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The Action of Substitution Maps ik
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Dedicated to Antonio Campillo on the ocassion of his 65th
birthday

Abstract We study the action of substitution maps between power series rings as
an additional algebraic structure on the groups of Hasse—Schmidt derivations. This
structure appears as a counterpart of the module structure on classical derivations.

1 Introduction

For any commutative algebra A over a commutative ring &, the set Dery(A) of
k-derivations of A is an ubiquous object in Commutative Algebra and Algebraic
Geometry. It carries an A-module structure and a k-Lie algebra structure. Both
structures give rise to a Lie-Rinehart algebra structure over (k, A). The k-derivations
of A are contained in the filtered ring of k-linear differential operators &4 /¢, whose
graded ring is commutative and we obtain a canonical map of graded A-algebras

7 : Sym, Dery (A) —> gr Dax.

If Q C k and Der(A) is a finitely generated projective A-module, the map 7 is
an isomorphism ([9, Corollary 2.17]) and we can deduce that the ring D4, is
the enveloping algebra of the Lie-Rinehart algebra Dery(A) (cf. [11, Proposition
2.1.2.11)).
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If we are not in characteristic 0, even if A is “smooth” (in some sense) over k,
e.g. A is a polynomial or a power series ring with coefficients in k, the map 7 has
no chance to be an isomorphism.

In [9] we have proved that, if we denote by Idery(A) C Derx(A) the A-module
of integrable derivations in the sense of Hasse—Schmidt (see Definition 11), then
there is a canonical map of graded A-algebras

O 1 I'alder(A) —> gr Dayx,

where I'4 (—) denotes the divided power algebra functor, such that:

(i) T =9 when Q C k (in that case Idery (A) = Dery(A) and Iy = Sym,).
(i) ¢ is an isomorphism whenever Ider; (A) = Dery(A) and Dery (A) is a finitely
generated projective A-module.

The above result suggests an idea: under the “smoothness” hypothesis (ii), can be
the ring P4, and their modules functorially reconstructed from Hasse—Schmidt
derivations? To tackle it, we first need to explore the algebraic structure of Hasse—
Schmidt derivations.

Hasse—Schmidt derivations of length m > 1 form a group, non-abelian for m >
2, which coincides with the (abelian) additive group of usual derivations Dery (A) for
m = 1. But Der (A) has also an A-module structure and a natural questions arises:
Do Hasse—Schmidt derivations of any length have some natural structure extending
the A-module structure of Dery (A) for length = 1?7

This paper is devoted to study the action of substitution maps (between power
series rings) on Hasse—Schmidt derivations as an answer to the above question. This
action plays a key role in [12].

Now let us comment on the content of the paper.

In Sect. 2 we have gathered, due to the lack of convenient references, some basic
facts and constructions about rings of formal power series in an arbitrary number of
variables with coefficients in a non-necessarily commutative ring. In the case of a
finite number of variables many results and proofs become simpler, but we need the
infinite case in order to study oco-variate Hasse-Schmidt derivations later.

Sections 3 and 4 are devoted to the study of substitution maps between power
series rings and their action on power series rings with coefficients on a (bi)module.

In Sect. 5 we study multivariate (possibly co-variate) Hasse—Schmidt derivations.
They are a natural generalization of usual Hasse-Schmidt derivations and they
provide a convenient framework to deal with Hasse—Schmidt derivations.

In Sect. 6 we see how substitution maps act on Hasse—Schmidt derivations and
we study some compatibilities on this action with respect to the group structure.

In Sect.7 we show how the action of substitution maps allows us to express any
HS-derivation in terms of a fixed one under some natural hypotheses. This result
generalizes Theorem 2.8 in [3] and provides a conceptual proof of it.
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2 Rings and (Bi)modules of Formal Power Series

From now on R will be a ring, k will be a commutative ring and A a commutative k-
algebra. A general reference for some of the constructions and results of this section
is [2, §4].

Let s be a set and consider the free commutative monoid N® of maps & : s — N
such that the set supp o := {s € s | a(s) # 0} is finite. If ¢ € N® and s € s we will
write a; instead of a(s). The elements of the canonical basis of N will be denoted
bys',t €s:sl, =8, fort,u €s.Foreacha € N® wehavea = Y, _ a;s'.

The monoid N® is endowed with a natural partial ordering. Namely, for «, 8 €
N®, we define

a<p & 3, eNOsuchthatf=a+y < ay<p; Vses.

Clearly, t € suppa < s’ < . The partial ordered set (N, <) is a directed ordered
set: for any «, B € N(S), o, B <aV B where (o V B); := max{oy, B;} forall ¢ € s.
We will write @« < 8 whena <  and @ # B.

For a given B € N® the set of « € N® such that « < B is finite. We define
lal =D s = D cuppa @ € N If @ < B then || < |B]. Moreover, if « < B
and |a| = |B], then « = B. The « € N® with |a| = 1 are exactly the elements s’,
t € s, of the canonical basis.

A formal power series in s with coefficients in R is a formal expression
D wen® Fas® with g € R and 8" = [[iss" = [ equppe ™+ Such a formal

expression is uniquely determined by the family of coefficients ay, & € N®.
Ifr=3% ores®andr’ =3 r,s” are two formal power series in s with
coefficients in R, their sum and their product are defined in the usual way

r4r = Z Sus®, S i=ro +rl,

aeN(®)
/. o . /
rr’ = Pys®, Py = rgry,.
«eN®) Bty=a

The set of formal power series in s with coefficients in R endowed with the
above internal operations is a ring called the ring of formal power series in s with
coefficients in R and is denoted by R[[s]]. It contains the polynomial ring R[s] (and
so the ring R) and all the monomials s* are in the center of R[[s]]. There is a natural
ring epimorphism, that we call the augmentation, given by

> ras” € RI[s]l —> ro € R, (1)
aeN®)

which is a retraction of the inclusion R C R[[s]]. Clearly, the ring R[[s]] is
commutative if and only if R is commutative and R°PP[[s]] = R[[s]]°PP.
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Any ring homomorphism f : R — R’ induces a ring homomorphism

Fi Y ras? € RISl — Y f(ra)s* € R[], )

aeN®) aeN®)

and clearly the correspondences R + R[[s]] and f — f define a functor from the
category of rings to itself. If s = @, then R[[s]] = R and the above functor is the
identity.

Definition 1 A k-algebra over A is a (non-necessarily commutative) k-algebra R
endowed with a map of k-algebras ¢t : A — R. A map between two k-algebras
t:A—> Rand!/ : A — R over Aisamap g : R — R’ of k-algebras such that
! =goL

If R is a k-algebra (over A), then R[[s]] is also a k[[s]]-algebra (over A[[s]]).

If M is an (A; A)-bimodule, we define in a completely similar way the set
of formal power series in s with coefficients in M, denoted by M[[s]]. It carries
an addition +, for which it is an abelian group, and left and right products by
elements of A[[s]]. With these operations M[[s]] becomes an (A[[s]]; A[[s]])-
bimodule containing the polynomial (A[s]; A[s])-bimodule M[s]. There is also a
natural augmentation M[[s]] — M which is a section of the inclusion M C M[s]
and M°PP[[s]] = M[[s]]°PP. If s = @, then M[[s]] = M.

The support of a seriesm = Za mqys® € M[[s]]is supp(x) := {o € N® | my #
0} ¢ N®. It is clear that m = 0 < supp(m) = . The order of a non-zero series
m =7, mes* € M[[s]] is ord(m) := min{|a| | @ € supp(m)} € N.If m =0
we define ord(0) = oo. It is clear that for a € A[[s]] and m, m’ € M[[s]] we have
supp(m +m’") C supp(m) Usupp(m’), supp(am), supp(ma) C supp(m) + supp(a),
ord(m + m’) > min{ord(m), ord(m’)} and ord(am), ord(ma) > ord(a) + ord(m).
Moreover, if ord(m’) > ord(m), then ord(m + m’) = ord(m).

Any (A; A)-linear map & : M — M’ between two (A; A)-bimodules induces in
an obvious way and (A[[s]]; A[[s]])-linear map

hi ) mas” € Mlsll— Y hima)s” € MIs]) 3)

aeN(®) aeN(®)

and clearly the correspondences M +— M/{[s]] and & + h define a functor from the
category of (A; A)-bimodules to the category (A[[s]]; A[[s]])-bimodules.
Foreachp e M ), let us denote by ng’l (s) the subset of M[[s]] whose elements
are the formal power series ) mqs® with my = 0 for all @ < B. One has ng’l (s) C
nﬂ” (s) whenever y < B, and ng’[v P (s) C n{}f (s)N ng’l (s).
It is clear that the ng’l (s) are sub-bimodules of M[[s]] and ng‘ (s)M[[s]] C ng’l (s)

and M[[s]]ng(s) C ng4 (s). For B = 0, n}!(s) is the kernel of the augmentation
M([s]] - M.
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In the case of a ring R, the ng (s) are two-sided ideals of R[[s]], and ng (s) is the
kernel of the augmentation R[[s]] — R.

We will consider R[[s]] as a topological ring with {t‘t/’se (s),B € N(S)} as a
fundamental system of neighborhoods of 0. We will also consider M|[[s]] as a
topological (A[[s]]; A[[s]])-bimodule with {ng” (s), B € N®} as a fundamental
system of neighborhoods of 0 for both, a topological left A[[s]]-module structure
and a topological right A[[s]]-module structure. If s is finite, then ng’l (s) =
Y sBEHIMI[s]] = Y, s MI[s]]sP ! and so the above topologies on R[[s]], and
so on A[[s]], and on M|[[s]] coincide with the (s)-adic topologies.

Let us denote by ng’l (s)¢ C M([s] the intersection of ng’l (s) with M[s], i.e. the
subset of M[s] whose elements are the finite sums Y mqs®* with mg = 0 forall o <
B. It is clear that the natural map R[s] /11/’5e ()¢ —> RI[s]] /ng (s) is an isomorphism
of rings and the quotient R[[s]] /11/’5e (s) is a finitely generated free left (and right)
R-module with basis the set of the classes of monomials s%, o < f.

In the same vein, the ng’l (s)¢ are sub-(A[s]; A[s])-bimodules of M[s] and
the natural map M][s]/ ng” ¢ —  MJ[s]] /ng’l (s) is an isomorphism of
(A[s]/ ng‘ (s)¢; A[s]/ ng‘ (s)¢)-bimodules. Moreover, we have a commutative diagram
of natural Z-linear isomorphisms

Alsl/nd(s)° @4 M —2— M[s]/n}l(s)° 2 M @4 Als)/ni(s)

nat.®1dlz l:

~ | Id®nat.
A[[s])/nA(s) @4 M —2— M[s])/nb!(s) < M @4 Alls]}/ni(s)

“

where ¢ (resp. @) is an isomorphism of (A[s]/né(s)c; A)-bimodules (resp. of
(Al[s1l/ né (s); A)-bimodules ) and A (resp. A’) is an isomorphism of bimodules over

(A; A[s]/ng (s))(resp. over (A; A[[s]]/ng(s)).
It is clear that the natural map

RIs]] —> lim R[[s|}/nf(®) = lm Risl/nf(®"
BeNG) BeN®

is an isomorphism of rings and so R[[s]] is complete (hence, separated). Moreover,

R[[s]] appears as the completion of the polynomial ring R[s] endowed with the

topology with {t‘t/’se ()¢, B € N®} as a fundamental system of neighborhoods of 0.
Similarly, the natural map

MIlsl — tim MIsl}/n}(®) = lim Mis]/n} ()"
peN® peN®

is an isomorphism of (A[[s]]; A[[s]])-bimodules, and so M[[s]] is complete (hence,
separated). Moreover, M[[s]] appears as the completion of the bimodule M[s] over
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(A[s]; A[s]) endowed with the topology with {ng/l ()¢, B € N®)} as a fundamental
system of neighborhoods of 0.

Since the subsets {@ € N® |« < B}, B € N® are cofinal among the finite
subsets of N®, the additive isomorphism

(s)
Y mas® € MI[s]] > {ma}gene € MY

aeN®)

is a homeomorphism, where MY ® is endowed with the product of discrete

topologies on each copy of M. In particular, any formal power series Y _ mqs® is the

limit of its finite partial sums Zae F MaS%, over the filter of finite subsets F C N ®,
Since the quotients A[[s]]/ ng (s) are free A-modules, we have exact sequences

A[[s]]

0 —> nj(s) ®a M —> A[[s]] @1 M —> o

Q4 M — 0

and the tensor product A[[s]] ®4 M is a topological left A[[s]]-module with
{ng ()@ M, B € N®} as a fundamental system of neighborhoods of 0. The natural
(A[[s]]; A)-linear map

Allsll®a M —> M([s]]

is continuous and, if we denote by A[[s]1®aM the completion of A[[s]] ®4 M, the
induced map A[[s]]|®4M —> M[[s]] is an isomorphism of (A[[s]]; A)-bimodules,
since we have natural (A[[s]]; A)-linear isomorphisms

(Allsll@a M) / (nf(9) @4 M) = (Alls]1/n(5)) @4 M = MIIsT1/n}f (5

for B € N®, and so

A[[s]I®aM = lim (A[[S]] ®4 M) ~ lim (M[[S]]) ~ MI[s]]. 5)
BeN®

son \ 13 (8) @a M ngl (s)

Similarly, the natural (A; A[[s]])-linear map M ®4 A[[s]] — M][[s]] induces an
isomorphism M®4A[[s]] = M([[s]] of (A; A[[s]])-bimodules.

If h : M — M’ is an (A; A)-linear map between two (A; A)-bimodules, the
induced map i : M[[s] — M’[[s] (see (3)) is clearly continuous and there is a
commutative diagram

Al[s]|®aM —=— M][s]] «——— M®&A[[s]]

Id@hl El h@ldl

Als]|@aM' —=— M'[[s]] +—— M'®4A[[s]].
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Similarly, for any ring homomorphism f : R — R’, the induced ring homomor-
phism f : R[[s]] — R’[[s]] is also continuous.

Definition 2 We say that a subset A C N® is an ideal of N (resp. a co-ideal of
N®) if whenever o € A and o < o' (resp. o’ < «), then o’ € A.

It is clear that A is an ideal if and only if its complement A€ is a co-ideal, and that
the union and the intersection of any family of ideals (resp. of co-ideals) of N® is
again an ideal (resp. a co-ideal) of N®. Examples of ideals (resp. of co-ideals) of
N® are the B + N©® (resp. the ng(s) := {a € N® | o < B}) with B € N©®_ The
tn(s) := {a € N® | || < m} withm > 0 are also co-ideals. Actually, a subset A C
N® is an ideal (resp. a co-ideal) if and only if A = Ugea (,B + N(S)) = A+N®
(resp. A = Ugeang(s)).

We say that a co-ideal A C N® is bounded if there is an integer m > 0 such
that |a| < m for all @ € A. In other words, a co-ideal A C N® is bounded if and
only if there is an integer m > 0 such that A C t,,(s). Also, a co-ideal A C N® js
non-empty if and only if typ(s) = ng(s) = {0} C A.

For a co-ideal A ¢ N® and an integer m > 0, we denote A™ := A N t,(s).

For each co-ideal A € N®, we denote by Ay, the sub-(A[[s]; A[[s]])-bimodule
of M[[s]] whose elements are the formal power series ) _, en® Mes”® such thatmy =
0 whenever & € A. One has

Ay =---={me Ml[s]l| supp(m) C [ | ng(s) =
BeA
() {m € Mllsll | supp(m) C ng(s)°} = () np'(s),
BeA BeA

and so Ay is closed in M[[s]]. Let A’ C N® be another co-ideal. We have
Ay + Ay = (AN Ay
If A C A then A}, C Ay, andifa € A'y, m € Ay we have
supp(am) C supp(a) + supp(m) C (4')" + A° C (4") N A= (A" U A)°,
and so A’ Ay C (AU A)y. Is a similar way we obtain Ay A’y C (A"U A)y.

Let us denote by M([[s]]a := M|[[s]]/Apu endowed with the quotient topology.
The elements in M[[s]] A are power series of the form

Zmas‘)‘, mg € M.

acA
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It is clear that M[[s]]  is a topological (A[[s]]a; A[[s]]a)-bimodule. A fundamental
system of neighborhoods of 0 in M[[s]] consist of

ny'(s) + Am _ (g N Ay

B e N®
Apm Apm ’

and since the subsets ng(s) N A, B € N(S), are cofinal among the finite subsets of A,
we conclude that the additive isomorphism

D mes® € Ml[slla > {malaca € M*

acA

is a homeomorphism, where M4 is endowed with the product of discrete topologies
on each copy of M.

For A C A’ co-ideals of N®, we have natural continuous (A[[s]]/; A[[S]]a)-
linear projections ta/ 4 : M[[s]]a» —> M][[s]]a, that we also call truncations,

Taac Y mas® € Mllslla —> Y mqs® € Ml[s]]a,

aeca’ acA

and continuous (A; A)-linear scissions

D mas® € M[slla—> Y mqs® € M([s]]4"

acA acA

which are topological immersions.

In particular we have natural continuous (A; A)-linear topological embeddings
M([[s]]la < M[[s]] and we define the support (resp. the order) of any element in
M([s]] 4 as its support (resp. its order) as element of M[[s]].

We have a bicontinuous isomorphism of (A[[s]]a; A[[s]]a)-bimodules

M([s]]a = lim M[[s]]am.

meN

For aring R, the Ag are two-sided closed ideals of R[[s]], ARA’R C (AU A)g and
we have a bicontinuous ring isomorphism

Rl[slla = lim R[[s]]an.

meN

When s is finite, t,,(s)g coincides with the (m + 1)-power of the two-sided ideal
generated by all the variables s € s.

As in (5) one proves that A[[s]]a ®4 M (resp. M ®4 A[[s]]a) is endowed with
a natural topology in such a way that the natural map A[[s]]a ®4 M — M][s]]a
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(resp. M ®4 A[[slla — M][[s]]a) is continuous and gives rise to a (A[[s]]a; A)-
linear (resp. to a (A; A[[s]]a)-linear) isomorphism

Alls]1a®aM = M([slla  (tesp. M®aA[[s]]a — MI[s]]a).

Ifh : M — M’ is an (A; A)-linear map between two (A; A)-bimodules, the map
h @ M[[s]] — M’[[s]] (see (3)) obviously satisfies 2(Ay) C Ay, and so induces
another natural (A[[s]]a; A[[s]]a)-linear continuous map M[[s]]a — M'[[s]]a,
that will be still denoted by 4. We have a commutative diagram

Al[s]a®aM —— M[[s]la +—— M®aA[s]a

Id@hl El h@ldl

Al[s]]a®aM’ —=— M'[[s]]a +—— M'@sA[[s]]a.

Remark 1 In the same way that the correspondences M +— M][[s]] and h +—
h define a functor from the category of (A; A)-bimodules to the category of
(A[[s]]; Al[s]])-bimodules, we may consider functors M +— M][s]]a and h +—
h from the category of (A; A)-bimodules to the category of (A[[s]]a; Alls]]Aa)-
bimodules. We may also consider functors R + R[[s]]a and f + f from the
category of rings to itself. Moreover, if R is a k-algebra (over A), then R[[s]]a is a
k[[s]]a-algebra (over A[[s]]A).

Lemma 1 Under the above hypotheses, Ay is the closure of Az M[[s]].

Proof Any element in Ay is of the form ) _, mes®, but s*my € AzM][[s]]
whenever o € A and so it belongs to the closure of Az M[[s]].

Lemma 2 Let R be aring, s a set and A C N® a non-empty co-ideal. The units in
RI[[s]]a are those power series r =Y _ ro8* such that rq is a unit in R. Moreover, in
the special case where ro = 1, the inverse r* =) rys® of r is given by r§ = 1 and

o]

ry = Z(—l)d Z Fgl +Tqa for a #0,
d=1 a®eP(a,d)

where P(w, d) is the set of d-uples a® = (@', ..., a?) witha' € N®, ol # 0, and
otl—l—n-—l—otd = .

Proof The proof is standard and it is left to the reader.

Notation 1 Let R be a ring, s a set and A C N® a non-empty co-ideal. We denote
by U°(R; A) the multiplicative sub-group of the units of R[[s]]a whose 0-degree
coefficient is 1. Clearly, %°(R; A)°PP = 5(R°PP; A). For A C A’ co-ideals we
have Tar (%S(R; A’)) C %5(R; A) and the truncation map tapa : U(R; A) —
2°(R; A) is a group homomorphisms. Clearly, we have

U (R; A) = lim %°(R; A™).

meN
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For any ring homomorphism f : R — R/, the induced ring homomorphism f :
R[[s]1a — R'[[s]]a sends %*(R; A) into %*(R’; A) and so it induces natural group
homomorphisms %*(R; A) — %°(R'; A).

Definition 3 Let R be aring,s,tsetsandV C N ® A cN® non-empty co-ideals.
For each r € R[[s]]v, " € R[[t]]a, the external product rRr' € R[[s U t]]lyxa is
defined as

r®r = Z rar//gs"‘tﬂ.

(a,f)eVxA

Let us notice that the above definition is consistent with the existence of
natural isomorphism of (R; R)-bimodules R[[s]]V®RR[[t]]A ~ R[[sUt]lvxa =~
R[[t U s]laxy =~ R[[t]la®&R[[s]]y. Let us also notice that 1®1 = 1 and
rRr = (r®1)(1Rr"). Moreover, if r € 25(R; V), r’ € UY(R; A), then rRr’ €
YUY R; V x A)and (r Br')* = r'*®r*.

Let k — A be a ring homomorphism between commutative rings, E, F two
A-modules, s asetand A C N® g non-empty co-ideal, i.e ng(s) = {0} C A.

Proposition 1 Under the above hypotheses, let f : E[[s]la — F[[s]lla be a
continuous k[[s]]a-linear map. Then, for any co-ideal A" C N® with A" ¢ A
we have

f(A%/AE) C Ap/AF

and so there is a unique continuous k[[s]]a-linear map f : E[[s]]a — FI[[s]]a
such that the following diagram is commutative

Ellsla —— Fls]a

nat.J{ lnat.

Ells]la —— Flis])a

Proof 1Tt is a straightforward consequence of Lemma 1.

Notation 2 Under the above hypotheses, the set of all continuous k[[s]]a-linear
maps from E[[s]]a to F[[s]]a will be denoted by

Homyl, (Ells]la, FlIs]la).

It is an (A[[s]]a; A[[s]1a)-bimodule central over k[[s]]a. For any co-ideals A’ C
A CN®), Proposition 1 provides a natural (A[[s]]a; Al[s]]a)-linear map

Homyf, (E[[s]]a, FlIslla) — Homyf, (El[s]la, FlIs]la)-
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ForE = F, End}f[‘[’sm (E[[s114) is a k[[s]] a-algebra over A[[s]]A.

1. Foreachr = Zﬁ r/gs/3 € Homy (E, F)[[s]]a we define 7 : E[[s]]la — FI[[s]la
by

?(Z eas"‘) =) ( > rﬂ(ey)) .

acA aeA \p+y=a

which is obviously a continuous k[[s]] 4-linear map.

Let us notice that 7 = )", s”75. It is clear that the map

r € Homy (E, F)[[s]la —> 7 € Hom}y), (El[s]la. FI[sl]a) (6)

is (A[[s]]a; A[[s]]a)-linear.
If f: E[[s]la — FI[s]la is a continuous k[[s]] a-linear map, let us denote by
fo: E— F,a € A, the k-linear maps defined by

f© =Y fule)s*, Veek.

aeA

If g : E — F[[s]]a is a k-linear map, we denote by g¢ : E[[s]]a — FI[[s]]a the
unique continuous k[[s]] A-linear map extending g to E[[s]]a = k[[s]] ARLE. Ttis
given by

o

g° (Z easo‘> = Zg(ea)so‘.
We have a k[[s]] a-bilinear and A[[s]] a-balanced map
(=, =) : (r,e) € Homy(E, F)[[s]]a x E[[s]la +—> (r,e) :=7(e) € F[[s]la.

Lemma 3 With the above hypotheses, the following properties hold:

(1) The map (6) is an isomorphism of (A[[s]]a; Al[s]]a)-bimodules. When E = F
it is an isomorphism of k|[[s]]a-algebras over A[[s]]a.
(2) The restriction map

f € Hom{}, (Ells]la. Fllslla) = f|g € Homi(E, F[[s]]a)

is an isomorphism of (A[[s]]a; A)-bimodules.
Proof

(1) One easily sees that the inverse map of r > 7is f > Y, fus®.
(2) One easily sees that the inverse map of the restriction map f +— f|gis g — g°.
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Letus call R = Endi (E). As a consequence of the above lemma, the composition
of the maps

RIslla =5 End P, (EllsT1) 225 Homy(E. Ells]l) @)

is an isomorphism of (A[[s]]a; A)-bimodules, and so Homg(E, E[[s]]a)
inherits a natural structure of k[[s]]a-algebra over A[[s]]a. Namely, if g,h €
Homy (E, E[[s]]a) with

gle) =) gu(e)s”, h(e) =Y hyle)s”, Ve€E, gu hy€Hom(E,E),

aeA acA

then the product hg € Homy (E, E[[s]]4) is given by

(hg)(e) =) ( > (kg ogy)<e>) 5. ®)

aeA \p+y=«a

Definition 4 Lets, t be sets and A ¢ N® vV ¢ N® non-empty co-ideals. For each
fe End‘°‘° (E[[s]14) and each g € Endk[ (1o (E[[t]]v), with

k[[s]la

f@) =) fale)s®, gle)=Y gselt Veek,

aeA Bev

we define fRg € Endk[ [SLtT A V(E[[s Ut]laxv) as fRg := h®, with:

h(x) := Z (faogp)x)s®t? Vx € E.

(a,f)eAXV
The proof of the following lemma is clear and it is left to the reader.
Lemma 4 With the above hypotheses, or each r € R[[s]]a, r’ € R[[t]]y, we have
rR®r’ = FRr’ (see Definition 3).

Lemma 5 Let us call R = Endg(E). For any r € R[[S]]a, the following properties
are equivalent:

(a) ro =1d.
(b) The endomorphism 7 is compatible with the natural augmentation E[[s]]ao —
E,ie 7(e) =e mod n (s)/AEforalle € E[[s]]a.

Moreover; if the above properties hold, then 7 . E[[s]]la — E[[s]]la is a bi-
continuous k[[s]] a-linear automorphism.

Proof The equivalence of (a) and (b) is clear. For the second part, r is invertible
since ro = Id. So 7 is invertible too and 7! = r—! is also continuous.
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Notation 3 We denote:

Hom (E, E[[s]]a) =
{f € Homy (E, E[[s]]a) | f(e) = emod ng(s)/AE Ve € E} ,

Autggp, (Ellslla) :=

[ & Aulil, (ELs1a) | f(e) = eomod nf(8)/Ap Ve € Ellslla) .

Let us notice that a f € Homy(E, E[[s]]a), given by f(e) = ZaeA fa(e)s%,
belongs to Homy (E, E[[s]]4) if and only if fo = Idg.

The isomorphism in (7) gives rise to a group isomorphism
r € % (Endi(E); A) —> F € Autyg,, (Ells]]a) 9)

and to a bijection

f € Autig, (ElIs11a) = f|z € Homg (E, E[[s]]). (10)

So, Hom;’ (E, E[[s]]4) is naturally a group with the product described in (8).

3 Substitution Maps

In this section we will assume that k is a commutative ring and A a commutative
k-algebra. The following notation will be used extensively.

Notation 4

(i) For each integerr > 0 let us denote [r] :={1,...,r}ifr > 0and [0] = 0.
(ii) Let s be a set. Maps from a set A to N will be usually denoted as a® : | €
A+ a! € N®, and its support is defined by suppa® :={l € A | o' # 0}.
(ili) For each set A and for each map ® : A — N® with finite support, its norm
is defined by |a®| := Zlesuppa’ o = Yiea ol. When A = @, the unique map
A — NO s the inclusion § — N and its norm is 0 € N®.
(iv) If Ais a set and e € N, we define

F°(e, A) = {a® : A - NO® | #suppa® < 400, [a®| = e}.
If F is a finite set and e € N©®, we define

Ple, F):={a: F - N¥ | |a| = e} C P°(e, F).
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It is clear that P(e, F) = (@ whenever #F > le|, 5°(e,¥) = D ife # 0,
F°(0, A) consists of only the constant map 0 and that (0, 9) = F°(0, ¥)
consists of only the inclusion ) — Nis). If#F = 1 and e # 0, then P(e, F)
also consists of only one map: the constant map with value e.

The natural map ]_[ P(e, F) —> F°(e, A) is obviously a bijection.

FePBs(A)

Ifr = 0 is an integer, we will denote P (e, r) := P(e, [r]).
Assume that A is a finite set, t is an arbitrary set and & : A — tis map. Then,
there is a natural bijection

F°(e, A) < ]_[ ]‘[@"(e’,n—l(t)): ]_[ ]_[ I, L (@).

et e (et) tet e*cF° (e,t) tesupp e®

Namely, to each a®* € P°(e, A) we associate e®* € F°(e, t) defined by e' =
D)=t o, and (@'}t € [0 P°(e', m71 (1)) with o'* = o®| 10y Let
us notice that if for some ty € t one has w~'(t9) = @ and €' # 0, then
F°(e", 77 (t)) = B and so [[,c¢ F°(e', w1 (1)) = B. Hence

[ []#e.a0= ] [lz.="'o)=

e*cFP (e,t) Lt e*e P (e,t) 1€t

[I I &= "o,

e'e@; (e,t) tesuppe®

where &, (e, t) is the subset of 5° (e, t) whose elements are the e®* € 5°(e, t)
such that ¢' = 0 whenever 1~ (t) = @ and |e'| > #r ' (t) otherwise.
The preceding bijection induces a bijection

Ple, A) <> ]_[ n@(e’,n_l(t)): ]_[ ]_[ P, 77 @)).

e*c P (e,t) 1€t e* e (e,t) tesuppe®
(11)
Ifa e N® we denote

[a] :=={F,r) et xNy |l =r =}
endowed with the projection  : [a] — t. It is clear that |a| = #[«], and so

o = 0 << [a] = 0. We denote P(e,a) := Ple, [a]). Elements in P(e, o)
will be written as

8 (t,r) € [a] — &7 e N® | with Z A = e.

(t,r)€la]
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For each 6°® € P(e,a) and eacht € t, we denote

£ reloyl— 67 eN®, (4t et [4] = |40 = Zﬁ” e N®,

r=1

Notice that |[6]'| > a;, [£]' = O whenever oy = 0 and |[£]*| = e. The
bijection (11) gives rise to a bijection

Ple.a) «— || J]2E.an= ] [] 2E.a). 12

e* P (e t) tet e* € P (e,t) tesuppe®
where 9, (e, t) is the subset of P° (e, t) whose elements are the e®* € F°(e, t)
such that ¢! = 0 ifa; = 0 and |e'| > a; otherwise.

2. Lett,ubesetsand A ¢ NW a non-empty co-ideal. Let ¢g : A[t] = A[[u]]a be
an A-algebra map given by:

po(t) =:c' =Y chuf enffu)/aa C Allul]a, tet.

BeA
0<|Bl

Let us write down the expression of the image ¢o(a) of any a € A[t] in terms of
the coefficients of a and the ¢!, ¢ € t. First, for each r > 0 and for each ¢ € t we
have

wo) =" == > [lep|u"

ecA \ p*eP(er) k=1

le|>r

Observe that

r .
Z C;kz{llﬂel—r—o (13)

soeer) kel Oif le] >r =0.

So, foreach o € N® we have

wo) =TJeH =TT =TT [ 2| X Tlew ]| =

tet tesupp o resupp o eecA BeP(e,ar) k=1
lel=ay
ar
t el
C u =
> I || X Il
el € A,resupp o 1ESUpp o BeP(e! ap) k=1

le! |=ar
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> | 2 ()| (11 w)-

elenresuppa | BI®eP(e! a;) \tEsuppa k=1 resupp o
\Er\zat resupp o

S| |2 (1 s)||e-

ecA | oleptesuppa | BI®eP(e! o) \t€suppa k=1
lel i L
le®|=e

)3 DN DS ( [ l—[cﬁ) w =Y Colgo. e,

ecA e'eg’g(e,t) /3"593(5"%) tesuppa k=1 eeA
le|=]e| tesuppa le|=e]

with (see (12)):

ar
Copo.a) = D Cpo. Cpo= [] []chn. forlal<lel. (14)

B eP(e,a) tesuppa r=1

We have Co(¢o, 0) = 1 and C.(go, 0) = O for e # 0. For a fixed e € N® the
support of any o € N® such that |a| < |e| and C.(go, @) # 0 is contained in
the set

Jtreticy#0)
/ZEA

and so the set of such &’s is finite provided that property (17) holds. We conclude
that

oo | Y aut® | =D auc® =) | D Colpo, @ay | ue. (15)

aeN® aeN® e€d | gen®
la|<le|

Observe that for each non-zero @ € N® we have:

supp(po(t*) =supp | [ ()| c D @ -supp(c). (16)

tesuppao tesupp(a)

Let us notice that if we assign the weight |8] to C/ts’ then C,(¢o, o) is a quasi-

homogeneous polynomial in the variables c;}, t € suppa, |B| < |e|, of weight |e|.
The proof of the following lemma is easy and it is left to the reader.
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Lemma 6 For each e € A and for each a € N® with 0 < |a| < |e|, the following
properties hold:

(1) Ifla| =1, then C.(@o, @) = ¢}, where suppa = {s}, i.e. a = t* (t] = 5.
(2) If la| = lel, then

o= (T 1 @]

el eAresuppa \ '€SUPP & yesupp e
le! |=ap,|e® |=e

Proposition 2 Let t, u be sets and A € N™ a non-empty co-ideal. For each family

c=1c" =) cpu’ enf(w)/As C Allulla, t €t

BeA
B#0

(we are assuming that c{, = 0) satisfying the following property
#{tet|c;37é0}<oo forall B e A, amn

there is a unique continuous A-algebramap ¢ : A[[t]] — A[[u]]a such that ¢(t) =
¢ forallt € t. Moreover, if V.C N® is a non-empty co-ideal such that 9(V4) = 0,
then ¢ induces a unique continuous A-algebra map A[[t]ly — A[[ul]la sending
(the class of) each t € tto c'.

Proof Let us consider the unique A-algebra map ¢p : A[t] — A[[u]]a defined by
@o(t) = ¢! forall t € t. From (14) and (15) in 2, we know that

©o Zaat"‘ =Z ZCe((po,a)aa u’.

aeN® eeA | 4en®
finite lal<l|e|

Since for a fixed e € N® the support of the « € N® such that || < |e| and
C.(po, @) # 0 is contained in the finite set

Utz eticp #o0).
//SSEA

the set of such «’s is always finite and we deduce that ¢ is continuous, and so there
is a unique continuous extension ¢ : A[[t]] — A[[u]]a such that ¢(r) = ¢’ for all
tet.

The last part is clear.
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Remark 2 Let us notice that, after (16), to get the equality ¢(V4) = 0 in the above
proposition it is enough to have for each @« € V¢ (actually, it will be enough to
consider the & € V¢ minimal with respect to the ordering < in N®):

Z a; - supp(c’) C A

tesupp(a)

Definition 5 Let V ¢ N® A ¢ N® be non-empty co-ideals. An A-algebra map
¢ : A[[tllv — A[[u]]a will be called a substitution map if the following properties
hold:

(1) ¢ is continuous.
(2) (1) enfl(w)/A, forallz e t.
(3) The family ¢ = {¢(?), t € t} satisfies property (17).

The set of substitution maps A[[t]ly — A[[u]]a will be denoted by
Sa(t,u; V, A). The trivial substitution map A[[t]]lv — A[[u]]4 is the one sending
any ¢ € tto 0. It will be denoted by 0.

Remark 3 In the above definition, a such ¢ is uniquely determined by the family
c = {p@),t € t}, and will be called the substitution map associated with c.
Namely, the family ¢ can be lifted to A[[u]] by means of the natural A-linear scission
A[[u]]o < A[[u]] and we may consider the unique continuous A-algebra map
Y o A[[t]] — A[[u]] such that {(s) = ¢* for all s € s. Since ¢ is continuous, we
have a commutative diagram

AlR)] —2— Afu))

proj.l J{proj.

Alitlly —2— Al[u]]a,
and so ¥ (V4) C A4. Then, we may identify
Sat,w V, A) = {w € Salt,w; N, A) | y(Vy) = 0}.

Fora € V and e € A with |a| < |e| we will write C.(¢, ) := C,.(¢o, @), where
@o : A[t] = A[[u]]a is the A-algebra map given by ¢o(t) = @¢(¢) forall t € t
(see (14) in 2).

Example 1 For any family of integers v = {v;, > 1,¢ € t}, we will denote [v] :
A[[t]lv — A[[t]]yv the substitution map determined by [v](t) = t™ forall ¢ € t,
where

vV = {y eleﬂae V,y <val.
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We obviously have [vv'] = [v]o[V'].

Lemma 7 The composition of two substitution maps A[[t]]lv £ Al[u]]la ﬁ
Al[[s]lg is a substitution map and we have

Cr(op,0)= Y  Culo,0)Cr(¥,e), VfefR VaeV,lal<|fl.

ecA
|f1zlel=lal

Moreover, if one of the substitution maps is trivial, then the composition is trivial
t0o0.

Proof Properties (1) and (2) in Definition 5 are clear. Let us see property (3). For
each ¢t € tlet us write:
o) =:¢' =) cpuf enf)/Ax C Allulla,
BeA
0<I8l

and so

Wop ) =y [ e [=3"ch | Y cpwpys’ | =Y djs!
BeA

BeA fen fen
0<I8l 0<|Bl [ f1=1B1 |f1>0

with

dy= Y Cr(y. B)
0</\3/36|§|fl

and for a fixed f € £2 the set

retidi#0c |J treticy#0)

BV IBI<If|
C (.70

is finite. On the other hand

Wop)t) =y | D Colp,)u’ | = > Colgp,0) | D Cr(p,e)s’ | =

ecA ecA fef2
le|=]e| le|=]e| |f1=lel

Yol Dl Cup.)Cr(e) |uf

fe eeA
[f1=lel \Ifl1zlel=|a|
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and so

Crop, )= Y Celp,a)Cr(Ye), VfeRVaeV,laf<|fl].

ecA
|f1=lel=la|

If B is a commutative A-algebra, then any substitution map ¢ : A[[s]lv —
A[[t]] 4 induces a natural substitution map ¢p : B[[s]lv — B[[t]]a making the
following diagram commutative

BaAls]ly —22, BE,Al[t]]a

nat.lﬁ ﬁlnat.

Blsly —*= B[t]]a.

3. For any substitution map ¢ : A[[s]]lv — A[[t]]a and for any integer n > 0 we
have ¢(V/Va) C A" /A4 and so there are induced substitution maps 7, (¢) :
A[[s]lv» — A[[t]]a» making commutative the following diagram

Allslly ——  Allt]]a

nat.Jr Jrnat.

Tn (LP)
Alsllvn —— Al[t]]an.
Moreover, if ¢ is the substitution map associated with a family ¢ = {c®, s € s},

= Zc;}tﬂ € n{)‘(t)/AA C A[[t]]a,

BeA

then t, (¢) is the substitution map associated with the family 7,,(¢) = {r,(c)*, s €
s}, with

Tu(c)’ =Y cytf e nf(t)/A% C Allt]]an.
BeA
|Bl<n

So, we have truncations 7, : $4(s, t; V, A) —> $a(s, t; V", A"), forn > 0.

We may also add two substitution maps ¢, ¢’ : A[[s]] — A[[t]]4 to obtain a new
substitution map ¢ + ¢’ : A[[s]] = A[[t]]a determined byl:

(@ +¢@)(s) =p(s)+¢'(s), forall ses.

1Pay attention that (¢ + ¢')(r) # @(r) + ¢'(r) for arbitrary r € A[[s]]v.
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Itis clear that $4(s, t; N ®), A) becomes an abelian group with the addition, the zero
element being the trivial substitution map 0.
If ¢ : A[[t]]a — A[[u]]g is another substitution map, we clearly have

Yolp+¢)=vop+yog
However, if ¢ : A[[u]] — A[[s]] is a substitution map, we have in general

@+ @)ooV # oy +¢ ot

Definition 6 We say that a substitution map ¢ : A[[t]lv — A[[u]]a has constant
coefficients if cfg € kforallt € tandall B € A, where

o) =c' =) chuf enfu)/aa C Allu]]a.

BeA
0<|B|

This is equivalent to saying that C.(¢,«) € k foralle € A and forallo € V
with 0 < || < |e|. Substitution maps which constant coefficients are induced by
substitution maps k[[t]]yv — k[[u]]A.

We say that a substitution map ¢ : A[[t]lv — A[[u]]la is combinatorial if
@(t) € ufor all + € t. A combinatorial substitution map has constant coefficients
and is determined by (and determines) a map t — u, necessarily with finite fibers.
If t : t — wis such a map, we will also denote by ¢ : A[[t]]lv — A[[u]],(v) the
corresponding substitution map, with

(V) ;= {8 e NW | Bor e V).

4. Let ¢ : A[[s]lv — A[[t]]a be a continuous A-linear map. It is determined by
the family K = {K,q.¢ € A,a € V} C A, with ¢(s%) = ZKe,at". We will
ecA
assume that

* ¢ is compatible with the order filtration, i.e. (V) /V4) C A’ /A4 for all
n>0.

* @ is compatible with the natural augmentations A[[s]]lv — A and A[[t]]a —
A.

These properties are equivalent to the fact that K, , = 0 whenever |«| > |e| and
Koo =1.

Let K ={K¢a,e € A, € V, || < |e|} be a family of elements of A with

#o e V||a| <le|, Key #0} < +00, Vee A,
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and Koo = 1, and let ¢ : A[[s]]lv — A[[t]]a be the A-linear map given by

¢ (Zaas‘*) =Y Y Kewta |t

aeV ecA aeV
| <]

It is clearly continuous and since ¢(s*) = Z K, «t¢, it determines the family K.
ecA
| <el

Proposition 3 With the above notations, the following properties are equivalent:

(a) ¢ is a substitution map.
(b) Foreach u,v € V and for eache € Awith |u+v| < |e|, the following equality
holds:

Ke v = Z KpuKy,v.
Bry=e
ILI=IBLvI=ly

Moreover, if the above equality holds, then K. o = 0 whenever |e| > 0 and ¢ is
the substitution map determined by

o) = Z Kesut®, ues.

ecA
O<le|

Proof (a) = (b) If ¢ is a substitution map, there is a family

¢ =) cytf € Allt]]a. ses,

BeA

such that ¢(s) = ¢*. So, from (15), we deduce

Keow=Colp.a)= Y Cpe for |a] <le|.
[ eP(e,x)

Qg
with Cpoe = [T el

sesuppo r=1
For each ordered pair (, s) of non-negative integers there are natural injective

maps

ielrl—ielr+s], i€lsl—>r+ielr+s]

inducing a natural bijection [r] U [s] <— [r + s]. Consequently, for (u,v) €
N® x N® there are natural injective maps [u] < [u + v] <= [v] inducing a
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natural bijection [u] U [v] <— [u + v]. So, for each ¢ € N® and each /** €
P(e, u + v), we can consider the restrictions ¢** = £**|,] € P(B, n), £°*° =
£ € Py, v), with B = |¢®®| and y = |£°**|, B + y = e. The correspondence
£ — (B,y,¢"°, %°°%) establishes a bijection between P(e, u + v) and the set
of (B,y, 4", %) with B,y € N, g** € P(B, ), #** € P(y,v) and |B| >
[, ly| = [vl, B+y = e. Moreover, under this bijection we have C oo = C joe C e
and we deduce

Ke,/H—v = Ce(ﬁl), n+ V) = ZC/ﬂ = Z Z Cg..Cﬂ-. =
o

Bry=e 4** 4%

lnl=IBI
lv|<lyl
5 (Y- (z c) Y GG = Y KKy
Bty=e \ 4** % Bty=e Bty=e
lnl=1BI |l=<IBl lnl=IBI
vi=lyl vi=lyl i<yl

where £*® € P(e, u +v), g*° € P(B, u) and £°* € P(y, v).
(b) = (a) First, one easily proves by induction on |e| that K, o = 0 whenever
le] > 0, and so p(1) = ¢(s”) = Koo = 1. Leta = Y, aes*, b = >, bys® be

elements in A[[t]]a, and c = ab =), c¢os* with ¢ = Z,U.+v=0[ ayby. We have:

@(ab) = ¢(c) = Z Z Keaca t = Z Z Ke,p,+vaubv t° =

ecA aeV ecA n,wev
| <le] lutvi=le|

U Y Y KeuKywauby |t = = p@p(®).

e lutvislel  B+y=
[nl=IBl.IvI=Iy|

We conclude that ¢ is a (continuous) A-algebra map determined by the images

o) =9 (ssu) = Z Kesut®, ue€s,

ecA
O<le|

(remember that {s"},cs is the canonical basis of N®) and so it is a substitution map.

Definition 7 The tensor product of two substitution maps ¢ : A[[s]]lv — A[[t]]4,
¥ A[[u]]lyvy — A[[V]] 4’ is the unique substitution map

eV Allsuu]lyxy — A[[tUV]]axa
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making commutative the following diagram

Allslly —— AllsUu]]yxy «—— Al[ullv

Js Joo Js

Afltlla —— Alltuv]laxa «—— Al[v]la,

where the horizontal arrows are the combinatorial substitution maps induced by the
inclusions s, u <> siu, t, v <> t U v2,

For all (o, B) € V x V/ € N® x NW = N6UW we have

(@ @ V)W) = o)y’ == Y Culp, )Cr(y, PtV

eeA, feA
e|> e

[f1=181

and so, forall (e, f) € A x A" and all (a, B) € V x V' with |e| + | f| = |(e, )| >
|(ar, B)| = || + | B| we have

Ce(p, )Cr (Y, B) if || < leland |B] < |f],
0 otherwise.

Ce.nle®Y, (@, B)) = {

4 The Action of Substitution Maps

In this section k£ will be a commutative ring, A a commutative k-algebra, M an
(A; A)-bimodule, s and t sets and V C N® A c NO® non-empty co-ideals.
Any A-linear continuous map ¢ : A[[s]]ly — A[[t]]a satisfying the assumptions
in 4 induces (A; A)-linear maps
oy = @RIdy : M[s]lv = A[[s]]a®aM — M[[t]]a = A[[t]]a®aM

and

u@ =1du®y : M[[s]lv = M4 A[[sllyv —> M[[t]]la = M4 A[[t]] 4.

2Let us notice that there are canonical continuous isomorphisms of A-algebras A[[s L u]lyxy’ =~
Allsllv®aA[[ully/, AllsUu]llaxa = Alls]la®aA[[u]]a -
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If ¢ is determined by the family K = {K, 4,€¢ € V,0 € A, |a| < |e|} C A, with
p(s*) = Z K. «t, then

eeA
le|=e]

ou (Z mas“> =Y o6me =) | Y Keama |t, me Mllsllv,

aeV aeV eeA IOZIET\
n9 (Z ms"‘) = map(s®) =Y | D maKeo |t m e Mslly.
aeV aeV ecA ‘a‘e‘vl

If ' : A[[t]]a — A[[u]]le is another A-linear continuous map satisfying the
assumptions in 4 and ¢” = ¢ o ¢’, we have ¢y, = o009y 4" = yo o yo'.

If ¢ : A[[s]lv — A[[t]]4 is a substitution map and m € M|[[s]]lv, a € A[[s]]v,
we have

om(am) = p(@)ppu(m), ye(ma) = yem)p(a),

ie. oy is (p; A)-linear and ;¢ is (A; ¢)-linear. Moreover, ¢y and ¢ are
compatible with the augmentations, i.e.

om(m) = mo, pe(m) =momod nd (t)/Ay, m e M[[s]lv. (18)

If ¢ is the trivial substitution map (i.e. ¢ (s) = Oforall s € s), then gy : M[[s]]ly —
M([t]]a and p0 : M[[s]]lv — M][[t]]a are also trivial, i.e.

em(m) = yo(m) =mo, m € M[[s]]v.

5. The above constructions apply in particular to the case of any k-algebra R over
A, for which we have two induced continuous maps, ggr = (p@ld R : R[[s]lv —
R[[t]]a, which is (A; R)-linear, and r¢ = IdR®(p . R[[s]lv — R[[t]]a, which
is (R; A)-linear.

For r € R[[s]]v we will denote
@er :=@r(r), re:= po(r).

Explicitly, if r = ), r4s* with ¢ € V, then

Qer = Z Z Co(p,a)ry | t¢, rep = Z Z raCe(p, ) | . (19)

ecA aeV ecA aeV
la|<le| lo|<le]
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From (18), we deduce that pr(%*(R; V)) C %'(R: A) and r0(2(R; V) C
24 (R; A). We also have pol = leg = 1.

If ¢ is a substitution map with constant coefficients, then pg = ¢ is a ring
homomorphism over ¢. In particular, per = re@ and g e (rr’) = (per)(per’).

If o =0: A[[s]]lv — A[[t]]4 is the trivial substitution map, then Qer = re() =
ro for all r € R[[s]]v. In particular, 0er = re0 = 1 for all r € 2°(R; V).

If ¢ : R[[t]]a — R[[u]]g is another substitution map, one has

Ve(per)=(Yop)er, (re@)eyy =re(Yoq).

Since (R[[s]]v)°PP = R°PP[[s]]v, for any substitution map ¢ : A[[s]]lv — A[[t]]a
we have (pr)°PP = popp and ( g)°PP = @Rrom.
The proof of the following lemma is straightforward and it is left to the reader.

Lemma 8 If¢ : A[[s]lv — Al[[t]]a is a substitution map, then:

(1) @R is left p-linear, i.e. pr(ar) = @(a)pr(r) for all a € A[[s]]lv and for all
r € R[[s]]v.

(1) g is right p-linear, i.e. pp(ra) = pre(r)e(a) for all a € A[[s]lv and for all
r € R[[s]]v.

Let us assume again that ¢ : A[[s]]lv — A[[t]]a is an A-linear continuous map
satisfying the assumptions in 4. We define the (A; A)-linear map

¢« : f € Homp(A, A[[s]lv) = @«(f) = @o f € Homi (A, A[[t]]4)

which induces another one ¢, : Enel}flll’s”v (A[[s]lv) — End}f[f[’tm (A[[t]]) defined
by

9(f) = (@ (fla) = (9o fla)*, [ €Endyly, (Alls]]v).

More generally, for a given left A-module E (which will be considered as a trivial
(A; A)-bimodule) we have (A; A)-linear maps

(pE)« : f € Homi(E, E[[s]lv) = (¢E)«(f) = ¢eo f € Homi (E, E[[t]]A),
(¢E)« : Endi{lg, (ElIs]lv) — Endgly, (Elltlla),  (9p)«(f) = (@Eo fla)°.

Let us denote R = Endg (E). For each r € R[[s]]v and for each ¢ € E we have

Pr(r)(e) = ¢ (F(e)),
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or more graphically, the following diagram is commutative (see (7)):

Rlslly —— Endi<%,(Elsllv) —— Homy(E, E[lsl]v)

T rest.

@Ri lm (w){

R[[t]la —— Endj{f) | (Bl[t]la) —— Homy(E, B[[t]].2)

In order to simplify notations, we will also write

Qe f = (9p)«(f) Vf € End;f[ps] (Ellsllv)

and so have o7 = @o7 for all r € R[[s]]v. Let us notice that (¢e f)(e) =
(pgo f)(e) foralle € E,i.e.

(9o e = (pEo f)|E, butin generalpe f # @Eo f. (20)

If ¢ is the trivial substitution map, then (pg)« (resp. (¢g)«) is also triv-
ial in the sense that if f = ) fos® € Homi(E, E[[s]lv) (resp. f =

Yo fas® € Endi(E)[[slly = Endgh (E[[s]]v)). then (pp)«(f) = fo €
Endy(E) C Homi(E, E[[s]]v) (resp. (¢p)«(f) = f§ € Endily (El[s]lv), with
f()e(za eqs”) = Za Jo(eq)s™).

If ¢ : A[[s]]lv — A[[t]]v is a substitution map, we have

(e)<(af) = p(a)(@E)+(f) VYa € A[[s]lv,Vf € Homi(E, E[[s]]v)

and so

(@E)«(af) = (a)(pp)«(f) Ya € Allsllv.Vf € Endh (E[[s]]v).
Moreover, the following inclusions hold
(¢E)«(Hom? (E, M[s]lv)) C Hom (E, E[[t]]a),

(@E)s (Autggy, (ELIsIIv)) € Autgy, (EIIE]]a),
and so we have a commutative diagram:

U(R; V) —— Autgygg (Ellsl]lv) —— Homy (E, E[[s]]v)

T rest.

“DRl lm (m){

B A) — Aty (Bllt]a) —S Homf (B.E[)a).
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Lemma 9 With the notations above, if ¢ : k[[s]lv — k[[t]]a is a substitution map
with constant coefficients, then

(per,pp(e)) = 9e((r,e)), Vr e R[[s]lv, Ve € E[[s]]v.

Proof Letus write r = ), roq8%, 1o € R = Endg(E) and e = ), e48%, eq € E.
We have

(peor, pE(e)) = (§37)(pE(e)) = (Z(p(so‘)r}> (Z go(s“)ea> =

Y o (p(Pres) =Y oMo (ep) = D o™ )ia(ep) =
a,B a,p a,p

Do) | DD Fatep) | =0 D | D falep) |
14

atp=y Y \a+B=y

= ¢ (F(e)) = pe((r, e)).

Notice that if ¢ : k[[s]lv — k[[t]]a is a substitution map with constant
coefficients, we already pointed out that ¢ = @g, and indeed, per = reg for
all € R[[s]]v.

6. Let us denote ¢ : A[[s]]lv — A[[sU t]lvxa, & : A[[t]]la — A[[sUt]]lvxa the
combinatorial substitution maps given by the inclusions s < suUt, t < sLUt.

Let us notice that for r € R[[s]]v and r’ € R[[t]]a, we have (see Definition 3)
rRr’ = (ter)(ker’) € R[[sUt]]lvxa.
IfV cVcN® A c AcNY are non-empty co-ideals, we have

VxA v xa (rBr') =ty v () Rta A ().

If we denote by X : R[[sUs]lvxv — RI[[s]]v the combinatorial substitution map
given by the co-diagonal map s LI's — s, it is clear that for each r, ¥’ € R[[s]]v we
have

rr’ = Xe(r®r). (22)

If o : Allsllv — Allu]lle and ¥ : A[[t]]a — A[[v]]e are substitution maps,
we have new substitution maps ¢ @ Id : A[[sU t]lvxa — A[[ul t]lexa and
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I[d® ¢ : A[[sUt]lvka — A[ls U V]]lyxg (see Definition 7) taking part in the
following commutative diagrams of (A; A)-bimodules

Rs]lv @z Rl[t]la 2225 R([u]]e @ R[[t]a

can. JV lcan.

RsUtlvxs  229%  RluUt]oxa

and

Rlis]lv ©r Rlt]la —2%  R[ls]lv ®r Rl[v]er

Can.l lCal’L

R[[sUt]lvxa (190, R[[s U V]]yxar-

So(per)®r' = (¢ @Id) e (rXr') and r ¥ (r' o) = (r Kr') e (Id @ V).

5 Multivariate Hasse-Schmidt Derivations

In this section we study multivariate (possibly co-variate) Hasse—Schmidt deriva-
tions. The original reference for 1-variate Hasse—Schmidt derivations is [4]. This
notion has been studied and developed in [8, §27] (see also [13] and [10]). In [6] the
authors study “finite dimensional” Hasse—Schmidt derivations, which correspond in
our terminology to p-variate Hasse—Schmidt derivations.

From now on k will be a commutative ring, A a commutative k-algebra, s a set
and A ¢ N® a non-empty co-ideal.

Definition 8 A (s, A)-variate Hasse-Schmidt derivation, or a (s, A)-variate HS-
derivation for short, of A over k is a family D = (Dgy)yea of k-linear maps Dy :
A —> A, satisfying the following Leibniz type identities:

Dy =1ds, Du(xy)= Y Dg(x)D,(y)
Bty=a

for all x,y € A and for all « € A. We denote by HS}(A; A) the set of all
(s, A)-variate HS-derivations of A over k and HS;(A) = for A = N®. In the
case where s = {l1,..., p}, a (s, A)-variate HS-derivation will be simply called
a (p, A)-variate HS-derivation and we denote HS,f(A; A) = HS}(A; A) and
HS,’; (A) := HS}(A). For p = 1, a l-variate HS-derivation will be simply called
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a Hasse—Schmidt derivation (a HS-derivation for short), or a higher derivation®,
and we will simply write HSx(A; m) := HS} (A; A) for A = {g e N| g < m}* and
HSk(A) := HS}(A).

7. The above Leibniz identities for D € HS} (A; A) can be written as

Dyx = Z Dg(x)D,, Vx €A, Vae A. (23)
Bty=a

Any (s, A)-variate HS-derivation D of A over k can be understood as a power
series

Z Dqys” € Endi (A)[[s]]a

acA

and so we consider HSi(A; A) C Endg (A)[[s]]a.

Proposition 4 Let D € HS}(A; A) be a HS-derivation. Then, for each o € A, the
component Dy, : A — A is a k-linear differential operator or order < |a| vanishing
on k. In particular, if || = 1 then D, : A — A is a k-derivation.

Proof The proof follows by induction on |¢| from (23).

The map
D € HS}(A; t1(8) > {Da}jaj=1 € Derg(A)° (24)

is clearly a bijection.
The proof of the following proposition is straightforward and it is left to the
reader (see Notation 1 and 2).

Proposition 5 Let us denote R = Endy(A) and let D = )", Dos* € R[[s]]a be a
power series. The following properties are equivalent:

(a) Disa (s, A)-variate HS-derivation of A over k.

(b) The map D: A[[slla — Al[[slla is a (continuous) k[[s]] a-algebra homomor-
phism compatible with the natural augmentation A[[s]]a — A.

(¢) D € U(R; A) and for all a € A[[s]]a we have Da = B(a)D.

(d) D € %°(R; A) and for all a € A we have Da = 5(a)D.

Moreover, in such a case D is a bi-continuous k[[s]la-algebra automorphism of
Alls]]a

Corollary 1 Under the above hypotheses, HS}(A; A) is a (multiplicative) sub-
group of %% (R; A).

3This terminology is used for instance in [8].
4These HS-derivations are called of length m in [10].
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If A ¢ A c NO® are non-empty co-ideals, we obviously have group
homomorphisms 744/ : HS}(A; A) —> HS} (A; A"). Since any D € HS} (A; A) is
determined by its finite truncations, we have a natural group isomorphism

HS{(A) = lim HS{(A; A").

Alca
gA <00

In the case A’ = A = ANt (s), since HS; (A; Al ~ Dery (A)A1 , we can think

on T4 41 as a group homomorphism 74 41 : HS(A; A) — Derk(A)A1 whose kernel
is the normal subgroup of HS} (A; A) consisting of HS-derivations D with Dy = 0
whenever || = 1.

In the case A" = A" = AN t,(s), forn > 1, we will simply write t, = 74 an :
HS}(A; A) — HS}(A; A™).

Remark 4 Since for any D € HS}(A; A) we have D, € Qifff/lk(A), we may
also think on D as an element in a generalized Rees ring of the ring of differential
operators:

P (Daj(A); A) = !Zras“ € Das(A)llslla | r € Ziftly], (A) 1.

aed
The group operation in HS} (A; A) is explicitly given by
(D, E) € HS}(A; A) x HS}(A; A) —> DoE € HS}(A; A)
with
(DoE)y = Z DgoE,,
pry=a

and the identity element of HSi (A; A)is I with [j = Id and I, = O for all ¢ # 0.
The inverse of a D € HSi (A; A) will be denoted by D*.

Proposition 6 Let D € HS}(A; A), E € HS}C (A; V) be HS-derivations. Then their
external product DR E (see Definition 3) is a (sUt, V x A)-variate HS-derivation.

Proof From Lemma 4 we know that DRE = DRE and we conclude by
Proposition 5.

Definition 9 For each a € AS and for each D € HSZ(A; A), we define ae D as
(aeD)y :==a*Dy, Vo€ A.

Itis clear that ae D € HS}(A; A),a’e(aeD) = (a’a)eD,1eD =D and 0D = 1.
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If A Cc AcCN® are non-empty co-ideals, we have tpp/(ae D) = aetpa (D).
Hence, in the case A’ = Al = AN t(s), since HS{(A; A1) ~ Derg(A)4', the
image of Ty 41 ¢ HSZ(A; A) — Dery (A)A1 is an A-submodule.

The following lemma provides a dual way to express the Leibniz identity (23), 7.

Lemma 10 For each D € HSi(A; A) and for each a € A, we have

xDy = Z Dg Dj(x), Vx € A.
Bty=a

Proof We have

Y DgDix)= Y. > Du(Di(x)D, =

B+y=a Bty=a pt+v=p

> | 3 Du@i@) | Dy = xDa.

etv=a \uty=e

It is clear that the map (24) is an isomorphism of groups (with the addition on
Dery (A) as internal operation) and so HSZ (A; t1(s)) is abelian.

Notation 5 Let us denote
Homg ., (A, Alls]]a) =
[ € Homi_ag (4, Alls]1) | (@) = amod nj(s)/Ax Va € A},
AUtf(g)1—atg (All8T10) =
{f € Autyl, —ag(Allsla) | f(a) = apmod nf(s)/Aa Va € A[[s]]A} :

It is clear that (see Notation 3) Hom,?falg(A, All[slla) C Homy (A, A[[s]]a) and
Aml?[[s]]A—alg(A[[s]]A) C Am/?[[s]]A(A[[s]]A) are subgroups and we have group
isomorphisms (see (10) and (9)):

restriction
_

Hom_,,, (A, A[[s]]a).
(25)

DD
HS}(A: A) ——— Aty g, (Alls]12)

The composition of the above isomorphisms is given by

D € HS{(A: A) —> @) = |:a €A ZDa(a)s“] € Homg_y, (A, A[[s]]).
acA

(26)
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For each HS-derivation D € HSZ (A; A) we have

D (Zaas"‘) = ®p(as)s”,

acA acA

for all Za ays® € A[[s]]la, and for any E € HSi(A; A) we have @p.gp = 50¢E.
If A’ C A is another non-empty co-ideal and we denote by max : A[[s]]a —
A[[s]] 4’ the projection, one has D, (D) = Tan oPp.

Definition 10 For each HS-derivation E € HSj (A; A), we denote
LE) :=min{r >1|3a € A, |a| =r, Ey #0} > 1

if £ # [and £(E) = oo if E = L. In other words, £(E) = ord(E — I). Clearly, if A
is bounded, then £(E) > max{|a| | € A} <= L(E) =0 <= E =1

We obviously have £(E o E’) > min{¢(E), £(E")} and £(E*) = £(E). Moreover,
if €(E") > U(E), then L(E o E') = {(E):

C(EoE") = ord(EcE —T) = ord(Eo(E' —T) + (E — T))
and since ord(E o (E’ — 1)) >ord(E’ —1I) = £(E’) > £(E) = ord(E —1I) we obtain
CEoE)=---=ord(Eo(E —T) 4 (E —1T)) = ord(E — ) = £(E).

Proposition 7 For each D € HS} (A; A) we have that Dy, is a k-linear differential

operator or order < LZ‘(OS)J for all « € A. In particular, Dy is a k-derivation if
|| = £(D), whenever £(D) < oo (& D #1).

Proof We may assume D # I. Letus call n := £(D) < oo and, for each o € A,
Go = Llfl“J and ry = || — gon, 0 < ry, < n. We proceed by induction on g,. If
qo = 0, then || < n, Dy = 0 and the result is clear. Assume that the order of Dg
is less or equal than gg whenever 0 < gg < g. Now take o € A with g, = g + 1.
For any a € A we have

[De,al= ) Dy(@Dg= ) Dy(aDs,

y+p=a y+p=a
ly1>0 ly|=n

but any B in the index set of the above sum must have norm < |«| — n and so
g < qo = g + 1 and Dg has order < gg. Hence [Dy, a] has order < g for any
a € Aand Dy hasorder < g + 1 = ¢,.

3 Actually, here an equality holds since the O-term of E (as a series) is 1.
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The following example shows that the group structure on HS-derivations takes
into account the Lie bracket on usual derivations.

Example 2 1f D, E € HS}(A; A), then we may apply the above proposition to
[D,E]l = DoEoD*oE* to deduce that [D, E], € Deri(A) whenever |a| = 2.
Actually, for |o| = 2 we have:

(D, E], — [Dy, Eg] if = 2¢'
T T | [Dyy Es] + [Dge, Eg] if @ =s' +s*, witht # u.

Proposition 8 Forany D, E € HSi(A; A) we have £([D, E]) > £(D) + L(E).

Proof We may assume D, E # 1. Let us write m = £(D) = £(D*),n = £(E) =
L(E*). We have Dg = D; = O whenever0 < || <mand E,, = E;‘j = 0 whenever
0< |yl <n.

Leto € Abe with0 < |a¢| < m +n. If |¢| < m or |¢|] < n it is clear that
[D, Elqy = 0. Assume that m, n < |a| < m + n:

[D,El, = Z DgoE, D} Ef, = Z E, Ei+

Bty +itu=a y+pu=a
Y DgE,DiE,=0+ > E,DiE,+ Y DgE, E;+
BH+y+rtpu=a y+itu=a By +u=a
|B+1|>0 |A]>0 |8]>0
Y DyE,DiE,= Y E,DiE,+ Y DgE, E}+

B+y+rtpu=a y+itu=a By +u=a

|B1,1A1>0 [A[=m |Bl=m

> DyE,D;E;,=Di+ Y  EyD;E;+ Dyt
B+y+itu=a yHAtpu=a
|Bl,|A|=m [A[=m, |y +u1]>0

Y DgE,E;+ > DyDi+ Y  DyE,DiE} =

Bt+u=a B+r=a B+y+rtu=a
|Bl=m |Bl,|A|=m |BL,IA|=m
ly+ul>0 ly+ul=0
D;+0+Dy+0+ Y DgD;+0= Y DgDj=0.
B+r=a B+r=a
|B1.12]>0

So, £([D, E]) > €(D) + £L(E).

Corollary 2 Assume that A is bounded and let m be the max of || with @ € A.
Then, the group HS} (A; A) is nilpotent of nilpotent class < m, where a central
series is®

(I} = {E| L(E) > m} < {E| £(E) = m} < --- < {E| £(E) > 1} = HS}(A; A).

6Let us notice that {E € HSi(A; A) |U(E) >r}=kertp a,.
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Proposition 9 For each D € HS}(A; A), its inverse D* is given by D = 1d and

||

Dy=Y (=" Y Dyo-oDu. a€A
d=1

a*ceP(a,d)

Moreover, oi|(D}) = (—1)'“‘o|a‘(Da).

Proof The first assertion is a straightforward consequence of Lemma 2. For the
second assertion, first we have D}, = — D, for all « with || = 1, and if we denote
by —1 € AS the constant family —1 and £ = Do ((—1)e D), we have £(E) > 1.
So, D* = ((—=1)e D)o E* and

Di= Y (-DPDgES = (=)D + Y (~DPID4E.
Bty=a Bty=a
ly>0
From Proposition 7, we know that E ;j is a differential operator of order strictly less
than |y | and s0 014(D}) = (—1) %614 (Dy).

6 The Action of Substitution Maps on HS-Derivations

In this section, k will be a commutative ring, A a commutative k-algebra, R =
Endi(A), s, tsets and A ¢ N®, V ¢ N® non-empty co-ideals.

We are going to extend the operation (a, D) € A% x HS}(A; A) = aeD €
HS} (A; A) (see Definition 9) by means of the constructions in section 4.

Proposition 10 For any substitution map ¢ : A[[s]]a — A[[t]]lv, we have:

(1) g (Homg_,(4, Alls]12)) € Homg_ (4, AllEI]9),
() ¢r (HS}(4; 4)) C HSE(A; V),
(3) ¢ (AU, g (ATIS11)) © AUy g (ALIEITD).

Proof By using diagram (21) and (25), it is enough to prove the first inclusion, but
if f € Hom,ffalg(A, A[[s]]a), it is clear that ¢ (f) = pof : A — A[[t]]v is
a k-algebra map. Moreover, since (p(t{)‘ (s)/A4) C tg (t)/Va (see3)and f(a) =a
mod t{(s)/Aa foralla € A, we deduce that ¢(f (a)) = ¢(a) mod t; (t)/V 4 forall
a € A,butgisan A-algebramap and ¢(a) = a. So g.(f) € Hom,ffalg(A, Al[t]lv).
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As a consequence of the above proposition and diagram (21) we have a
commutative diagram:

~

Hom{_g(4, Allsla) &= HSH(A5 ) — > Autgi,_uy(Alls].a)

e | on | |=

Hom, 1. (A, A[[t]]v) = - HSE(A; V) —— Aut gy o —alg (Al[t]]w)-

¢D<—|

27)

The inclusion (2) in Proposition 10 can be rephrased by saying that for any
substitution map ¢ : A[[s]]a — A[[t]]v and for any HS-derivation D € HSi (A; A)
we have o D € HSL(A; V) (see 5). Moreover @pep = @0 Pp.

It is clear that for any co-ideals A’ C Aand V' C V with ¢ (A/;/A4) C V) /Va
we have

tyv (9eD) = ¢ etpn (D), (28)

where ¢’ : A[[s]lar — A[[t]]y is the substitution map induced by ¢.
Let us notice that any a € AS gives rise to a substitution map ¢ : A[[s]]a —
A[[s]]a given by ¢(s) = ags forall s € s, and one hasae D = @ e D.

8. Letp € Sa(s, t; V, A), ¥ € Sa(t, u; A, 2) be substitution maps and D, D’ €
HS} (A; V) HS-derivations. From 5 we deduce the following properties:

- If we denote E := e D € HSL(A; A), we have

Eo=1d, E,= Z C.(p,a)Dy, Ve e A. (29)

aeV
loe|<lel

- If ¢ has constant coefficients, then ge(DoD’) = (peD)o(peD’). The
general case will be treated in Proposition 11.
- If ¢ = 0 is the trivial substitution map or if D = I, then pe D =L

- Ye(geD) = (Yop)eD.

Remark 5 We recall that a HS-derivation D € HS;(A) is called iterative (see [8,
pg. 209]) if

DioD; = <’J;])D,-+,- Vi, j > 0.

This notion makes sense for s-variate HS-derivations of any length. Actually,
iterativity may be understood through the action of substitution maps. Namely, if we
denote by ¢, !’ : s <> slUs the two canonical inclusions and t+¢" : A[[s]] — A[[sUs]]
is the substitution map determined by

(t+)s) =) +(s), Vses,
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then a HS-derivation D € HSZ (A) is iterative if and only if
(t+ L/)OD = (teD)o (L/OD).

A similar remark applies for any formal group law instead of ¢ + ¢’ (cf. [5]).

Proposition 11 Let ¢ : A[[s]lv — A[[t]]la be a substitution map. Then, the
following assertions hold:

(i) Foreach D € HS}(A; V) there is a unique substitution map P A[[s]lv —
A[[t]]a such that ((p/o\_ﬁ) ol = (/305. Moreover, (peD)* = P« D* and

I
Y =0
(ii) For each D, E € HSi(A; V), we have pe(DoE) = ((poD)o(q)D-E) and
((pD)E = @P°E_ In particular, ((pD)D = .
(ili) If ¥ is another composable substitution map, then (p oy )P = @V *P oy P,
(V) T(@?) = ()™ P, foralin > 1.
(v) If ¢ has constant coefficients then ¢° = ¢.

Proof
(i) We know that
D € Autdg—ag(Allsllv) and @D € Aut), g (ALItI1A).

The only thing to prove is that

—\ 1 ~
(pD = ((poD) o(poD

is a substitution map A[[s]lv — A[[t]]a (see Definition 5). Let start by
proving that ¢? is an A-algebra map. Let us write E = @eD. Foreacha € A
we have

oP@) = E~" (¢ (D@)) = E~' (¢ (@p(a)) =

E 1 (0o @0)(@) = E (@4ep@) = E7! ((¢+D) @) =4,

and so ¢? is A-linear. The continuity of ¢? is clear, since it is the composition
of continuous maps. For each s € s, let us write

@(s) = Z cfgt’s.

BeA
1B81>0

Since ¢ is a substitution map, property (17) holds:

#{seslc%¢0}<oo forall g € A.
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(iii)

v)
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We have
9P (s) = E* (p(D(s)) = E* (p(s)) = Y ( > Ei@)) = " daytf
peA \a+y=p peA
with d; = Za+y:/3 E} (c}). So, for each B € A we have

seslcy#0)c | Jlseslc, #0)

v=B

and P satisfies property (17) too. We conclude that ¢ is a substitution map,
and obviously it is the only one such that ((p-D) ol = o D. From there,
we have

~ ~ —\ 1 —
(/)DOD*Z(/)DOD71 =<(/)0D) o(p:((/)oD)*o(p,

and taking restrictions to A we obtain ¢ o ®p+ = D (,4 p)* and so ePeD* =
(peD)*.

On the other hand, it is clear that if D = I, then ¢! = ¢ and if ¢ = 0,
02 =0.
In order to prove the first equality, we need to prove the equality pe (Do E) =

(ﬁ) ° ((pD oF ) For this it is enough to prove the equality after restriction
to A, but

(QDO(DoE)) A= Ppe(DoE) =0oPpoE = goDodp,

((559) - (77E)) = () 001 = (7)o

*

and both are equal by (i). For the second equality, we have (¢ )D =¢l = 0.
Since

(go)eD)o (¢V*PoyyP) = (pe(PeD))og¥*P oyl =

wo(ﬁ)ow%wwoﬁ,

we deduce that (¢ o )P = ¢¥ *PoyP from the uniqueness in (i).
Part (iv) is also a consequence of the uniqueness property in (i).
Let us assume that ¢ has constant coefficients. We know from Lemma 9 that

(e D, p(a)) = ¢ ({D,a)) forall a € A[[s]]v, and so (5?5) 0@ = @oD.

Hence, by the uniqueness property in (i) we deduce that p© = ¢.
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The following proposition gives a recursive formula to obtain ¢ from g.

Proposition 12 With the notations of Proposition 11, we have

Colp. fHv)= D Cplg, f+2)Dg(Cy(p”, )
|f+g{3;|§ii|5|y\

forall e € A and for all f,v € V with |f + v| < |e|. In particular, we have the
following recursive formula

Co(pP.v) :=Colp.v) = > Cple.8)Dg(Cy (9P, 1))
B+y=e
[gI=IBLIvI=IyI<lel

fore e A, v eV with|e| > 1 and |v| < |e|, starting with Co(¢?, 0) = 1.
Proof First, the case f = 0 easily comes from the equality

> Clg vt = ¢(s") = (9o D)(s") = ((¢+D) 0”) ") Wve V.

ecA
[v|=le|

For arbitrary f one has to use Proposition 3. Details are left to the reader.
The proof of the following corollary is a consequence of Lemma 10.

Corollary 3 Under the hypotheses of Proposition 11, the following identity holds
foreache € A

(peD)i= Y Dj-Dy(Cel9® i+ v)).
lutv|<lel

Proposition 13 Let D € HSi(A; A) be a HS-derivation and ¢ : Al[s]lv —
A[[t]] A a substitution map. Then, the following identity holds:

50(/) =(D(p)®m) o (Kf-vD) ol,

where:

e D(p) : Allsllv — Al[lt]]a is the substitution map determined by D(¢)(s) =
5(<p(s))f0r all s € s.

o 1 : A[[t]la — A is the augmentation, or equivalently, the substitution map7
givenby (1) =0 forallt € t.

"The map 7 can be also understood as the truncation 74 (0} : A[[t]la — Allt]lj0y = A.
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e 1 : Allsllv — Allsut]lvxa and « : A[[t]la — A[[s U t]lvxa are the
combinatorial substitution maps determined by the inclusions s — s Ut and
t — sUt, respectively.

Proof Itis enough to check that both maps coincide onany a € A andon any s € s.
Details are left to the reader.

Remark 6 Let us notice that with the notations of Propositions 11 and 13, we have
9P = (peD)* ().

The following proposition will not be used in this paper and will be stated without
proof.

Proposition 14 For any HS-derivation D € HS} (A; V) and any substitution map
@ € S(t,u; A, 2), there exists a substitution map Dx¢ € S(sUt, sLiu; VX A, V x
§2) such that for each HS-derivation E € HS}C (A; A) we have:

DR (peE) = (Dx¢)e(DRE).

7 Generating HS-Derivations

In this section we show how the action of substitution maps allows us to express
any HS-derivation in terms of a fixed one under some natural hypotheses. We
will be concerned with (s, {,,(s))-variate HS-derivations, where t,,(s) = {a €
N® | le| < m}. To simplify we will write A[[s]];, := A[[s]], ) and HS;(A; m) =
HS3 (A; t,(s)) for any integer m > 1, and HS} (A; 00) := HS;(A). Form > n > 1
we will denote 7y, : HS} (A; m) — HS} (A; n) the truncation map.

Assume that m > 1 is an integer and let ¢ : A[[s]],, — A[[t]]» be a substitution
map. Let us write

p)=c"= > citf eng(®)/tu(®) C Alltlln. s€s

peN®
0<|Bl=m

and let us denote by ¢, o<m : Allslln — Al[t]l]; the substitution maps
determined by

om(s) =cp = Y cpt? € ng®)/tu (V) € Alltl], s €5,
ﬁENm
|Bl=m
Pem(®) =cl, = > cyt’ eng®)/tu(t) € Alltlln, s €s.

peN®
0<|Bl<m
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We have ¢ = ¢}, + ¢%,, and so ¢ = @i + @< (see 3).

Proposition 15 With the above notations, for any HS-derivation D € HS}(A; m)
the following properties hold:

ey
(@)

(¢meD), =0for0 < le| <m and (¢neD), =), c.Dg for |e| = m, where
the s' are the elements of the canonical basis of N®.
oD = (¢meD)o(9<meD) = (9<meD)o(gmeD).

Proof

ey

2

Let us denote E' = ¢y D. Since Ty y—1(E’) coincides with Ty —1(@m) e
Tn.m—1(D) (see (28)) and 7, ,u—1 (@) 1s the trivial substitution map, we deduce
that 7, ,,—1(E") = L, i.e. E, = 0 whenever 0 < |e| < m.

From (29) and (14), for |e| > 0 we have E, =}, _, _., Ce(@m, @) Dy, with

Colpm, @)= Y Cpe for a| <lel, Cpo= [] ﬁ<c;>pvr.

L2 eP(e,0) sesuppa r=1

Assume now that |e] = m, 1 < || < m and let £** € P(e, ). Since

DD I

sesuppa r=1

we deduce that [ £*"| < |e| = m for all s, r and so (c;,) s = 0 and Cpee = 0.
Consequently, C, (¢, @) = 0.

If || = 1, then & must be an element s’ of the canonical basis of N® and
from Lemma 6, (1), we know that C, (¢, s') = (c},).. We conclude that

E{ == ) Colpm.s)Dy = ) (ch)eDy = ) ciDy.

tes tes tes

Letus write E = @eD, E' = ¢,eD and E” = ¢_,, ¢« D. We have

Tm,m—l(E) = Tm,m—l((p)'fm,m—l(D) =

Tm,m—l((p<m)'fm,m—l(D) = Tm,m—1 (E//)-

By property (1), we know that 7, ,,—1(E’) is the identity and we deduce that
Tm,mfl(E) = Tm,mfl(E/OE”) = Tm,mfl(E”OE/)- So E, = (E/OE//)E =
(E" o E"), for |e| < m.

Now, let ¢ € N® be with |e| = m. By using again that 7, ,,—1 (E’) is the
identity, we have (E'0E"), = -+ = E, + E!/ = .- = (E"oE’),, and we
conclude that E'o E” = E" o E’.
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On the other hand, from Lemma 6, (1), we have that C.(¢<;;, @) = 0
whenever |o| = 1, and one can see that C.(¢, «) = C.(¢<m,®) Whenever
that 2 < |a| < |e|. So:

E,= Y Cop,a)Dy =y Celp,m)Dg+ Y Colg,a)Dy =

I<|a|<m lee|=1 2<|al<m
Y Dy + Y Colpem @)Dy = E,+ Y Col¢am. @)Dy = E, + E
tes 2<|a|<m I<la|<m

and E = E'oE" = E"oE'.

The following theorem generalizes Theorem 2.8 in [3] to the case where Dery (A)
is not necessarily a finitely generated A-module. The use of substitution maps makes
its proof more conceptual.

Theorem 1 Let m > 1 be an integer, or m = oo, and D € HSZ (A; m) a s-variate
HS-derivation of length m such that {Dy, |a| = 1} is a system of generators of the
A-module Dery(A). Then, for each set t and each HS-derivation G € HSZ (A; m)
there is a substitution map ¢ : A[[S]ln — Al[tllm such that G = @ e D. Moreover,
if {Dqy, || = 1} is a basis of Dery (A), ¢ is uniquely determined.

Proof For m finite, we will proceed by induction on m. For m = 1 the result is
clear. Assume that the result is true for HS-derivations of length m — 1 and consider
a D € HS} (A; m) such that { Dy, |a| = 1} is a system of generators of the A-module
Dery(A) anda G € HSZ(A; m). By the induction hypothesis, there is a substitution
map ¢’ : A[[s]lm—1 — A[[t]lm—1. given by ¢’'(s) = ZWEW1 c%tﬁ, s € s, and such
that Ty m—1(G) = ¢’ eTi.m—1(D). Let ¢” : A[[s]]m — A[[u]],, be the substitution
map lifting ¢’ (i.e. Ty m—1(¢”) = ¢’) given by ¢’ (s) = Z\ﬁlgm—l cfgt/S e A[[t]m,
s € s, and consider F = ¢”«D. We obviously have Ty y—1(F) = Ty m—1(G)
and so, for H = Go F*, the truncation 7, ,,—1(H) is the identity and H, = 0
for 0 < |e|] < m. We deduce that each component of H of highest order, H,
with |e] = m, must be a k-derivation of A and so there is a family {c},s € s}
of elements of A such that ¢ = O for all s except a finite number of indices and
H, = ZSES ¢S Dgs, where {s°, s € s} is the canonical basis of N®. To finish, let us
consider the substitution map ¢ : A[[s]],, — A[[t]]» given by ¢(s) = ngm cfst/3 s
s € s. From Proposition 15 we have

@eD = (ppeD)o(ppeD) =Ho(¢p eD)=HoF =G.

For HS-derivations of infinite length, following the above procedure we can
construct ¢ as a projective limit of substitution maps A[[s]],, — Al[t]]n, m > 1.

Now assume that the set { Dy, |@| = 1} is linearly independent over A and let us
prove that
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The infinite length case can be reduced to the finite case since ¢ = ¥ if and only
if all their finite truncations are equal. For the finite length case, we proceed by
induction on the length m. Assume that the substitution maps are given by

o(s) = ¢ == Z cstP € no(t)/tn(®) C Al[t]ln, s €S

peN®
0<|Bl=m

> dytf € ng(®)/tn(® C Alltlln, s €s.

peN®
0<|Bl=m

W(s) =d*

If m = 1, then ¢ = ¢; and ¥ = v and for each ¢ € N® with |e| = 1 we have
from Proposition 15

Y iD= (p1eD); = (poD), = (Yo D)o = (Y1+D), = Y _dDs

SES SES

and we deduce that ¢} = d forall s € sand so ¢ = .

Now assume that (30) is true whenever the length is m — 1 and take D, ¢ and
Y as before of length m with ¢e D = e D. By considering (m — 1)-truncations
and using the induction hypothesis we deduce that 7, »—1(¢) = Tmm—1(¥), or
equivalently o, = Y.

From Proposition 15 we obtain first that ¢,,e D = ¥, « D and second that for
each e € N® with |e| = m

ZCész = ngsz.

SES SES

We conclude that ¢, = ¥, and so ¢ = .
Now we recall the definition of integrability.
Definition 11 (Cf. [1,7]) Letm > 1 be an integer or m = 0o and s a set.

(i) We say that a k-derivation § : A — A is m-integrable (over k) if there is a
Hasse—Schmidt derivation D € HSy(A; m) such that D; = §. Any such D
will be called an m-integral of §. The set of m-integrable k-derivations of A is
denoted by Idery (A; m). We simply say that § is integrable if it is co-integrable
and we denote Ider (A) := Idery (A; 00).

(ii) We say that a s-variate HS-derivation D’ € HSi(A; n),withl < n < m,is
m-integrable (over k) if there is a s-variate HS-derivation D € HS}(A; m) such
that 7,,, D = D’. Any such D will be called an m-integral of D’. The set of
m-integrable s-variate HS-derivations of A over k of length n is denoted by
IHS;} (A; n; m). We simply say that D’ is integrable if it is oo-integrable and we
denote IHS} (A; n) := THS} (A; n; 00).
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Corollary 4 Let m > 1 be an integer or m = o00. The following properties are
equivalent:

(1) Iderg(A; m) = Derg(A).
(2) THS} (A; n; m) = HS}(A; n) for all n with 1 < n < m and all sets s.

Proof We only have to prove (1) = (2). Let {§;, t € t} be a system of generators of
the A-module Deri(A), and for each ¢ € tlet D' € HSi(A; m) be an m-integral of
d;. By considering some total ordering < on t, we can define D € HSZ (A; m) as the
external product (see Definition 3) of the ordered family {D’, ¢ € t}, i.e. Dg = Id
and for each @ € N o £ 0,

D, = Dfx‘rl o---oDk  with suppa = {1 <--- <1}.
Let n be an integer with 1 <n <m,sasetand E € HSZ (A; n). After Theorem 1,
there exists a substitution map ¢ : A[[t]], — A[[s]], such that E = @e1y, (D).

By considering any substitution map ¢’ : A[[t]],, — A[[s]]n lifting ¢ we find that
@' e D is an m-integral of E and so E € IHSZ (A; n;m).
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