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that the bracket of two m-integrable derivations is also m-
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© 2021 Elsevier Inc. All rights reserved.

0. Introduction

Let k be a commutative ring and A a commutative k-algebra. Given a positive integer 
m, or m = ∞, a k-linear derivation δ : A → A is said to be m-integrable if it extends up 
to a Hasse–Schmidt derivation D = (Id, D1 = δ, D2, . . . ) of A over k of length m. This 
condition is automatically satisfied for any m if k contains the rational numbers and A
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is arbitrary, or if k is arbitrary and A is a smooth k-algebra. The set IDerk(A; m) of 
m-integrable derivations of A over k is an A-module. A natural question, suggested for 
instance by [8, §3] and [14], is whether the (Lie) bracket [δ, ε] = δε −εδ of two m-integrable 
derivations δ, ε is m-integrable or not, in the case of course where IDerk(A; m) � Derk(A). 
The fact that the modules IDerk(A; m) are closed under Lie brackets seems like a very 
basic property, necessary for any reasonable behavior that we can expect of these objects 
as differential invariants of singularities in nonzero characteristics, and as far as we know 
it has not been proven in the existing literature.

If we take two m-integrals of our derivations

D = (Id, D1 = δ,D2, . . . ), E = (Id, E1 = ε, E2, . . . ),

their commutator (in the group of Hasse–Schmidt derivations of length m) has the form

D ◦E ◦D∗ ◦E∗ = (Id, 0, [D1, E1] = [δ, ε], . . . ),

where D∗ denotes the inverse of D for the group structure of Hasse–Schmidt derivations, 
but it is not clear how to produce a Hasse–Schmidt derivation of length m such that its 
1-component is [δ, ε], if it exists.

In this paper we show how multi-variate Hasse–Schmidt derivations allow us to answer 
the above question. Let us see what happens in the simple case of length m = 2. Consider 
the external product F = D � E = (F(i,j))0≤i,j≤2, with F(i,j) = Di ◦Ej , which is a 2-
variate Hasse–Schmidt derivation, and the composition

G = (D � E) ◦ (D∗ � E∗).

First, one checks that G(1,0) = G(2,0) = G(0,1) = G(0,2) = 0, and from there we deduce 
easily that the “restriction of G to the diagonal”, i.e. G′ =

(
G(0,0) = Id, G(1,1), G(2,2)

)
, is a 

(uni-variate) Hasse–Schmidt derivation of length 2. But G(1,1) turns out to be [D1, E1] =
[δ, ε], and so [δ, ε] is 2-integrable. Actually, the explicit expression of G(2,2) is

D2 ◦E2 −D2 ◦E2
1 −D1 ◦E2 ◦D1 + D1 ◦E1 ◦D1 ◦E1 + E2 ◦D2

1 − E2 ◦D2 − E1 ◦D2
1 ◦E1

+ E1 ◦D2 ◦E1.

In order to generalize the above idea to arbitrary length, we need a decomposition 
result which allows us to express any Δ-variate Hasse–Schmidt derivation D, for p ≥ 1
and Δ ⊂ Np a finite co-ideal, as the ordered composition (remember that the group of 
Δ-variate Hasse–Schmidt derivations under composition is not abelian in general) of a 
totally ordered finite family of Δ-variate Hasse–Schmidt derivations, each one obtained 
as the action of a monomial substitution map on a uni-variate Hasse–Schmidt derivation. 
When Δ is infinite, a similar result holds, but our totally ordered family becomes infinite. 
Moreover, the above decomposition is unique if we fix the substitution maps we are using, 
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and it is governed by the arithmetic combinatorics of Np (see Theorem 3.2 for more 
details). We think that such a decomposition is interesting in itself: it can be understood 
as a structure theorem of multi-variate Hasse–Schmidt derivations.

Let us comment on the content of the paper.
In Section 1, we recall the basic notions, constructions and notations about Hasse–

Schmidt derivations, substitution maps and integrability.
In Section 2, we describe an arithmetic partition of Np\{0}, we define a total ordering 

on it and we study its behavior with respect to the addition in Np.
Section 3 contains the main results of this paper, namely the decomposition theo-

rem of multi-variate Hasse–Schmidt derivations in terms of uni-variate Hasse–Schmidt
derivations and substitution maps (see Theorem 3.2), and the answer of the motivating 
question of this paper: the bracket of m-integrable derivations is m-integrable too (see 
Corollary 3.7).

In Section 4, we apply the previous results to exhibit a natural Poisson structure 
on the divided power algebra of the module of integrable derivations, and we prove 
its compatibility with the canonical Poisson structure of the graded ring of the ring of 
differential operators by means of the map ϑA/k of [7, Section (2.2)].

We would like to thank the referee for his/her careful reading of the paper and for 
useful comments and suggestions.

1. Preliminaries and notations

Throughout this paper, k will be a commutative ring and A a commutative k-algebra, 
and in this section M will be an abelian group and R a ring, not-necessarily commutative.

Let p ≥ 1 be an integer. The monoid (Np, +) is endowed with a natural partial 
ordering: for α, β ∈ Np,

α ≤ β
def.⇐⇒ ∃γ ∈ Np such that β = α + γ ⇐⇒ ∀i = 1 . . . , p, αi ≤ βi.

Let Np
+ := Np \ {(0, . . . , 0)} and let |α| := α1 + · · · + αp for any α ∈ Np.

Let s = {s1, . . . , sp} be a set of p many variables. The abelian group M�s� will be 
always considered as a topological Z�s�-module with the 〈s〉-adic topology.

Definition 1.1. We say that a subset Δ ⊂ Np is a co-ideal of Np if α′ ∈ Δ whenever 
α′ ≤ α and α ∈ Δ.

For each co-ideal Δ ⊂ Np, we denote by ΔM the closed sub-group of M�s� whose 
elements are the formal power series 

∑
α∈Np mαsα such that mα = 0 whenever α ∈ Δ, 

and M�s�Δ := M�s�/ΔM . Any element m ∈ M�s�Δ can be written in a unique way 
m =

∑
α∈Δ mαsα, and its support is supp(m) = {α ∈ Δ | mα �= 0} ⊂ Δ. Let us notice 

that M�s�Np = M�s� (the case of Δ = Np).
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If M is a ring, say M = R, then ΔR is a closed two-sided ideal of R�s� and so R�s�Δ
is a topological ring, which we always consider endowed with the 〈s〉-adic topology (=
to the quotient topology).

For non-empty co-ideals Δ′ ⊂ Δ of Np, we have natural Z�s�-linear projections τΔΔ′ :
M�s�Δ −→ M�s�Δ′ , that we call truncations:

τΔΔ′ :
∑
α∈Δ

mαsα ∈ M�s�Δ �−→
∑
α∈Δ′

mαsα ∈ M�s�Δ′ .

If M = R is a ring, then the truncations τΔΔ′ are ring homomorphisms.
We denote by U(R; Δ) the multiplicative sub-group of the units of R�s�Δ whose 0-

degree coefficient is 1. When p = 1 and Δ = {0, . . . , m}, we simply denote U(R; m) :=
U(R; {0, . . . , m}). The multiplicative inverse of a unit r ∈ R�s�Δ will be denoted by 
r∗. For Δ ⊂ Δ′ co-ideals we have τΔ′Δ (U(R; Δ′)) ⊂ U(R; Δ) and the truncation map 
τΔ′Δ : U(R; Δ′) → U(R; Δ) is a group homomorphism. Clearly, we have:

U(R; Δ) = lim
←−

Δ′⊂Δ
�Δ′<∞

U(R; Δ′). (1)

Definition 1.2. Let (I, �) be a totally ordered set, possibly infinite, and r = (ri)i∈I a 
family of elements in U(R; Δ). We say that this family is composable if for each finite 
co-ideal Δ′ ⊂ Δ, the set IΔ′ = {i ∈ I | τΔΔ′(ri) �= 1} is finite. In such a case, for each 
finite co-ideal Δ′ ⊂ Δ we define

CΔ′(r) := τΔΔ′(ri1) ◦ · · · ◦ τΔΔ′(rim) ∈ U(R; Δ′),

where IΔ′ = {i1, . . . , im} and i1 ≺ · · · ≺ im. It is clear that if Δ′′ ⊂ Δ′ is another finite 
co-ideal, we have IΔ′′ ⊂ IΔ′ and τΔ′Δ′′(CΔ′(r)) = CΔ′′(r), and so we define the ordered 
composition of the family r as (see (1))

◦i∈I ri = lim
←−

Δ′⊂Δ
�Δ′<∞

CΔ′(r) ∈ U(R; Δ).

Let p, q ≥ 1 be integers, s = {s1, . . . , sp}, t = {t1, . . . , tq} two sets of variables and 
Δ ⊂ Np, ∇ ⊂ Nq non-empty co-ideals.

Definition 1.3. An A-algebra map ϕ : A�s�Δ −→ A�t�∇ will be called a substitution 
map whenever ϕ(si) ∈ 〈t〉 for all i = 1, . . . , p. Such a map is continuous and uniquely 
determined by the images ϕ(si), i = 1, . . . , p. A substitution map ϕ : A�s�Δ −→ A�t�∇
will be called monomial if ϕ(si) is a monomial in t for all i = 1, . . . , p.

Definition 1.4. A Δ-variate Hasse–Schmidt derivation, or a Δ-variate HS-derivation for 
short, of A over k is a family D = (Dα)α∈Δ of k-linear maps Dα : A −→ A, satisfying 
the following Leibniz type identities:
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D0 = IdA, Dα(xy) =
∑

β+γ=α

Dβ(x)Dγ(y)

for all x, y ∈ A and for all α ∈ Δ. We denote by HSp
k(A; Δ) the set of all Δ-variate 

HS-derivations of A over k. For p = 1, a uni-variate HS-derivation will be simply called 
a Hasse–Schmidt derivation (a HS-derivation for short), or a higher derivation,1 and we 
will simply write HSk(A; m) := HS1

k(A; {0, . . . , m}).2

Any Δ-variate HS-derivation D of A over k can be understood as a power series ∑
α∈Δ Dαsα ∈ R�s�Δ, with R = Endk(A), and so we consider HSp

k(A; Δ) ⊂ R�s�Δ. 
Actually, HSp

k(A; Δ) is a (multiplicative) sub-group of U(R; Δ). The group operation in 
HSp

k(A; Δ) is explicitly given by (D ◦E)α =
∑

β+γ=α
Dβ ◦Eγ , and the identity element of 

HSp
k(A; Δ) is I with I0 = Id and Iα = 0 for all α �= 0. The inverse of a D ∈ HSp

k(A; Δ), 
in the sense of the group structure on U(A; Δ), will be denoted by D∗.

For Δ′ ⊂ Δ ⊂ Np non-empty co-ideals, we have truncations τΔΔ′ : HSp
k(A; Δ) −→

HSp
k(A; Δ′), which are group homomorphisms.
For each substitution map ϕ : A�s�Δ → A�t�∇ and each HS-derivation D =∑
α∈Δ Dαsα ∈ HSp

k(A; Δ), we know that ϕ•D =
∑

α∈Δ ϕ(sα)Dα is a ∇-variate HS-
derivation (see [9, Proposition 10]).

Definition 1.5. (Cf. [2,5,8]) Let m ≥ 1 be an integer or m = ∞, and δ : A → A a 
k-derivation. We say that δ is m-integrable (over k) if there is a HS-derivation D ∈
HSk(A; m) such that D1 = δ. A such D is called an m-integral of δ. The set of m-
integrable k-derivations of A is denoted by IDerk(A; m). We say that δ is f -integrable
(finite integrable) if it is m-integrable for all integers m ≥ 1. The set of f -integrable 

k-derivations of A is denoted by IDerfk(A).

The sets IDerk(A; m) and IDerfk(A) are A-submodules of Derk(A), and we have

Derk(A) = IDerk(A; 1) ⊃ IDerk(A; 2) ⊃ · · · ⊃ IDerfk(A) ⊃ IDerk(A;∞).

If Q ⊂ k or A is 0-smooth over k, then any k-derivation of A is ∞-integrable, and so 
Derk(A) = IDerfk(A) = IDerk(A; ∞) (see [5, p. 230]).

The following Proposition is a straightforward consequence of Theorems 3.14 and 4.1 
of [13] and will be used in section 3.

Proposition 1.6. Let k be a ring of prime characteristic p > 0, e, s ≥ 1 two integers 
and D ∈ HSk(A; eps) a HS-derivation with D1 = D2 = . . . = De−1 = 0. Then, De ∈
IDerk(A; ps).

1 This terminology is used for instance in [6, §27].
2 These HS-derivations are called of length m in [6, §27].
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2. An ordered partition

In this section, we define an ordered partition of Nq
+ of arithmetic nature that will be 

crucial for the proof of our main results in Section 3.
Let q ≥ 2 be an integer. For β1, . . . , βq ∈ Z, we denote by gcd(β1, . . . , βq) the (unique) 

non-negative integer g such that Zβ1 + · · ·+Zβq = Zg. Notice that gcd(β1, . . . , βq) = 0
if and only if the ideal (β1, . . . , βq) is equal to 0.

Definition 2.1. For α, β ∈ Nq
+, we define

α ∼ β
def.⇐⇒ ∃r ∈ Q× | β = rα.

It is clear that ∼ is an equivalence relation in Nq
+.

Definition 2.2. We define Cq as the set {(β1, . . . , βq) ∈ Nq
+ | gcd(β1, . . . , βq) = 1}.

Lemma 2.3. With the above notations, the map β ∈ Cq �−→ [β] ∈ Nq
+/ ∼ is bijective. 

Moreover, for each β ∈ Cq, the equivalence class [β] coincide with the set N+β = {rβ | r ∈
N+}.

Definition 2.4. We define the map gq : Nq → C2 ∪{(0, 0)} (or simply g if there is no 
confusion) as:

β �→

⎧⎪⎨
⎪⎩

(0, 0) if β1 = β2 = 0
1

gcd(β1, β2)
(β1, β2) otherwise.

Observe that, if β ∈ Cq, then (gcd(β1, β2), β3, . . . , βq) ∈ Cq−1 and if β′ ∈ [β], then 
g(β′) = g(β).

We are going to define a total ordering �q on Cq, and so on the partition Nq
+/ ∼

through the bijection from Lemma 2.3.
Let us consider β, γ ∈ Cq. If q = 2, then β ≺2 γ if and only if γ2β1 < γ1β2. For q ≥ 3, 

we say that β ≺q γ if some of the following conditions hold:

1. g(β) = (0, 0) and g(γ) �= (0, 0).
2. g(β), g(γ) �= (0, 0) and g(β) ≺2 g(γ).
3. g(β) = g(γ) and (gcd(β1, β2), β3, . . . , βq) ≺q−1 (gcd(γ1, γ2), γ3, . . . , γq).

As usual, we say that β �q γ if and only if β ≺q γ or β = γ.
The proof of the following proposition can be easily proved by induction on q and it 

is left to the reader.
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Proposition 2.5. The relation �q above is a total ordering on Cq. Moreover,

(0, . . . , 0, 1) = min�q (Cq) and (1, 0, . . . , 0) = max�q (Cq).

We will also denote by �q the total ordering induced on Nq
+/ ∼ by the bijection from 

Lemma 2.3.
The following proposition deals with the behavior of the total ordering �q with respect 

to the monoid structure on Nq. It will be the main tool in proving the results in Section 3.

Proposition 2.6. Let λ, σ, β ∈ Nq
+ such that λ + σ = β. Then, one and only one of the 

following properties holds:
(a) [λ] = [β] = [σ],
(b) [σ] ≺q [β] ≺q [λ],
(c) [λ] ≺q [β] ≺q [σ].

Proof. It is clear that if any two q-tuples among σ, β, λ have the same class, then 
all three classes [σ], [β], [λ] are equal. So, let us assume that they are all different, in 
particular [λ] �= [β]. Hence, we have either [λ] ≺q [β] or [β] ≺q [λ]. We will prove the 
result by induction on q ≥ 2.

If q = 2 and [λ] ≺2 [β], then β2λ1 < β1λ2 and, since λ + σ = β, we obtain that 
β2(β1−σ1) < β1(β2−σ2). Hence, β1σ2 < β2σ1 and, by definition, [β] ≺2 [σ]. If [β] ≺2 [λ], 
for similar reasons as before, we deduce that [σ] ≺2 [β] and the proposition is proved for 
q = 2. Let us assume that the result is true for q − 1 and we will prove it for q ≥ 3. We 
will start assuming that [λ] ≺q [β]. Three different cases have to be considered according 
to the definition of ≺q:

Case 1: g(λ) = (0, 0) and g(β) �= (0, 0). In this case, λi = 0 for i = 1, 2 and so (σ1, σ2) =
(β1, β2), which implies that g(σ) = g(β) and gcd(β1, β2) = gcd(σ1, σ2) = d �= 0. From 
this, and from the equality λ + σ = β, it follows that

(0, λ3, . . . , λq) + (d, σ3, . . . , σq) = (d, β3, . . . , βq).

Moreover, we have g((0, λ3, . . . , λq)) = (0, a) where a = 0 if λ3 = 0 and a = 1 otherwise. 
So, since the first component of g(d, β3, . . . , βq) is not zero and (0, 1) = min�2 C2, we 
deduce that [(0, λ3, . . . , λq)] ≺q−1 [(d, β3, . . . , βq)]. By induction hypothesis, we have 
[(d, β3, . . . , βq)] ≺q−1 [(d, σ3, . . . , σq)] and we conclude that [β] ≺q [σ].
Case 2: g(λ), g(β) �= (0, 0) and g(λ) ≺2 g(β). It is clear that g(γ) = g((γ1, γ2)) for all 
γ ∈ Nq and, if g(γ) �= (0, 0), then [g(γ)] = [(γ1, γ2)] for all γ ∈ Nq

+ because (γ1, γ2) =
gcd(γ1, γ2)g(γ). Therefore, we have [(λ1, λ2)] ≺2 [(β1, β2)], and since λ +σ = β, we deduce 
that (σ1, σ2) �= (0, 0). Now, we apply induction hypothesis to the equality (λ1, λ2) +
(σ1, σ2) = (β1, β2) and we get [(β1, β2)] ≺2 [(σ1, σ2)], which implies that g(β) ≺2 g(σ). 
So, by definition, [β] ≺q [σ].
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Case 3: g(λ) = g(β) and [(gcd(λ1, λ2), λ3, . . . , λq)] ≺q−1 [(gcd(β1, β2), β3, . . . , βq)]. If 
g(λ) = g(β) = (0, 0), then g(σ) = (0, 0) because λi = βi = 0 for i = 1, 2 and λ + σ = β. 
If g(λ) = g(β) �= (0, 0), then [(λ1, λ2)] = [g(λ)] = [g(β)] = [(β1, β2)]. Let us notice 
that (σ1, σ2) �= (0, 0) otherwise, g(σ) = (0, 0) and g(β) �= (0, 0) and from Case 1, we 
get that [β] ≺q [λ], which is a contradiction. Now, induction hypothesis can be applied 
to (λ1, λ2) + (σ1, σ2) = (β1, β2) and we obtain [(σ1, σ2)] = [(β1, β2)]. So, in any case, 
g(λ) = g(β) = g(σ) = τ . Since (γ1, γ2) = gcd(γ1, γ2)g(γ) for all γ ∈ Nq, we have that

gcd(λ1, λ2)g(λ) + gcd(σ1, σ2)g(σ) = gcd(β1, β2)g(β).

If τ = (0, 0), then gcd(λ1, λ2) = gcd(σ1, σ2) = gcd(β1, β2) = 0, otherwise gcd(λ1, λ2) +
gcd(σ1, σ2) = gcd(β1, β2). So, in both cases,

(gcd(λ1, λ2), λ3, . . . , λq) + (gcd(σ1, σ2), σ3, . . . , σq) = (gcd(β1, β2), β3, . . . , βq).

From [(gcd(λ1, λ2), λ3, . . . , λq)] ≺q [(gcd(β1, β2), β3, . . . , βq)] and the induction hypothe-
sis, we get that

[(gcd(β1, β2), β3, . . . , βq)] ≺q−1 [(gcd(σ1, σ2), σ3, . . . , σq)]

and, by definition, [β] ≺q [σ].
In conclusion, we have proven that [λ] ≺q [β] implies [β] ≺q [σ]. Now, let us assume 

that [β] ≺q [λ]. If g(β) = (0, 0) and g(λ) �= (0, 0), we have βi = 0 for i = 1, 2 and since 
σi + λi = βi, we deduce that σi = λi = 0 for i = 1, 2, but (λ1, λ2) �= (0, 0), so we 
have a contradiction. The cases when g(β), g(λ) �= (0, 0) with g(β) ≺2 g(λ) and when 
g(β) = g(λ) with [(gcd(β1, β2), β3, . . . , βq)] ≺q−1 [(gcd(λ1, λ2), λ3, . . . , λq)] are similar to 
the previous Cases 2 and 3 respectively. Hence, we have the result. �
Lemma 2.7. Let λ1, . . . , λs ∈ Nq

+ such that [λ1] ≺q [λ2] ≺q · · · ≺q [λs]. Then, [λ1] ≺q

[λ1 + · · · + λs].

Proof. We will prove the lemma by induction on s ≥ 2. By Proposition 2.6, since [λ1] ≺q

[λ2], we get [λ1] ≺q [λ1 + λ2] ≺q [λ2]. Let us assume that the result is true for i < s, we 
will prove it for s > 2. By induction hypothesis, [λ2] ≺q [λ2 + · · ·+λs]. Since [λ1] ≺q [λ2], 
by Proposition 2.6, [λ1] ≺q [λ1 + λ2 + · · · + λs] and we have the result. �
3. Main results

From now on, Δ ⊆ Nq will be a non-zero and non-empty co-ideal and we will simply 
use ≺ and � instead of ≺q and �q (the above total ordering on Cq or Nq

+/ ∼) if no 
confusion arises.

We denote Cq
Δ = Cq ∩Δ, and for each β ∈ Cq

Δ, we define PΔ
β := [β] ∩ Δ = {nβ ∈

Nq
+ | n ∈ N+, nβ ∈ Δ}, MΔ

β := {n ∈ N+ | nβ ∈ Δ}, and mΔ
β = #(MΔ

β ) = #(PΔ
β ). 
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Let us notice that mΔ
β = maxMΔ

β if MΔ
β is finite and mΔ

β = ∞ otherwise. The PΔ
β ’s, 

β ∈ Cq
Δ, form the partition of Δ \ {0} induced by ∼. For each β ∈ Cq

Δ, we also introduce

T Δ
β := �

β�λ

PΔ
λ = �

β�λ

{nλ ∈ Nq
+ | n ∈ N+, nλ ∈ Δ},

SΔ
β := Δ \ (T Δ

β ∪{0}) = �
λ≺β

PΔ
λ = �

λ≺β

{nλ ∈ Nq
+ | n ∈ N+, nλ ∈ Δ},

and the monomial substitution map

ψβ,Δ : A�μ�mΔ
β

→ A�s1, . . . , sq�Δ

μ �→ sβ1
1 . . . s

βq
q ,

where, for m ∈ N+, we define A�μ�m = A�μ�{n∈N | n≤m}.
It is clear that for any D ∈ HSq

k(A; Δ) with supp(D) ⊂ {0} ∪ PΔ
β , the sequence E :=

(Er := Drβ)r∈MΔ
β ∪{0} is a (uni-variate) HS-derivation of length mΔ

β , and D = ψβ,Δ •E. 
The following proposition generalizes this result and will be the main step in proving 
Theorem 3.2.

Proposition 3.1. Let β ∈ Cq
Δ, m = mΔ

β and D ∈ HSq
k(A; Δ) such that supp(D) ⊂

T Δ
β ∪{0} (or equivalently, Dγ = 0 for all γ ∈ SΔ

β ). Then, there are unique E ∈
HSk(A; m) and D′ ∈ HSq

k(A; Δ) such that supp(D′) ⊂ T Δ
β \PΔ

β ∪ {0} (or equivalently, 
D′

γ = 0 for all γ ∈ SΔ
β �PΔ

β ) and D = (ψβ,Δ •E) ◦D′. Moreover, if Dγ = 0 for all 
γ ∈ PΔ

β with γ ≤ α for some α ∈ Δ, then D′
γ = Dγ for all γ ∈ Δ with γ ≤ α.

Proof. We start proving that the sequence E := (Er := Drβ) ∈ HSk(A; m). It is clear 
that E0 = Id. Let us consider r ≥ 1 and x, y ∈ A, then

Er(xy) = Drβ(xy) =
∑

λ+σ=rβ

Dλ(x)Dσ(y) = Drβ(x)y + xDrβ(y) +
∑

λ+σ=rβ
λ,σ �=0

Dλ(x)Dσ(y).

If [λ] ≺ [β], we have Dλ = 0 because λ ∈ SΔ
β and, if [β] ≺ [λ], by Proposition 2.6, 

[σ] ≺ [β] so, for the same reason as before, Dσ = 0. Therefore, the remaining summands 
are those for which [λ] = [σ] = [β] and

Er(xy) = Er(x)y + xEr(y) +
∑

sβ+tβ=rβ
s,t �=0

Dsβ(x)Dtβ(y) =
∑

s+t=r

Es(x)Er(y).

So, we proved that E ∈ HSk(A; m). Let us define F := ψβ,Δ •E∗ ∈ HSq
k(A; Δ) and 

D′ := F ◦D ∈ HSq
k(A; Δ). Hence, D = F ∗ ◦D′ = (ψβ,Δ •E) ◦D′, where the last equality 

holds since ψβ,Δ has constant coefficients (this is a very particular case of [9, Proposition 
11]) and (E∗)∗ = E. It remains to prove the properties of D′.
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It is clear that Fσ = 0 for all σ /∈ PΔ
β ∪ {0} and Frβ = E∗

r for all r ∈ {0, . . . , m}. 
Thanks to this, for all γ ∈ Nq, we have

D′
γ =

∑
σ+λ=γ

Fσ ◦Dλ = Dγ +
∑

rβ+λ=γ
r �=0

E∗
r ◦Dλ.

Let us assume that γ ∈ SΔ
β which implies that [γ] ≺ [β] = [rβ] for all r �= 0. By hypoth-

esis, Dγ = 0. Observe that if λ = 0, then [β] = [γ] ≺ [β] and we have a contradiction, 
so λ �= 0 and we can apply Proposition 2.6 obtaining that [λ] ≺ [γ] ≺ [β] and hence, 
λ ∈ SΔ

β . By hypothesis, Dλ = 0 and we can conclude that D′
γ = 0 for all γ ∈ SΔ

β . 
If γ ∈ PΔ

β , we have γ = tβ for some t > 0. From the equality rβ + λ = tβ, we get 
λ ∈ PΔ

β ∪ {0} and

D′
γ =

∑
rβ+sβ=tβ

E∗
r ◦Dsβ =

∑
r+s=t

E∗
r ◦Es = 0.

In conclusion, supp(D′) ⊂ {0} ∪ T Δ
β \PΔ

β .
Let us assume now that there is α ∈ Δ such that Dγ = 0 for all γ ∈ PΔ

β with γ ≤ α

or equivalently, Drβ = 0 for all 0 < rβ ≤ α. Then, E∗
r = 0 for all positive integers r such 

that 0 < rβ ≤ α and, if γ ∈ Δ, γ ≤ α, we have that

D′
γ =

∑
rβ+λ=γ

E∗
r ◦Dλ = Dγ .

To finish the proof we will show the uniqueness. Let us consider other T ∈ HSq
k(A; Δ)

and G ∈ HSk(A; m) such that Tγ = 0 for all γ ∈ SΔ
β �PΔ

β and

(ψβ,Δ •E) ◦D′ = D = (ψβ,Δ •G) ◦T.

From the last equality, we get

H := (ψβ,Δ •G∗) ◦ (ψβ,Δ •E) = ψβ,Δ •(G∗ ◦E) = T ◦ (D′)∗

(recall that ψβ,Δ has constant coefficients and see 8. and Proposition 11 of [9]). It is 
easy to see that T ∗

γ = (D′)∗γ = 0 for all γ ∈ SΔ
β �PΔ

β , so Trβ = (D′)∗rβ = 0 for all 
r ∈ {1, . . . , m} and we have that

Hrβ = (G∗ ◦E)r = (T ◦ (D′)∗)rβ =
∑

λ+σ=rβ
λ,σ �=0

Tλ ◦ (D′)∗σ.

If [λ] � [β], then Tλ = 0 because λ ∈ SΔ
β �PΔ

β and, if [β] ≺ [λ], by Proposition 2.6, we 
get [σ] ≺ [β] and (D′)∗σ = 0. So, Hrβ = (G∗ ◦E)r = 0 for all r ∈ {1, . . . , m}. Hence, 
G∗ ◦E = I and we deduce that G = E. Now, it is clear that T = D′ and we have the 
result. �
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In the following theorem, we will prove that any Δ-variate HS-derivation, where Δ is a 
finite co-ideal, can be decomposed in terms of uni-variate HS-derivations and substitution 
maps.

Theorem 3.2. Let us consider a finite co-ideal Δ and D ∈ HSq
k(A; Δ). Let C := #(Cq

Δ)
and Cq

Δ = {β1, . . . , βC} with β1 ≺ β2 ≺ · · · ≺ βC , and let mi = mΔ
βi . Then, there is a 

unique family Ei ∈ HSk(A; mi), 1 ≤ i ≤ C, such that:

D =
(
ψβ1,Δ •E1) ◦

(
ψβ2,Δ •E2) ◦ · · · ◦

(
ψβC ,Δ •EC

)
.

Moreover, if for some a ≥ 1 there is α ∈ PΔ
βa such that Dγ = 0 for all γ ∈ SΔ

βa with 
γ ≤ α, then Ea

r = Drβa for all r = 0, . . . , gcd(α1, . . . , αq).

Proof. We will obtain the Ei’s recursively. Since SΔ
β1 = ∅, we can apply Proposition 3.1

and we obtain (unique) E1 ∈ HSk(A; m1) and D1 ∈ HSq
k(A; Δ) such that

D =
(
ψβ1,Δ •E1) ◦D1

and D1
γ = 0 for all γ ∈ PΔ

β1 = SΔ
β2 . Let us assume that for some s ∈ N, 1 ≤ s < C, there 

exist Ei ∈ HSk(A; mi), for i = 1, . . . , s, and Ds ∈ HSq
k(A; Δ) such that

D = ◦si=1
(
ψβi,Δ •Ei

)
◦Ds

and Ds
γ = 0 for all γ ∈ SΔ

βs+1 . If s < C − 1, we can apply Proposition 3.1 to Ds taking 
β = βs+1 and we obtain unique Es+1 ∈ HSk(A; ms+1) and Ds+1 ∈ HSq

k(A; Δ) such that 
Ds =

(
ψβs+1,Δ •Es+1) ◦Ds+1 and Ds+1

γ = 0 for all γ ∈ SΔ
βs+1 �PΔ

βs+1 = SΔ
βs+2 . Hence, 

we get

D = ◦s+1
i=1

(
ψβi,Δ •Ei

)
◦Ds+1.

Let us assume now that s = C − 1. Let us notice that supp(DC−1) ⊆ PΔ
βC ∪ {0} and we 

can write DC−1 = ψβC ,Δ •EC , where EC ∈ HSk(A; mC) so,

D =
(
ψβ1,Δ •E1) ◦ · · · ◦

(
ψβC ,Δ •EC

)
.

To prove the uniqueness, let us consider another family F i ∈ HSk(A; mi), 1 ≤ i ≤ C, 
such that

D =
(
ψβ1,Δ •F 1) ◦

(
ψβ2,Δ •F 2) ◦ · · · ◦

(
ψβC ,Δ •FC

)
.

We denote T s =
(
ψβs+1,Δ •F s+1) ◦ · · · ◦

(
ψβC ,Δ •FC

)
∈ HSq

k(A; Δ) (we put TC = I). 
We will prove that T s

γ = 0 for all γ ∈ SΔ
βs+1 = SΔ

βs �PΔ
βs . Since 

(
ψβi,Δ •F i

)
λ

= 0 for all 
λ /∈ PΔ

i ∪ {0}, we have that
β
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T s
γ =

∑
λs+1+···+λC=γ

λi∈PΔ
βi∪{0}

(
ψβs+1,Δ •F s+1)

λs+1
◦ · · · ◦

(
ψβC ,Δ •FC

)
λC

for all γ ∈ Δ. By Lemma 2.7, if γ ∈ SΔ
βs+1 , we have that [γ] � [βs] ≺ [βi] = [λi] �

[λi + · · · + λC ], where i = min{i ∈ N+ | s + 1 ≤ i ≤ C, λi �= 0}. Hence, we can deduce 
that T s

γ = 0 for all γ ∈ SΔ
βs+1 .

On the other hand, with the previous notation, we have that D = ◦si=1
(
ψβi,Δ •Ei

)
◦Ds

where Ds
γ = 0 for all γ ∈ SΔ

βs+1 . We will prove that Es = F s by induction on 1 ≤ s ≤ C. 
If s = 1, D =

(
ψβ1,Δ •E1) ◦D1 =

(
ψβ1,Δ •F 1) ◦T 1. Thanks to Proposition 3.1, we can 

deduce that E1 = F 1. Let us assume that Ei = F i for all 1 ≤ i < s ≤ C. Then, we have 
that

D = ◦s−1
i=1

(
ψβi,Δ •Ei

)
◦ (ψβs,Δ •Es) ◦Ds = ◦s−1

i=1
(
ψβi,Δ •Ei

)
◦ (ψβs,Δ •F s) ◦T s.

Therefore, (ψβs,Δ •Es) ◦Ds = (ψβs,Δ •F s) ◦T s. If s = C, then it is clear that EC = FC

(DC = I) and if s < C, we have that Es = F s by Proposition 3.1.
Observe that, from the proof of Proposition 3.1, we have that the r-component of 

Es ∈ HSk(A; ms) is Es
r = Ds−1

rβs (we put D0 = D). Let us assume that there is α ∈
PΔ
βa such that Dγ = 0 for all γ ∈ SΔ

βa with γ ≤ α. To see that Ea
r = Drβa for r =

0, . . . , gcd(α1, . . . , αq), it is enough to prove that Da−1
γ = Dγ for all γ ∈ Δ with γ ≤ α

(note that rβa ≤ α for all r = 0, . . . , gcd(α1, . . . , αq)). If a = 1, then the result is clear, so 
let us assume that a > 1. We will prove, by induction on s = 1, . . . , a − 1, that Ds

γ = Dγ

for all γ ∈ Δ with γ ≤ α.
Let us consider s = 1. Since β1 ≺ βa, by definition, PΔ

β1 ⊆ SΔ
βa . So, Dγ = 0 for all 

γ ∈ PΔ
β1 with γ ≤ α, and by Proposition 3.1, D1

γ = Dγ for all γ ∈ Δ with γ ≤ α. Let 
us assume that, for s < a − 1, we have that Ds

γ = Dγ for all γ ∈ Δ with γ ≤ α. In 
particular, since βs+1 ≺ βa, Ds

γ = 0 for all γ ∈ PΔ
βs+1 ⊆ SΔ

βa with γ ≤ α. Recall that 
Ds+1 is obtained applying Proposition 3.1 to Ds with β = βs+1 so, we deduce that 
Ds+1

γ = Ds
γ = Dγ for all γ ∈ Δ with γ ≤ α and we have the result. �

Corollary 3.3. Let us consider a finite co-ideal Δ and D ∈ HSq
k(A; Δ). Let C := #(Cq

Δ)
and Cq

Δ = {β1, βs, . . . , βC} with β1 ≺ β2 ≺ · · · ≺ βC , and let mi = mΔ
βi . Then, there is 

a unique family Ei ∈ HSk(A; mi), 1 ≤ i ≤ C, such that:

D = ψΔ •
(
E1 � · · · � EC

)
where

ψΔ : A�t1, . . . , tC�∇ → A�s1, . . . , sq�Δ

ti �→ s
βi
1

1 · · · sβ
i
q

q ∀i = 1, . . . , C

with ∇ = {γ ∈ NC | γ ≤ (m1, . . . , mC)}.
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Proof. Let us consider any family Ei ∈ HSk(A; mi), 1 ≤ i ≤ C. Then, it is easy to see 
that

ψΔ •
(
E1 � · · · � EC

)
=

(
ψβ1,Δ •E1) ◦ · · · ◦

(
ψβC ,Δ •EC

)
.

By Theorem 3.2, there exists a unique family Ei ∈ HSk(A; mi) such that D =(
ψβ1,Δ •E1) ◦ · · · ◦

(
ψβC ,Δ •EC

)
and, from the previous equality, we get D = ψΔ •(

E1 � · · · � EC
)
. If we take another family F i ∈ HSk(A; mi), 1 ≤ i ≤ C, such that 

D = ψΔ •
(
F 1 � · · · � FC

)
. Then, D =

(
ψβ1,Δ •F 1) ◦ · · · ◦

(
ψβC ,Δ •FC

)
and, by Theo-

rem 3.2, we deduce that Ei = F i so, we have the result. �
Examples 3.4. Let us consider q = 2, Δ = {γ ∈ N2 | γ ≤ (2, 2)} and D ∈ HS2

k(A; Δ). 
Then C2

Δ = {β1 = (0, 1), β2 = (1, 2), β3 = (1, 1), β4 = (2, 1), β5 = (1, 0)} and β1 ≺ · · · ≺
β5. Moreover, it is easy to see that mΔ

β1 = mΔ
β3 = mΔ

β5 = 2 and mΔ
β2 = mΔ

β4 = 1. We can 
see Δ as follows (Fig. 1).

α1

α2

β5

β1
β3

β2

β4

Fig. 1. The co-ideal Δ. (The colors of this and the other figures can be seen in the online version.)

In this picture, the elements of Δ are represented with a circle that will be red if the 
element belongs to C2

Δ. It is clear that the components of D whose index is on the blue 
line (vertical axis) form a HS-derivation of length 2. In fact, according to the previous 
theorem, the first step to decompose a Δ-variate HS-derivation is to take that HS-
derivation E1 = (Id, Dβ1 , D2β1) = (Id, D(0,1), D(0,2)) ∈ HSk(A; 2) and the substitution 
map ψβ1,Δ : A�μ�2 � μ �→ s2 ∈ A�s1, s2�Δ. Then,

D =
(
ψβ1,Δ •E1) ◦D1

where D1 =
(
ψβ1,Δ •

(
E1)∗) ◦D, i.e. Fig. 2.

If we continue with the steps of the proof of the theorem, we have to decompose D1

using Proposition 3.1. Since D1
γ = 0 for all γ ∈ PΔ

β1 = SΔ
β2 = {(0, 1), (0, 2)}, we have that 

E2 = (Id, D1
β2) = (Id, D(1,2) −D(0,1)D(1,1) −D(0,2)D(1,0) + D2

(0,1)D(1,0)) ∈ HSk(A; 1) ∈
HSk(A; 1) (blue line in D1). Now, we can decompose D1 as

D1 =
(
ψβ2,Δ •E2) ◦D2,
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α1

α2

D

=

α1

α2

ψβ1,Δ •E1

0

0

0

0

0

0

◦

α1

α2

D1

0

0

Fig. 2. First step of the decomposition of D.

where ψβ2,Δ : A�μ�1 � μ �→ s1s
2
2 ∈ A�s1, s2�Δ and D2 =

(
ψβ2,Δ •(E2)∗

)
◦D1 =(

ψβ2,Δ •(E2)∗
)

◦
(
ψβ1,Δ •(E1)∗

)
◦D ∈ HS2(A; Δ) with D2

γ = 0 for all γ ∈ SΔ
β2 �PΔ

β2 =
{(0, 1), (0, 2), (1, 2)} (Fig. 3).

α1

α2

D1

0

0

=

α1

α2

ψβ2,Δ •E2

0

0
0

0

0

0
0

◦

α1

α2

D2

0

0
0

Fig. 3. Second step of the decomposition of D.

Hence,

D =
(
ψβ1,Δ •E1) ◦

(
ψβ2,Δ •E2) ◦D2.

If we continue with the process described in the proof of the previous theorem, we 
can find the decomposition of D. In this case,

D =
(
ψβ1,Δ •E1) ◦

(
ψβ2,Δ •E2) ◦

(
ψβ3,Δ •E3) ◦

(
ψβ4,Δ •E4) ◦

(
ψβ5,Δ •E5)

where E3 = (Id, D2
β3 , D2

2β3) = (Id, D(1,1) − D(0,1)D(1,0), E3
2) ∈ HS2

k(A; 2), E4 =
(Id, D3

β4) = (Id, D(2,1) − D(0,1)D(2,0) − D(1,1)D(1,0) + D(0,1)D
2
(1,0)) ∈ HSk(A; 1) and 

E5 = (Id, D4
β5 , D4

2β5) = (Id, D(1,0), D(2,0)) ∈ HSk(A; 2) (let us notice that the compo-
nents of Ei are those whose indices are on the line through βi and (0, 0) in the graphical 
representation of Δ) with

E3
2 = D(2,2) −D(0,1)D(2,1) −D(0,2)D(2,0) −D(1,2)D(1,0) + D2

(0,1)D(2,0)

+ D(0,1)D(1,1)D(1,0) + D(0,2)D
2
(1,0) −D2

(0,1)D
2
(1,0),
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Di =
(
◦1
j=iψβj ,Δ •(Ej)∗

)
◦D for i = 3, 4 and the substitution maps are ψβ3,Δ : A�μ�2 �

μ �→ s1s2 ∈ A�s1, s2�Δ; ψβ4,Δ : A�μ�1 � μ �→ s2
1s2 ∈ A�s1, s2�Δ and ψβ5,Δ : A�μ�2 �

μ �→ s1 ∈ A�s1, s2�Δ.

The next corollary provides a way of dealing with infinite co-ideals via finite approx-
imations (in the sense of Definition 1.2).

Corollary 3.5. Let us consider a co-ideal Δ ⊆ Nq and D ∈ HSq
k(A; Δ). Let us denote 

mβ = mΔ
β for β ∈ Cq

Δ. Then, there exists a unique family Eβ ∈ HSk(A; mβ), for β ∈ Cq
Δ, 

such that the family ψβ,Δ •Eβ, β ∈ Cq
Δ, is composable (see Definition 1.2) and

D = ◦β∈Cq
Δ

(
ψβ,Δ •Eβ

)
.

Moreover, if there is α ∈ PΔ
β for some β ∈ Cq

Δ such that Dγ = 0 for all γ ∈ SΔ
β with 

γ ≤ α, then Eβ
n = Dnβ for all n = 0, . . . , gcd(α1, . . . , αq).

Proof. Let us consider the finite co-ideals3 Δr := Δ ∩ {α ∈ Nq | |α| ≤ r}. We have 
Δr ⊆ Δr+1 for all r ≥ 1 and Δ =

⋃
r Δr. Moreover, if ∇′ ⊆ ∇ are two non-empty 

co-ideals, for all β ∈ Cq
∇, the substitution map τ∇∇′ ◦ψβ,∇ : A�μ�m∇

β
� μ → sβ1

1 · · · sβq
q ∈

A�s1, . . . , sq�∇′ is

τ∇∇′ ◦ψβ,∇ =
{

0 if β /∈ Cq
∇′

ψβ,∇′ ◦ τm∇
β m∇′

β
if β ∈ Cq

∇′ .
(2)

We denote Dr := τΔΔr(D) ∈ HSq
k(A; Δr), Cq

r := Cq
Δr = {β1,(r) ≺ β2,(r) ≺ · · · ≺

βCr,(r)} and m(r)
i = mΔr

βi,(r) . It is clear that Cq
r ⊆ Cq

r+1 for all r ≥ 1. Moreover, for all 
β ∈ Cq, there exists bβ ≥ 1 such that β ∈ Δr for all r ≥ bβ and β /∈ Δbβ−1. Hence, we 
have that β = βir,β ,(r) for all r ≥ bβ and the chain

m
(bβ)
ibβ,β

≤ · · · ≤ m
(r)
ir,β

≤ m
(r+1)
ir+1,β

≤ · · · ≤ mΔ
β .

Observe that if mΔ
β < ∞, then there exists n ≥ bβ such that m(n)

in,β
= mΔ

β . For all r ≥ 1, 
by Theorem 3.2, there exists a unique family Ej,(r) ∈ HSk(A; m(r)

j ) such that

Dr =
(
ψβ1,(r),Δr •E1,(r)

)
◦ · · · ◦

(
ψβCr,(r),Δr •ECr,(r)

)
.

Since τΔr+1Δr (Dr+1) = Dr and (2), we have that

3 Actually, we could consider any increasing exhaustive sequence of finite co-ideals contained in Δ.
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Dr =
((

τΔr+1Δr ◦ψβ1,(r+1),Δr+1
)

•E1,(r+1)
)

◦ · · ·

◦
((

τΔr+1Δr ◦ψβCr+1,(r+1),Δr+1

)
•ECr+1,(r+1)

)
=

(
ψβ1,(r),Δr •F 1) ◦ · · · ◦

(
ψβCr,(r),Δr •FCr

)
,

with F j := τ
m

(r+1)
ir+1,β

m
(r)
j

(Eir+1,β ,(r+1)) for β = βj,(r) = βir+1,β ,(r+1) ∈ Cq
r. Thanks to the 

uniqueness, we obtain that F j = Ej,(r) for all j. Hence, for all β ∈ Cq
Δ, we have a set 

{Eir,β ,(r) ∈ HSk(A; m(r)
ir,β

)}r≥bβ such that τ
m

(r+1)
ir+1,β

m
(r)
ir,β

(Eir+1,β ,(r+1)) = Eir,β ,(r). Then, 
we define

Eβ = lim
←−

r≥bβ

Eir,β ,(r) ∈ HSk(A;mΔ
β ).

The family {ψβ,Δ •Eβ}β∈Cq
Δ

is composable since, for any finite non-empty co-ideal ∇ ⊆
Δ, the set Cq

∇ is finite and, thanks to (2), (τΔ∇ ◦ψβ,Δ)•Eβ = I for all β /∈ Cq
∇. To prove 

that D = ◦β∈Cq
Δ

(
ψβ,Δ •Eβ

)
, we have to see that, for all finite co-ideal ∇ ⊆ Δ,

τΔ∇(D) = τΔ∇
(
◦β∈Cq

Δ
(ψβ,Δ •Eβ)

)
= ◦β∈Cq

Δ

(
(τΔ∇ ◦ψβ,Δ) •Eβ

)
= ◦β∈Cq

∇

((
ψβ,∇ ◦ τmΔ

β m∇
β

)
•Eβ

)
.

So, let us consider a finite co-ideal ∇ ⊆ Δ. Then, there exists r ≥ 1 such that ∇ ⊆ Δr

and τΔ∇(D) = τΔr∇(Dr). Thanks to (2), we have

τΔ∇(D) =
(
τΔr∇ ◦ψβ1,(r),Δr •E1,(r)

)
◦ · · · ◦

(
τΔr∇ ◦ψβCr,(r),Δr •ECr,(r)

)
= ◦β∈Cq

∇

(
ψβ,∇•Gβ

)
,

where Gβ := τ
m

(r)
ir,β

m∇
β

(Eir,β ,(r)) = τmΔ
β m∇

β
(Eβ) for all β = βir,β ,(r) ∈ Cq

∇ ⊆ Cq
r. Hence, 

we have the equality.
The family Eβ , β ∈ Cq

Δ, is unique: let Hβ ∈ HSk(A; mΔ
β ), β ∈ Cq

Δ, be another family 
such that D = ◦β∈Cq

Δ

(
ψβ,Δ •Hβ

)
. From (2),

Dr = τΔΔr

(
◦β∈Cq

Δ
ψβ,Δ •Eβ

)
= ◦β∈Cq

Δr

(
ψβ,Δr •

(
τmΔ

β mΔr
β

(
Eβ

)))
,

and doing a similar computation, Dr = ◦β∈Cq
Δr

(
ψβ,Δr •

(
τmΔ

β mΔr
β

(Hβ)
))

. From the 

uniqueness of Theorem 3.2, we deduce that, for all r ≥ bβ , τmΔ
β mΔr

β
(Eβ) = τmΔ

β mΔr
β

(Hβ)
and so Eβ = Hβ .

Let us assume now that α ∈ PΔ
β for some β ∈ Cq

Δ such that Dγ = 0 for all γ ∈ SΔ
β with 

γ ≤ α. Let us consider r ≥ bβ such that gcd(α1, . . . , αq) ≤ m
(r)
i (for example, r = |α|). 

r,β
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Then, Dr
γ = 0 for all γ ∈ SΔ

β ∩Δr = SΔr

β with γ ≤ α. Then, since τ
mΔ

β m
(r)
ir,β

(Eβ) =

Eir,β ,(r) ∈ HSq
k(A; Δr), by Theorem 3.2, Eβ

n = E
ir,β ,(r)
n = Dr

nβ = Dnβ for all n =
0, . . . , gcd(α1, . . . , αq). �
Corollary 3.6. Let k be a ring of positive prime characteristic p > 0, Δ a co-ideal, α ∈ Cq

Δ
and d, s ≥ 1 such that dpsα ∈ Δ. Let us consider D ∈ HSq

k(A; Δ) such that Dγ = 0 for 
all γ ∈ SΔ

α with γ ≤ dα. If Drα = 0 for all r = 1, . . . , d − 1 then, Ddα is a ps-integrable 
derivation.

Proof. By Corollary 3.5, there exists Eα ∈ HSk(A; mΔ
α ) such that Eα

r = Drα for all 
r = 1, . . . , gcd(dα1, . . . , dαq) = d. Since dps ≤ mΔ

α , we can consider E = τmΔ
α dps(Eα) ∈

HSk(A; dps) such that Er = 0 for all r = 1, . . . , d − 1 and Ed = Ddα. By Proposition 1.6, 
we can deduce that Ddα is a ps-integrable derivation. �

Let us recall that a Lie-Rinehart algebra L over A/k (see [10]) is a left A-module and 
a k-Lie algebra endowed with an “anchor” map 
 : L −→ Derk(A) which is A-linear, a 
map of k-Lie algebras and the following compatibility holds:

[λ, aλ′] = a[λ, λ′] + 
(λ)(a)λ′, ∀λ, λ′ ∈ L,∀a ∈ A.

We usually write λ(a) for 
(λ)(a). Moreover, if k has positive prime characteristic p > 0, 
a Lie-Rinehart algebra L is called restricted if L is a restricted Lie algebra (see [4, Chap. 
V, §7]) such that

(aλ)[p] = apλ[p] + (aλ)p−1(a)λ ∀λ ∈ L, ∀a ∈ A

(see [11] for more information about restricted Lie-Rinehart (≡ Lie algebroids)).
Thanks to Corollary 3.7, modules IDerk(A; m), m ∈ N ∪ {∞}, and IDerfk(A) will be 

Lie-Rinehart algebras, the anchor maps being the inclusions in Derk(A). Moreover, if k
has positive prime characteristic and m is a positive integer, IDerk(A; m) and IDerfk(A)
will be restricted by Proposition 3.8.

Corollary 3.7. Let δ, ε ∈ IDerk(A; m) be m-integrable derivations, for m ∈ N ∪ {∞}. 
Then the bracket [δ, ε] = δε − εδ is also m-integrable.

Proof. Let us consider D, E ∈ HSk(A; m) m-integrals of δ, ε respectively and let us 
denote

F := (D � E) ◦ (D∗ � E∗) ∈ HS2
k(A; Δ),

where Δ = {β ∈ N2 | β ≤ (m, m)} if m ∈ N and Δ = N2 if m = ∞. We have that 
F(0,1) = 0 and, since E∗

1 = −E1 = −ε and D∗
1 = −D1 = −δ, we get



L. Narváez Macarro, M.P. Tirado Hernández / Journal of Algebra 574 (2021) 70–91 87
F(1,1) = D1E1 + D1E
∗
1 + E1D

∗
1 + D∗

1E
∗
1 = [D1, E1] = [δ, ε].

Let us consider α = (1, 1) ∈ C2
Δ. Then, mΔ

α = m and SΔ
α ∩{λ ∈ Nq

+ | λ ≤ α} = {(0, 1)}. 
By Corollary 3.5, there exists Eα ∈ HSk(A; m) such that Eα

1 = F(1,1) = [δ, ε], and so 
[δ, ε] is an m-integrable derivation. �
Proposition 3.8. Let k be a ring of positive prime characteristic p > 0 and m ∈ N. If 
δ ∈ IDerk(A; m), then δp ∈ IDerk(A; m), and so IDerk(A; m) is a restricted Lie-Rinehart 
algebra.

Proof. By Theorem 4.1 from [13], we only have to prove the result for powers of p
since IDerk(A; m) = IDerk(A; pα) for α = max{τ ∈ N+ | pτ ≤ m}. So, let us consider 
δ ∈ IDerk(A; pα) = IDerk(pα+1 − 1) for some α ≥ 1 and D ∈ HSk(A; pα+1 − 1) a 
(pα+1 − 1)-integral of δ, and denote E = Dp ∈ HSk(A; pα+1 − 1).

The n-component of E, for 1 ≤ n < pα+1, is En =
∑

|i|=n Di1 ◦Di2 ◦ · · · ◦Dip , with 
i ∈ Np and |i| = i1 + · · · + ip. We have:

En = · · · =
∑

H⊂{1,...,p}
H �=∅

∑
supp(i)=H

Di1 ◦Di2 ◦ · · · ◦Dip =
p∑

k=1

∑
a1+···+ak=n

aj>0

(
p

k

)
Da1 ◦ · · · ◦Dak

,

(3)
with supp(i) = {j ∈ {1, . . . , p} | ij �= 0}. If D was pα+1-integrable, i.e. if it had an 
extension up to a Hasse–Schmidt derivation of length pα+1, that we also call D, the 
expression (3) would hold for n = pα+1, but

Epα+1 = · · · = pDpα+1 +
∑

|i|=pα+1

ij<pα+1

Di1 ◦ · · · ◦Dip =
∑

|i|=pα+1

ij<pα+1

Di1 ◦ · · · ◦Dip (4)

would not depend on Dpα+1 . With this idea in mind, we define Epα+1 as in equation (4)
and we can prove directly that the resulting sequence (Id, E1, . . . , Epα+1−1, Epα+1) is a 
Hasse–Schmidt derivation of length pα+1.

Now, from equation (3) we deduce that En = 0 for all 1 ≤ n < p and Ep = Dp
1 = δp, 

and by Proposition 1.6, we conclude that δp ∈ IDerk(A; pα). �
Remark 3.9. An obvious consequence of Proposition 3.8 is that δp ∈ IDerfk(A) whenever 
δ ∈ IDerfk(A), and so IDerfk(A) is a restricted Lie-Rinehart algebra. However, we do not 
know whether the same result holds for IDerk(A; ∞) instead of IDerfk(A).

Examples 3.10. Let us consider δ, ε ∈ IDerk(A; 4) and D, E ∈ HSk(A; 4) a 4-integral of δ
and ε respectively. Then, we define F = (D �E) ◦ (D∗ �E∗). Following the steps of the 
proof we get that a 4-integral of [δ, ε] is (Id, [δ, ε], H2, H3, H4) ∈ HSk(A; 4):

H2 = F(2,2) = D2E2 + D1E2D
∗
1 + E2D

∗
2 + (D2E1 + D1E1D

∗
1 + E1D

∗
2)E∗

1 ,
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H3 = F(3,3) − F(1,2)F(2,1) =

=
∑

i+j=3
EiD

∗
3E

∗
j + D2

⎛
⎝ ∑

i+j=3
EiD

∗
1E

∗
j

⎞
⎠ + D1

⎛
⎝ ∑

i+j=3
EiD

∗
2E

∗
j

⎞
⎠

−

⎛
⎝ ∑

i+j=2
EiD

∗
1Ej

⎞
⎠

⎛
⎝ ∑

i+j=2
DiE1D

∗
j

⎞
⎠

and H4 = F(4,4) − F(1,3)F(3,1) − F(1,2)F(3,2) − F(2,3)F(2,1) + F(1,2)[δ, ε]F(2,1) with

F(4,4) =
4∑

r=1

⎛
⎝ ∑

i+j=4
DiErD

∗
j

⎞
⎠E∗

4−r, F(1,r) =
∑

i+j=r

EiD
∗
1Ej , F(r,1) =

∑
i+j=r

DiE1D
∗
j

F(2,3) =
∑

i+j=3
EiD

∗
2E

∗
j + D1

⎛
⎝ ∑

i+j=3
EiD

∗
1E

∗
j

⎞
⎠ and

F(3,2) =
∑

i+j=3
DiE2D

∗
j +

⎛
⎝ ∑

i+j=3
DiE1D

∗
j

⎞
⎠E∗

1 .

4. Poisson structures

In [7], the first author has introduced a canonical map of graded A-algebras ϑ∞ :
ΓA IDerk(A; ∞) −→ grDA/k, where DA/k is the filtered ring of linear differential oper-
ators of A over k and ΓA denotes the divided power algebra functor. It is determined in 
the following way. For each ∞-integrable derivation δ ∈ IDerk(A; ∞) let us choose an 
integral D = (Id, D1 = δ, . . . ) ∈ HSk(A; ∞). Then the symbol σn(Dn) does not depend 
on the choice of D and ϑ∞(γn(δ)) = σn(Dn).

Actually, the above construction also works if we take IDerfk(A) instead of IDerk(A; ∞)
and we obtain a unique map of graded A-algebras

ϑf : ΓA IDerfk(A) −→ grDA/k

determined in a similar way: for each f -integrable derivation δ ∈ IDerfk(A) and for each 
n ≥ 1, let us choose an n-integral D = (Id, D1 = δ, . . . , Dn) ∈ HSk(A; n). Then the 
symbol σn(Dn) only depends on δ and not on the choice of D, and ϑf(γn(δ)) = σn(Dn). 
Clearly, ϑf is an extension of ϑ∞.

On the other hand, since the ring of differential operators DA/k is filtered with com-
mutative graded ring, we know that its graded ring grDA/k has a canonical Poisson 
bracket given by (cf. [3]):

{σd(P ), σe(Q)} = σd+e−1([P,Q])
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for all P ∈ Dd
A/k and all Q ∈ De

A/k, where σd : Dd
A/k → grd DA/k is the d-symbol map. It 

is a skew-symmetric k-biderivation and satisfies Jacobi identity, and so grDA/k becomes 
a Poisson algebra. Moreover, this Poisson bracket is graded of degree −1.

The goal of this section is, by using the fact that IDerfk(A) and IDerk(A; ∞) are 
Lie-Rinehart algebras (see Corollary 3.7), to exhibit natural Poisson algebra structures 
on ΓA IDerfk(A) and ΓA IDerk(A; ∞) in such a way that ϑ∞ and ϑf becomes maps of 
Poisson algebras.

Let us recall that, for any A-module M , its divided power algebra ΓAM , endowed with 
the power divided maps γn : M → Γn

AM , n ≥ 0, has been defined in [12, Chap. III, 1]
(see also [1, App. A]). It is a graded commutative A-algebra ΓAM =

⊕
n≥0 Γn

AM , with 
Γ0
AM = A, Γ1

AM = M and Γn
AM is generated as A-module by the γn(x), x ∈ M , and 

it has some universal property that we will not detail here (see [12, Th. III.1]). When 
Q ⊂ A, then ΓAM coincides with the symmetric algebra SymA M and γn(x) = xn

n! for 
all x ∈ M and all n ≥ 0.

First, let us see the following general result.

Proposition 4.1. If L is a Lie-Rinehart algebra over A/k, then there is a unique Poisson 
structure {−, −} on ΓAL such that:

(i) {a, a′} = 0 for all a, a′ ∈ A.
(ii) {γm(λ), a} = λ(a) γm−1(λ) for all λ ∈ L, all a ∈ A and all m ≥ 1.
(iii) {γm(λ), γn(λ′)} = γm−1(λ) γn−1(λ′) γ1([λ, λ′]) for all λ, λ′ ∈ L and all m, n ≥ 1.

Moreover, {−, −} is graded of degree −1.

Proof. We know ([12, Chap. III, 1]) that ΓAL can be realized as the quotient of the 
polynomial algebra R = A [{xλ,n}λ∈L,n≥0] by the ideal I generated by the elements:

(a) xλ,0 − 1, λ ∈ L,
(b) xaλ,m − amxλ,m, λ ∈ L, a ∈ A, m ≥ 0,
(c) xλ,mxλ,n −

(
m+n
m

)
xλ,m+n, λ ∈ L, m, n ≥ 0,

(d) xλ+λ′,m −
∑

i+j=m

xλ,ixλ′,j , λ, λ′ ∈ L, m ≥ 0,

and the maps γn : L → ΓAL are given by γn(λ) = xλ,n + I. We consider R as a graded 
A-algebra, with deg(A) = 0 and deg(xλ,m) = m. The ideal I is clearly homogeneous and 
ΓAL is also a graded A-algebra.

We define a k-biderivation {−, −}′ : R×R → R by:

-) {a, b}′ = 0 for all a, b ∈ A.
-) {a, xλ,m}′ = −{xλ,m, a}′ = −λ(a)xλ,m−1, for all a ∈ A, λ ∈ L and m ≥ 0, where we 

write xλ,−1 = 0.
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-) {xλ,m, xμ,n}′ = xλ,m−1 xμ,n−1 x[λ,μ],1 for all λ, μ ∈ L and all m, n ≥ 0.

One can check that {r, r}′ = 0 for all r ∈ R, and so {−, −}′ is skew-symmetric, and that 
the Jacobi identity holds:

{r, {s, t}′}′ + {s, {t, r}′}′ + {t, {r, s}′}′ = 0

for all r, s, t ∈ R. So {−, −}′ defines a Poisson structure on R, which is clearly graded of 
degree −1.

One can also check that {r, r′}′ ∈ I whenever r ∈ I or r′ ∈ I, and so {−, −}′ passes 
to the quotient and defines a Poisson structure {−, −} on ΓAL satisfying properties (i), 
(ii) and (iii). It is also graded of degree −1.

Since ΓAL is generated as Z-algebra by a ∈ A and xλ,n for λ ∈ L, n ≥ 0, the above 
properties determine {−, −}. �
Proposition 4.2. The maps of graded A-algebras ϑf and ϑ∞ above are maps of Poisson 
algebras.

Proof. It is enough to treat the case of ϑf . It is clear that ϑf ({a, a′}) = 0 = {a, a′} =
{ϑf (a), ϑf (a′)} for all a, a′ ∈ A. It remains to prove that:

(a) ϑf ({γm(δ), a}) = {ϑf (γm(δ)), a} for all δ ∈ IDerfk(A), all a ∈ A and all m ≥ 1.
(b) ϑf ({γm(δ), γn(δ′)}) = {ϑf (γm(δ)), ϑf (γn(δ′))} for all δ, δ′ ∈ IDerfk(A) and all m, n ≥

1.

For (a), let us take an m-integral D ∈ HSk(A; m) of δ. We have:

ϑf ({γm(δ), a}) = ϑf (δ(a) γm−1(δ)) = δ(a)ϑf (γm−1(δ)) = δ(a)σm−1(Dm−1)

= σm−1(D1(a)Dm−1) =

σm−1([Dm, a]) = {σm(Dm), a} = {ϑf (γm(δ)), ϑf (a)}.

For (b), let us take an m-integral D ∈ HSk(A; m) of δ and an n-integral D′ ∈ HSk(A; m)
of δ′. We have:

{ϑf (γm(δ)), ϑf (γn(δ′))} = {σm(Dm), σn(D′
n)} = σm+n−1([Dm, D′

n]),

ϑf ({γm(δ), γn(δ′)}) = ϑf (γm−1(δ) γn−1(δ′) γ1([δ, δ′]))
= ϑf (γm−1(δ))ϑf (γn−1(δ′))ϑf (γ1([δ, δ′]))
= σm−1(Dm−1)σn−1(D′

n−1)σ1([D1, D
′
1])

= σm+n−1(Dm−1 D
′
n−1 [D1, D

′
1]),

and the result is a consequence of Lemma 4.3. �
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Lemma 4.3. For any HS-derivations D ∈ HSk(A; m), D′ ∈ HSk(A; n), with m, n ≥ 1, 
the differential operator

[Dm, D′
n] −Dm−1D

′
n−1[D1, D

′
1]

has order ≤ m + n − 2.

Proof. We proceed by induction on m + n. Details are left to the reader. �
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