : A[[s]]Δ −→ A[[t]]∇ the corresponding substitution 
map, for any non-empty co-ideal ∇ ⊂ ι∗(Δ) := {β ∈ Nq | β ◦ ι ∈ Δ} (here multi-indexes in Nq or Np are 
considered as maps t → N or s → N respectively).

Definition 1.3.4. Let u = {u1, . . . , um}, v = {v1, . . . , vn} be another sets of variables. The tensor product of 
two substitution maps ϕ : A[[s]]∇ → A[[t]]Δ, ψ : A[[u]]∇′ → A[[v]]Δ′ is the unique substitution map

ϕ⊗ ψ : A[[s � u]]∇×∇′ −→ A[[t � v]]Δ×Δ′

making commutative the following diagram:

A[[s]]∇ A[[s � u]]∇×∇′ A[[u]]∇′

A[[t]]Δ A[[t � v]]Δ×Δ′ A[[v]]Δ′ ,

ϕ ϕ⊗ψ ψ

where the horizontal arrows are the combinatorial substitution maps induced by the inclusions s, u ↪→ s �u, 
t, v ↪→ t � v.2

For all (α, β) ∈ ∇ ×∇′ ⊂ Np ×Nm ≡ Np+m we have

(ϕ⊗ ψ)(sαuβ) = ϕ(sα)ψ(uβ) = · · · =
∑

e∈Δ,f∈Δ′
|e|≥|α|
|f|≥|β|

Ce(ϕ, α)Cf (ψ, β)tevf

and so, for all (e, f) ∈ Δ ×Δ′ and all (α, β) ∈ ∇ ×∇′ with |e| + |f | = |(e, f)| ≥ |(α, β)| = |α| + |β| we have

C(e,f)(ϕ⊗ ψ, (α, β)) =
{

Ce(ϕ, α)Cf (ψ, β) if |α| ≤ |e| and |β| ≤ |f |,
0 otherwise.

Proposition 1.3.5. Let ϕ ∈ S A(p, q; Δ, ∇) be a substitution map and ϕ(si) =
∑
|β|>0

ciβtβ ∈ A[[t]]∇, i =

1, . . . , p. Let us denote inϕ(si) :=
∑
|β|=1

ciβtβ ∈ A[[t]]∇, i = 1, . . . , p and ψ : A[[s]] → A[[t]]∇ the substitution 

map determined by ψ(si) = inϕ(si) for i = 1, . . . , p. Then, ψ(ΔA) = {0} and there is a unique induced 
substitution map inϕ : A[[s]]Δ → A[[t]]∇ satisfying (inϕ)(si) = inϕ(si), i = 1, . . . , p.

Proof. First, let us prove that suppψ(sα) ⊂ suppϕ(sα) for all α ∈ Np. Since the inϕ(si) are homogeneous 
of degree 1, we deduce that ψ(sα) is homogeneous of degree |α| for all α ∈ Np. So, if e ∈ suppψ(sα), then 
|e| = |α| and Ce(ψ, α) = 0, but from [13, Lemma 6, (2)] we have Ce(ϕ, α) = Ce(ψ, α) = 0 and we deduce 
e ∈ suppϕ(sα).

The substitution map ϕ : A[[s]] → A[[t]]∇ obtained by composing ϕ with the projection A[[s]] → A[[s]]Δ
satisfies ϕ(ΔA) = {0}, i.e. for all α /∈ Δ we have ϕ(sα) = 0, and so ψ(sα) = 0. We deduce that ψ(ΔA) = {0}
and so it induces a unique substitution map inϕ : A[[s]]Δ → A[[t]]∇ as required. �
2 Let us notice that there are canonical continuous isomorphisms of A-algebras A[[s  u]]∇×∇′ 	 A[[s]]∇⊗̂AA[[u]]∇′ , A[[t 

v]]Δ×Δ′ 	 A[[t]]Δ⊗̂AA[[v]]Δ′ .
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Let us notice that, with the notations of Proposition 1.3.5, we have ordϕ > 1 if and only if inϕ = 0.

1.3.6. Let M be an (A; A)-bimodule. Any substitution map ϕ : A[[s]]Δ → A[[t]]∇ induces (A; A)-linear 
maps:

ϕM := ϕ⊗̂IdM : M [[s]]Δ ≡ A[[s]]Δ⊗̂AM −→ M [[t]]∇ ≡ A[[t]]∇⊗̂AM

and

Mϕ := IdM ⊗̂ϕ : M [[s]]Δ ≡ M⊗̂AA[[s]]Δ −→ M [[t]]∇ ≡ M⊗̂AA[[t]]∇.

We have:

ϕM

(∑
α∈Δ

mαsα
)

=
∑
α∈Δ

ϕ(sα)mα =
∑
e∈∇

⎛⎜⎝ ∑
α∈Δ

|α|≤|e|

Ce(ϕ, α)mα

⎞⎟⎠ te,

Mϕ

(∑
α∈Δ

mαsα
)

=
∑
α∈Δ

mαϕ(sα) =
∑
e∈∇

⎛⎜⎝ ∑
α∈Δ

|α|≤|e|

mαCe(ϕ, α)

⎞⎟⎠ te

for all m ∈ M [[s]]Δ. If M is a trivial bimodule, then ϕM = Mϕ. If ϕ′ : A[[t]]∇ → A[[u]]Ω is another 
substitution map and ϕ′′ = ϕ ◦ ϕ′, we have ϕ′′

M = ϕM ◦ϕ′
M , Mϕ′′ = Mϕ ◦ Mϕ′.

For all m ∈ M [[s]]Δ and all a ∈ A[[s]]∇, we have

ϕM (am) = ϕ(a)ϕM (m), Mϕ(ma) = Mϕ(m)ϕ(a),

i.e. ϕM is (ϕ; A)-linear and Mϕ is (A; ϕ)-linear. Moreover, ϕM and Mϕ are compatible with the augmen-
tations, i.e.

ϕM (m) ≡ m0 mod (n0)M /∇M , Mϕ(m) ≡ m0 mod (n0)M /∇M , m ∈ M [[s]]Δ. (14)

If ϕ is the trivial substitution map (i.e. ϕ(si) = 0 for all si ∈ s), then ϕM : M [[s]]Δ → M [[t]]∇ and 

Mϕ : M [[s]]Δ → M [[t]]∇ are also trivial, i.e. ϕM (m) = Mϕ(m) = m0, for all m ∈ M [[s]]∇.

1.3.7. The above constructions apply in particular to the case of any k-algebra R over A, for which we have 
two induced continuous maps: ϕR = ϕ⊗̂IdR : R[[s]]Δ → R[[t]]∇, which is (A; R)-linear, and Rϕ = IdR⊗̂ϕ :
R[[s]]Δ → R[[t]]∇, which is (R; A)-linear. For r ∈ R[[s]]Δ we will denote ϕ•r := ϕR(r), r •ϕ := Rϕ(r). 
Explicitly, if r =

∑
α rαsα with α ∈ Δ, then:

ϕ•r =
∑
e∈∇

⎛⎜⎝ ∑
α∈Δ

|α|≤|e|

Ce(ϕ, α)rα

⎞⎟⎠ te, r •ϕ =
∑
e∈∇

⎛⎜⎝ ∑
α∈Δ

|α|≤|e|

rαCe(ϕ, α)

⎞⎟⎠ te. (15)

From (14), we deduce that:

ϕ• U p(R; Δ) ⊂ U q(R;∇), U p(R; Δ)•ϕ ⊂ U q(R;∇),

and if R is a filtered k-algebra over A, then ϕ• U p
fil(R; Δ) ⊂ U q

fil(R; ∇) and U p
fil(R; Δ)•ϕ ⊂ U q

fil(R; ∇). 
We also have ϕ•1 = 1•ϕ = 1.
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If ϕ is a substitution map with constant coefficients, then ϕR = Rϕ is a ring homomorphism over ϕ. In 
particular, ϕ•r = r •ϕ and ϕ•(rr′) = (ϕ•r)(ϕ•r′).

If ϕ = 0 : A[[s]]Δ → A[[t]]∇ is the trivial substitution map, then 0•r = r •0 = r0 for all r ∈ R[[s]]Δ. In 
particular, 0•r = r •0 = 1 for all r ∈ U p(R; Δ).

If u = {u1, . . . , ur} is another set of variables, Ω ⊂ Nr is a non-empty co-ideal and ψ : R[[t]]∇ → R[[u]]Ω is 
another substitution map, one has:

ψ •(ϕ•r) = (ψ ◦ϕ)•r, (r •ϕ)•ψ = r •(ψ ◦ϕ).

Since (R[[s]]Δ)opp = Ropp[[s]]Δ, for any substitution map ϕ : A[[s]]Δ → A[[t]]∇ we have (ϕR)opp = Roppϕ

and (Rϕ)opp = ϕRopp .

The proof of the following lemma is straightforward and it is left to the reader.

Lemma 1.3.8. If ϕ : A[[s]]Δ → A[[t]]∇ is a substitution map, then:

(i) ϕR is left ϕ-linear, i.e. ϕR(ar) = ϕ(a)ϕR(r) for all a ∈ A[[s]]Δ and for all r ∈ R[[s]]Δ.
(ii) Rϕ is right ϕ-linear, i.e. Rϕ(ra) = Rϕ(r)ϕ(a) for all a ∈ A[[s]]Δ and for all r ∈ R[[s]]Δ.

For each substitution map ϕ : A[[s]]Δ → A[[t]]∇ we define the (A; A)-linear map:

ϕ∗ : f ∈ Homk(A,A[[s]]Δ) �−→ ϕ∗(f) = ϕ ◦ f ∈ Homk(A,A[[t]]∇) (16)

which induces another one ϕ∗ : Endk[[s]]Δ(A[[s]]Δ) −→ Endk[[t]]∇(A[[t]]∇) given by:

ϕ∗(f) := (ϕ∗ (f |A))e = (ϕ ◦ f |A)e ∀f ∈ Endk[[s]]Δ(A[[s]]Δ). (17)

More generally, for any left A-modules E, F we have (A; A)-linear maps:

(ϕF )∗ : f ∈ Homk(E,F [[s]]Δ) �−→ (ϕF )∗(f) = ϕF ◦ f ∈ Homk(E,F [[t]]∇),

(ϕF )∗ : Homk[[s]]Δ(E[[s]]Δ, F [[s]]Δ) −→ Homk[[t]]∇(E[[t]]∇, F [[t]]∇),

(ϕF )∗(f) := (ϕF ◦ f |E)e .

Let us consider the (A; A)-bimodule M = Homk(E, F ). For each m ∈ M [[s]]Δ and for each e ∈ E we have 
˜ϕM (m)(e) = ϕF (m̃(e)), i.e.

˜ϕM (m)|E = ϕF ◦ (m̃|E) , (18)

or more graphically, the following diagram is commutative (see (9)):

M [[s]]Δ Homk[[s]]Δ(E[[s]]Δ, F [[s]]Δ) Homk(E,F [[s]]Δ)

M [[t]]∇ Homk[[t]]∇(E[[t]]∇, F [[t]]∇) Homk(E,F [[t]]∇).

ϕM

∼
m�→m̃

∼
restr.

(ϕF )∗ (ϕF )∗

∼
m�→m̃

∼
restr.

(19)

In order to simplify notations, we will also write:

ϕ•f := (ϕF )∗(f) ∀f ∈ Homk[[s]] (E[[s]]Δ, F [[s]]Δ),
Δ
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and so we have ϕ̃•m = ϕ•m̃ for all m ∈ M [[s]]Δ. Let us notice that (ϕ•f)(e) = (ϕF ◦ f)(e) for all e ∈ E, 
i.e.

(ϕ•f)|E = (ϕF ◦ f)|E = ϕF ◦ (f |E), but in general ϕ•f = ϕF ◦ f . (20)

If ϕ = 0 is the trivial substitution map, then for each f =
∑

α fαsα ∈ Homk(E, E[[s]]Δ) (resp. f =∑
α fαsα ∈ Endk(E)[[s]]Δ ≡ Endk[[s]]Δ(E[[s]]Δ)), we have 0•f = f •0 = f0 ∈ Endk(E) ⊂ Homk(E, E[[s]]Δ)

(resp. 0•f = f •0 = fe
0 = f0 ∈ Endk[[s]]Δ(E[[s]]Δ)).

If ϕ : A[[s]]Δ → A[[t]]∇ is a substitution map, we have:

ϕ•(af) = ϕ(a) (ϕ•f) , (fa)•ϕ = (f •ϕ)ϕ(a)

for all a ∈ A[[s]]Δ and for all f ∈ Homk(E, E[[s]]Δ) (or f ∈ Endk[[s]]Δ(E[[s]]Δ)).
Moreover:

(ϕE)∗(Hom ◦
k (E,M [[s]]Δ)) ⊂ Hom ◦

k (E,E[[t]]∇),

ϕ•
(
Aut ◦

k[[s]]Δ(E[[s]]Δ)
)
⊂ Aut ◦

k[[t]]∇(E[[t]]∇)

and so we have a commutative diagram:

U p(R; Δ) Aut ◦
k[[s]]Δ(E[[s]]Δ) Hom ◦

k (E,E[[s]]Δ)

U q(R;∇) Aut ◦
k[[t]]∇(E[[t]]∇) Homk(E,F [[t]]∇).

∼
r �→r̃

ϕ• (−) ϕ• (−)

∼
restr.

(ϕE)∗

∼
r �→r̃

∼
restr.

(21)

1.3.9. Let us denote ι : A[[s]]Δ → A[[s � t]]Δ×∇, κ : A[[t]]∇ → A[[s � t]]Δ×∇ the combinatorial substitution 
maps given by the inclusions s ↪→ s � t, t ↪→ s � t.

Let us notice that for r ∈ R[[s]]Δ and r′ ∈ R[[t]]∇, we have (see Definition 1.2.5) r � r′ = (ι•r)(κ•r′) ∈
R[[s � t]]Δ×∇. If Δ′ ⊂ Δ ⊂ Np, ∇′ ⊂ ∇ ⊂ Nq are non-empty co-ideals, we have

τΔ×∇,Δ′×∇′(r � r′) = τΔ,Δ′(r) � τ∇,∇′(r′).

If we denote by Σ : R[[s � s]]∇×∇ → R[[s]]∇ the combinatorial substitution map given by the co-diagonal 
map s � s → s, it is clear that for each r, r′ ∈ R[[s]]∇ we have

rr′ = Σ•(r � r′). (22)

If ϕ : A[[s]]Δ → A[[u]]Ω and ψ : A[[t]]∇ → A[[v]]Ω′ are substitution maps, we have new substitution maps 
ϕ ⊗ Id : A[[s � t]]Δ×∇ → A[[u � t]]Ω×∇ and Id ⊗ ψ : A[[s � t]]Δ×∇ → A[[s � v]]Δ×Ω′ (see Definition 1.3.4) 
taking part in the following commutative diagrams of (A; A)-bimodules:

R[[s]]Δ ⊗R R[[t]]∇ R[[u]]Ω ⊗R R[[t]]∇

R[[s � t]]Δ×∇ R[[u � t]]Ω×∇

ϕR⊗Id

can. can.
(ϕ⊗Id)R

and



334 L. Narváez Macarro / Journal of Pure and Applied Algebra 224 (2020) 320–361
R[[s]]Δ ⊗R R[[t]]∇ R[[s]]Δ ⊗R R[[v]]Ω′

R[[s � t]]Δ×∇ R[[s � v]]Δ×Ω′ .

Id⊗ψ

can. can.
(Id⊗ϕ)R

We deduce that (ϕ•r) � r′ = (ϕ ⊗ Id)•(r � r′) and r � (r′ •ψ) = (r � r′)•(Id ⊗ ψ).

Proposition 1.3.10. Let R be a filtered k-algebra over A and ϕ ∈ S A(p, q; Δ, ∇) a substitution map. The 
following diagram is commutative:

U p
fil(R; Δ) U p

gr(grR; Δ)

U q
fil(R;∇) U q

gr(grR;∇),

ϕ• (−)

σ

(in ϕ)• (−)

σ

where inϕ has been defined in Proposition 1.3.5.

Proof. For any element r =
∑

α
rαsα ∈ U p

fil(R; Δ) we have:

σ (ϕ•r) = σ

⎛⎜⎝∑
e∈∇

⎛⎜⎝ ∑
α∈Δ

|e|≥|α|

Ce(ϕ, α)rα

⎞⎟⎠ te

⎞⎟⎠ =
∑
e∈∇

σ|e|

⎛⎜⎝ ∑
α∈Δ

|e|≥|α|

Ce(ϕ, α)rα

⎞⎟⎠ te =

∑
e∈∇

σ|e|

⎛⎜⎝ ∑
α∈Δ

|e|=|α|

Ce(ϕ, α)rα

⎞⎟⎠ te =
∑
e∈∇

σ|e|

⎛⎜⎝ ∑
α∈Δ

|e|=|α|

Ce(inϕ, α)rα

⎞⎟⎠ te =

∑
e∈∇

⎛⎜⎝ ∑
α∈Δ

|e|=|α|

Ce(inϕ, α)σ|α| (rα)

⎞⎟⎠ te = (inϕ)•σ(r). �

1.4. Exponential type series and divided power algebras

General references for the notions and results in this section are [16,17], [1] and [7]. In this section, A
will be a fixed commutative ring.

For a given integer m ≥ 1 or m = ∞, we consider the following substitution maps:

ϕ : A[[t]]m −→ A[[t, t′]]m, ϕ(t) = t + t′,

ι : A[[t]]m −→ A[[t, t′]]m, ι(t) = t,

ι′ : A[[t]]m −→ A[[t, t′]]m, ι′(t) = t′.

For each commutative A-algebra B, the above substitution maps induce homomorphisms of A-algebras 
(actually, they are the “same” substitution maps over B):

ϕ•(−) : r(t) ∈ B[[t]]m �−→ r(t + t′) ∈ B[[t, t′]]m,

ι•(−) : r(t) ∈ B[[t]]m �−→ r(t) ∈ B[[t, t′]]m,

ι′ •(−) : r(t) ∈ B[[t]]m �−→ r(t′) ∈ B[[t, t′]]m.
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Definition 1.4.1. An element r = r(t) =
∑m

i=0 rit
i in B[[t]]m is said to be of exponential type if r0 = 1 and 

r(t + t′) = r(t)r(t′), i.e. ϕ•r = (ι•r) (ι′ •r), or equivalently, if(
i + j

i

)
ri+j = rirj , whenever i + j < m + 1.

The set of elements in B[[t]]m of exponential type will be denoted by E m(B). The set E ∞(B) will be simply 
denoted by E (B).

The set E m(B) is a subgroup U (B; m) and the external operation(
a,

m∑
i=0

rit
i

)
∈ B × E m(B) �→

m∑
i=0

ri(at)i =
m∑
i=0

ria
iti ∈ E m(B) (23)

defines a natural B-module structure on E m(B). It is clear that E 1(B) is canonically isomorphic to B (as 
B-module).

Let C be another commutative A-algebra. For each m ≥ 1, any A-algebra map h : B → C induces 
obvious A-linear maps E m(h) : E m(B) → E m(C). In this way we obtain functors E m from the category of 
commutative A-algebras to the category of A-modules. For 1 ≤ m ≤ q ≤ ∞, the projections B[[t]]q → B[[t]]m
induce natural truncation maps E q → E m and we have (see (6)):

E (B) = lim
←−

m∈N
E m(B).

When Q ⊂ B, any r =
∑m

i=0 rit
i ∈ E m(B) is determined by r1, since ri = ri

i! for all i = 0 . . . , m, and so all 
truncation maps E q(B) → E m(B), 1 ≤ m ≤ q ≤ ∞, are isomorphisms and B � E 1(B) � E m(B) � E (B).

The following result is proven in [16, Chap. III] in the case m = ∞. The proof for any integer m ≥ 1 is 
completely similar.

Proposition 1.4.2. For each A-module M and each m ≥ 1 there is an universal pair (ΓA,mM, γA,m), where 
ΓA,mM is a commutative A-algebra and γA,m : M → E m(ΓA,mM) is an A-linear map, satisfying the 
following universal property: for any commutative A-algebra B and any A-linear map H : M → E m(B)
there is a unique homomorphism of A-algebras h : ΓA,mM → B such that H = E m(h) ◦ γA,m, or equivalently, 
the map

h ∈ HomA−alg(ΓA,mM,B) �→ E m(h) ◦ γA,m ∈ HomA(M,E m(B))

is bijective.

The pair (ΓA,mM, γA,m) is unique up to a unique isomorphism. For m = 1, we have a canonical isomor-
phism SymA M

∼−→ ΓA,1M .

Definition 1.4.3. The A-algebra ΓA,mM is called the algebra of m-divided powers of M and it is canonically 
N-graded with Γ0

A,mM = A, Γ1
A,mM = M . In the case m = ∞, (ΓA,∞M, γA,∞) is simply denoted by 

(ΓAM, γA) and it is called the algebra of divided powers of M .

In this way ΓA,m becomes a functor from the category of A-modules to the category of (N-graded) 
commutative A-algebras, which is left adjoint to E m. For 1 ≤ m ≤ q ≤ ∞ the truncations E q → E m induce 
natural transformations ΓA,m → ΓA,q and ΓA = lim

−→
ΓA,m.
m∈N
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When Q ⊂ A, we have SymA
∼−→ ΓA,1

∼−→ ΓA,m
∼−→ ΓA for all m ≥ 1. For instance, for A = Z and 

M = Zx a free abelian group of rank 1, the algebra ΓZ,mM is the Z-subalgebra Z 
[
xi/i!, 1 ≤ i ≤ m

]
⊂ Q[x]

and

γA,m : nx ∈ Zx �−→
m∑
i=0

nix
i

i! t
i ∈ E m

(
Z

[
xi/i!, 1 ≤ i ≤ m

])
.

2. Hasse–Schmidt derivations

2.1. Definitions and first results

In this section we recall some notions and results of the theory of Hasse–Schmidt derivations [5] as 
developed in [13]. See also [6].

From now on k will be a commutative ring, A a commutative k-algebra, s = {s1, . . . , sp} a set of variables 
and Δ ⊂ Np a non-empty co-ideal.

Definition 2.1.1. A (p, Δ)-variate Hasse–Schmidt derivation, or a (p, Δ)-variate HS-derivation for short, of 
A over k is a family D = (Dα)α∈Δ of k-linear maps Dα : A −→ A, with D0 = IdA and satisfying the 
following Leibniz type identities:

Dα(xy) =
∑

β+γ=α

Dβ(x)Dγ(y)

for all x, y ∈ A and for all α ∈ Δ. We denote by HSp
k(A; Δ) the set of all (p, Δ)-variate HS-derivations of A

over k and HSp
k(A) for Δ = Np. When Δ = tm we will simply denote HSp

k(A; m) := HSp
k(A; tm). For p = 1, 

a 1-variate HS-derivation will be simply called a Hasse–Schmidt derivation (a HS-derivation for short), or 
a higher derivation,3 and we will simply write HSk(A; m) := HS1

k(A; Δ) for Δ = tm = {q ∈ N | q ≤ m}4

and HSk(A) := HS1
k(A).

Any (p, Δ)-variate HS-derivation D of A over k can be understood as a power series∑
α∈Δ

Dαsα ∈ R[[s]]Δ, R = Endk(A),

and so we consider HSp
k(A; Δ) ⊂ R[[s]]Δ. Actually HSp

k(A; Δ) is a (multiplicative) sub-group of U p(R; Δ). 
The group operation in HSp

k(A; Δ) is explicitly given by:

(D,E) ∈ HSp
k(A; Δ) × HSp

k(A; Δ) �−→ D ◦E ∈ HSp
k(A; Δ)

with

(D ◦E)α =
∑

β+γ=α

Dβ ◦Eγ ,

and the identity element of HSp
k(A; Δ) is I with I0 = Id and Iα = 0 for all α = 0. The inverse of a 

D ∈ HSp
k(A; Δ) will be denoted by D∗.

3 This terminology is used for instance in [9].
4 These HS-derivations are called of length m in [12].
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For Δ′ ⊂ Δ ⊂ Np non-empty co-ideals, we have truncations

τΔΔ′ : HSp
k(A; Δ) −→ HSp

k(A; Δ′),

which obviously are group homomorphisms. For m ≥ n we will denote τmn : HSp
k(A; m) → HSp

k(A; n) the 
truncation map. Since any D ∈ HSp

k(A; Δ) is determined by its finite truncations, we have a natural group 
isomorphism

HSp
k(A) = lim

←−
Δ′⊂Δ
�Δ′<∞

HSp
k(A; Δ′). (24)

The proof of the following proposition is clear and is left to the reader.

Proposition 2.1.2. Let t = {t1, . . . , tq} be another set of variables, ∇ ⊂ Nq a non-empty co-ideal, and 
D ∈ HSp

k(A; Δ), E ∈ HSq
k(A; ∇) HS-derivations. Then its external product D � E (see Definition 1.2.5) is 

a (p + q, ∇ × Δ)-variate HS-derivation.

Definition 2.1.3. For each a ∈ Ap and for each D ∈ HSp
k(A; Δ), we define a•D as

(a•D)α := aαDα, ∀α ∈ Δ.

It is clear that a•D ∈ HSp
k(A; Δ), a′ •(a•D) = (a′a)•D, 1•D = D and 0•D = I.

If Δ′ ⊂ Δ ⊂ Np are non-empty co-ideals, we have τΔΔ′(a•D) = a•τΔΔ′(D). In particular, the image of 
τm1 : HSk(A; m) → HSk(A; 1) ≡ Derk(A) is an A-submodule.

Notation 2.1.4. Let us denote:

Hom ◦
k−alg(A,A[[s]]Δ) := {f ∈ Homk−alg(A,A[[s]]Δ), f(a) ≡ a mod (n0)A ∀a ∈ A} ,

Aut ◦
k[[s]]Δ−alg(A[[s]]Δ) :=

{
f ∈ Autk[[s]]Δ−alg(A[[s]]Δ) | f(a) ≡ a0 mod (n0)A ∀a ∈ A[[s]]Δ

}
.

It is clear that Hom ◦
k−alg(A, A[[s]]Δ) ⊂ Hom ◦

k (A, A[[s]]Δ) and

Aut ◦
k[[s]]Δ−alg(A[[s]]Δ) ⊂ Aut ◦

k[[s]]Δ(A[[s]]Δ)

(see Notation 1.2.11) are subgroups and we have group isomorphisms (see (12) and (11)):

HSp
k(A; Δ) Aut ◦

k[[s]]Δ−alg(A[[s]]Δ) Hom ◦
k−alg(A,A[[s]]Δ).D �→D̃

	
restr.
	 (25)

The composition of the above isomorphisms is given by:

D ∈ HSp
k(A; Δ) ∼�−→ ΦD :=

[
a ∈ A �→

∑
α∈Δ

Dα(a)sα
]
∈ Hom ◦

k−alg(A,A[[s]]Δ). (26)

Notice that the identity D0 = Id corresponds to the fact that ΦD(a) ≡ a modulo (n0)A for all a ∈ A, Leibniz 
identities in Definition 2.1.1 correspond to the fact that ΦD is a ring homomorphism, and k-linearity of the 
Dα correspond to k-linearity of ΦD.
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For each HS-derivation D ∈ HSp
k(A; Δ) we have D̃ = (ΦD)e, i.e.:

D̃

(∑
α∈Δ

aαsα
)

=
∑
α∈Δ

ΦD(aα)sα

for all 
∑

α aαsα ∈ A[[s]]Δ, and for any E ∈ HSp
k(A; Δ) we have ΦD◦E = D̃ ◦ΦE . If Δ′ ⊂ Δ is another 

non-empty co-ideal and we denote by πΔΔ′ : A[[s]]Δ → A[[s]]Δ′ the projection (or truncation), one has 
ΦτΔΔ′ (D) = πΔΔ′ ◦ΦD.

Definition 2.1.5. For each HS-derivation E ∈ HSp
k(A; Δ), we denote5

�(E) := min{r ≥ 1 | ∃α ∈ Δ, |α| = r, Eα = 0} ≥ 1

if E = I and �(E) = ∞ if E = I. In other words, �(E) = ord(E − I).

We obviously have �(E ◦E′) ≥ min{�(E), �(E′)} and �(E∗) = �(E). Moreover, if �(E′) > �(E), then 
�(E ◦E′) = �(E). The next two results are proven in Propositions 7 and 8 of [13].

Proposition 2.1.6. For each D ∈ HSp
k(A; Δ) we have that Dα is a k-linear differential operator of order 

≤ � |α|
	(D)� for all α ∈ Δ.

As a consequence of the above proposition we have HSp
k(A; Δ) ⊂ U p

fil(DA/k; Δ).

Lemma 2.1.7. For any D, E ∈ HSs
k(A; Δ) we have �([D, E]) ≥ �(D) + �(E).

Proof. It is a consequence of the identity [D, E] − I = [(D − I), (E − I)]D∗E∗. �
Proposition 2.1.6 can be improved in the following way.

Definition 2.1.8. For each HS-derivation E ∈ HSp
k(A; Δ) and each α ∈ Δ, we denote �α(E) := � (τΔ,nα

(E)), 
i.e.

�α(E) := min{r ≥ 1 | ∃β ≤ α, |β| = r, Eβ = 0} ≥ 1

if τΔ,nα
(E) = I and �α(E) = ∞ if τΔ,nα

(E) = I.

It is clear that �(E) ≤ �α(E) for all α ∈ Δ. Replacing D with τΔ,nα
(D) makes obvious the following 

proposition.

Proposition 2.1.9. For each D ∈ HSp
k(A; Δ) we have that Dα is a k-linear differential operator or order 

≤ � |α|
	α(D)� for all α ∈ Δ.

2.2. The action of substitution maps on HS-derivations

In this section, k will be a commutative ring, A a commutative k-algebra, R = Endk(A), s = {s1, . . . , sp}, 
t = {t1, . . . , tp} sets of variables and Δ ⊂ Np, ∇ ⊂ Nq non-empty co-ideals.

Let us recall Proposition 10 in [13].

5 This definition changes slightly with respect to Definition (1.2.7) in [12].



L. Narváez Macarro / Journal of Pure and Applied Algebra 224 (2020) 320–361 339
Proposition 2.2.1. For any substitution map ϕ : A[[s]]Δ → A[[t]]∇, we have:

1) ϕ∗
(
Hom ◦

k−alg(A,A[[s]]Δ)
)
⊂ Hom ◦

k−alg(A, A[[t]]∇),
2) ϕ• HSp

k(A; Δ) ⊂ HSq
k(A; ∇),

3) ϕ• Aut ◦
k[[s]]Δ−alg(A[[s]]Δ) ⊂ Aut ◦

k[[t]]∇−alg(A[[t]]∇).

We have then a commutative diagram:

Hom ◦
k−alg(A,A[[s]]Δ) HSp

k(A; Δ) Aut ◦
k[[s]]Δ−alg(A[[s]]Δ)

Hom ◦
k−alg(A,A[[t]]∇) HSq

k(A;∇) Aut ◦
k[[t]]∇−alg(A[[t]]∇).

ϕ∗

∼
ΦD←�D

∼

ϕ• (−) ϕ• (−)

∼
ΦD←�D

∼

(27)

In particular, for any HS-derivation D ∈ HSp
k(A; Δ) we have ϕ•D ∈ HSq

k(A; ∇) (see 1.3.7). Moreover 
Φϕ•D = ϕ ◦ΦD.

It is clear that for any co-ideals Δ′ ⊂ Δ and ∇′ ⊂ ∇ with ϕ (Δ′
A/ΔA) ⊂ ∇′

A/∇A we have

τ∇∇′(ϕ•D) = ϕ′ •τΔΔ′(D), (28)

where ϕ′ : A[[s]]Δ′ → A[[t]]∇′ is the substitution map induced by ϕ.
Let us notice that any a ∈ Ap gives rise to a substitution map ϕ : A[[s]]Δ → A[[s]]Δ given by ϕ(si) = aisi

for all i = 1, . . . , p, and one has a•D = ϕ•D.

2.2.2. Let u = {u1, . . . , ur} be another set of variables, Ω ⊂ Nr a non-empty co-ideal, ϕ ∈ S A(p, q; Δ, ∇), 
ψ ∈ S A(q, r; ∇, Ω) substitution maps and D, D′ ∈ HSp

k(A; Δ) HS-derivations. From 1.3.7 we deduce the 
following properties:

-) If we denote E := ϕ•D ∈ HSq
k(A; ∇), we have

E0 = Id, Ee =
∑
α∈Δ

|α|≤|e|

Ce(ϕ, α)Dα, ∀e ∈ ∇. (29)

-) If ϕ = 0 is the trivial substitution map or if D = I, then ϕ•D = I.

-) If ϕ has constant coefficients, then (ϕ•D)∗ = ϕ•D∗ and ϕ•(D ◦D′) = (ϕ•D) ◦ (ϕ•D′). The general case 
is treated in Proposition 2.2.3.

-) ψ •(ϕ•D) = (ψ ◦ϕ)•D.

-) �(ϕ•D) ≥ ord(ϕ)�(D).

The following result is proven in Propositions 11 and 12 of [13].

Proposition 2.2.3. Let ϕ : A[[s]]Δ → A[[t]]∇ be a substitution map. Then, the following assertions hold:

(i) For each D ∈ HSp
k(A; Δ) there is a unique substitution map ϕD : A[[s]]Δ → A[[t]]∇ such that (

˜ϕ•D
)

◦ϕD = ϕ ◦ D̃. Moreover, (ϕ•D)∗ = ϕD •D∗, ϕI = ϕ and:

Ce(ϕ, f + ν) =
∑

β+γ=e
|f+g|≤|β|,|ν|≤|γ|

Cβ(ϕ, f + g)Dg(Cγ(ϕD, ν))

for all e ∈ Δ and for all f, ν ∈ ∇ with |f + ν| ≤ |e|.
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(ii) For each D, E ∈ HSp
k(A; Δ), we have ϕ•(D ◦E) = (ϕ•D) ◦ (ϕD •E) and 

(
ϕD

)E = ϕD ◦E. In particular, (
ϕD

)D∗
= ϕ.

(iii) If ψ is another composable substitution map, then (ϕ ◦ψ)D = ϕψ •D ◦ψD.
(iv) If ϕ has constant coefficients then ϕD = ϕ.

Definition 2.2.4. Let S be a k-algebra over A, D ∈ HSp
k(A; Δ) and r ∈ U p(S; Δ). We say that r is a 

D-element if ra = D̃(a)r for all a ∈ A[[s]]Δ.

Given D ∈ U p(Endk(A); Δ), it is clear that:

D ∈ HSp
k(A; Δ) ⇐⇒ D is a D-element.

For D = I the identity HS-derivation, a r ∈ U p(S; Δ) is an I-element if and only if r commutes with all 
a ∈ A[[s]]Δ. If E ∈ HSp

k(A; Δ) is another HS-derivation, r ∈ U p(S; Δ) is a D-element and s ∈ U p(S; Δ) is 
an E-element, then rs is a (D ◦E)-element.

The proof of the following lemma is easy and it is left to the reader.

Lemma 2.2.5. With the above notations, for each r =
∑

α rαsα ∈ U p(S; Δ) the following properties are 
equivalent:

-) r is a D-element.
-) br = rD̃∗(b) for all b ∈ A[[s]]Δ.
-) r∗ is a D∗-element.
-) If r =

∑
α rαsα, we have rαa =

∑
β+γ=α Dβ(a)rγ for all a ∈ A and for all α ∈ Δ.

-) ra = D̃(a)r for all a ∈ A.

The following proposition generalizes Proposition 2.2.3.

Proposition 2.2.6. Let S be a k-algebra over A, D ∈ HSp
k(A; Δ), ϕ : A[[s]]Δ → A[t]]∇ a substitution map 

and r ∈ U p(S; Δ) a D-element. Then the following properties hold:

(a) ϕ•r is a (ϕ•D)-element.
(b) ϕ•(rr′) = (ϕ•r)(ϕD •r′) for all r′ ∈ S[[s]]Δ. In particular, (ϕ•r)∗ = ϕD •r∗.

Moreover, if E is an A-module and S = Endk(E), then the following identity holds:

(c) 〈ϕ•r, ϕD
E (e)〉 = ϕE (〈r, e〉) for all e ∈ E[[s]]Δ, i.e. (ϕ• r̃) ◦ϕD

E = ϕE ◦ r̃.

Proof. (a) By Lemma 2.2.5 we need to prove that ϕR(r)b =
(
˜ϕ•D

)
(b) ϕR(r) for all b ∈ A, but we know 

that rb = D̃(b)r and so, from Lemma 1.3.8 and (18), we deduce that

(ϕ•r)b = ϕR(r)b = ϕR(rb) = ϕR

(
D̃(b)r

)
=

ϕ
(
D̃(b)

)
ϕR(r) =

(
˜ϕ•D

)
(b)ϕR(r) =

(
˜ϕ•D

)
(b)(ϕ•r).

(b) Since all the involved maps are k-linear and continuous, it is enough to prove the identity in the case 
where r′ = r′αsα with r′α ∈ R and α ∈ Δ. But, on one hand we have
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ϕ•(rr′) = ϕR(rr′αsα) = ϕR(sαrr′α) = ϕ(sα)ϕR(rr′α) = ϕ(sα)ϕR(r)r′α = ϕ(sα)(ϕ•r)r′α,

and on the other hand, by using (a), we have

(ϕ•r)(ϕD •r′) = (ϕ•r)ϕD
R (r′αsα) = (ϕ•r)ϕD(sα)r′α =

(
˜ϕ•D

)
(ϕD(sα))(ϕ•r)r′α =((

˜ϕ•D
)

◦ϕD
)

(sα)(ϕ•r)r′α =
(
ϕ ◦ D̃

)
(sα)(ϕ•r)r′α = ϕ(sα)(ϕ•r)r′α

and we are done. For the last part, 1 = ϕR(1) = ϕR(rr∗) = ϕR(r)ϕD
R (r∗).

(c) As in part (b), it is enough to prove the identity for e = eαsα, with α ∈ Δ and eα ∈ E. By using the 
fact that

� ∈ Endk(E)[[s]]Δ �−→ �̃ ∈ Endk[[s]]Δ (E[[s]]Δ)

is an (A[[s]]Δ;A[[s]]Δ)-linear isomorphism compatible with the ϕ•(−) operation (see Lemma 1.2.8 and (19)), 
we deduce from part (a) that (ϕ̃•r) b =

(
˜ϕ•D

)
(b) (ϕ̃•r) for all b ∈ A[t]]∇, and from Proposition 2.2.3, (i) 

and (20) we obtain:

〈ϕ•r, ϕD
E (e)〉 = (ϕ̃•r)

(
ϕD
E (eαsα)

)
= (ϕ̃•r)

(
ϕD(sα)eα

)
=

(
˜ϕ•D

) (
ϕD(sα)

)
(ϕ̃•r) (eα) =

ϕ(D̃(sα))ϕE(r̃(eα)) = ϕ(sα)ϕE(r̃(eα)) = ϕE(sαr̃(eα)) = ϕE(r̃(sαeα)) = ϕE (〈r, e〉) . �
2.3. Integrable derivations and HS-smooth algebras

In this section we recall some notions and results of [11,12]. Let k be a commutative ring and A a 
commutative k-algebra. The following definition slightly changes with respect to Definition (2.1.1) in [12].

Definition 2.3.1. (Cf. [2,8]) Let m ≥ 1 be an integer or m = ∞, and δ : A → A a k-derivation. We say that 
δ is m-integrable (over k) if there is a HS-derivation D ∈ HSk(A; m) such that D1 = δ. Any such D will be 
called an m-integral of δ. The set of m-integrable k-derivations of A is denoted by IDerk(A; m). We simply 
say that δ is integrable if it is ∞-integrable and denote IDerk(A) := IDerk(A; ∞).

We say that δ is f-integrable (finite integrable) if it is m-integrable for any integer m ≥ 1. The set of 
f-integrable k-derivations of A is denoted by IDerfk(A).

It is clear (see Definition 2.1.3) that the IDerk(A; m) and IDerfk(A) are A-submodules of Derk(A) and 
that we have exact sequences of groups:

1 → ker τm1 −→ HSk(A;m) → IDerk(A;m) → 0, m ≥ 1, (30)

and

Derk(A) = IDerk(A; 1) ⊃ IDerk(A; 2) ⊃ IDerk(A; 3) ⊃ · · · ,
IDerk(A;∞) ⊂ IDerfk(A) =

⋂
m∈N
m≥1

IDerk(A;m). (31)

Example 2.3.2. Let m ≥ 1 be an integer. If m! is invertible in A, then any k-derivation δ of A is m-integrable: 
we can take D ∈ HSk(A; m) defined by Di = δi

i! for i = 0, . . . , m. If Q ⊂ k, one proves in a similar way that 
any k-derivation of A is ∞-integrable.
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Let us recall the following result ([9, Theorem 27.1]):

Proposition 2.3.3. Let us assume that A is a 0-smooth k-algebra. Then any k-derivation of A is integrable.

Proposition 2.3.4. The following properties are equivalent:

(a) Derk(A) = IDerk(A; ∞).
(b) Derk(A) = IDerk(A; m) for all integers m ≥ 1 (⇔ Derk(A) = IDerfk(A)).

Proof. The implication (a) ⇒ (b) is clear.

(b) ⇒ (a) Let δ be a k-derivation of A. By hypothesis, there is a 2-integral D(2) = (Id, D1, D2) ∈ HSk(A; 2)
of δ, and by applying [13, Corollary 4] repeatedly we find a sequence D(m) ∈ HSk(A; m), m ≥ 2, such 
that τm,m−1D

(m) = D(m−1) for each m ≥ 2. We can take D = lim
←−
m

D(m) ∈ HSk(A), that obviously is an 

∞-integral of δ. �
Remark 2.3.5. In general, we know that

IDerk(A;∞) ⊂ IDerfk(A) =
⋂

m∈N+

IDerk(A;m) ⊂ Derk(A).

Proposition 2.3.4 tells us that the above inclusion is an equality whenever all the k-derivations of A are 
m-integrable for each m ∈ N+. Otherwise, we do not know whether it is strict or not, or in other words, 
whether a derivation which is m-integrable for each integer m ≥ 1 is ∞-integrable or not.

Definition 2.3.6. Let m be a non-negative integer or m = ∞. For any HS-derivation D ∈ HSk(A; m) we 
define its total symbol by (see Notation 1.2.4):

Σm(D) := σ(D) =
m∑
i=0

σi(Di)ti ∈ U gr(grDA/k;m).

The total symbol map Σm : HSk(A; m) −→ U gr(gr DA/k; m) is a group homomorphism. The following 
proposition is proven in [11, Proposition 2.5, Corollary 2.7].

Proposition 2.3.7. With the hypotheses above, the following properties hold:

(1) The image of Σm is contained in E m

(
gr DA/k

)
.

(2) For any D ∈ HSk(A; m) and any a ∈ A we have Σm(a •D) = aΣm(D).
(3) The map Σm induces an A-linear map χm : IDerk(A; m) → E m(grDA/k).

It is clear that, for 1 ≤ m ≤ q ≤ ∞, the following diagram is commutative:

IDerk(A; q) E q(grDA/k)

IDerk(A;m) E m(grDA/k).

χq

inc. trunc.
χm

By taking the inverse limit of the χm for 1 ≤ m < ∞ we obtain an A-linear map χf : IDerfk(A) →
E (grDA/k). Explicitly, if δ ∈ IDerf (A), then:
k
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χf (δ) =
∞∑

m=0
σm (Dm

m) tm

where Dm =
(
Dm

j

)
0≤j≤m

≡
∑m

j=0 D
m
j tj ∈ HSk(A; m) is any m-integral of δ for each integer m ≥ 1

(D0 = I).
From the universal property of power divided algebras (see Proposition 1.4.2), we obtain a canonical 

homomorphism of graded A-algebras:

ϑf
A/k : Γ IDerfk(A) → gr DA/k . (32)

It is clear that for each integer m ≥ 1, the following diagram is commutative:

Γ IDerk(A;∞) Γ IDerfk(A) Γ IDerk(A;m)

gr DA/k,

nat.

ϑA/k,∞

nat.

ϑf
A/k ϑA/k,m

where the ϑA/k,m and ϑA/k,∞ have been defined in [11, (2.6)]. The following two theorems are proven in 
[11], Theorem (2.8) and Theorem (2.14), for IDerk(A; ∞), ϑA/k,∞ instead of IDerfk(A), ϑf

A/k, but the proofs 
remain essentially the same.

Theorem 2.3.8. With the above notations, there are canonical maps θA/k and φ such that the following 
diagram of graded A-algebras is commutative:

gr DA/k

(
SymA ΩA/k

)∗
gr

Γ IDerfk(A) Γ Derk(A).

θA/k

ϑf
A/k

nat.

φ

Theorem 2.3.9. Assume that Derk(A) is a projective A-module of finite rank. The following properties are 
equivalent:

(a) The homomorphism of graded A-algebras θA/k : grDA/k −→
(
SymA ΩA/k

)∗
gr

is an isomorphism.
(b) The homomorphism of graded A-algebras ϑf

A/k : Γ IDerfk(A) −→ gr DA/k is an isomorphism.
(c) IDerfk(A) = Derk(A).

Remark 2.3.10. After Theorem (2.14) in [11] or Proposition 2.3.4, the equivalent properties in Theorem 2.3.9
are also equivalent to:

(b’) The homomorphism of graded A-algebras

ϑA/k,∞ : Γ IDerk(A;∞) −→ gr DA/k

is an isomorphism.
(c’) IDerk(A; ∞) = Derk(A).

Definition 2.3.11. We say that a k-algebra A is HS-smooth if Derk(A) is a projective A-module of finite rank 
and the equivalent properties (a), (b), (c) of Theorem 2.3.9 hold.
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Let us recall the following result ([11, Corollary (2.16)]).

Corollary 2.3.12. Assume that ΩA/k is a projective A-module of finite rank and that A is differentially smooth 
over k (in the sense of [4, 16.10]). Then, A is a HS-smooth k-algebra.

In particular, after [4, Proposition 17.12.4], if A is a smooth finitely presented k-algebra, then A is a 
HS-smooth k-algebra.

3. Main results

3.1. Hasse–Schmidt modules

Definition 3.1.1. Let R be a k-algebra over A. A pre-HS-structure on R over A/k is a system of maps

Ψ =
{
Ψ

p
Δ : HSp

k(A; Δ) −→ U p(R; Δ), p ∈ N,Δ ∈ CI (Np)
}

such that6:

(i) The Ψp
Δ are group homomorphisms.

(ii) (Leibniz rule) For any D ∈ HSp
k(A; Δ), Ψp

Δ(D) is a D-element, i.e. Ψp
Δ(D) a = D̃(a)Ψp

Δ(D) for all a ∈ A

(see Lemma 2.2.5).
(iii) For any substitution map ϕ ∈ S k(p, q; Δ, ∇) and for any D ∈ HSp

k(A; Δ) we have Ψq
∇(ϕ•D) =

ϕ•Ψp
Δ(D).

We say that a pre-HS-structure Ψ on R over A/k is a HS-structure if property (iii) above holds for any 
substitution map ϕ ∈ S A(p, q; Δ, ∇).

If R′ is another k-algebra over A and f : R → R′ is a map of k-algebras over A, then any (pre-)HS-structure 
Ψ on R over A/k gives rise to a (pre-)HS-structure f ◦Ψ on R′ over A/k defined as

(f ◦Ψ)pΔ := f ◦Ψp
Δ, p ∈ N,Δ ∈ CI (Np) .

If R is filtered, we will say that a (pre-)HS-structure Ψ on R over A/k is filtered if

Ψ
p
Δ(HSp

k(A; Δ)) ⊂ U p
fil(R; Δ)

for all p ∈ N and all Δ ∈ CI (Np).

Let us notice that if Ψ is a pre-HS-structure on R over A/k, then the system of maps Γ = {ΓpΔ :
HSp

k(A; Δ) −→ U p(Ropp; Δ), p ∈ N, Δ ∈ CI (Np)} defined as ΓpΔ(D) = Ψ
p
Δ(D∗) for D ∈ HSp

k(A; Δ) is a 
pre-structure on Ropp over A/k. However, if Ψ is a HS-structure on R over A/k, the system Γ defined above 
is not in general HS-structure on Ropp. More precisely, we have the following proposition.

Proposition 3.1.2. Let Ψ be a pre-HS-structure on R over A/k and let us consider the system of maps Γ =
{ΓpΔ : HSp

k(A; Δ) −→ U p(Ropp; Δ), p ∈ N, Δ ∈ CI (Np)} defined as ΓpΔ(D) = Ψ
p
Δ(D∗) for D ∈ HSp

k(A; Δ). 
The following properties are equivalent:

(1) Γ is a HS-structure on Ropp over A/k.

6 Actually, from (6) and (24) we could restrict ourselves to non-empty finite co-ideals.
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(2) For each p, q ∈ N, for each Δ ∈ CI (Np) , ∇ ∈ CI (Nq), for each substitution map ϕ ∈ S A(p, q; Δ, ∇)
and for each D ∈ HSp

k(A; Δ) we have Ψq
∇(ϕ•D) = Ψ

p
Δ(D)•ϕD (see Proposition 2.2.3).

Proof. (1) ⇒ (2): We know that for each E ∈ HSp
k(A; Δ) and each ψ ∈ S A(p, q; Δ, ∇) we have Γ q∇(ψ •E) =

ψ
opp
• Γ

p
Δ(E), i.e. Ψq

∇ ((ψ •E)∗) = Ψ
p
Δ(E∗)•ψ, and we conclude by taking E = D∗ and ψ = ϕD (see 

Proposition 2.2.3):

Ψ
q
∇(ϕ•D) = Ψ

q
∇

(
ψE •E∗) = Ψ

q
∇ ((ψ •E)∗) = Ψ

p
Δ(E∗)•ψ = Ψ

p
Δ(D)•ϕD.

(2) ⇒ (1): Properties (i) and (ii) are clear. For property (iii) we proceed as in (1) ⇒ (2). �
Example 3.1.3. The inclusions

HSp
k(A; Δ) ↪→ U p(DA/k; Δ) ⊂ U p(Endk(A); Δ)

give rise to the “tautological” HS-structures on DA/k and on Endk(A) over A/k.

Definition 3.1.4. (1) A left (pre-)HS-module (resp. a right (pre-)HS-module) over A/k is an A-module E
endowed with a (pre-)HS-structure on Endk(E) (resp. on the opposed ring Endk(E)opp) over A/k.
(2) A HS-map from a left (resp. a right) (pre-)HS-module (E, Φ) to a left (resp. to a right) (pre-)HS-module 
(F, Ψ) is an A-linear map f : E → F such that f ◦Φp

Δ(D) = Ψ
p
Δ(D) ◦ f for all p ∈ N, for all Δ ∈ CI (Np), 

for all α ∈ Δ and for all D ∈ HSp
k(A; Δ).

Remark 3.1.5. Let E be an A-module and R = Endk(E). By using the canonical isomorphisms (11), we 
have the following:

(1) For each left (pre-)HS-module (E, Ψ), the (pre-)HS-structure Ψ may be considered as a system of maps 
Ψ = {Ψp

Δ : HSp
k(A; Δ) −→ Aut◦k[[s]]Δ(E[[s]]Δ), p ∈ N, Δ ∈ CI (Np)}, with s = {s1, . . . , sp}, such that:

(i) The Ψp
Δ are group homomorphisms.

(ii) For any D ∈ HSp
k(A; Δ) and any a ∈ A[[s]]Δ, Ψp

Δ(D) a = D̃(a)Ψp
Δ(D).

(iii) For any substitution map ϕ ∈ S A(p, q; Δ, ∇) (resp. for any substitution map ϕ ∈ S k(p, q; Δ, ∇)) and 
for any D ∈ HSp

k(A; Δ) we have Ψq
∇(ϕ•D) = ϕ•Ψp

Δ(D).

Moreover, property (ii) above is equivalent to:

(ii’) For any D ∈ HSp
k(A; Δ) and any a ∈ A[[s]]Δ, a Ψp

Δ(D) = Ψ
p
Δ(D) D̃∗(a).

(2) For each right (pre-)HS-module (E, Ψ), the (pre-)HS-structure Ψ may be considered as a system of maps 
Ψ = {Ψp

Δ : HSp
k(A; Δ) −→ Aut◦k[[s]]Δ(E[[s]]Δ), p ∈ N, Δ ∈ CI (Np)} such that:

(i) The Ψp
Δ are group anti-homomorphisms.

(ii) For any D ∈ HSp
k(A; Δ) and any a ∈ A[[s]]Δ, a Ψp

Δ(D) = Ψ
p
Δ(D) D̃(a).

(iii) For any substitution map ϕ ∈ S A(p, q; Δ, ∇) (resp. for any substitution map ϕ ∈ S k(p, q; Δ, ∇)) and 
for any D ∈ HSp

k(A; Δ) we have Ψq
∇(ϕ•D) = Ψ

p
Δ(D)•ϕ.

Moreover, property (ii) above is equivalent to:

(ii’) For any D ∈ HSp(A; Δ) and any a ∈ A[[s]]Δ, Ψp (D) a = D̃∗(a)Ψp (D).
k Δ Δ
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Example 3.1.6. The underlying A-module of any left (resp. right) DA/k-module E carries an obvious left 
(resp. right) HS-module structure, namely Ψ = {Ψp

Δ : HSp
k(A; Δ) −→ Aut◦k[[s]]Δ(E[[s]]Δ), p ∈ N, Δ ∈

CI (Np)} given by:

Ψ
p
Δ(D)(e) :=

∑
α∈Δ

( ∑
β+γ=α

Dβ · eγ

)
sα

(
resp. Ψ

p
Δ(D)(e) :=

∑
α∈Δ

( ∑
β+γ=α

eγ ·Dβ

)
sα

)

for all D ∈ HSp
k(A; Δ) and for all e =

∑
eγsγ ∈ E[[s]]Δ.

When we consider the left DA/k-module E = A, then its left HS-module structure is simply given by the 
injective group homomorphisms

D ∈ HSp
k(A; Δ) �−→ D̃ ∈ Aut◦k[[s]]Δ(A[[s]]Δ).

Proposition 3.1.7. Under the above hypotheses, the A-module ΩA/k has a unique left pre-HS-module structure 
over A/k for which the differential d : A −→ ΩA/k is a HS-map.

Proof. For each p ∈ N, each Δ ∈ CI (Np) and each D ∈ HSs
k(A; Δ), let us consider ΩA/k[[s]]Δ as an 

A-module through the k-algebra map ΦD : A → A[[s]]Δ (see (26)). It is clear that the map

d ◦ΦD : x ∈ A �−→
∑
α

d(Dα(x))sα ∈ ΩA/k[[s]]Δ

is a k-derivation. So, there is a unique A-linear map LiepΔ(D) : ΩA/k −→ ΩA/k[[s]]Δ such that the following 
diagram is commutative:

A ΩA/k

A[[s]]Δ ΩA/k[[s]]Δ.

d

ΦD Liep
Δ(D)

d

If write LiepΔ(D) =
∑

α LiepΔ(D)αsα, each LiepΔ(D)α is k-linear, LiepΔ(D)α ◦ d = d ◦Dα for all α ∈ Δ and 
the A-linearity of LiepΔ(D) means that

LiepΔ(D)α(aω) =
∑

α′+α′′=α

Dα′(a) LiepΔ(D)α′′(ω) ∀a ∈ A,∀ω ∈ ΩA/k, ∀α ∈ Δ. (33)

In particular, LiepΔ(D)0 = Id. In order to simplify, the canonical k[[s]]Δ-linear extension of LiepΔ(D) to 
ΩA/k[[s]]Δ (see (8)) will be also denoted by LiepΔ(D). We have then a commutative diagram:

A[[s]]Δ ΩA/k[[s]]Δ

A[[s]]Δ ΩA/k[[s]]Δ.

d

D̃ Liep
Δ(D)

d

Let us see that the system:

Lie := {LiepΔ : HSs
k(A; Δ) → Aut◦k[[s]]Δ(ΩA/k[[s]]Δ), p ∈ N,Δ ∈ CI (Np)}

is a left pre-HS-module structure on ΩA/k over A/k:
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(i) The uniqueness property defining LiepΔ(D) implies that the LiepΔ are group homomorphisms.

(ii) Property (33) can be translated into LiepΔ(D)a = D̃(a) LiepΔ(D).

(iii) Let ϕ ∈ S k(p, q; Δ, ∇) be a substitution map with constant coefficients and D ∈ HSp
k(A; Δ). To prove 

the equality Lieq∇(ϕ•D) = ϕ• LiepΔ(D), it is enough to prove that the restrictions to ΩA/k of both terms 
coincide (see Lemma 1.2.8), and this is a consequence of the identity(

ϕ• LiepΔ(D)
)
|ΩA/k

= ϕΩ ◦ LiepΔ(D),

where ϕΩ = ϕ⊗̂IdΩA/k
: ΩA/k[[s]]Δ → ΩA/k[[t]]∇ is the ϕ-linear map induced by ϕ (see 1.3.6 and (21)), the 

identity Φϕ•D = ϕ ◦ΦD (see (27)), and the commutativity of the following diagram:

A ΩA/k

A[[s]]Δ ΩA/k[[s]]Δ

A[[t]]∇ ΩA/k[[t]]∇.

d

ΦD Liep
Δ(D)

d

ϕ ϕΩ

d

Let us notice that the commutativity of the bottom square depends on ϕ being with constant coefficients. �
Remark 3.1.8. With the notations of the above proposition, for each α ∈ Δ with |α| = 1, the map LiepΔ(D)α :
ΩA/k → ΩA/k coincides with the classical Lie derivative LieDα

: ΩA/k → ΩA/k with respect to the derivation 
Dα.

Proposition 3.1.9. The following properties hold:

1) For each p ∈ N, each Δ ∈ CI (Np), each D ∈ HSp
k(A; Δ) and each δ ∈ Derk(A)[[s]]Δ we have 

D δD∗ ∈ Derk(A)[[s]]Δ.
2) The system Ad := {Adp

Δ : HSp
k(A; Δ) → Aut◦k[[s]]Δ(Derk(A)[[s]]Δ), p ∈ N, Δ ∈ CI (Np)}, defined as

Adp
Δ(D)(δ) := D δD∗ ∀D ∈ HSp

k(A; Δ), ∀δ ∈ Derk(A)[[s]]Δ,

is a left pre-HS-module structure on Derk(A) over A/k.

Proof. 1) For each a ∈ A[[s]]Δ we have

[ ˜D δD∗, a] = D̃ δ̃ D̃∗ a− a D̃ δ̃ D̃∗ =

D̃ δ̃ D̃∗(a) D̃∗ − a D̃ δ̃ D̃∗ = D̃ D̃∗(a) δ̃ D̃∗ + D̃ δ̃(D̃∗(a)) D̃∗ − a D̃ δ̃ D̃∗ =

D̃(D̃∗(a)) D̃ δ̃ D̃∗ + D̃(δ̃(D̃∗(a))) D̃ D̃∗ − a D̃ δ̃D̃∗ =

a D̃ δ̃ D̃∗ + ˜DδD∗(a) − a D̃ δ̃ D̃∗ = ˜DδD∗(a)

and so by Lemma 1.2.8, c), we deduce that D δD∗ ∈ Derk(A)[[s]]Δ. Actually, this result can be simply 
understood as the fact that the conjugation of any k[[s]]Δ-derivation of A[[s]]Δ by any automorphism of the 
k[[s]]Δ-algebra A[[s]]Δ is again a k[[s]]Δ-derivation.

2) For each δ ∈ Derk(A) we have Adp
Δ(D)(δ) =

∑
α Adp

Δ(D)α(δ) sα with

Adp
Δ(D)α(δ) =

∑
′ ′′

Dα′ δ D∗
α′′ ,
α +α =α
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and so Adp
Δ(D)0 = Id and Adp

Δ(D) ∈ Aut◦k[[s]]Δ(Derk(A)[[s]]Δ).

(i) Since the Adp
Δ are defined as a conjugation, they are group homomorphisms.

(ii) For any D ∈ HSp
k(A; Δ), for any a ∈ A[[s]]Δ and for any δ ∈ Derk(A)[[s]]Δ we have

(
Adp

Δ(D) a
)
(δ) = DaδD∗ = D̃(a)D δD∗ = D̃(a) Adp

Δ(D)(δ).

(iii) Let ϕ ∈ S k(p, q; Δ, ∇) be a substitution map with constant coefficients and D ∈ HSp
k(A; Δ) a HS-

derivation. Let us denote E := ϕ •D. We know from 2.2.2 that:

Ee =
∑
α∈Δ

|α|≤|e|

Ce(ϕ, α)Dα, ∀e ∈ Nq, e = 0 (E0 = Id)

and E∗ = ϕ •D∗. So, for each ε ∈ ∇ and for each δ ∈ Derk(A) we have:

Adp
Δ(ϕ •D)ε(δ) =

∑
e+f=ε

Ee δ E
∗
f =

∑
e+f=ε

α∈Δ,γ∈Δ
|α|≤|e|,|γ|≤|f|

Ce(ϕ, α)Cf (ϕ, γ)Dα δ D∗
γ =

∑
a∈Δ

|a|≤|ε|

∑
α,γ∈Δ
α+γ=a

∑
e+f=ε

|α|≤|e|,|γ|≤|f|

Ce(ϕ, α)Cf (ϕ, γ)Dα δ D∗
γ

(�)=

∑
a∈Δ

|a|≤|ε|

∑
α,γ∈Δ
α+γ=a

Cε(ϕ, a)Dα δ D∗
γ =

∑
a∈Δ

|a|≤|ε|

Cε(ϕ, a)

⎛⎜⎝ ∑
α,γ∈Δ
α+γ=a

Dα δ D∗
γ

⎞⎟⎠ =

∑
a∈Δ

|a|≤|ε|

Cε(ϕ, a) Adp
Δ(D)a(δ) =

(
ϕ• Adp

Δ(D)
)
ε
(δ),

where the equality (�) comes from the fact that ϕ is an A-algebra map (see [13, Proposition 3]). �
Remark 3.1.10. With the notations of the above proposition, for each α ∈ Δ with |α| = 1, the map 
Adp

Δ(D)α : Derk(A) → Derk(A) coincides with the classical adjoint representation

AdDα
: δ ∈ Derk(A) �−→ [Dα, δ] ∈ Derk(A)

associated with the derivation Dα.

It is clear that left (resp. right) (pre-)HS-modules with HS-maps form an abelian category admitting a 
conservative additive exact functor (the forgetful functor) to the category of A-modules.

3.2. Operations on Hasse–Schmidt modules

In this section, starting with two left (pre-)HS-modules (E, Ψ), (F, Ψ) over A/k and two right (pre-)HS-
modules (P, Γ), (Q, Γ) over A/k, we will see how to construct natural left (pre-)HS-modules structures on 
E⊗AF , HomA(E, F ), HomA(P, Q) and right (pre-)HS-modules structures on P ⊗AE, HomA(E, P ). Let us 
notice that similar constructions have been studied in [10, §2.2] in the particular case of iterative uni-variate 
Hasse–Schmidt derivations over a field.

Proposition 3.2.1. Under the above hypotheses, the following properties hold:
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(1) For any p ∈ N, for any Δ ∈ CI (Np) and for any D ∈ HSp
k(A; Δ) there is a unique Ψp

Δ(D) ∈
Aut◦k[[s]]Δ((E ⊗A F )[[s]]Δ) such that the following diagram is commutative:

E[[s]]Δ ⊗k[[s]]Δ F [[s]]Δ (E ⊗A F )[[s]]Δ

E[[s]]Δ ⊗k[[s]]Δ F [[s]]Δ (E ⊗A F )[[s]]Δ,

μ

Ψ
p
Δ(D)⊗Ψ

p

Δ(D) Ψ
p
Δ(D)

μ

where μ is the natural (A[[s]]Δ; A[[s]]Δ)-linear map

μ

((∑
α

eαsα
)

⊗
(∑

α

fαsα
))

=
∑
α

( ∑
α′+α′′=α

eα′ ⊗ fα′′

)
sα.

(2) The system Ψ = {Ψp
Δ, p ∈ N, Δ ∈ CI (Np)} defines a left (pre-)HS-module structure over A/k on 

E ⊗A F .

Proof. (1) Since we have canonical isomorphisms E[[s]]Δ⊗A[[s]]Δ F [[s]]Δ � (E⊗AF )[[s]]Δ, the result comes 
from the following equality:

μ
((

Ψ
p

Δ(D) ⊗ Ψ
p

Δ(D)
)

((ae) ⊗ f)
)

= μ
(
Ψ

p

Δ(D)(ae) ⊗ Ψ
p

Δ(D)(f)
)

=

μ
((

D̃(a)Ψp

Δ(D)(e)
)
⊗ Ψ

p

Δ(D)(f)
)

= μ
(
Ψ

p

Δ(D)(e) ⊗
(
D̃(a)Ψ

p

Δ(D)(f)
))

=

μ
(
Ψ

p

Δ(D)(e) ⊗ Ψ
p

Δ(D)(af)
)

= μ
((

Ψ
p

Δ(D) ⊗ Ψ
p

Δ(D)
)

(e⊗ (af))
)

for all e ∈ E[[s]]Δ, for all f ∈ F [[s]]Δ and for all a ∈ A[[s]]Δ.

(2) We have to check properties (i), (ii) and (iii) of Remark 3.1.5 (1). Property (i) is clear from the uniqueness 
of Ψp

Δ(D) in part (1). Property (ii) follows from

(
Ψ

p
Δ(D) a

)
(μ(e⊗ f)) = Ψ

p
Δ(D)(μ((ae) ⊗ f)) =

μ
(
Ψ

p

Δ(D)(ae) ⊗ Ψ
p

Δ(D)(f)
)

= μ
((

D̃(a)Ψp

Δ(D)(e)
)
⊗ Ψ

p

Δ(D)(f)
)

=

D̃(a)μ
(
Ψ

p

Δ(D)(e) ⊗ Ψ
p

Δ(D)(f)
)

= D̃(a)Ψp
Δ(D)(μ(e⊗ f))

for all e ∈ E[[s]]Δ, for all f ∈ F [[s]]Δ and for all a ∈ A[[s]]Δ. Property (iii) follows from (19) and the 
commutativity of the following diagram:

E[[s]]Δ ⊗k[[s]]Δ F [[s]]Δ (E ⊗A F )[[s]]Δ

E[[t]]∇ ⊗k[[t]]∇ F [[t]]∇ (E ⊗A F )[[t]]∇

μ

ϕE⊗ϕF
ϕE⊗AF

μ

for each substitution map ϕ ∈ S A(p, q; Δ, ∇) (resp. ϕ ∈ S k(p, q; Δ, ∇)). �
For any maps f : E[[s]]Δ → E[[s]]Δ, g : F [[s]]Δ → F [[s]]Δ and h : E[[s]]Δ → F [[s]]Δ, let us denote:

f�(h) := h ◦ f, g�(h) := g ◦h.



350 L. Narváez Macarro / Journal of Pure and Applied Algebra 224 (2020) 320–361
Proposition 3.2.2. Under the above hypotheses, the following properties hold:

(1) For any p ∈ N, for any Δ ∈ CI (Np) and for any D ∈ HSp
k(A; Δ) there is a unique Ψp

Δ(D) ∈
Aut◦k[[s]]Δ (HomA(E,F )[[s]]Δ) such that the following diagram is commutative:

HomA(E,F )[[s]]Δ Homk[[s]]Δ(E[[s]]Δ, F [[s]]Δ)

HomA(E,F )[[s]]Δ Homk[[s]]Δ(E[[s]]Δ, F [[s]]Δ),

ν

Ψ
p
Δ(D) Ψ

p

Δ(D)	 ◦ Ψ
p
Δ(D∗)	

ν

where ν is the natural (A[[s]]Δ; A[[s]]Δ)-linear map defined as ν(h) = h̃ (see (7)).
(2) The system Ψ = {Ψp

Δ, p ∈ N, Δ ∈ CI (Np)} defines a left (pre-)HS-module structure over A/k on 
HomA(E, F ).

Proof. (1) Since we have canonical isomorphisms

h ∈ HomA(E,F )[[s]]Δ
∼�−→ h̃ ∈ HomA[[s]]Δ(E[[s]]Δ, F [[s]]Δ),

the result comes from the fact that 
(
Ψ

p

Δ(D)� ◦ Ψ
p

Δ(D∗)�
)

(h′) is A[[s]]Δ-linear for each h′ ∈
HomA[[s]]Δ(E[[s]]Δ, F [[s]]Δ), namely:(

Ψ
p

Δ(D)� ◦ Ψ
p

Δ(D∗)�
)

(h′)(am) =
(
Ψ

p

Δ(D) ◦h′ ◦ Ψ
p

Δ(D∗)
)

(am) =

Ψ
p

Δ(D)
(
h′

(
D̃∗(a) Ψ

p

Δ(D∗)(m)
))

= Ψ
p

Δ(D)
(
D̃∗(a)h′

(
Ψ

p

Δ(D∗)(m)
))

=

D̃(D̃∗(a))Ψ
p

Δ(D)
(
h′

(
Ψ

p

Δ(D∗)(m)
))

= a
(
Ψ

p

Δ(D)� ◦ Ψ
p

Δ(D∗)�
)

(h′)(m)

for all m ∈ E[[s]]Δ and for all a ∈ A[[s]]Δ.

(2) As in Proposition 3.2.1, we have to check properties (i), (ii) and (iii) of Remark 3.1.5 (1). Property (i) 
comes from the fact that the map

D ∈ HSp
k(A; Δ) �−→

Ψ
p

Δ(D)� ◦ Ψ
p

Δ(D∗)� ∈ Autk[[s]]Δ
(
Homk[[s]]Δ(E[[s]]Δ, F [[s]]Δ)

)
is a group homomorphism:

Ψ
p

Δ(D ◦E)� ◦ Ψ
p

Δ((D ◦E)∗)� = · · · =

Ψ
p

Δ(D)� ◦ Ψ
p

Δ(E)� ◦ Ψ
p

Δ(D∗)� ◦ Ψ
p

Δ(E∗)� =

Ψ
p

Δ(D)� ◦ Ψ
p

Δ(D∗)� ◦ Ψ
p

Δ(E)� ◦ Ψ
p

Δ(E∗)�.

Property (ii) follows from the following equality:(
Ψ

p

Δ(D)� ◦ Ψ
p

Δ(D∗)�
)

(ah′) = Ψ
p

Δ(D) ◦ (ah′) ◦ Ψ
p

Δ(D∗) =(
Ψ

p

Δ(D) a
)

◦h′ ◦ Ψ
p

Δ(D∗) =
(
D̃(a)Ψ

p

Δ(D)
)

◦h′ ◦ Ψ
p

Δ(D∗) =

D̃(a)
(
Ψ

p

Δ(D)� ◦ Ψ
p

Δ(D∗)�
)

(h′)
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for all h′ ∈ HomA[[s]]Δ(E[[s]]Δ, F [[s]]Δ) and for all a ∈ A[[s]]Δ.
To finish, let us prove property (iii). Let us write M = HomA(E, F ). It is enough to prove that 

Ψ
q
∇(ϕ•D)|M =

(
ϕ•Ψp

Δ(D)
)
|M for all p, q ∈ N, for all Δ ⊂ Np, ∇ ∈ CI (Nq), for all substitution map 

ϕ ∈ S A(p, q; Δ, ∇) (resp. ϕ ∈ S k(p, q; Δ, ∇)) and for all HS-derivation D ∈ HSp
k(A; Δ). For each h ∈ M

we have ν(h) = h̃ = h with h
(∑

β eαtβ
)

=
∑

β h(eβ)tβ for each 
∑

β eβtβ ∈ E[[t]]∇. So:

(ν ◦Ψq
∇(ϕ•D)) (h)|E =

[
Ψ

q

∇(ϕ•D) ◦ ν(h) ◦ Ψ
q

∇((ϕ•D)∗)
]
|E

(1)=(
ϕ• Ψ

p

Δ(D)
)

◦ h̃ ◦
[
Ψ

q

∇(ϕD •D∗)|E
]

=
(
ϕ• Ψ

p

Δ(D)
)

◦ h̃ ◦
[(

ϕD • Ψ
p

Δ(D∗)
)
|E

]
(2)=(

ϕ• Ψ
p

Δ(D)
)

◦h ◦
[(
ϕD

)
E

◦
(
Ψ

p

Δ(D∗)|E
)]

=(
ϕ• Ψ

p

Δ(D)
)

◦
(
ϕD

)
F

◦h ◦
(
Ψ

p

Δ(D∗)|E
)

(3)= ϕF ◦ Ψ
p

Δ(D) ◦ ν(h) ◦
(
Ψ

p

Δ(D∗)|E
)

=

ϕF ◦
[(
ν ◦Ψp

Δ(D)
)
(h)|E

]
= ϕF ◦

[
ν
(
Ψ

p
Δ(D)(h)

)
|E

] (4)= ν
(
ϕM

(
Ψ

p
Δ(D)(h)

))
|E =

ν
((
ϕM ◦Ψp

Δ(D)
)
(h)

)
|E = ν

((
ϕ•Ψp

Δ(D)
)
(h)

)
|E =

(
ν ◦

(
ϕ•Ψp

Δ(D)
))

(h)|E ,

where equality (1) comes from Proposition 2.2.3, equality (2) comes from (20), equality (3) comes from 
Proposition 2.2.6, (c), and equality (4) comes from (18). We first deduce that (ν ◦Ψq

∇(ϕ•D)) (h) =(
ν ◦

(
ϕ•Ψp

Δ(D)
))

(h) for all h ∈ M , i.e.

ν ◦ (Ψq
∇(ϕ•D)|M ) = ν ◦

((
ϕ•Ψp

Δ(D)
)
|M

)
,

second, from the injectivity of ν, that Ψq
∇(ϕ•D)|M =

(
ϕ•Ψp

Δ(D)
)
|M , and we conclude that Ψq

∇(ϕ•D) =
ϕ•Ψp

Δ(D). �
The proofs of the following three propositions are completely similar to the proofs of Propositions 3.2.2

and 3.2.1.

Proposition 3.2.3. Under the above hypotheses, the following properties hold:

(1) For any p ∈ N, for any Δ ∈ CI (Np) and for any D ∈ HSp
k(A; Δ) there is a unique ΓpΔ(D) ∈

Aut◦k[[s]]Δ((P ⊗A E)[[s]]Δ) such that the following diagram is commutative:

P [[s]]Δ ⊗k[[s]]Δ E[[s]]Δ (P ⊗A E)[[s]]Δ

P [[s]]Δ ⊗k[[s]]Δ E[[s]]Δ (P ⊗A E)[[s]]Δ,

μ

Γ
p
Δ(D)⊗Ψ

p
Δ(D∗) Γ

p
Δ(D)

μ

where μ is the natural (A[[s]]Δ; A[[s]]Δ)-linear map

μ

((∑
α

pαsα
)

⊗
(∑

α

eαsα
))

=
∑
α

( ∑
α′+α′′=α

pα′ ⊗ eα′′

)
sα.

(2) The system Γ = {ΓpΔ, p ∈ N, Δ ∈ CI (Np)} defines a right (pre-)HS-module structure over A/k on 
P ⊗A E.

Proposition 3.2.4. Under the above hypotheses, the following properties hold:
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(1) For any p ∈ N, for any Δ ∈ CI (Np) and for any D ∈ HSp
k(A; Δ) there is a unique Ψp

Δ(D) ∈
Aut◦k[[s]]Δ (HomA(P,Q)[[s]]Δ) such that the following diagram is commutative:

HomA(P,Q)[[s]]Δ Homk[[s]]Δ(P [[s]]Δ, Q[[s]]Δ)

HomA(P,Q)[[s]]Δ Homk[[s]]Δ(P [[s]]Δ, Q[[s]]Δ),

ν

Ψ
p
Δ(D) Γ

p

Δ(D∗)	 ◦ Γ
p
Δ(D)	

ν

where ν is the natural (A[[s]]Δ; A[[s]]Δ)-linear map defined as ν(h) = h̃ (see (7)).
(2) The system Ψ = {Ψp

Δ, p ∈ N, Δ ∈ CI (Np)} defines a left (pre-)HS-module structure over A/k on 
HomA(P, Q).

Proposition 3.2.5. Under the above hypotheses, the following properties hold:

(1) For any p ∈ N, for any Δ ∈ CI (Np) and for any D ∈ HSp
k(A; Δ) there is a unique ΓpΔ(D) ∈

Aut◦k[[s]]Δ (HomA(E,P )[[s]]Δ) such that the following diagram is commutative:

HomA(E,P )[[s]]Δ Homk[[s]]Δ(E[[s]]Δ, P [[s]]Δ)

HomA(E,P )[[s]]Δ Homk[[s]]Δ(E[[s]]Δ, P [[s]]Δ),

ν

Γ
p
Δ(D) Γ

p
Δ(D)∗ ◦ Ψ

p
Δ(D)	=Ψ

p
Δ(D)	 ◦ Γ

p
Δ(D)∗

ν

where ν is the natural (A[[s]]Δ; A[[s]]Δ)-linear map defined as ν(h) = h̃ (see (7)).
(2) The system Γ = {ΓpΔ, p ∈ N, Δ ∈ CI (Np)} defines a right (pre-)HS-module structure over A/k on 

HomA(E, P ).

The following proposition easily follows from Proposition 3.2.1 and its proof is left to the reader.

Proposition 3.2.6. Under the above hypotheses, the left (pre-)HS-module structure over A/k on E⊗d =
E ⊗A E ⊗A · · · ⊗A E defined in Proposition 3.2.1 induces:

1) A unique (pre-)HS-module structure over A/k on Symd
A E such that the natural map E⊗d → Symd

A E

is a HS-map.
2) A unique (pre-)HS-module structure over A/k on 

∧d
A E such that the natural map E⊗d →

∧d
A E is a 

HS-map.

3.3. The enveloping algebra of Hasse–Schmidt derivations

Let TA/k be the free k-algebra

TA/k := k〈Sa, Tp,Δ,D,α; a ∈ A, p ∈ N,Δ ∈ CI (Np) , α ∈ Δ, D ∈ HSp
k(A; Δ)〉

and let us consider the two-sided ideal I ⊂ TA/k with generators:

(0) Sc1 − c, Sa+a′ − Sa − Sa′ , Saa′ − SaSa′ ,
(i) Tp,{0},I,0 − 1,
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(ii) Tp,Δ,I,α for |α| > 0,7

(iii) Tp,Δ,D ◦E,α −
∑

β+γ=α

Tp,Δ,D,β Tp,Δ,E,γ ,

(iv) Tp,Δ,D,α Sa −
∑

β+γ=α

SDβ(a)Tp,Δ,D,γ ,

(v) Tq,∇,ϕ•D,β −
∑
α∈Δ

|α|≤|β|

SCβ(ϕ,α)Tp,Δ,D,α,

for c ∈ k, a, a′ ∈ A, p, q ∈ N, Δ ⊂ Np, ∇ ∈ CI (Nq), α ∈ Δ, β ∈ ∇, D, E ∈ HSp
k(A; Δ) and ϕ ∈

S A(p, q; Δ, ∇).

We consider the N-grading in TA/k given by (see Definition 2.1.8):

deg(k) = 0, deg(Sa) = 0, deg (Tp,Δ,D,α) = � |α|
	α(D)�

for a ∈ A, p ∈ N, Δ ∈ CI (Np), α ∈ Δ and D ∈ HSp
k(A; Δ). This grading is motivated by Proposition 2.1.9. 

Let us notice that

deg (Tp,Δ,D,α) = deg
(
Tp,nα,τΔ,nα (D),α

)
.

We will denote Td
A/k the homogeneous component of degree d and T≤d

A/k :=
⊕

e≤d T
e
A/k.

Let us call UA/k := TA/k/I and write Sa := Sa + I, Tp,Δ,D,α := Tp,Δ,D,α + I for the generators of the 
k-algebra UA/k. The grading in TA/k induces a filtration on UA/k and let us also call deg : UA/k → N the 
corresponding map:

deg(P ) := min{deg(p) | p ∈ TA/k, P = p + I} for P ∈ UA/k, P = 0,

and deg(0) = −∞, with Ud
A/k = {P ∈ UA/k | deg(P ) ≤ d} = T

≤d
A/k/ 

(
I ∩T

≤d
A/k

)
.

The generators of type (0) of I give rise to a natural k-algebra map a ∈ A �→ Sa ∈ UA/k and so UA/k is 
a k-algebra over A.

3.3.1. We first collect some direct consequences of the above definitions. For p ∈ N, s = {s1, . . . , sp}, 
Δ ∈ CI (Np), α ∈ Δ and D ∈ HSp

k(A; Δ) we have:

(a) Since the quotient map π : A[[s]]Δ → A[[s]]nα
is a substitution map (actually, a truncation map) and 

the action

π •(−) : HSp
k(A; Δ) −→ HSp

k(A; nα)

coincides with the truncation τΔ,nα
(see Lemma 1.3.2), by using the generators of type (v) and the 

fact that Cβ(π, α) = δαβ , we obtain Tp,Δ,D,α = Tp,nα,τΔ,nα (D),α (remember that deg (Tp,Δ,D,α) =
deg

(
Tp,nα,τΔ,nα (D),α

)
).

(b) From (a) and the generators of type (i) of I we deduce: Tp,Δ,D,0 = Tp,{0},τΔ,{0}(D),0 = 1.
(c) If 0 < |α| < �α(D), then τΔ,nα

(D) = I and so from (a) and the generators of type (ii) of I we have 
Tp,Δ,D,α = Tp,nα,I,α = 0.

Lemma 3.3.2. The term U0
A/k is the k-module generated by the Sa, a ∈ A, and coincides with the image of 

the natural map A → UA/k.

7 Actually, generators (ii) can be avoided since they are deduced from generators (i) and (iii).
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Proof. By definition, U0
A/k is the k-module generated by the monomials in the Sa, a ∈ A, and the Tp,Δ,D,α

with

deg (Tp,Δ,D,α) = � |α|
	α(D)� = 0,

i.e. |α| < �α(D). So, by (b) and (c) and the generators of type (0) of I we deduce that U0
A/k is the k-module 

generated by the Sa and coincides with the image of A → UA/k. �
The proof of the following proposition is clear (see Proposition 2.1.6).

Proposition 3.3.3. There is a unique k-algebra map υ : UA/k −→ DA/k sending

Sa �−→ a, Tp,Δ,D,α �−→ Dα.

Moreover, it is filtered.

Corollary 3.3.4. The natural map A → UA/k is injective and A � U0
A/k.

Proposition 3.3.5. The k-algebra UA/k over A is endowed with a natural HS-structure Υ over A/k. Moreover, 
the pair (UA/k, Υ) is universal among HS-structures, i.e. for any k-algebra R over A and any HS-structure 
Ψ on R over A/k, there is a unique map f : UA/k → R of k-algebras over A such that f ◦Υ = Ψ.

Proof. We consider the system of maps Υ given by:

Υ
p
Δ : D ∈ HSp

k(A; Δ) �−→
∑
α∈Δ

Tp,Δ,D,αsα ∈ U p(UA/k; Δ)

for p ∈ N, Δ ∈ CI (Np). It is straightforward to see that properties in Definition 3.1.1 hold for Υ. Namely, 
property 1) follows from the generators of type (i), (ii) and (iii) of I, property 2) follows from the generators 
of type (iv) of I, and finally the generators of type (v) of I guarantee property 3).

For the universal property, let f0 : TA/k → R be the k-algebra map determined by

f0(Sa) = a1, f0(Tp,Δ,D,α) = Ψ
p
Δ(D)α

for all a ∈ A, for all p ∈ N, for all Δ ∈ CI (Np), for all α ∈ Δ and for all D ∈ HSp
k(A; Δ). It is clear that 

f0 vanishes on I and gives rise to our wanted map f : UA/k → R of k-algebras over A. The uniqueness of f
is clear. �

Let us notice that the HS-structure Υ in the above proposition is filtered.

Corollary 3.3.6. The abelian category of left (resp. right) HS-modules over A/k is isomorphic to the category 
of left (resp. right) UA/k-modules.

Definition 3.3.7. The enveloping algebra of the Hasse–Schmidt derivations of A over k is the k-algebra 
UA/k = TA/k/I defined above. It is a filtered k-algebra over A.

Theorem 3.3.8. The graded ring grUA/k is commutative.

Proof. We need to prove that the degree of the bracket of the classes in UA/k of any two variables generating 
TA/k is strictly less than the sum of the degrees of these variables.
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-) For the variables Sa the result is clear since SaSa′ − Sa′Sa = Saa′ − Sa′a = 0.

-) Let us see the case of one variable Sa and one variable Tp,Δ,D,α, with a ∈ A, p ∈ N, Δ ∈ CI (Np), α ∈ Δ
and D ∈ HSp

k(A; Δ), and set � = �α(D).
We know from (b) that Tp,Δ,D,0 = 1, and from (c) that whenever 0 < |α| < �, then Tp,Δ,D,α = 0, and 

of course Dα = 0. So, if |α| < � then Tp,Δ,D,αSa − SaTp,Δ,D,α = 0. Otherwise |α| ≥ � and, by using the 
generators of type (iv) of I, we have:

Tp,Δ,D,α Sa − Sa Tp,Δ,D,α =
∑

β+γ=α
|β|>0

SDβ(a)Tp,Δ,D,γ =
∑

β+γ=α
|β|≥


SDβ(a)Tp,Δ,D,γ .

We conclude that:

deg (Tp,Δ,D,α Sa − Sa Tp,Δ,D,α) ≤ max {deg (Tp,Δ,D,γ) | β + γ = α, |β| ≥ �} ≤

max
{
� |γ|

	γ(D)
� | γ ≤ α, |γ| ≤ |α| − �

}
≤ max

{
� |γ|

	α(D)
� | γ ≤ α, |γ| ≤ |α| − �

}
<

� |α|
	 � = deg (Tp,Δ,D,α) = deg (Tp,Δ,D,α) + deg(Sa).

-) It remains to treat the case of two variables Tp,Δ,D,α and Tq,∇,E,β . We need to prove that:

deg (Tp,Δ,D,α Tq,∇,E,β − Tq,∇,E,β Tp,Δ,D,α) < deg (Tp,Δ,D,α) + deg (Tq,∇,E,β) . (34)

From (b), we may assume α, β = 0; by taking into account generators of I of type (ii), we may assume 
D, E = I; from (c), we may assume �α(D) ≤ |α| and �β(E) ≤ |β|; and finally, from (a), we may assume that 
Δ = nα and ∇ = nβ . Let us denote s = {s1, . . . , sp}, t = {t1, . . . , tq},

ι : A[[s]]nα
→ A[[s � t]]nα×nβ

= A[[s � t]]n(α,β) , κ : A[[t]]∇ → A[[s � t]]n(α,β)

the combinatorial substitution maps given by the inclusions s, t ↪→ s �t, F := ι•D, G := κ•E, �1 := �(D) =
�α(D), �2 := �(E) = �β(E). From Proposition 2.2.3 we have F ∗ = ι•D∗ and G∗ = κ•E∗.

We will proceed in several steps. First, by using the generators of type (v) of I and the fact that:

C(γ,σ)(ι, α′) =
{

1 if γ = α′ and σ = 0
0 otherwise,

C(γ,σ)(κ, β′) =
{

1 if γ = 0 and σ = β′

0 otherwise,

we deduce that:

(1) Tp+q,n(α,β),F,(α′,0) = Tp,nα,D,α′ , Tp+q,n(α,β),G,(0,β′) = Tq,nβ ,E,β′ .
(2) Tp+q,n(α,β),F,(α′,β′) = 0 for β′ = 0 and Tp+q,n(α,β),G,(α′,β′) = 0 for α′ = 0.
(3) �(α′,0)(F ) = �α′(D), �(0,β′)(G) = �β′(E) (in particular, �(F ) = �(α,0)(F ) = �α(D) = �(D) = �1, �(G) =

�(0,β)(G) = �β(E) = �(E) = �2) and

deg
(
Tp+q,n(α,β),F,(α′,0)

)
= � |(α′, 0)|

�(α′,0)(F )� = � |α′|
�α′(D)� = deg (Tp,nα,D,α′) ,

deg
(
Tp+q,n(α,β),G,(0,β′)

)
= � |(0, β′)|

�(0,β′)(G)� = � |β′|
�β′(E)� = deg

(
Tq,nβ ,E,β′

)
.
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(4) From 1.3.9 and the generators of type (iii) and (v) of I we have:

Tp+q,n(α,β),D �E,(α′,β′) = Tp+q,n(α,β),F ◦G,(α′,β′) = Tp,nα,D,α′ Tq,nβ ,E,β′ ,

Tp+q,n(α,β),E �D,(α′,β′) = Tp+q,n(α,β),G ◦ F,(α′,β′) = Tq,nβ ,E,β′ Tp,nα,D,α′ .

Let us write H = [F, G] = F ◦G ◦F ∗ ◦G∗. From Lemma 2.1.7 we know that �(H) ≥ �1 + �2. Let us 
prove that:

(5) Tp+q,n(α,β),H,(μ,λ) = 0 whenever (μ, λ) = (0, 0) and |μ| < �1 or |λ| < �2.

By using (1), (2) and the generators of type (iii) of I again, we obtain:

Tp+q,n(α,β),H,(μ,λ) = · · · =∑
Tp+q,n(α,β),F,(μ′,0) Tp+q,n(α,β),G,(0,λ′) Tp+q,n(α,β),F∗,(μ′′,0) Tp+q,n(α,β),G∗,(0,λ′′) =∑

Tp,nα,D,μ′ Tq,nβ ,E,λ′ Tp,nα,D∗,μ′′ Tq,nβ ,E∗,λ′′ , (35)

where both sums are indexed by the (μ′, μ′′, λ′, λ′′) such that μ′ +μ′′ = μ and λ′ +λ′′ = λ. If μ = 0 and 
0 < |λ| then

Tp+q,n(α,β),H,(0,λ) = · · · =∑
λ′+λ′′=λ

Tq,nβ ,E,λ′ Tq,nβ ,E∗,λ′′ = Tq,nβ ,E◦E∗,λ = Tq,nβ ,I,λ = 0,

by using generators of type (iii), (ii) of I. In a similar way, we have that Tp+q,n(α,β),H,(μ,0) = 0 whenever 
0 < |μ|. Assume now that μ = 0 and λ = 0. If |μ| < �1 or |λ| < �2, then all the summands in (35) vanish 
by (c) (remember that �(D∗) = �(D) and �(E∗) = �(E)) and so Tp+q,n(α,β),H,(μ,λ) = 0.

(6) By using F ◦G = H ◦ (G ◦F ) and the generators of type (iii) of I we have:

Tp+q,n(α,β),F ◦G,(α,β) =
∑

α′+α′′=α

β′+β′′=β

Tp+q,n(α,β),H,(α′,β′) Tp+q,n(α,β),G ◦ F,(α′′,β′′).

Hence:

Tp+q,n(α,β),F ◦G,(α,β) − Tp+q,n(α,β),G ◦ F,(α,β) =∑
|α′|+|β′|>0

Tp+q,n(α,β),H,(α′,β′) Tp+q,n(α,β),G ◦ F,(α′′,β′′)
(c)=

∑
|α′|+|β′|≥
(H)

Tp+q,n(α,β),H,(α′,β′) Tp+q,n(α,β),G ◦ F,(α′′,β′′)
(4),(5)=

∑
|α′|≥
1,|β′|≥
2

Tp+q,n(α,β),H,(α′,β′) Tq,nβ ,E,β′′ Tp,nα,D,α′′ ,

where all the indexes (α′, α′′, β′, β′′) in the above sums satisfy α′ +α′′ = α and β′ + β′′ = β, and so, by (4):

deg
(
Tp,nα,D,α Tq,nβ ,E,β − Tq,nβ ,E,β Tp,nα,D,α

)
=

deg
(
Tp+q,n(α,β),F ◦G,(α,β) − Tp+q,n(α,β),G ◦ F,(α,β)

)
≤

max
{

deg
(
Tp+q,n ,H,(α′,β′)

)
+ deg

(
Tq,nβ ,E,β′′

)
+ deg (Tp,nα,D,α′′)

}
=
(α,β)
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max
{
� |α′| + |β′|
�(α′,β′)(H)� + � |β′′|

�β′′(E)� + � |α′′|
�α′′(D)�

}
≤

max
{
� |α

′| + |β′|
�(H) � + � |β

′′|
�(E)� + � |α

′′|
�(D)�

}
≤

max
{
� |α

′| + |β′|
�1 + �2

� + � |β
′′|
�2

� + � |α
′′|
�1

�
}

≤ max
{
� |α

′| + |β′|
�1 + �2

� + � |β
′′|
�2

� + � |α
′′|
�1

�
}

<

� |α
′ + α′′|
�1

� + |β′ + β′′|
�2

� = � |α|
�1

� + |β|
�2

� = deg (Tp,nα,D,α) + deg
(
Tq,nβ ,E,β

)
,

where the max’s are taken over the α′, α′′ ∈ Np and β′, β′′ ∈ Nq such that α′ + α′′ = α, β′ + β′′ = β, 
|α′| ≥ �1 and |β′| ≥ �2, and the last (strict) inequality comes from Lemma 3.3.9. �
Lemma 3.3.9. Let �1, �2 ≥ 1 be integers. For any integers a′, b′, a′′, b′′ ≥ 0 with a′ ≥ �1, b′ ≥ �2 we have:

� a′+b′

	1+	2
� + �a′′

	1
� + � b′′

	2
� < �a′+a′′

	1
� + � b′+b′′

	2
�.

Proof. We have

� a
′ + b′

�1 + �2
� + �a

′′

�1
� + �b

′′

�2
� ≤ max

{
�a

′

�1
�, � b

′

�2
�
}

+ �a
′′

�1
� + �b

′′

�2
� <

�a
′

�1
� + � b

′

�2
� + �a

′′

�1
� + �b

′′

�2
� ≤ �a

′ + a′′

�1
� + �b

′ + b′′

�2
�. �

3.4. The case of HS-smooth algebras

Our first goal is to define a canonical map of graded A-algebras from the divided power algebra of the 
module of f-integrable k-derivations (see Definitions 1.4.3 and 2.3.1) of A to the graded ring of UA/k. We 
will closely follow the procedure in [11, §2.2] (see also section 2.3).

Proposition 3.4.1. For each integer m ≥ 1 the group homomorphism

σ ◦Υ1
m : HSk(A;m) −→ U gr(grUA/k;m)

vanishes on ker τm,1 and its image is contained in E m(grUA/k).

Proof. Let us consider the combinatorial substitution maps ι1, ι2 : A[[s]]m → A[[s1, s2]](m,m) given by 
ιi(s) = si, i = 1, 2, and the substitution map ϕ : A[[s]]m → A[[s1, s2]]m given by ϕ(s) = s1 + s2. Notice that 
in ιi = ιi and inϕ = ϕ (see Proposition 1.3.5). An element r ∈ U (grUA/k; m) belongs to E m(grUA/k) if 
and only if (ι1 •r)(ι2 •r) = ϕ•r (see 1.4.1).

Let D ∈ HSk(A; m) be a HS-derivation, and let us denote r = (σ ◦Υ1
m)(D), E = ϕ•D, F =

(ι1 •D) ◦ (ι2 •D) and H = E ◦F ∗. It is clear that H(1,0) = H(0,1) = 0 and so �(H) > 1. Then,

deg
(
T1,tm,H,(i,j)

)
≤ deg

(
T1,tm,H,(i,j)

)
= � i+j

	(i,j)(H)� ≤ � i+j
	(H)� < i + j

for all (i, j) with 0 < i + j ≤ m, and so

(σ ◦Υ1
m)(H) = σ

( ∑
i+j≤m

T1,tm,H,(i,j) s
i
1s

j
2

)
=

∑
i+j≤m

σi+j

(
T1,tm,H,(i,j)

)
si1s

j
2 = 1. (36)

We deduce that:
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ϕ•r = (inϕ)•
(
σ

(
Υ1

m (D)
)) (�)= σ

(
ϕ•Υ1

m (D)
)

= σ
(
Υ2

m(E)
)

= σ
(
Υ2

m(H ◦F )
)

=

σ
(
Υ2

m(H)Υ2
m(F )

) (36)= σ
(
Υ2

m(F )
)

= σ
(
Υ2

m(ι1 •D) Υ2
m(ι2 •D)

)
=

σ
(
(ι1 •Υ1

m(D)) (ι2 •Υ1
m(D))

)
= σ

(
(ι1 •Υ1

m(D))
)
σ

(
(ι2 •Υ1

m(D))
) (�)=

((in ι1)•r) ((in ι2)•r) = (ι1 •r)(ι2 •r),

where equalities (�) come from Proposition 1.3.10, and so r = (σ ◦Υ1
m)(D) ∈ E m(grUA/k).

On the other hand, if D ∈ ker τm,1, then �(D) > 1 and we can proceed as before with H and deduce that 
(σ ◦Υ1

m)(D) = 1. �
Corollary 3.4.2. There is a natural system of A-linear maps

χm : IDerk(A;m) −→ E m(grUA/k), m ≥ 1,

such that for m′ ≥ m the following diagram is commutative:

IDerk(A;m′) E m′(grUA/k)

IDerk(A;m) E m(grUA/k).

χm′

incl. trunc.
χm

(37)

Moreover, the system above induces a natural A-linear map χ : IDerfk(A) −→ E (grUA/k).

Proof. Since IDerk(A; m) is by definition the image of the group homomorphism

τm,1 : HSk(A;m) → HSk(A; 1) ≡ Derk(A),

we deduce from Proposition 3.4.1 that the group homomorphism σ ◦Υ1
m induces a natural group homomor-

phism χm : IDerk(A; m) −→ E m(grUA/k). If δ ∈ IDerk(A; m), then χm(δ) =
∑m

i=0 σi (T1,m,D,i) si where 
D ∈ HSk(A; m) is any m-integral of δ, i.e. D1 = δ. Then, for each a ∈ A, a•D is an m-integral of aδ and

χm(aδ) =
m∑
i=0

σi (T1,m,a•D,i) si
(�)=

m∑
i=0

σi

⎛⎝ i∑
j=0

ajT1,m,D,j

⎞⎠ si =

=
m∑
i=0

σi

(
aiT1,m,D,i

)
si =

m∑
i=0

σi (T1,m,D,i) (as)i = aχm(δ),

where equality (�) comes from generators of type (v) of I, and so χm is A-linear (remember that the A-action 
on exponential type series is given by substitutions s �→ as, a ∈ A, see (23)). The commutativity of (37)
comes from the commutativity of the following diagram (σ and the Υp

Δ are compatible with truncations):

HSk(A;m′) E m′(grUA/k)

HSk(A;m) E m(grUA/k).

σ ◦Υ1
m′

trunc. trunc.
σ ◦Υ1

m

The map χ is simply the inverse limit of the χm. �
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Corollary 3.4.3. There is a natural map ϑ : ΓA IDerfk(A) −→ grUA/k of graded A-algebras such that the 
following diagram is commutative:

ΓA IDerfk(A) grUA/k

gr DA/k,

ϑ

ϑf
A/k

gr υ (38)

where ϑf
A/k is the map defined in (32) and υ is defined in Proposition 3.3.3.

Proof. Let us denote

γ : δ ∈ IDerfk(A) �−→
∞∑

n=0
γn(δ)sn ∈ E (ΓA IDerfk(A))

the canonical map (see 1.4.3). The existence of ϑ comes from the universal property of γ. Namely, there 
is a unique map of A-algebras ϑ : ΓA IDerfk(A) −→ grUA/k such that χ = E (ϑ) ◦ γ. More explicitly, for 
each δ ∈ IDerfk(A) and for each D ∈ HSk(A; m) such that D1 = δ, we have ϑ(γm(δ)) = σm (T1,m,D,m). In 
particular, ϑ is graded.

The commutativity of the diagram (38) is a consequence of the commutativity of the diagram

IDerfk(A) E (grUA/k)

E (grDA/k),

χ

χ E (gr υ)

where χ is the inverse limit of the maps χm : IDerk(A; m) → E m(grDA/k), m ≥ 1, defined in [11, Corollary 
(2.7)]. �
Proposition 3.4.4. Assume that IDerfk(A) = Derk(A). Then, the map

ϑ : ΓA IDerfk(A) −→ grUA/k

is surjective.

Proof. The A-algebra grUA/k is generated by the σd (Tq,∇,E,β) for q ≥ 1, ∇ ∈ CI (Nq), β ∈ ∇, E ∈
HSq

k(A; ∇), E = I, d = � |β|
	β(E)�. After 3.3.1, we may assume that ∇ = nβ and so �β(E) = �(E). Let us call 

m = ht(∇).
Let {δs, s ∈ s} be a system of generators of the A-module Derk(A). Since IDerk(A; m) = Derk(A), for 

each s ∈ s there exists Ds ∈ HSk(A; m) which is an m-integral of δs. By considering some total ordering 
< on s, we can define D ∈ HSs

k(A; m) as the external product (see Definition 1.2.5) of the ordered family 
{Ds, s ∈ s}, i.e. D0 = Id and for each α ∈ N(s), α = 0,

Dα = Ds1
αs1

◦ · · · ◦Dse
αse

with suppα = {s1 < · · · < se}.

After [13, Theorem 1], there exists a substitution map ϕ0 : A[[s]]m → A[[t1, . . . , tq]]∇ such that E = ϕ0 •D. 
Moreover, it is clear that we can take ord(ϕ0) = �(E).

Since ∇ is finite, condition (17) in [13, Proposition 2] implies that the set {s ∈ s | ϕ0(s) = 0} is finite. 
Let us call {s1 < · · · < sp} this set. We have a factorization of substitution maps:
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A[[s]]m A[[t1, . . . , tq]]∇

A[[s1, . . . , sp]]m

ϕ0

ϕ1

ϕ

where ϕ1(s) = 0 if s = si, ϕ1(si) = si and ϕ(si) = ϕ0(si). Then we have E = ϕ0 •D = ϕ•F with 
F = ϕ1 •D = Ds1 � · · ·�Dsp ∈ HSp

k(A; (m, . . . , m)).
We obviously have ord(ϕ) = ord(ϕ0) = �(E) and so Cβ(ϕ, α) = 0 whenever |α|�(E) > |β|. So,

Tq,∇,E,β =
∑

|α|≤m
|α|≤|β|

Cβ(ϕ, α)Tp,m,F,α =

∑
|α|≤m

|α|
(E)≤|β|

Cβ(ϕ, α)T1,m,Ds1 ,α1T1,m,Ds2 ,α2 · · ·T1,m,Dsp ,αp
,

σd (Tq,∇,E,β) =
∑
|α|=d

Cβ(ϕ, α)
p∏

j=1
σαj

(
T1,m,Dsj ,αj

)
= ϑ

⎛⎝ ∑
|α|=d

Cβ(ϕ, α)
p∏

j=1
γαj

(δj)

⎞⎠
and we deduce that ϑ is surjective. �
Remark 3.4.5. In the proof of the above proposition we have used the Axiom of Choice in order to consider 
a total ordering on s. This could be avoided when Derk(A) is a finitely generated A-module. In general, we 
could also avoid the Axiom of Choice by proving directly a convenient variant of Theorem 1 of [13].

Theorem 3.4.6. If A is a HS-smooth k-algebra, then the natural map υ : UA/k −→ DA/k is an isomorphism
of filtered k-algebras.

Proof. It is enough to prove that grυ : grUA/k −→ gr DA/k is an isomorphism of graded A-algebras. Since 
A is a HS-smooth k-algebra, we have ϑf

A/k : ΓA IDerfk(A) ∼−→ grDA/k and from Corollary 3.4.3 we deduce 
that ϑ is injective. The surjectivity of ϑ comes from Proposition 3.4.4. �
Corollary 3.4.7. If A is a HS-smooth k-algebra, then the category of left (resp. right) HS-modules over A/k

is isomorphic to the category of left (resp. right) DA/k-modules.

3.5. Further developments and questions

Question 3.5.1. With the hypotheses of the preceding section, it is easy to see that the map

Υ1
1 : HSk(A; 1) ≡ Derk(A) −→ U (UA/k; 1) ≡ UA/k

is k-linear, compatible with Lie brackets and satisfies Leibniz rule. So, it induces a k-algebra map from the 
enveloping algebra of the Lie-Rinehart algebra Derk(A) ([15]) to UA/k. The paper [14] is devoted to prove 
that this map is an isomorphism whenever Q ⊂ k, and so HS-modules and classical integrable connections 
coincide in characteristic 0.

Question 3.5.2. Assume that A is a HS-smooth k-algebra and ΩA/k is a projective A-module of rank d. In 
an article in preparation we study how the operations in Proposition 3.2.6, the pre-HS-module structure on 
ΩA/k (see Proposition 3.1.7) and Proposition 3.1.2 give rise to a right HS-module structure on the dualizing 
module ωA/k = Ωd

A/k.
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