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Abstract We study the action of substitution maps between power series rings as
an additional algebraic structure on the groups of Hasse–Schmidt derivations. This
structure appears as a counterpart of the module structure on classical derivations.

1 Introduction

For any commutative algebra A over a commutative ring k, the set Derk(A) of
k-derivations of A is an ubiquous object in Commutative Algebra and Algebraic
Geometry. It carries an A-module structure and a k-Lie algebra structure. Both
structures give rise to a Lie-Rinehart algebra structure over (k,A). The k-derivations
of A are contained in the filtered ring of k-linear differential operators DA/k, whose
graded ring is commutative and we obtain a canonical map of graded A-algebras

τ : SymA Derk(A) −→ grDA/k.

If Q ⊂ k and Derk(A) is a finitely generated projective A-module, the map τ is
an isomorphism ([9, Corollary 2.17]) and we can deduce that the ring DA/k is
the enveloping algebra of the Lie-Rinehart algebra Derk(A) (cf. [11, Proposition
2.1.2.11]).
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If we are not in characteristic 0, even if A is “smooth” (in some sense) over k,
e.g. A is a polynomial or a power series ring with coefficients in k, the map τ has
no chance to be an isomorphism.

In [9] we have proved that, if we denote by Iderk(A) ⊂ Derk(A) the A-module
of integrable derivations in the sense of Hasse–Schmidt (see Definition 11), then
there is a canonical map of graded A-algebras

ϑ : ΓA Iderk(A) −→ grDA/k,

where ΓA(−) denotes the divided power algebra functor, such that:

(i) τ = ϑ when Q ⊂ k (in that case Iderk(A) = Derk(A) and ΓA = SymA).
(ii) ϑ is an isomorphism whenever Iderk(A) = Derk(A) and Derk(A) is a finitely

generated projective A-module.

The above result suggests an idea: under the “smoothness” hypothesis (ii), can be
the ring DA/k and their modules functorially reconstructed from Hasse–Schmidt
derivations? To tackle it, we first need to explore the algebraic structure of Hasse–
Schmidt derivations.

Hasse–Schmidt derivations of length m ≥ 1 form a group, non-abelian for m ≥
2, which coincides with the (abelian) additive group of usual derivations Derk(A) for
m = 1. But Derk(A) has also an A-module structure and a natural questions arises:
Do Hasse–Schmidt derivations of any length have some natural structure extending
the A-module structure of Derk(A) for length = 1?

This paper is devoted to study the action of substitution maps (between power
series rings) on Hasse–Schmidt derivations as an answer to the above question. This
action plays a key role in [12].

Now let us comment on the content of the paper.
In Sect. 2 we have gathered, due to the lack of convenient references, some basic

facts and constructions about rings of formal power series in an arbitrary number of
variables with coefficients in a non-necessarily commutative ring. In the case of a
finite number of variables many results and proofs become simpler, but we need the
infinite case in order to study ∞-variate Hasse-Schmidt derivations later.

Sections 3 and 4 are devoted to the study of substitution maps between power
series rings and their action on power series rings with coefficients on a (bi)module.

In Sect. 5 we study multivariate (possibly ∞-variate) Hasse–Schmidt derivations.
They are a natural generalization of usual Hasse–Schmidt derivations and they
provide a convenient framework to deal with Hasse–Schmidt derivations.

In Sect. 6 we see how substitution maps act on Hasse–Schmidt derivations and
we study some compatibilities on this action with respect to the group structure.

In Sect. 7 we show how the action of substitution maps allows us to express any
HS-derivation in terms of a fixed one under some natural hypotheses. This result
generalizes Theorem 2.8 in [3] and provides a conceptual proof of it.
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2 Rings and (Bi)modules of Formal Power Series

From now on R will be a ring, k will be a commutative ring andA a commutative k-
algebra. A general reference for some of the constructions and results of this section
is [2, §4].

Let s be a set and consider the free commutative monoid N
(s) of maps α : s → N

such that the set suppα := {s ∈ s | α(s) �= 0} is finite. If α ∈ N
(s) and s ∈ s we will

write αs instead of α(s). The elements of the canonical basis of N(s) will be denoted
by st , t ∈ s: stu = δtu for t, u ∈ s. For each α ∈ N

(s) we have α =∑
t∈s αt s

t .
The monoid N

(s) is endowed with a natural partial ordering. Namely, for α, β ∈
N
(s), we define

α ≤ β
def.⇐⇒ ∃γ ∈ N

(s) such that β = α + γ ⇔ αs ≤ βs ∀s ∈ s.

Clearly, t ∈ suppα ⇔ st ≤ α. The partial ordered set (N(s),≤) is a directed ordered
set: for any α, β ∈ N

(s), α, β ≤ α ∨ β where (α ∨ β)t := max{αt , βt } for all t ∈ s.
We will write α < β when α ≤ β and α �= β.

For a given β ∈ N
(s) the set of α ∈ N

(s) such that α ≤ β is finite. We define
|α| := ∑

s∈s αs = ∑
s∈supp α αs ∈ N. If α ≤ β then |α| ≤ |β|. Moreover, if α ≤ β

and |α| = |β|, then α = β. The α ∈ N
(s) with |α| = 1 are exactly the elements st ,

t ∈ s, of the canonical basis.
A formal power series in s with coefficients in R is a formal expression∑
α∈N(s) rαsα with rα ∈ R and sα = ∏

s∈s s
αs = ∏

s∈suppα s
αs . Such a formal

expression is uniquely determined by the family of coefficients aα, α ∈ N
(s).

If r = ∑
α∈N(s) rαsα and r ′ = ∑

α∈N(s) r
′
αsα are two formal power series in s with

coefficients in R, their sum and their product are defined in the usual way

r + r ′ :=
∑

α∈N(s)
Sαsα, Sα := rα + r ′α,

rr ′ :=
∑

α∈N(s)
Pαsα, Pα :=

∑

β+γ=α
rβr

′
γ .

The set of formal power series in s with coefficients in R endowed with the
above internal operations is a ring called the ring of formal power series in s with
coefficients in R and is denoted by R[[s]]. It contains the polynomial ring R[s] (and
so the ring R) and all the monomials sα are in the center of R[[s]]. There is a natural
ring epimorphism, that we call the augmentation, given by

∑

α∈N(s)
rαsα ∈ R[[s]] �−→ r0 ∈ R, (1)

which is a retraction of the inclusion R ⊂ R[[s]]. Clearly, the ring R[[s]] is
commutative if and only if R is commutative and Ropp[[s]] = R[[s]]opp.
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Any ring homomorphism f : R → R′ induces a ring homomorphism

f :
∑

α∈N(s)
rαsα ∈ R[[s]] �−→

∑

α∈N(s)
f (rα)sα ∈ R′[[s]], (2)

and clearly the correspondences R �→ R[[s]] and f �→ f define a functor from the
category of rings to itself. If s = ∅, then R[[s]] = R and the above functor is the
identity.

Definition 1 A k-algebra over A is a (non-necessarily commutative) k-algebra R
endowed with a map of k-algebras ι : A → R. A map between two k-algebras
ι : A → R and ι′ : A → R′ over A is a map g : R → R′ of k-algebras such that
ι′ = g ◦ ι.

If R is a k-algebra (over A), then R[[s]] is also a k[[s]]-algebra (over A[[s]]).
If M is an (A;A)-bimodule, we define in a completely similar way the set

of formal power series in s with coefficients in M , denoted by M[[s]]. It carries
an addition +, for which it is an abelian group, and left and right products by
elements of A[[s]]. With these operations M[[s]] becomes an (A[[s]];A[[s]])-
bimodule containing the polynomial (A[s];A[s])-bimodule M[s]. There is also a
natural augmentation M[[s]] → M which is a section of the inclusion M ⊂ M[s]
and Mopp[[s]] = M[[s]]opp. If s = ∅, then M[[s]] = M .

The support of a seriesm =∑α mαsα ∈ M[[s]] is supp(x) := {α ∈ N
(s) |mα �=

0} ⊂ N
(s). It is clear that m = 0 ⇔ supp(m) = ∅. The order of a non-zero series

m = ∑α mαsα ∈ M[[s]] is ord(m) := min{|α| | α ∈ supp(m)} ∈ N. If m = 0
we define ord(0) = ∞. It is clear that for a ∈ A[[s]] and m,m′ ∈ M[[s]] we have
supp(m+m′) ⊂ supp(m)∪ supp(m′), supp(am), supp(ma) ⊂ supp(m)+ supp(a),
ord(m + m′) ≥ min{ord(m), ord(m′)} and ord(am), ord(ma) ≥ ord(a) + ord(m).
Moreover, if ord(m′) > ord(m), then ord(m+m′) = ord(m).

Any (A;A)-linear map h : M → M ′ between two (A;A)-bimodules induces in
an obvious way and (A[[s]];A[[s]])-linear map

h :
∑

α∈N(s)
mαsα ∈ M[[s]] �−→

∑

α∈N(s)
h(mα)sα ∈ M ′[[s]], (3)

and clearly the correspondencesM �→ M[[s]] and h �→ h define a functor from the
category of (A;A)-bimodules to the category (A[[s]];A[[s]])-bimodules.

For each β ∈ M(s), let us denote by nMβ (s) the subset of M[[s]] whose elements

are the formal power series
∑
mαsα with mα = 0 for all α ≤ β. One has nMβ (s) ⊂

nMγ (s) whenever γ ≤ β, and nMα∨β(s) ⊂ nMα (s) ∩ nMβ (s).

It is clear that the nMβ (s) are sub-bimodules of M[[s]] and nAβ (s)M[[s]] ⊂ nMβ (s)

and M[[s]]nAβ (s) ⊂ nMβ (s). For β = 0, nM0 (s) is the kernel of the augmentation
M[[s]] → M .
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In the case of a ring R, the nRβ (s) are two-sided ideals of R[[s]], and nR0 (s) is the
kernel of the augmentation R[[s]] → R.

We will consider R[[s]] as a topological ring with {nRβ (s), β ∈ N
(s)} as a

fundamental system of neighborhoods of 0. We will also consider M[[s]] as a
topological (A[[s]];A[[s]])-bimodule with {nMβ (s), β ∈ N

(s)} as a fundamental
system of neighborhoods of 0 for both, a topological left A[[s]]-module structure
and a topological right A[[s]]-module structure. If s is finite, then nMβ (s) =
∑

s∈s s
βs+1M[[s]] =∑s∈sM[[s]]sβs+1 and so the above topologies on R[[s]], and

so on A[[s]], and on M[[s]] coincide with the 〈s〉-adic topologies.
Let us denote by nMβ (s)

c ⊂ M[s] the intersection of nMβ (s) with M[s], i.e. the
subset ofM[s] whose elements are the finite sums

∑
mαsα withmα = 0 for all α ≤

β. It is clear that the natural map R[s]/nRβ (s)c −→ R[[s]]/nRβ (s) is an isomorphism

of rings and the quotient R[[s]]/nRβ (s) is a finitely generated free left (and right)
R-module with basis the set of the classes of monomials sα , α ≤ β.

In the same vein, the nMβ (s)
c are sub-(A[s];A[s])-bimodules of M[s] and

the natural map M[s]/nMβ (s)c −→ M[[s]]/nMβ (s) is an isomorphism of

(A[s]/nAβ (s)c;A[s]/nAβ (s)c)-bimodules. Moreover, we have a commutative diagram
of natural Z-linear isomorphisms

(4)

where " (resp. "′) is an isomorphism of (A[s]/nAβ (s)c;A)-bimodules (resp. of

(A[[s]]/nAβ (s);A)-bimodules ) and λ (resp. λ′) is an isomorphism of bimodules over

(A;A[s]/nAβ (s)c)(resp. over (A;A[[s]]/nAβ (s)).
It is clear that the natural map

R[[s]] −→ lim←−
β∈N(s)

R[[s]]/nRβ (s) ≡ lim←−
β∈N(s)

R[s]/nRβ (s)c

is an isomorphism of rings and so R[[s]] is complete (hence, separated). Moreover,
R[[s]] appears as the completion of the polynomial ring R[s] endowed with the
topology with {nRβ (s)c, β ∈ N

(s)} as a fundamental system of neighborhoods of 0.
Similarly, the natural map

M[[s]] −→ lim←−
β∈N(s)

M[[s]]/nMβ (s) ≡ lim←−
β∈N(s)

M[s]/nMβ (s)c

is an isomorphism of (A[[s]];A[[s]])-bimodules, and so M[[s]] is complete (hence,
separated). Moreover,M[[s]] appears as the completion of the bimodule M[s] over
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(A[s];A[s]) endowed with the topology with {nMβ (s)c, β ∈ N
(s)} as a fundamental

system of neighborhoods of 0.
Since the subsets {α ∈ N

(s) | α ≤ β}, β ∈ N
(s), are cofinal among the finite

subsets of N(s), the additive isomorphism
∑

α∈N(s)
mαsα ∈ M[[s]] �→ {mα}α∈N(s) ∈ MN(s)

is a homeomorphism, where MN
(s)

is endowed with the product of discrete
topologies on each copy of M . In particular, any formal power series

∑
mαsα is the

limit of its finite partial sums
∑

α∈F mαsα , over the filter of finite subsets F ⊂ N
(s).

Since the quotients A[[s]]/nAβ (s) are free A-modules, we have exact sequences

0 −→ nAβ (s)⊗A M −→ A[[s]] ⊗A M −→ A[[s]]
nAβ (s)

⊗A M −→ 0

and the tensor product A[[s]] ⊗A M is a topological left A[[s]]-module with
{nAβ (s)⊗AM,β ∈ N

(s)} as a fundamental system of neighborhoods of 0. The natural
(A[[s]];A)-linear map

A[[s]] ⊗A M −→ M[[s]]
is continuous and, if we denote by A[[s]]⊗̂AM the completion of A[[s]] ⊗A M , the
induced map A[[s]]⊗̂AM −→ M[[s]] is an isomorphism of (A[[s]];A)-bimodules,
since we have natural (A[[s]];A)-linear isomorphisms

(A[[s]] ⊗A M) /
(
nAβ (s)⊗A M

)
2
(
A[[s]]/nAβ (s)

)
⊗A M 2 M[[s]]/nMβ (s)

for β ∈ N
(s), and so

A[[s]]⊗̂AM = lim←−
β∈N(s)

(
A[[s]] ⊗A M

nAβ (s)⊗A M

)

2 lim←−
β∈N(s)

(
M[[s]]
nMβ (s)

)

2 M[[s]]. (5)

Similarly, the natural (A;A[[s]])-linear map M ⊗A A[[s]] → M[[s]] induces an
isomorphismM⊗̂AA[[s]] ∼−→ M[[s]] of (A;A[[s]])-bimodules.

If h : M → M ′ is an (A;A)-linear map between two (A;A)-bimodules, the
induced map h : M[[s] → M ′[[s] (see (3)) is clearly continuous and there is a
commutative diagram
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Similarly, for any ring homomorphism f : R → R′, the induced ring homomor-
phism f : R[[s]] → R′[[s]] is also continuous.

Definition 2 We say that a subset Δ ⊂ N
(s) is an ideal of N(s) (resp. a co-ideal of

N
(s)) if whenever α ∈ Δ and α ≤ α′ (resp. α′ ≤ α), then α′ ∈ Δ.

It is clear that Δ is an ideal if and only if its complement Δc is a co-ideal, and that
the union and the intersection of any family of ideals (resp. of co-ideals) of N(s) is
again an ideal (resp. a co-ideal) of N(s). Examples of ideals (resp. of co-ideals) of
N
(s) are the β + N

(s) (resp. the nβ(s) := {α ∈ N
(s) | α ≤ β}) with β ∈ N

(s). The
tm(s) := {α ∈ N

(s) | |α| ≤ m} withm ≥ 0 are also co-ideals. Actually, a subsetΔ ⊂
N
(s) is an ideal (resp. a co-ideal) if and only if Δ = ∪β∈Δ

(
β + N

(s)) = Δ + N
(s)

(resp. Δ = ∪β∈Δnβ(s)).
We say that a co-ideal Δ ⊂ N

(s) is bounded if there is an integer m ≥ 0 such
that |α| ≤ m for all α ∈ Δ. In other words, a co-ideal Δ ⊂ N

(s) is bounded if and
only if there is an integer m ≥ 0 such that Δ ⊂ tm(s). Also, a co-ideal Δ ⊂ N

(s) is
non-empty if and only if t0(s) = n0(s) = {0} ⊂ Δ.

For a co-ideal Δ ⊂ N
(s) and an integer m ≥ 0, we denote Δm := Δ ∩ tm(s).

For each co-ideal Δ ⊂ N
(s), we denote by ΔM the sub-(A[[s];A[[s]])-bimodule

ofM[[s]] whose elements are the formal power series
∑

α∈N(s) mαsα such thatmα =
0 whenever α ∈ Δ. One has

ΔM = · · · =
⎧
⎨

⎩
m ∈ M[[s]] | supp(m) ⊂

⋂

β∈Δ
nβ(s)c

⎫
⎬

⎭
=

⋂

β∈Δ

{
m ∈ M[[s]] | supp(m) ⊂ nβ(s)c

} =
⋂

β∈Δ
nMβ (s),

and so ΔM is closed in M[[s]]. Let Δ′ ⊂ N
(s) be another co-ideal. We have

ΔM +Δ′
M = (Δ ∩Δ′)M.

If Δ ⊂ Δ′, then Δ′
M ⊂ ΔM , and if a ∈ Δ′

A, m ∈ ΔM we have

supp(am) ⊂ supp(a)+ supp(m) ⊂ (Δ′)c +Δc ⊂ (Δ′)c ∩Δc = (Δ′ ∪Δ)c ,

and so Δ′
AΔM ⊂ (Δ′ ∪Δ)M . Is a similar way we obtain ΔMΔ

′
A ⊂ (Δ′ ∪Δ)M .

Let us denote by M[[s]]Δ := M[[s]]/ΔM endowed with the quotient topology.
The elements in M[[s]]Δ are power series of the form

∑

α∈Δ
mαsα, mα ∈ M.



226 L. Narváez Macarro

It is clear thatM[[s]]Δ is a topological (A[[s]]Δ;A[[s]]Δ)-bimodule. A fundamental
system of neighborhoods of 0 in M[[s]]Δ consist of

nMβ (s)+ΔM

ΔM

= (nβ(s) ∩Δ)M
ΔM

, β ∈ N
(s),

and since the subsets nβ(s)∩Δ,β ∈ N
(s), are cofinal among the finite subsets ofΔ,

we conclude that the additive isomorphism

∑

α∈Δ
mαsα ∈ M[[s]]Δ �→ {mα}α∈Δ ∈ MΔ

is a homeomorphism, whereMΔ is endowed with the product of discrete topologies
on each copy of M .

For Δ ⊂ Δ′ co-ideals of N(s), we have natural continuous (A[[s]]Δ′ ;A[[s]]Δ′)-
linear projections τΔ′Δ : M[[s]]Δ′ −→ M[[s]]Δ, that we also call truncations,

τΔ′Δ :
∑

α∈Δ′
mαsα ∈ M[[s]]Δ′ �−→

∑

α∈Δ
mαsα ∈ M[[s]]Δ,

and continuous (A;A)-linear scissions

∑

α∈Δ
mαsα ∈ M[[s]]Δ �−→

∑

α∈Δ
mαsα ∈ M[[s]]Δ′.

which are topological immersions.
In particular we have natural continuous (A;A)-linear topological embeddings

M[[s]]Δ ↪→ M[[s]] and we define the support (resp. the order) of any element in
M[[s]]Δ as its support (resp. its order) as element of M[[s]].

We have a bicontinuous isomorphism of (A[[s]]Δ;A[[s]]Δ)-bimodules

M[[s]]Δ = lim←−
m∈N

M[[s]]Δm.

For a ring R, theΔR are two-sided closed ideals of R[[s]],ΔRΔ
′
R ⊂ (Δ∪Δ′)R and

we have a bicontinuous ring isomorphism

R[[s]]Δ = lim←−
m∈N

R[[s]]Δm.

When s is finite, tm(s)R coincides with the (m + 1)-power of the two-sided ideal
generated by all the variables s ∈ s.

As in (5) one proves that A[[s]]Δ ⊗A M (resp. M ⊗A A[[s]]Δ) is endowed with
a natural topology in such a way that the natural map A[[s]]Δ ⊗A M → M[[s]]Δ
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(resp. M ⊗A A[[s]]Δ → M[[s]]Δ) is continuous and gives rise to a (A[[s]]Δ;A)-
linear (resp. to a (A;A[[s]]Δ)-linear) isomorphism

A[[s]]Δ⊗̂AM
∼−→ M[[s]]Δ (resp. M⊗̂AA[[s]]Δ ∼−→ M[[s]]Δ).

If h : M → M ′ is an (A;A)-linear map between two (A;A)-bimodules, the map
h : M[[s]] → M ′[[s]] (see (3)) obviously satisfies h(ΔM) ⊂ ΔM ′ , and so induces
another natural (A[[s]]Δ;A[[s]]Δ)-linear continuous map M[[s]]Δ → M ′[[s]]Δ,
that will be still denoted by h. We have a commutative diagram

Remark 1 In the same way that the correspondences M �→ M[[s]] and h �→
h define a functor from the category of (A;A)-bimodules to the category of
(A[[s]];A[[s]])-bimodules, we may consider functors M �→ M[[s]]Δ and h �→
h from the category of (A;A)-bimodules to the category of (A[[s]]Δ;A[[s]]Δ)-
bimodules. We may also consider functors R �→ R[[s]]Δ and f �→ f from the
category of rings to itself. Moreover, if R is a k-algebra (over A), then R[[s]]Δ is a
k[[s]]Δ-algebra (over A[[s]]Δ).

Lemma 1 Under the above hypotheses, ΔM is the closure of ΔZM[[s]].
Proof Any element in ΔM is of the form

∑
α∈Δ mαsα , but sαmα ∈ ΔZM[[s]]

whenever α ∈ Δ and so it belongs to the closure of ΔZM[[s]].
Lemma 2 Let R be a ring, s a set and Δ ⊂ N

(s) a non-empty co-ideal. The units in
R[[s]]Δ are those power series r =∑ rαsα such that r0 is a unit in R. Moreover, in
the special case where r0 = 1, the inverse r∗ =∑ r∗αsα of r is given by r∗0 = 1 and

r∗α =
|α|∑

d=1

(−1)d
∑

α•∈P(α,d)
rα1 · · · rαd for α �= 0,

where P(α, d) is the set of d-uples α• = (α1, . . . , αd) with αi ∈ N
(s), αi �= 0, and

α1 + · · · + αd = α.

Proof The proof is standard and it is left to the reader.

Notation 1 Let R be a ring, s a set and Δ ⊂ N
(s) a non-empty co-ideal. We denote

by Us(R;Δ) the multiplicative sub-group of the units of R[[s]]Δ whose 0-degree
coefficient is 1. Clearly, Us(R;Δ)opp = Us(Ropp;Δ). For Δ ⊂ Δ′ co-ideals we
have τΔ′Δ

(
Us(R;Δ′)

) ⊂ Us(R;Δ) and the truncation map τΔ′Δ : Us(R;Δ′) →
Us(R;Δ) is a group homomorphisms. Clearly, we have

Us(R;Δ) = lim←−
m∈N

Us(R;Δm).
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For any ring homomorphism f : R → R′, the induced ring homomorphism f :
R[[s]]Δ → R′[[s]]Δ sends Us(R;Δ) into Us(R′;Δ) and so it induces natural group
homomorphisms Us(R;Δ) → Us(R′;Δ).
Definition 3 LetR be a ring, s, t sets and ∇ ⊂ N

(s),Δ ⊂ N
(t) non-empty co-ideals.

For each r ∈ R[[s]]∇, r ′ ∈ R[[t]]Δ, the external product r � r ′ ∈ R[[s ! t]]∇×Δ is
defined as

r � r ′ :=
∑

(α,β)∈∇×Δ
rαr

′
βsαtβ.

Let us notice that the above definition is consistent with the existence of
natural isomorphism of (R;R)-bimodules R[[s]]∇⊗̂RR[[t]]Δ 2 R[[s ! t]]∇×Δ 2
R[[t ! s]]Δ×∇ 2 R[[t]]Δ⊗̂RR[[s]]∇ . Let us also notice that 1�1 = 1 and
r� r ′ = (r �1)(1�r ′). Moreover, if r ∈ Us(R; ∇), r ′ ∈ Ut(R;Δ), then r � r ′ ∈
Us!t(R; ∇ ×Δ) and (r � r ′)∗ = r ′∗ � r∗.

Let k → A be a ring homomorphism between commutative rings, E,F two
A-modules, s a set and Δ ⊂ N

(s) a non-empty co-ideal, i.e n0(s) = {0} ⊂ Δ.

Proposition 1 Under the above hypotheses, let f : E[[s]]Δ → F [[s]]Δ be a
continuous k[[s]]Δ-linear map. Then, for any co-ideal Δ′ ⊂ N

(s) with Δ′ ⊂ Δ

we have

f
(
Δ′
E/ΔE

) ⊂ Δ′
F /ΔF

and so there is a unique continuous k[[s]]Δ′-linear map f : E[[s]]Δ′ → F [[s]]Δ′
such that the following diagram is commutative

Proof It is a straightforward consequence of Lemma 1.

Notation 2 Under the above hypotheses, the set of all continuous k[[s]]Δ-linear
maps from E[[s]]Δ to F [[s]]Δ will be denoted by

Homtop
k[[s]]Δ(E[[s]]Δ,F [[s]]Δ).

It is an (A[[s]]Δ;A[[s]]Δ)-bimodule central over k[[s]]Δ. For any co-ideals Δ′ ⊂
Δ ⊂ N

(s), Proposition 1 provides a natural (A[[s]]Δ;A[[s]]Δ)-linear map

Homtop
k[[s]]Δ(E[[s]]Δ,F [[s]]Δ) −→ Homtop

k[[s]]Δ′ (E[[s]]Δ′, F [[s]]Δ′).
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For E = F , Endtop
k[[s]]Δ(E[[s]]Δ) is a k[[s]]Δ-algebra over A[[s]]Δ.

1. For each r = ∑β rβsβ ∈ Homk(E, F )[[s]]Δ we define r̃ : E[[s]]Δ → F [[s]]Δ
by

r̃

(
∑

α∈Δ
eαsα
)

:=
∑

α∈Δ

(
∑

β+γ=α
rβ(eγ )

)

sα,

which is obviously a continuous k[[s]]Δ-linear map.

Let us notice that r̃ =∑β sβ r̃β . It is clear that the map

r ∈ Homk(E, F )[[s]]Δ �−→ r̃ ∈ Homtop
k[[s]]Δ(E[[s]]Δ,F [[s]]Δ) (6)

is (A[[s]]Δ;A[[s]]Δ)-linear.
If f : E[[s]]Δ → F [[s]]Δ is a continuous k[[s]]Δ-linear map, let us denote by

fα : E → F , α ∈ Δ, the k-linear maps defined by

f (e) =
∑

α∈Δ
fα(e)sα, ∀e ∈ E.

If g : E → F [[s]]Δ is a k-linear map, we denote by ge : E[[s]]Δ → F [[s]]Δ the
unique continuous k[[s]]Δ-linear map extending g to E[[s]]Δ = k[[s]]Δ⊗̂kE. It is
given by

ge

(
∑

α

eαsα
)

:=
∑

α

g(eα)sα.

We have a k[[s]]Δ-bilinear and A[[s]]Δ-balanced map

〈−,−〉 : (r, e) ∈ Homk(E, F )[[s]]Δ × E[[s]]Δ �−→ 〈r, e〉 := r̃(e) ∈ F [[s]]Δ.

Lemma 3 With the above hypotheses, the following properties hold:

(1) The map (6) is an isomorphism of (A[[s]]Δ;A[[s]]Δ)-bimodules. When E = F

it is an isomorphism of k[[s]]Δ-algebras over A[[s]]Δ.
(2) The restriction map

f ∈ Homtop
k[[s]]Δ(E[[s]]Δ,F [[s]]Δ) �→ f |E ∈ Homk(E, F [[s]]Δ)

is an isomorphism of (A[[s]]Δ;A)-bimodules.

Proof

(1) One easily sees that the inverse map of r �→ r̃ is f �→∑
α fαsα .

(2) One easily sees that the inverse map of the restriction map f �→ f |E is g �→ ge.
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Let us callR = Endk(E). As a consequence of the above lemma, the composition
of the maps

R[[s]]Δ r �→r̃−−→ Endtop
k[[s]]Δ(E[[s]]Δ) f �→f |E−−−−→ Homk(E,E[[s]]Δ) (7)

is an isomorphism of (A[[s]]Δ;A)-bimodules, and so Homk(E,E[[s]]Δ)
inherits a natural structure of k[[s]]Δ-algebra over A[[s]]Δ. Namely, if g, h ∈
Homk(E,E[[s]]Δ) with

g(e) =
∑

α∈Δ
gα(e)sα, h(e) =

∑

α∈Δ
hα(e)sα, ∀e ∈ E, gα, hα ∈ Homk(E,E),

then the product hg ∈ Homk(E,E[[s]]Δ) is given by

(hg)(e) =
∑

α∈Δ

(
∑

β+γ=α
(hβ ◦gγ )(e)

)

sα. (8)

Definition 4 Let s, t be sets andΔ ⊂ N
(s),∇ ⊂ N

(t) non-empty co-ideals. For each
f ∈ Endtop

k[[s]]Δ(E[[s]]Δ) and each g ∈ Endtop
k[[t]]∇ (E[[t]]∇), with

f (e) =
∑

α∈Δ
fα(e)sα, g(e) =

∑

β∈∇
gβ(e)tβ ∀e ∈ E,

we define f �g ∈ Endtop
k[[s!t]]Δ×∇ (E[[s ! t]]Δ×∇) as f �g := he, with:

h(x) :=
∑

(α,β)∈Δ×∇
(fα ◦gβ)(x)sαtβ ∀x ∈ E.

The proof of the following lemma is clear and it is left to the reader.

Lemma 4 With the above hypotheses, or each r ∈ R[[s]]Δ, r ′ ∈ R[[t]]∇ , we have
r̃� r ′ = r̃ � r̃ ′ (see Definition 3).

Lemma 5 Let us call R = Endk(E). For any r ∈ R[[s]]Δ, the following properties
are equivalent:

(a) r0 = Id.
(b) The endomorphism r̃ is compatible with the natural augmentation E[[s]]Δ →

E, i.e. r̃(e) ≡ e mod nE0 (s)/ΔE for all e ∈ E[[s]]Δ.

Moreover, if the above properties hold, then r̃ : E[[s]]Δ → E[[s]]Δ is a bi-
continuous k[[s]]Δ-linear automorphism.

Proof The equivalence of (a) and (b) is clear. For the second part, r is invertible
since r0 = Id. So r̃ is invertible too and r̃−1 = r̃−1 is also continuous.
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Notation 3 We denote:

Hom ◦
k (E,E[[s]]Δ) :=

{
f ∈ Homk(E,E[[s]]Δ) | f (e) ≡ emod nE0 (s)/ΔE ∀e ∈ E

}
,

Aut ◦
k[[s]]Δ(E[[s]]Δ) :=

{
f ∈ Auttop

k[[s]]Δ(E[[s]]Δ) | f (e) ≡ e0mod nE0 (s)/ΔE ∀e ∈ E[[s]]Δ
}
.

Let us notice that a f ∈ Homk(E,E[[s]]Δ), given by f (e) = ∑
α∈Δ fα(e)sα ,

belongs to Hom ◦
k (E,E[[s]]Δ) if and only if f0 = IdE .

The isomorphism in (7) gives rise to a group isomorphism

r ∈ Us(Endk(E);Δ) ∼�−→ r̃ ∈ Aut ◦
k[[s]]Δ(E[[s]]Δ) (9)

and to a bijection

f ∈ Aut ◦
k[[s]]Δ(E[[s]]Δ) ∼�−→ f |E ∈ Hom ◦

k (E,E[[s]]Δ). (10)

So, Hom ◦
k (E,E[[s]]Δ) is naturally a group with the product described in (8).

3 Substitution Maps

In this section we will assume that k is a commutative ring and A a commutative
k-algebra. The following notation will be used extensively.

Notation 4

(i) For each integer r ≥ 0 let us denote [r] := {1, . . . , r} if r > 0 and [0] = ∅.
(ii) Let s be a set. Maps from a set Λ to N

(s) will be usually denoted as α• : l ∈
Λ �−→ αl ∈ N

(s), and its support is defined by suppα• := {l ∈ Λ | αl �= 0}.
(iii) For each set Λ and for each map α• : Λ → N

(s) with finite support, its norm
is defined by |α•| :=∑l∈suppα• αl =∑l∈Λ αl . When Λ = ∅, the unique map

Λ → N
(s) is the inclusion ∅ ↪→ N

(s) and its norm is 0 ∈ N
(s).

(iv) If Λ is a set and e ∈ N
(s), we define

P◦(e,Λ) := {α• : Λ → N
(s) | # suppα• < +∞, |α•| = e}.

If F is a finite set and e ∈ N
(s), we define

P(e, F ) := {α : F → N
(s)∗ | |α| = e} ⊂ P◦(e, F ).
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It is clear that P(e, F ) = ∅ whenever #F > |e|, P◦(e,∅) = ∅ if e �= 0,
P◦(0,Λ) consists of only the constant map 0 and that P(0,∅) = P◦(0,∅)
consists of only the inclusion ∅ ↪→ N

(s)∗ . If #F = 1 and e �= 0, then P(e, F )

also consists of only one map: the constant map with value e.
The natural map

∐

F∈Pf (Λ)

P(e, F ) −→ P◦(e,Λ) is obviously a bijection.

If r ≥ 0 is an integer, we will denote P(e, r) := P(e, [r]).
(v) Assume that Λ is a finite set, t is an arbitrary set and π : Λ → t is map. Then,

there is a natural bijection

P◦(e,Λ) ↔
∐

e•∈P◦(e,t)

∏

t∈t

P◦(et , π−1(t)) =
∐

e•∈P◦(e,t)

∏

t∈supp e•
P◦(et , π−1(t)).

Namely, to each α• ∈ P◦(e,Λ) we associate e• ∈ P◦(e, t) defined by et =∑
π(l)=t αl , and {αt•}t∈t ∈ ∏t∈t P

◦(et , π−1(t)) with αt• = α•|π−1(t). Let

us notice that if for some t0 ∈ t one has π−1(t0) = ∅ and et0 �= 0, then
P◦(et0, π−1(t0)) = ∅ and so

∏
t∈t P

◦(et , π−1(t)) = ∅. Hence

∐

e•∈P◦(e,t)

∏

t∈t

P◦(et ,Λt ) =
∐

e•∈P◦
π (e,t)

∏

t∈t

P◦(et , π−1(t)) =

∐

e•∈P◦
π (e,t)

∏

t∈supp e•
P◦(et , π−1(t)),

where P◦
π (e, t) is the subset of P◦(e, t) whose elements are the e• ∈ P◦(e, t)

such that et = 0 whenever π−1(t) = ∅ and |et | ≥ #π−1(t) otherwise.
The preceding bijection induces a bijection

P(e,Λ) ←→
∐

e•∈P◦
π (e,t)

∏

t∈t

P(et , π−1(t)) =
∐

e•∈P◦
π (e,t)

∏

t∈supp e•
P(et , π−1(t)).

(11)
(vi) If α ∈ N

(t), we denote

[α] := {(t, r) ∈ t × N∗ | 1 ≤ r ≤ αt }

endowed with the projection π : [α] → t. It is clear that |α| = #[α], and so
α = 0 ⇐⇒ [α] = ∅. We denote P(e, α) := P(e, [α]). Elements in P(e, α)

will be written as

b•• : (t, r) ∈ [α] �−→ bt r ∈ N
(s), with

∑

(t,r)∈[α]
bt r = e.
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For each b•• ∈ P(e, α) and each t ∈ t, we denote

bt• : r ∈ [αt ] �−→ btr ∈ N
(s), [b]• : t ∈ t �−→ [b]t := |bt•| =

αt∑

r=1

btr ∈ N
(s).

Notice that |[b]t | ≥ αt , [b]t = 0 whenever αt = 0 and |[b]•| = e. The
bijection (11) gives rise to a bijection

P(e, α) ←→
∐

e•∈P◦
α(e,t)

∏

t∈t

P(et , αt ) =
∐

e•∈P◦
α(e,t)

∏

t∈suppe•
P(et , αt ), (12)

where P◦
α(e, t) is the subset of P◦(e, t) whose elements are the e• ∈ P◦(e, t)

such that et = 0 if αt = 0 and |et | ≥ αt otherwise.

2. Let t, u be sets andΔ ⊂ N
(u) a non-empty co-ideal. Let ϕ0 : A[t] −→ A[[u]]Δ be

an A-algebra map given by:

ϕ0(t) =: ct =
∑

β∈Δ
0<|β|

ctβuβ ∈ nA0 (u)/ΔA ⊂ A[[u]]Δ, t ∈ t.

Let us write down the expression of the image ϕ0(a) of any a ∈ A[t] in terms of
the coefficients of a and the ct , t ∈ t. First, for each r ≥ 0 and for each t ∈ t we
have

ϕ0(t
r ) = (ct )r = · · · =

∑

e∈Δ
|e|≥r

⎛

⎝
∑

β•∈P(e,r)

r∏

k=1

ct
βk

⎞

⎠ue.

Observe that

∑

β•∈P(e,r)

r∏

k=1

ct
βk

=
{

1 if |e| = r = 0
0 if |e| > r = 0.

(13)

So, for each α ∈ N
(t) we have

ϕ0(tα) =
∏

t∈t

(ct)αt =
∏

t∈supp α

(ct )αt =
∏

t∈supp α

⎛

⎜
⎝
∑

e∈Δ
|e|≥αt

⎛

⎝
∑

β•∈P(e,αt )

αt∏

k=1

ct
βk

⎞

⎠ ue

⎞

⎟
⎠ =

∑

et∈Δ,t∈supp α
|et |≥αt

∏

t∈supp α

⎛

⎝

⎛

⎝
∑

β•∈P(et ,αt )

αt∏

k=1

ct
βk

⎞

⎠ue
t

⎞

⎠ =
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∑

et∈Δ,t∈supp α
|et |≥αt

⎛

⎜
⎜
⎝

∑

βt•∈P(et ,αt )
t∈supp α

(
∏

t∈supp α

αt∏

k=1

ct
βtk

)
⎞

⎟
⎟
⎠

(
∏

t∈supp α

ue
t

)

=

∑

e∈Δ
|e|≥|α|

⎛

⎜
⎜
⎜
⎜
⎝

∑

et∈Δ,t∈supp α
|et |≥αt
|e•|=e

⎛

⎜
⎜
⎝

∑

βt•∈P(et ,αt )
t∈supp α

(
∏

t∈supp α

αt∏

k=1

ct
βtk

)
⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎠

ue =

∑

e∈Δ
|e|≥|α|

⎛

⎜
⎜
⎝

∑

e•∈P◦
α (e,t)

⎛

⎜
⎜
⎝

∑

βt•∈P(et ,αt )
t∈supp α

(
∏

t∈supp α

αt∏

k=1

ct
βtk

)
⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠ue =

∑

e∈Δ
|e|≥|α|

Ce(ϕ0, α)ue,

with (see (12)):

Ce(ϕ0, α) =
∑

β••∈P(e,α)
Cβ••, Cβ•• =

∏

t∈suppα

αt∏

r=1

ctβtr , for |α| ≤ |e|. (14)

We have C0(ϕ0, 0) = 1 and Ce(ϕ0, 0) = 0 for e �= 0. For a fixed e ∈ N
(u) the

support of any α ∈ N
(t) such that |α| ≤ |e| and Ce(ϕ0, α) �= 0 is contained in

the set

⋃

β∈Δ
β≤e

{t ∈ t | ctβ �= 0}

and so the set of such α’s is finite provided that property (17) holds. We conclude
that

ϕ0

⎛

⎝
∑

α∈N(t)
aαtα

⎞

⎠ =
∑

α∈N(t)
aαc

α =
∑

e∈Δ

⎛

⎜
⎜
⎝

∑

α∈N(t)
|α|≤|e|

Ce(ϕ0, α)aα

⎞

⎟
⎟
⎠ue. (15)

Observe that for each non-zero α ∈ N
(t) we have:

supp(ϕ0(tα)) = supp

⎛

⎝
∏

t∈suppα

(
ct
)αt

⎞

⎠ ⊂
∑

t∈supp(α)

αt · supp(ct). (16)

Let us notice that if we assign the weight |β| to ctβ , then Ce(ϕ0, α) is a quasi-
homogeneous polynomial in the variables ctβ , t ∈ suppα, |β| ≤ |e|, of weight |e|.

The proof of the following lemma is easy and it is left to the reader.
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Lemma 6 For each e ∈ Δ and for each α ∈ N
(t) with 0 < |α| ≤ |e|, the following

properties hold:

(1) If |α| = 1, then Ce(ϕ0, α) = cse, where suppα = {s}, i.e. α = ts (tst = δst ).
(2) If |α| = |e|, then

Ce(ϕ0, α) =
∑

et∈Δ,t∈supp α
|et |=αt ,|e•|=e

⎛

⎝
∏

t∈supp α

∏

v∈supp et

(
ctuv
)etv

⎞

⎠ .

Proposition 2 Let t,u be sets andΔ ⊂ N
(u) a non-empty co-ideal. For each family

c =

⎧
⎪⎨

⎪⎩
ct =

∑

β∈Δ
β �=0

ctβuβ ∈ nA0 (u)/ΔA ⊂ A[[u]]Δ, t ∈ t

⎫
⎪⎬

⎪⎭

(we are assuming that ct0 = 0) satisfying the following property

#{t ∈ t | ctβ �= 0} < ∞ for all β ∈ Δ, (17)

there is a unique continuousA-algebra map ϕ : A[[t]] −→ A[[u]]Δ such that ϕ(t) =
ct for all t ∈ t. Moreover, if ∇ ⊂ N

(t) is a non-empty co-ideal such that ϕ(∇A) = 0,
then ϕ induces a unique continuous A-algebra map A[[t]]∇ −→ A[[u]]Δ sending
(the class of) each t ∈ t to ct .

Proof Let us consider the unique A-algebra map ϕ0 : A[t] −→ A[[u]]Δ defined by
ϕ0(t) = ct for all t ∈ t. From (14) and (15) in 2, we know that

ϕ0

⎛

⎜
⎜
⎝

∑

α∈N(t)
finite

aαtα

⎞

⎟
⎟
⎠ =

∑

e∈Δ

⎛

⎜
⎜
⎝

∑

α∈N(t)
|α|≤|e|

Ce(ϕ0, α)aα

⎞

⎟
⎟
⎠ue.

Since for a fixed e ∈ N
(u) the support of the α ∈ N

(t) such that |α| ≤ |e| and
Ce(ϕ0, α) �= 0 is contained in the finite set

⋃

β∈Δ
β≤e

{t ∈ t | ctβ �= 0},

the set of such α’s is always finite and we deduce that ϕ0 is continuous, and so there
is a unique continuous extension ϕ : A[[t]] −→ A[[u]]Δ such that ϕ(t) = ct for all
t ∈ t.

The last part is clear.
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Remark 2 Let us notice that, after (16), to get the equality ϕ(∇A) = 0 in the above
proposition it is enough to have for each α ∈ ∇c (actually, it will be enough to
consider the α ∈ ∇c minimal with respect to the ordering ≤ in N

(t)):

∑

t∈supp(α)

αt · supp(ct ) ⊂ Δc.

Definition 5 Let ∇ ⊂ N
(t),Δ ⊂ N

(u) be non-empty co-ideals. An A-algebra map
ϕ : A[[t]]∇ −→ A[[u]]Δ will be called a substitution map if the following properties
hold:

(1) ϕ is continuous.
(2) ϕ(t) ∈ nA0 (u)/ΔA for all t ∈ t.
(3) The family c = {ϕ(t), t ∈ t} satisfies property (17).

The set of substitution maps A[[t]]∇ −→ A[[u]]Δ will be denoted by
SA(t,u; ∇,Δ). The trivial substitution map A[[t]]∇ −→ A[[u]]Δ is the one sending
any t ∈ t to 0. It will be denoted by 0.

Remark 3 In the above definition, a such ϕ is uniquely determined by the family
c = {ϕ(t), t ∈ t}, and will be called the substitution map associated with c.
Namely, the family c can be lifted toA[[u]] by means of the naturalA-linear scission
A[[u]]Δ ↪→ A[[u]] and we may consider the unique continuous A-algebra map
ψ : A[[t]] → A[[u]] such that ψ(s) = cs for all s ∈ s. Since ϕ is continuous, we
have a commutative diagram

and so ψ(∇A) ⊂ ΔA. Then, we may identify

SA(t,u; ∇,Δ) ≡
{
ψ ∈ SA(t,u;N(t),Δ) | ψ(∇A) = 0

}
.

For α ∈ ∇ and e ∈ Δ with |α| ≤ |e| we will write Ce(ϕ, α) := Ce(ϕ0, α), where
ϕ0 : A[t] → A[[u]]Δ is the A-algebra map given by ϕ0(t) = ϕ(t) for all t ∈ t
(see (14) in 2).

Example 1 For any family of integers ν = {νt ≥ 1, t ∈ t}, we will denote [ν] :
A[[t]]∇ −→ A[[t]]ν∇ the substitution map determined by [ν](t) = tνt for all t ∈ t,
where

ν∇ := {γ ∈ N
(t) | ∃α ∈ ∇, γ ≤ να}.
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We obviously have [νν′] = [ν] ◦ [ν′].
Lemma 7 The composition of two substitution maps A[[t]]∇ ϕ→ A[[u]]Δ ψ→
A[[s]]Ω is a substitution map and we have

Cf (ψ ◦ϕ, α) =
∑

e∈Δ
|f |≥|e|≥|α|

Ce(ϕ, α)Cf (ψ, e), ∀f ∈ Ω,∀α ∈ ∇, |α| ≤ |f |.

Moreover, if one of the substitution maps is trivial, then the composition is trivial
too.

Proof Properties (1) and (2) in Definition 5 are clear. Let us see property (3). For
each t ∈ t let us write:

ϕ(t) =: ct =
∑

β∈Δ
0<|β|

ctβuβ ∈ nA0 (u)/ΔA ⊂ A[[u]]Δ,

and so

(ψ ◦ϕ)(t) = ψ

⎛

⎜
⎝
∑

β∈Δ
0<|β|

ctβuβ

⎞

⎟
⎠ =

∑

β∈Δ
0<|β|

ctβ

⎛

⎜
⎝
∑

f∈Ω
|f |≥|β|

Cf (ψ, β)sf

⎞

⎟
⎠ =

∑

f∈Ω
|f |>0

dtf sf

with

dtf =
∑

β∈Δ
0<|β|≤|f |

ctβCf (ψ, β)

and for a fixed f ∈ Ω the set

{t ∈ t | dtf �= 0} ⊂
⋃

β∈∇,|β|≤|f |
Cf (ψ,β) �=0

{t ∈ t | ctβ �= 0}

is finite. On the other hand

(ψ ◦ϕ)(tα) = ψ

⎛

⎜
⎝
∑

e∈Δ
|e|≥|α|

Ce(ϕ, α)ue

⎞

⎟
⎠ =

∑

e∈Δ
|e|≥|α|

Ce(ϕ, α)

⎛

⎜
⎝
∑

f∈Ω
|f |≥|e|

Cf (ψ, e)sf

⎞

⎟
⎠ =

∑

f∈Ω
|f |≥|α|

⎛

⎜
⎝
∑

e∈Δ
|f |≥|e|≥|α|

Ce(ϕ, α)Cf (ψ, e)

⎞

⎟
⎠uf
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and so

Cf (ψ ◦ϕ, α) =
∑

e∈Δ
|f |≥|e|≥|α|

Ce(ϕ, α)Cf (ψ, e), ∀f ∈ Ω,∀α ∈ ∇, |α| ≤ |f |.

If B is a commutative A-algebra, then any substitution map ϕ : A[[s]]∇ →
A[[t]]Δ induces a natural substitution map ϕB : B[[s]]∇ → B[[t]]Δ making the
following diagram commutative

3. For any substitution map ϕ : A[[s]]∇ −→ A[[t]]Δ and for any integer n ≥ 0 we
have ϕ(∇n

A/∇A) ⊂ Δn
A/ΔA and so there are induced substitution maps τn(ϕ) :

A[[s]]∇n → A[[t]]Δn making commutative the following diagram

Moreover, if ϕ is the substitution map associated with a family c = {cs, s ∈ s},

cs =
∑

β∈Δ
csβ tβ ∈ nA0 (t)/ΔA ⊂ A[[t]]Δ,

then τn(ϕ) is the substitution map associated with the family τn(c) = {τn(c)s, s ∈
s}, with

τn(c)
s :=

∑

β∈Δ
|β|≤n

csβ tβ ∈ nA0 (t)/Δ
n
A ⊂ A[[t]]Δn.

So, we have truncations τn : SA(s, t; ∇,Δ) −→ SA(s, t; ∇n,Δn), for n ≥ 0.

We may also add two substitution maps ϕ, ϕ′ : A[[s]] −→ A[[t]]Δ to obtain a new
substitution map ϕ + ϕ′ : A[[s]] −→ A[[t]]Δ determined by1:

(ϕ + ϕ′)(s) = ϕ(s)+ ϕ′(s), for all s ∈ s.

1Pay attention that (ϕ + ϕ ′)(r) �= ϕ(r)+ ϕ ′(r) for arbitrary r ∈ A[[s]]∇ .
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It is clear that SA(s, t;N(s),Δ) becomes an abelian group with the addition, the zero
element being the trivial substitution map 0.

If ψ : A[[t]]Δ −→ A[[u]]Ω is another substitution map, we clearly have

ψ ◦ (ϕ + ϕ′) = ψ ◦ϕ + ψ ◦ϕ′.

However, if ψ : A[[u]] −→ A[[s]] is a substitution map, we have in general

(ϕ + ϕ′) ◦ψ �= ϕ ◦ψ + ϕ′ ◦ψ.

Definition 6 We say that a substitution map ϕ : A[[t]]∇ −→ A[[u]]Δ has constant
coefficients if ctβ ∈ k for all t ∈ t and all β ∈ Δ, where

ϕ(t) = ct =
∑

β∈Δ
0<|β|

ctβuβ ∈ nA0 (u)/ΔA ⊂ A[[u]]Δ.

This is equivalent to saying that Ce(ϕ, α) ∈ k for all e ∈ Δ and for all α ∈ ∇
with 0 < |α| ≤ |e|. Substitution maps which constant coefficients are induced by
substitution maps k[[t]]∇ −→ k[[u]]Δ.

We say that a substitution map ϕ : A[[t]]∇ −→ A[[u]]Δ is combinatorial if
ϕ(t) ∈ u for all t ∈ t. A combinatorial substitution map has constant coefficients
and is determined by (and determines) a map t → u, necessarily with finite fibers.
If ι : t → u is such a map, we will also denote by ι : A[[t]]∇ −→ A[[u]]ι∗(∇) the
corresponding substitution map, with

ι∗(∇) := {β ∈ N
(u) | β ◦ ι ∈ ∇}.

4. Let ϕ : A[[s]]∇ −→ A[[t]]Δ be a continuous A-linear map. It is determined by
the family K = {Ke,α, e ∈ Δ,α ∈ ∇} ⊂ A, with ϕ(sα) =

∑

e∈Δ
Ke,αte. We will

assume that

• ϕ is compatible with the order filtration, i.e. ϕ(∇n
A/∇A) ⊂ Δn

A/ΔA for all
n ≥ 0.

• ϕ is compatible with the natural augmentationsA[[s]]∇ → A and A[[t]]Δ →
A.

These properties are equivalent to the fact that Ke,α = 0 whenever |α| > |e| and
K0,0 = 1.

Let K = {Ke,α, e ∈ Δ,α ∈ ∇, |α| ≤ |e|} be a family of elements of A with

#{α ∈ ∇ | |α| ≤ |e|,Ke,α �= 0} < +∞, ∀e ∈ Δ,
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and K0,0 = 1, and let ϕ : A[[s]]∇ −→ A[[t]]Δ be the A-linear map given by

ϕ

(
∑

α∈∇
aαsα

)

=
∑

e∈Δ

⎛

⎜
⎝
∑

α∈∇
|α|≤|e|

Ke,αaα

⎞

⎟
⎠ te.

It is clearly continuous and since ϕ(sα) =
∑

e∈Δ
|α|≤|e|

Ke,αte, it determines the family K .

Proposition 3 With the above notations, the following properties are equivalent:

(a) ϕ is a substitution map.
(b) For each μ, ν ∈ ∇ and for each e ∈ Δ with |μ+ν| ≤ |e|, the following equality

holds:

Ke,μ+ν =
∑

β+γ=e
|μ|≤|β|,|ν|≤|γ |

Kβ,μKγ,ν.

Moreover, if the above equality holds, then Ke,0 = 0 whenever |e| > 0 and ϕ is
the substitution map determined by

ϕ(u) =
∑

e∈Δ
0<|e|

Ke,su te, u ∈ s.

Proof (a) ⇒ (b) If ϕ is a substitution map, there is a family

cs =
∑

β∈Δ
csβ tβ ∈ A[[t]]Δ, s ∈ s,

such that ϕ(s) = cs . So, from (15), we deduce

Ke,α = Ce(ϕ, α) =
∑

f••∈P(e,α)
Cf•• for |α| ≤ |e|,

with Cf•• =
∏

s∈suppα

αs∏

r=1

csfsr .

For each ordered pair (r, s) of non-negative integers there are natural injective
maps

i ∈ [r] �→ i ∈ [r + s], i ∈ [s] �→ r + i ∈ [r + s]

inducing a natural bijection [r] ! [s] ←→ [r + s]. Consequently, for (μ, ν) ∈
N
(s) × N

(s) there are natural injective maps [μ] ↪→ [μ + ν] ←↩ [ν] inducing a
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natural bijection [μ] ! [ν] ←→ [μ + ν]. So, for each e ∈ N
(t) and each f•• ∈

P(e, μ + ν), we can consider the restrictions g•• = f••|[μ] ∈ P(β,μ), h•• =
f••|[ν] ∈ P(γ, ν), with β = |g••| and γ = |h••|, β + γ = e. The correspondence
f•• �−→ (β, γ,g••,h••) establishes a bijection between P(e, μ + ν) and the set
of (β, γ,g••,h••) with β, γ ∈ N

(t), g•• ∈ P(β, μ), h•• ∈ P(γ, ν) and |β| ≥
|μ|, |γ | ≥ |ν|, β+γ = e. Moreover, under this bijection we haveCf•• = Cg••Ch••
and we deduce

Ke,μ+ν = Ce(ϕ, μ+ ν) =
∑

f••
Cf•• =

∑

β+γ=e
|μ|≤|β|
|ν|≤|γ |

∑

g••,h••
Cg••Ch•• =

∑

β+γ=e
|μ|≤|β|
|ν|≤|γ |

⎛

⎝
∑

g••
Cg••

⎞

⎠

(
∑

h••
Ch••

)

=
∑

β+γ=e
|μ|≤|β|
|ν|≤|γ |

Cβ(ϕ,μ)Cγ (ϕ, ν) =
∑

β+γ=e
|μ|≤|β|
|ν|≤|γ |

Kβ,μKγ,ν.

where f•• ∈ P(e, μ+ ν), g•• ∈ P(β,μ) and h•• ∈ P(γ, ν).
(b) ⇒ (a) First, one easily proves by induction on |e| that Ke,0 = 0 whenever

|e| > 0, and so ϕ(1) = ϕ(s0) = K0,0 = 1. Let a = ∑α aαsα, b = ∑α bαsα be
elements in A[[t]]Δ, and c = ab =∑α cαsα with cα =∑μ+ν=α aμbν . We have:

ϕ(ab) = ϕ(c) =
∑

e∈Δ

⎛

⎜
⎝
∑

α∈∇
|α|≤|e|

Ke,αcα

⎞

⎟
⎠ te =

∑

e∈Δ

⎛

⎜
⎝
∑

μ,ν∈∇
|μ+ν|≤|e|

Ke,μ+νaμbν

⎞

⎟
⎠ te =

∑

e

⎛

⎜
⎝
∑

|μ+ν|≤|e|

∑

β+γ=e
|μ|≤|β|,|ν|≤|γ |

Kβ,μKγ,νaμbν

⎞

⎟
⎠ te = · · · = ϕ(a)ϕ(b).

We conclude that ϕ is a (continuous) A-algebra map determined by the images

ϕ(u) = ϕ
(

ssu
)

=
∑

e∈Δ
0<|e|

Ke,su te, u ∈ s,

(remember that {su}u∈s is the canonical basis of N(s)) and so it is a substitution map.

Definition 7 The tensor product of two substitution maps ϕ : A[[s]]∇ → A[[t]]Δ,
ψ : A[[u]]∇′ → A[[v]]Δ′ is the unique substitution map

ϕ ⊗ ψ : A[[s ! u]]∇×∇′ −→ A[[t ! v]]Δ×Δ′
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making commutative the following diagram

where the horizontal arrows are the combinatorial substitution maps induced by the
inclusions s,u ↪→ s ! u, t, v ↪→ t ! v2.

For all (α, β) ∈ ∇ × ∇′ ⊂ N
(s) × N

(u) ≡ N
(s!u) we have

(ϕ ⊗ ψ)(sαuβ) = ϕ(sα)ψ(uβ) = · · · =
∑

e∈Δ,f ∈Δ′
|e|≥|α|
|f |≥|β|

Ce(ϕ, α)Cf (ψ, β)tevf

and so, for all (e, f ) ∈ Δ×Δ′ and all (α, β) ∈ ∇ × ∇′ with |e| + |f | = |(e, f )| ≥
|(α, β)| = |α| + |β| we have

C(e,f )(ϕ ⊗ ψ, (α, β)) =
{

Ce(ϕ, α)Cf (ψ, β) if |α| ≤ |e| and |β| ≤ |f |,
0 otherwise.

4 The Action of Substitution Maps

In this section k will be a commutative ring, A a commutative k-algebra, M an
(A;A)-bimodule, s and t sets and ∇ ⊂ N

(s), Δ ⊂ N
(t) non-empty co-ideals.

Any A-linear continuous map ϕ : A[[s]]∇ → A[[t]]Δ satisfying the assumptions
in 4 induces (A;A)-linear maps

ϕM := ϕ⊗̂IdM : M[[s]]∇ ≡ A[[s]]Δ⊗̂AM −→ M[[t]]Δ ≡ A[[t]]Δ⊗̂AM

and

Mϕ := IdM⊗̂ϕ : M[[s]]∇ ≡ M⊗̂AA[[s]]∇ −→ M[[t]]Δ ≡ M⊗̂AA[[t]]Δ.

2Let us notice that there are canonical continuous isomorphisms of A-algebras A[[s ! u]]∇×∇′ 2
A[[s]]∇ ⊗̂AA[[u]]∇′ , A[[s ! u]]Δ×Δ′ 2 A[[s]]Δ⊗̂AA[[u]]Δ′ .
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If ϕ is determined by the family K = {Ke,α, e ∈ ∇, α ∈ Δ, |α| ≤ |e|} ⊂ A, with

ϕ(sα) =
∑

e∈Δ
|e|≥|α|

Ke,αte, then

ϕM

(
∑

α∈∇
mαsα

)

=
∑

α∈∇
ϕ(sα)mα =

∑

e∈Δ

⎛

⎜
⎝
∑

α∈∇
|α|≤|e|

Ke,αmα

⎞

⎟
⎠ te, m ∈ M[[s]]∇,

Mϕ

(
∑

α∈∇
mαsα

)

=
∑

α∈∇
mαϕ(sα) =

∑

e∈Δ

⎛

⎜
⎝
∑

α∈∇
|α|≤|e|

mαKe,α

⎞

⎟
⎠ te, m ∈ M[[s]]∇.

If ϕ′ : A[[t]]Δ → A[[u]]Ω is another A-linear continuous map satisfying the
assumptions in 4 and ϕ′′ = ϕ ◦ ϕ′, we have ϕ′′

M = ϕM ◦ϕ′
M , Mϕ

′′ = Mϕ ◦ Mϕ′.
If ϕ : A[[s]]∇ → A[[t]]Δ is a substitution map and m ∈ M[[s]]∇ , a ∈ A[[s]]∇ ,

we have

ϕM(am) = ϕ(a)ϕM(m), Mϕ(ma) = Mϕ(m)ϕ(a),

i.e. ϕM is (ϕ;A)-linear and Mϕ is (A; ϕ)-linear. Moreover, ϕM and Mϕ are
compatible with the augmentations, i.e.

ϕM(m) ≡ m0, Mϕ(m) ≡ m0mod nM0 (t)/ΔM, m ∈ M[[s]]∇ . (18)

If ϕ is the trivial substitution map (i.e. ϕ(s) = 0 for all s ∈ s), then ϕM : M[[s]]∇ →
M[[t]]Δ and Mϕ : M[[s]]∇ → M[[t]]Δ are also trivial, i.e.

ϕM(m) = Mϕ(m) = m0, m ∈ M[[s]]∇ .

5. The above constructions apply in particular to the case of any k-algebra R over
A, for which we have two induced continuous maps, ϕR = ϕ⊗̂IdR : R[[s]]∇ →
R[[t]]Δ, which is (A;R)-linear, and Rϕ = IdR⊗̂ϕ : R[[s]]∇ → R[[t]]Δ, which
is (R;A)-linear.

For r ∈ R[[s]]∇ we will denote

ϕ •r := ϕR(r), r •ϕ := Rϕ(r).

Explicitly, if r =∑α rαsα with α ∈ ∇, then

ϕ •r =
∑

e∈Δ

⎛

⎜
⎝
∑

α∈∇
|α|≤|e|

Ce(ϕ, α)rα

⎞

⎟
⎠ te, r •ϕ =

∑

e∈Δ

⎛

⎜
⎝
∑

α∈∇
|α|≤|e|

rαCe(ϕ, α)

⎞

⎟
⎠ te. (19)
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From (18), we deduce that ϕR(Us(R; ∇)) ⊂ Ut(R;Δ) and Rϕ(U
s(R; ∇)) ⊂

Ut(R;Δ). We also have ϕ •1 = 1•ϕ = 1.
If ϕ is a substitution map with constant coefficients, then ϕR = Rϕ is a ring

homomorphism over ϕ. In particular, ϕ •r = r •ϕ and ϕ •(rr ′) = (ϕ •r)(ϕ •r ′).
If ϕ = 0 : A[[s]]∇ → A[[t]]Δ is the trivial substitution map, then 0•r = r •0 =

r0 for all r ∈ R[[s]]∇ . In particular, 0•r = r •0 = 1 for all r ∈ Us(R; ∇).
If ψ : R[[t]]Δ → R[[u]]Ω is another substitution map, one has

ψ •(ϕ •r) = (ψ ◦ϕ)•r, (r •ϕ)•ψ = r •(ψ ◦ϕ).

Since (R[[s]]∇)opp = Ropp[[s]]∇ , for any substitution map ϕ : A[[s]]∇ → A[[t]]Δ
we have (ϕR)opp = Roppϕ and ( Rϕ)

opp = ϕRopp .
The proof of the following lemma is straightforward and it is left to the reader.

Lemma 8 If ϕ : A[[s]]∇ → A[[t]]Δ is a substitution map, then:

(i) ϕR is left ϕ-linear, i.e. ϕR(ar) = ϕ(a)ϕR(r) for all a ∈ A[[s]]∇ and for all
r ∈ R[[s]]∇ .

(ii) Rϕ is right ϕ-linear, i.e. Rϕ(ra) = Rϕ(r)ϕ(a) for all a ∈ A[[s]]∇ and for all
r ∈ R[[s]]∇ .

Let us assume again that ϕ : A[[s]]∇ → A[[t]]Δ is an A-linear continuous map
satisfying the assumptions in 4. We define the (A;A)-linear map

ϕ∗ : f ∈ Homk(A,A[[s]]∇) �−→ ϕ∗(f ) = ϕ ◦f ∈ Homk(A,A[[t]]Δ)

which induces another one ϕ∗ : Endtop
k[[s]]∇ (A[[s]]∇) −→ Endtop

k[[t]]Δ(A[[t]]Δ) defined
by

ϕ∗(f ) := (ϕ∗ (f |A))e = (ϕ ◦f |A)e , f ∈ Endtop
k[[s]]∇ (A[[s]]∇).

More generally, for a given left A-module E (which will be considered as a trivial
(A;A)-bimodule) we have (A;A)-linear maps

(ϕE)∗ : f ∈ Homk(E,E[[s]]∇) �→ (ϕE)∗(f ) = ϕE ◦f ∈ Homk(E,E[[t]]Δ),
(ϕE)∗ : Endtop

k[[s]]∇ (E[[s]]∇) → Endtop
k[[t]]Δ(E[[t]]Δ), (ϕE)∗(f ) := (ϕE ◦f |A)e .

Let us denote R = Endk(E). For each r ∈ R[[s]]∇ and for each e ∈ E we have

ϕ̃R(r)(e) = ϕE (̃r(e)) ,
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or more graphically, the following diagram is commutative (see (7)):

In order to simplify notations, we will also write

ϕ •f := (ϕE)∗(f ) ∀f ∈ Endtop
k[[s]]∇ (E[[s]]∇)

and so have ϕ̃ •r = ϕ • r̃ for all r ∈ R[[s]]∇ . Let us notice that (ϕ •f )(e) =
(ϕE ◦f )(e) for all e ∈ E, i.e.

(ϕ •f )|E = (ϕE ◦f )|E, but in generalϕ •f �= ϕE ◦f. (20)

If ϕ is the trivial substitution map, then (ϕE)∗ (resp. (ϕE)∗) is also triv-
ial in the sense that if f = ∑

α fαsα ∈ Homk(E,E[[s]]∇) (resp. f =
∑

α fαsα ∈ Endk(E)[[s]]∇ ≡ Endtop
k[[s]]∇ (E[[s]]∇)), then (ϕE)∗(f ) = f0 ∈

Endk(E) ⊂ Homk(E,E[[s]]∇) (resp. (ϕE)∗(f ) = f e0 ∈ Endtop
k[[s]]∇ (E[[s]]∇), with

f e0 (
∑

α eαsα) =∑α f0(eα)sα).
If ϕ : A[[s]]∇ → A[[t]]∇ is a substitution map, we have

(ϕE)∗(af ) = ϕ(a)(ϕE)∗(f ) ∀a ∈ A[[s]]∇,∀f ∈ Homk(E,E[[s]]∇)

and so

(ϕE)∗(af ) = ϕ(a)(ϕE)∗(f ) ∀a ∈ A[[s]]∇,∀f ∈ Endtop
k[[s]]∇ (E[[s]]∇).

Moreover, the following inclusions hold

(ϕE)∗(Hom◦
k (E,M[[s]]∇)) ⊂ Hom ◦

k (E,E[[t]]Δ),
(ϕE)∗

(
Aut ◦

k[[s]]∇ (E[[s]]∇)
)

⊂ Aut ◦
k[[t]]Δ(E[[t]]Δ),

and so we have a commutative diagram:

(21)
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Lemma 9 With the notations above, if ϕ : k[[s]]∇ → k[[t]]Δ is a substitution map
with constant coefficients, then

〈ϕ •r, ϕE(e)〉 = ϕE(〈r, e〉), ∀r ∈ R[[s]]∇ ,∀e ∈ E[[s]]∇ .

Proof Let us write r = ∑α rαsα , rα ∈ R = Endk(E) and e = ∑α eαsα , eα ∈ E.
We have

〈ϕ •r, ϕE(e)〉 = (ϕ̃ •r)(ϕE(e)) =
(
∑

α

ϕ(sα)r̃α

)(
∑

α

ϕ(sα)eα

)

=
∑

α,β

ϕ(sα)r̃α
(
ϕ(sβ)eβ

) =
∑

α,β

ϕ(sα)ϕ(sβ)r̃α
(
eβ
) =
∑

α,β

ϕ(sα+β)r̃α(eβ) =

∑

γ

ϕ(sγ )

⎛

⎝
∑

α+β=γ
r̃α(eβ)

⎞

⎠ = ϕE

⎛

⎝
∑

γ

⎛

⎝
∑

α+β=γ
r̃α(eβ)

⎞

⎠ sγ

⎞

⎠

= ϕE (̃r(e)) = ϕE(〈r, e〉).

Notice that if ϕ : k[[s]]∇ → k[[t]]Δ is a substitution map with constant
coefficients, we already pointed out that Rϕ = ϕR , and indeed, ϕ •r = r •ϕ for
all r ∈ R[[s]]∇ .

6. Let us denote ι : A[[s]]∇ → A[[s ! t]]∇×Δ, κ : A[[t]]Δ → A[[s ! t]]∇×Δ the
combinatorial substitution maps given by the inclusions s ↪→ s ! t, t ↪→ s ! t.

Let us notice that for r ∈ R[[s]]∇ and r ′ ∈ R[[t]]Δ, we have (see Definition 3)
r� r ′ = (ι•r)(κ •r ′) ∈ R[[s ! t]]∇×Δ.

If ∇′ ⊂ ∇ ⊂ N
(s), Δ′ ⊂ Δ ⊂ N

(t) are non-empty co-ideals, we have

τ∇×Δ,∇′×Δ′(r � r ′) = τ∇,∇′ (r)�τΔ,Δ′(r ′).

If we denote by Σ : R[[s ! s]]∇×∇ → R[[s]]∇ the combinatorial substitution map
given by the co-diagonal map s ! s → s, it is clear that for each r, r ′ ∈ R[[s]]∇ we
have

rr ′ = Σ •(r� r ′). (22)

If ϕ : A[[s]]∇ → A[[u]]Ω and ψ : A[[t]]Δ → A[[v]]Ω ′ are substitution maps,
we have new substitution maps ϕ ⊗ Id : A[[s ! t]]∇×Δ → A[[u ! t]]Ω×Δ and
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Id ⊗ ψ : A[[s ! t]]∇×Δ → A[[s ! v]]∇×Ω ′ (see Definition 7) taking part in the
following commutative diagrams of (A;A)-bimodules

and

So (ϕ •r)� r ′ = (ϕ ⊗ Id)•(r� r ′) and r� (r ′ •ψ) = (r� r ′)•(Id ⊗ ψ).

5 Multivariate Hasse-Schmidt Derivations

In this section we study multivariate (possibly ∞-variate) Hasse–Schmidt deriva-
tions. The original reference for 1-variate Hasse–Schmidt derivations is [4]. This
notion has been studied and developed in [8, §27] (see also [13] and [10]). In [6] the
authors study “finite dimensional” Hasse–Schmidt derivations, which correspond in
our terminology to p-variate Hasse–Schmidt derivations.

From now on k will be a commutative ring, A a commutative k-algebra, s a set
and Δ ⊂ N

(s) a non-empty co-ideal.

Definition 8 A (s,Δ)-variate Hasse-Schmidt derivation, or a (s,Δ)-variate HS-
derivation for short, of A over k is a family D = (Dα)α∈Δ of k-linear maps Dα :
A −→ A, satisfying the following Leibniz type identities:

D0 = IdA, Dα(xy) =
∑

β+γ=α
Dβ(x)Dγ (y)

for all x, y ∈ A and for all α ∈ Δ. We denote by HSs
k(A;Δ) the set of all

(s,Δ)-variate HS-derivations of A over k and HSs
k(A) = for Δ = N

(s). In the
case where s = {1, . . . , p}, a (s,Δ)-variate HS-derivation will be simply called
a (p,Δ)-variate HS-derivation and we denote HSpk (A;Δ) := HSs

k(A;Δ) and
HSpk (A) := HSs

k(A). For p = 1, a 1-variate HS-derivation will be simply called
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a Hasse–Schmidt derivation (a HS-derivation for short), or a higher derivation3,
and we will simply write HSk(A;m) := HS1

k(A;Δ) for Δ = {q ∈ N | q ≤ m}4 and
HSk(A) := HS1

k(A).

7. The above Leibniz identities for D ∈ HSs
k(A;Δ) can be written as

Dαx =
∑

β+γ=α
Dβ(x)Dγ , ∀x ∈ A,∀α ∈ Δ. (23)

Any (s,Δ)-variate HS-derivation D of A over k can be understood as a power
series

∑

α∈Δ
Dαsα ∈ Endk(A)[[s]]Δ

and so we consider HSs
k(A;Δ) ⊂ Endk(A)[[s]]Δ.

Proposition 4 Let D ∈ HSs
k(A;Δ) be a HS-derivation. Then, for each α ∈ Δ, the

componentDα : A → A is a k-linear differential operator or order ≤ |α| vanishing
on k. In particular, if |α| = 1 then Dα : A → A is a k-derivation.

Proof The proof follows by induction on |α| from (23).

The map

D ∈ HSs
k(A; t1(s)) �→ {Dα}|α|=1 ∈ Derk(A)s (24)

is clearly a bijection.
The proof of the following proposition is straightforward and it is left to the

reader (see Notation 1 and 2).

Proposition 5 Let us denote R = Endk(A) and let D =∑α Dαsα ∈ R[[s]]Δ be a
power series. The following properties are equivalent:

(a) D is a (s,Δ)-variate HS-derivation of A over k.
(b) The map D̃ : A[[s]]Δ → A[[s]]Δ is a (continuous) k[[s]]Δ-algebra homomor-

phism compatible with the natural augmentation A[[s]]Δ → A.
(c) D ∈ Us(R;Δ) and for all a ∈ A[[s]]Δ we have Da = D̃(a)D.
(d) D ∈ Us(R;Δ) and for all a ∈ A we have Da = D̃(a)D.

Moreover, in such a case D̃ is a bi-continuous k[[s]]Δ-algebra automorphism of
A[[s]]Δ.

Corollary 1 Under the above hypotheses, HSs
k(A;Δ) is a (multiplicative) sub-

group of Us(R;Δ).

3This terminology is used for instance in [8].
4These HS-derivations are called of length m in [10].
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If Δ′ ⊂ Δ ⊂ N
(s) are non-empty co-ideals, we obviously have group

homomorphisms τΔΔ′ : HSs
k(A;Δ) −→ HSs

k(A;Δ′). Since any D ∈ HSs
k(A;Δ) is

determined by its finite truncations, we have a natural group isomorphism

HSs
k(A) = lim←−

Δ′⊂Δ
&Δ′<∞

HSs
k(A;Δ′).

In the case Δ′ = Δ1 = Δ∩ t1(s), since HSs
k(A;Δ1) 2 Derk(A)Δ

1
, we can think

on τΔΔ1 as a group homomorphism τΔΔ1 : HSs
k(A;Δ) → Derk(A)Δ

1
whose kernel

is the normal subgroup of HSs
k(A;Δ) consisting of HS-derivationsD with Dα = 0

whenever |α| = 1.
In the case Δ′ = Δn = Δ ∩ tn(s), for n ≥ 1, we will simply write τn = τΔ,Δn :

HSs
k(A;Δ) −→ HSs

k(A;Δn).

Remark 4 Since for any D ∈ HSs
k(A;Δ) we have Dα ∈ Diff|α|

A/k(A), we may
also think on D as an element in a generalized Rees ring of the ring of differential
operators:

R̂
s (
DA/k(A);Δ

) :=
{
∑

α∈Δ
rαsα ∈ DA/k(A)[[s]]Δ | rα ∈ Diff|α|

A/k(A)

}

.

The group operation in HSs
k(A;Δ) is explicitly given by

(D,E) ∈ HSs
k(A;Δ)× HSs

k(A;Δ) �−→ D ◦E ∈ HSs
k(A;Δ)

with

(D ◦E)α =
∑

β+γ=α
Dβ ◦Eγ ,

and the identity element of HSs
k(A;Δ) is I with I0 = Id and Iα = 0 for all α �= 0.

The inverse of a D ∈ HSs
k(A;Δ) will be denoted by D∗.

Proposition 6 Let D ∈ HSs
k(A;Δ), E ∈ HSt

k(A; ∇) be HS-derivations. Then their
external productD�E (see Definition 3) is a (s ! t,∇ ×Δ)-variate HS-derivation.

Proof From Lemma 4 we know that D̃�E = D̃� Ẽ and we conclude by
Proposition 5.

Definition 9 For each a ∈ As and for each D ∈ HSs
k(A;Δ), we define a •D as

(a •D)α := aαDα, ∀α ∈ Δ.

It is clear that a •D ∈ HSs
k(A;Δ), a′ •(a •D) = (a′a)•D, 1•D = D and 0•D = I.
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If Δ′ ⊂ Δ ⊂ N
(s) are non-empty co-ideals, we have τΔΔ′(a •D) = a •τΔΔ′(D).

Hence, in the case Δ′ = Δ1 = Δ ∩ t1(s), since HSs
k(A;Δ1) 2 Derk(A)Δ

1
, the

image of τΔΔ1 : HSs
k(A;Δ) → Derk(A)Δ

1
is an A-submodule.

The following lemma provides a dual way to express the Leibniz identity (23), 7.

Lemma 10 For each D ∈ HSs
k(A;Δ) and for each α ∈ Δ, we have

xDα =
∑

β+γ=α
Dβ D

∗
γ (x), ∀x ∈ A.

Proof We have

∑

β+γ=α
Dβ D

∗
γ (x) =

∑

β+γ=α

∑

μ+ν=β
Dμ(D

∗
γ (x))Dν =

∑

e+ν=α

⎛

⎝
∑

μ+γ=e
Dμ(D

∗
γ (x))

⎞

⎠Dν = xDα.

It is clear that the map (24) is an isomorphism of groups (with the addition on
Derk(A) as internal operation) and so HSs

k(A; t1(s)) is abelian.

Notation 5 Let us denote

Hom ◦
k−alg(A,A[[s]]Δ) :=

{
f ∈ Homk−alg(A,A[[s]]Δ) | f (a) ≡ amod nA0 (s)/ΔA ∀a ∈ A

}
,

Aut ◦
k[[s]]Δ−alg(A[[s]]Δ) :=

{
f ∈ Auttop

k[[s]]Δ−alg(A[[s]]Δ) | f (a) ≡ a0mod nA0 (s)/ΔA ∀a ∈ A[[s]]Δ
}
.

It is clear that (see Notation 3) Hom ◦
k−alg(A,A[[s]]Δ) ⊂ Hom ◦

k (A,A[[s]]Δ) and
Aut ◦

k[[s]]Δ−alg(A[[s]]Δ) ⊂ Aut ◦
k[[s]]Δ(A[[s]]Δ) are subgroups and we have group

isomorphisms (see (10) and (9)):

HSs
k(A;Δ) D �→D̃−−−−→2 Aut ◦

k[[s]]Δ−alg(A[[s]]Δ) restriction−−−−−→2 Hom ◦
k−alg(A,A[[s]]Δ).

(25)

The composition of the above isomorphisms is given by

D ∈ HSs
k(A;Δ) ∼�−→ ΦD :=

[

a ∈ A �→
∑

α∈Δ
Dα(a)sα

]

∈ Hom ◦
k−alg(A,A[[s]]Δ).

(26)
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For each HS-derivation D ∈ HSs
k(A;Δ) we have

D̃

(
∑

α∈Δ
aαsα

)

=
∑

α∈Δ
ΦD(aα)sα,

for all
∑

α aαsα ∈ A[[s]]Δ, and for any E ∈ HSs
k(A;Δ) we have ΦD◦E = D̃ ◦ΦE .

If Δ′ ⊂ Δ is another non-empty co-ideal and we denote by πΔΔ′ : A[[s]]Δ →
A[[s]]Δ′ the projection, one has ΦτΔΔ′ (D) = πΔΔ′ ◦ΦD .

Definition 10 For each HS-derivation E ∈ HSs
k(A;Δ), we denote

�(E) := min{r ≥ 1 | ∃α ∈ Δ, |α| = r, Eα �= 0} ≥ 1

if E �= I and �(E) = ∞ if E = I. In other words, �(E) = ord(E − I). Clearly, if Δ
is bounded, then �(E) > max{|α| | α ∈ Δ} ⇐⇒ �(E) = ∞ ⇐⇒ E = I.

We obviously have �(E ◦E′) ≥ min{�(E), �(E′)} and �(E∗) = �(E). Moreover,
if �(E′) > �(E), then �(E ◦E′) = �(E):

�(E ◦E′) = ord(E ◦E′ − I) = ord(E ◦ (E′ − I)+ (E − I))

and since ord(E ◦ (E′ − I)) ≥5ord(E′ − I) = �(E′) > �(E) = ord(E− I) we obtain

�(E ◦E′) = · · · = ord(E ◦ (E′ − I)+ (E − I)) = ord(E − I) = �(E).

Proposition 7 For each D ∈ HSs
k(A;Δ) we have that Dα is a k-linear differential

operator or order ≤ & |α|
�(D)

' for all α ∈ Δ. In particular, Dα is a k-derivation if
|α| = �(D), whenever �(D) < ∞ ( ⇔ D �= I).

Proof We may assume D �= I. Let us call n := �(D) < ∞ and, for each α ∈ Δ,
qα := & |α|

n
' and rα := |α| − qαn, 0 ≤ rα < n. We proceed by induction on qα. If

qα = 0, then |α| < n, Dα = 0 and the result is clear. Assume that the order of Dβ

is less or equal than qβ whenever 0 ≤ qβ ≤ q . Now take α ∈ Δ with qα = q + 1.
For any a ∈ A we have

[Dα, a] =
∑

γ+β=α
|γ |>0

Dγ (a)Dβ =
∑

γ+β=α
|γ |≥n

Dγ (a)Dβ,

but any β in the index set of the above sum must have norm ≤ |α| − n and so
qβ < qα = q + 1 and Dβ has order ≤ qβ . Hence [Dα, a] has order ≤ q for any
a ∈ A and Dα has order ≤ q + 1 = qα.

5Actually, here an equality holds since the 0-term of E (as a series) is 1.
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The following example shows that the group structure on HS-derivations takes
into account the Lie bracket on usual derivations.

Example 2 If D,E ∈ HSs
k(A;Δ), then we may apply the above proposition to

[D,E] = D ◦E ◦D∗ ◦E∗ to deduce that [D,E]α ∈ Derk(A) whenever |α| = 2.
Actually, for |α| = 2 we have:

[D,E]α =
{ [Dst , Est ] if α = 2st

[Dst , Esu] + [Dsu , Est ] if α = st + su, with t �= u.

Proposition 8 For any D,E ∈ HSs
k(A;Δ) we have �([D,E]) ≥ �(D)+ �(E).

Proof We may assume D,E �= I. Let us write m = �(D) = �(D∗), n = �(E) =
�(E∗). We haveDβ = D∗

β = 0 whenever 0 < |β| < m andEγ = E∗
γ = 0 whenever

0 < |γ | < n.
Let α ∈ Δ be with 0 < |α| < m + n. If |α| < m or |α| < n it is clear that

[D,E]α = 0. Assume that m,n ≤ |α| < m+ n:

[D,E]α =
∑

β+γ+λ+μ=α
Dβ ◦Eγ D∗

λ E
∗
μ =

∑

γ+μ=α
Eγ E

∗
μ+

∑

β+γ+λ+μ=α
|β+λ|>0

Dβ Eγ D
∗
λ E

∗
μ = 0 +

∑

γ+λ+μ=α
|λ|>0

Eγ D
∗
λ E

∗
μ +

∑

β+γ+μ=α
|β|>0

Dβ Eγ E
∗
μ+

∑

β+γ+λ+μ=α
|β|,|λ|>0

Dβ Eγ D
∗
λ E

∗
μ =

∑

γ+λ+μ=α
|λ|≥m

Eγ D
∗
λ E

∗
μ +

∑

β+γ+μ=α
|β|≥m

Dβ Eγ E
∗
μ+

∑

β+γ+λ+μ=α
|β|,|λ|≥m

Dβ Eγ D
∗
λ E

∗
μ = D∗

α +
∑

γ+λ+μ=α
|λ|≥m,|γ+μ|>0

Eγ D
∗
λ E

∗
μ +Dα+

∑

β+μ=α
|β|≥m

|γ+μ|>0

Dβ Eγ E
∗
μ +

∑

β+λ=α
|β|,|λ|≥m

Dβ D
∗
λ +

∑

β+γ+λ+μ=α
|β|,|λ|≥m
|γ+μ|>0

Dβ Eγ D
∗
λ E

∗
μ =

D∗
α + 0 +Dα + 0 +

∑

β+λ=α
|β|,|λ|>0

Dβ D
∗
λ + 0 =

∑

β+λ=α
Dβ D

∗
λ = 0.

So, �([D,E]) ≥ �(D)+ �(E).

Corollary 2 Assume that Δ is bounded and let m be the max of |α| with α ∈ Δ.
Then, the group HSs

k(A;Δ) is nilpotent of nilpotent class ≤ m, where a central
series is6

{I} = {E| �(E) > m} � {E| �(E) ≥ m} � · · · � {E| �(E) ≥ 1} = HSs
k(A;Δ).

6Let us notice that {E ∈ HSs
k(A;Δ) | �(E) > r} = ker τΔ,Δr .
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Proposition 9 For each D ∈ HSs
k(A;Δ), its inverse D∗ is given by D∗

0 = Id and

D∗
α =

|α|∑

d=1

(−1)d
∑

α•∈P(α,d)
Dα1 ◦ · · · ◦Dαd , α ∈ Δ.

Moreover, σ|α|(D∗
α) = (−1)|α|σ|α|(Dα).

Proof The first assertion is a straightforward consequence of Lemma 2. For the
second assertion, first we have D∗

α = −Dα for all α with |α| = 1, and if we denote
by −1 ∈ As the constant family −1 and E = D ◦ ((−1)•D), we have �(E) > 1.
So, D∗ = ((−1)•D) ◦E∗ and

D∗
α =

∑

β+γ=α
(−1)|β|DβE

∗
γ = (−1)|α|Dα +

∑

β+γ=α
|γ |>0

(−1)|β|DβE
∗
γ .

From Proposition 7, we know that E∗
γ is a differential operator of order strictly less

than |γ | and so σ|α|(D∗
α) = (−1)|α|σ|α|(Dα).

6 The Action of Substitution Maps on HS-Derivations

In this section, k will be a commutative ring, A a commutative k-algebra, R =
Endk(A), s, t sets and Δ ⊂ N

(s), ∇ ⊂ N
(t) non-empty co-ideals.

We are going to extend the operation (a,D) ∈ As × HSs
k(A;Δ) �→ a •D ∈

HSs
k(A;Δ) (see Definition 9) by means of the constructions in section 4.

Proposition 10 For any substitution map ϕ : A[[s]]Δ → A[[t]]∇ , we have:

(1) ϕ∗
(

Hom ◦
k−alg(A,A[[s]]Δ)

)
⊂ Hom ◦

k−alg(A,A[[t]]∇),
(2) ϕR

(
HSs

k(A;Δ)) ⊂ HSt
k(A; ∇),

(3) ϕ∗
(

Aut ◦
k[[s]]Δ−alg(A[[s]]Δ)

)
⊂ Aut ◦

k[[t]]∇−alg(A[[t]]∇).
Proof By using diagram (21) and (25), it is enough to prove the first inclusion, but
if f ∈ Hom ◦

k−alg(A,A[[s]]Δ), it is clear that ϕ∗(f ) = ϕ ◦f : A → A[[t]]∇ is

a k-algebra map. Moreover, since ϕ(tA0 (s)/ΔA) ⊂ tA0 (t)/∇A (see 3) and f (a) ≡ a

mod tA0 (s)/ΔA for all a ∈ A, we deduce that ϕ(f (a)) ≡ ϕ(a) mod tA0 (t)/∇A for all
a ∈ A, but ϕ is anA-algebra map and ϕ(a) = a. So ϕ∗(f ) ∈ Hom◦

k−alg(A,A[[t]]∇).
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As a consequence of the above proposition and diagram (21) we have a
commutative diagram:

(27)

The inclusion (2) in Proposition 10 can be rephrased by saying that for any
substitution map ϕ : A[[s]]Δ → A[[t]]∇ and for any HS-derivationD ∈ HSs

k(A;Δ)
we have ϕ •D ∈ HSt

k(A; ∇) (see 5). MoreoverΦϕ •D = ϕ ◦ΦD .
It is clear that for any co-idealsΔ′ ⊂ Δ and ∇′ ⊂ ∇ with ϕ

(
Δ′
A/ΔA

) ⊂ ∇′
A/∇A

we have

τ∇∇′ (ϕ •D) = ϕ′ •τΔΔ′(D), (28)

where ϕ′ : A[[s]]Δ′ → A[[t]]∇′ is the substitution map induced by ϕ.
Let us notice that any a ∈ As gives rise to a substitution map ϕ : A[[s]]Δ →

A[[s]]Δ given by ϕ(s) = ass for all s ∈ s, and one has a •D = ϕ •D.

8. Let ϕ ∈ SA(s, t; ∇,Δ), ψ ∈ SA(t,u;Δ,Ω) be substitution maps and D,D′ ∈
HSs

k(A; ∇) HS-derivations. From 5 we deduce the following properties:

- If we denote E := ϕ •D ∈ HSt
k(A;Δ), we have

E0 = Id, Ee =
∑

α∈∇|α|≤|e|

Ce(ϕ, α)Dα, ∀e ∈ Δ. (29)

- If ϕ has constant coefficients, then ϕ •(D ◦D′) = (ϕ •D) ◦ (ϕ •D′). The
general case will be treated in Proposition 11.

- If ϕ = 0 is the trivial substitution map or if D = I, then ϕ •D = I.
- ψ •(ϕ •D) = (ψ ◦ϕ)•D.

Remark 5 We recall that a HS-derivation D ∈ HSk(A) is called iterative (see [8,
pg. 209]) if

Di ◦Dj =
(
i + j

i

)

Di+j ∀i, j ≥ 0.

This notion makes sense for s-variate HS-derivations of any length. Actually,
iterativity may be understood through the action of substitution maps. Namely, if we
denote by ι, ι′ : s ↪→ s!s the two canonical inclusions and ι+ι′ : A[[s]] → A[[s!s]]
is the substitution map determined by

(ι+ ι′)(s) = ι(s)+ ι′(s), ∀s ∈ s,



On Hasse–Schmidt Derivations: The Action of Substitution Maps 255

then a HS-derivationD ∈ HSs
k(A) is iterative if and only if

(ι+ ι′)•D = (ι•D) ◦ (ι′ •D).

A similar remark applies for any formal group law instead of ι+ ι′ (cf. [5]).

Proposition 11 Let ϕ : A[[s]]∇ → A[[t]]Δ be a substitution map. Then, the
following assertions hold:

(i) For each D ∈ HSs
k(A; ∇) there is a unique substitution map ϕD : A[[s]]∇ →

A[[t]]Δ such that
(
ϕ̃ •D

)
◦ϕD = ϕ ◦ D̃. Moreover, (ϕ •D)∗ = ϕD •D∗ and

ϕI = ϕ.
(ii) For each D,E ∈ HSs

k(A; ∇), we have ϕ •(D ◦E) = (ϕ •D) ◦ (ϕD •E) and
(
ϕD
)E = ϕD ◦E . In particular,

(
ϕD
)D∗ = ϕ.

(iii) If ψ is another composable substitution map, then (ϕ ◦ψ)D = ϕψ •D ◦ψD .
(iv) τn(ϕD) = τn(ϕ)

τn(D), for all n ≥ 1.
(v) If ϕ has constant coefficients then ϕD = ϕ.

Proof

(i) We know that

D̃ ∈ Aut ◦
k[[s]]∇−alg(A[[s]]∇) and ϕ̃ •D ∈ Aut ◦

k[[t]]Δ−alg(A[[t]]Δ).
The only thing to prove is that

ϕD :=
(
ϕ̃ •D

)−1
◦ϕ ◦ D̃

is a substitution map A[[s]]∇ → A[[t]]Δ (see Definition 5). Let start by
proving that ϕD is an A-algebra map. Let us write E = ϕ •D. For each a ∈ A

we have

ϕD(a) = Ẽ−1
(
ϕ
(
D̃(a)

)) = Ẽ−1 (ϕ (ΦD(a))) =
Ẽ−1 ((ϕ ◦ΦD)(a))) = Ẽ−1

(
Φϕ •D(a)

) = Ẽ−1
((
ϕ̃ •D

)
(a)
)

= a,

and so ϕD is A-linear. The continuity of ϕD is clear, since it is the composition
of continuous maps. For each s ∈ s, let us write

ϕ(s) =
∑

β∈Δ
|β|>0

csβ tβ.

Since ϕ is a substitution map, property (17) holds:

#{s ∈ s | csβ �= 0} < ∞ for all β ∈ Δ.
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We have

ϕD(s) = Ẽ∗ (ϕ(D̃(s))
) = Ẽ∗ (ϕ(s)) =

∑

β∈Δ

(
∑

α+γ=β
E∗
α(c

s
γ )

)

tβ =
∑

β∈Δ
dsβ tβ

with dsβ =∑
α+γ=β E

∗
α(c

s
γ ). So, for each β ∈ Δ we have

{s ∈ s | csβ �= 0} ⊂
⋃

γ≤β
{s ∈ s | csγ �= 0}

and ϕD satisfies property (17) too. We conclude that ϕD is a substitution map,

and obviously it is the only one such that
(
ϕ̃ •D

)
◦ϕD = ϕ ◦ D̃. From there,

we have

ϕD ◦ D̃∗ = ϕD ◦ D̃−1 =
(
ϕ̃ •D

)−1
◦ϕ = ˜(ϕ •D)∗ ◦ϕ,

and taking restrictions to A we obtain ϕD ◦ΦD∗ = Φ(ϕ •D)∗ and so ϕD •D∗ =
(ϕ •D)∗.

On the other hand, it is clear that if D = I, then ϕI = ϕ and if ϕ = 0,
0D = 0.

(ii) In order to prove the first equality, we need to prove the equality ˜ϕ •(D ◦E) =(
ϕ̃ •D

)
◦
(
ϕ̃D •E

)
. For this it is enough to prove the equality after restriction

to A, but

(
˜ϕ •(D ◦E)

)
|A = Φϕ • (D ◦E) = ϕ ◦ΦD ◦E = ϕ ◦ D̃ ◦ΦE,

((
ϕ̃ •D

)
◦
(
ϕ̃D •E

))
|A =

(
ϕ̃ •D

)
◦ΦϕD •E =

(
ϕ̃ •D

)
◦ϕD ◦ΦE

and both are equal by (i). For the second equality, we have
(
ϕD
)D∗ = ϕI = ϕ.

(iii) Since

˜((ϕ ◦ψ)•D) ◦
(
ϕψ •D ◦ψD

) = ˜(ϕ •(ψ •D)) ◦ϕψ •D ◦ψD =
ϕ ◦
(
ψ̃ •D

)
◦ψD = ϕ ◦ψ ◦ D̃,

we deduce that (ϕ ◦ψ)D = ϕψ •D ◦ψD from the uniqueness in (i).
Part (iv) is also a consequence of the uniqueness property in (i).

(v) Let us assume that ϕ has constant coefficients. We know from Lemma 9 that

〈ϕ •D,ϕ(a)〉 = ϕ (〈D, a〉) for all a ∈ A[[s]]∇ , and so
(
ϕ̃ •D

)
◦ϕ = ϕ ◦ D̃.

Hence, by the uniqueness property in (i) we deduce that ϕD = ϕ.
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The following proposition gives a recursive formula to obtain ϕD from ϕ.

Proposition 12 With the notations of Proposition 11, we have

Ce(ϕ, f + ν) =
∑

β+γ=e
|f+g|≤|β|,|ν|≤|γ |

Cβ(ϕ, f + g)Dg(Cγ (ϕ
D, ν))

for all e ∈ Δ and for all f, ν ∈ ∇ with |f + ν| ≤ |e|. In particular, we have the
following recursive formula

Ce(ϕ
D, ν) := Ce(ϕ, ν)−

∑

β+γ=e
|g|≤|β|,|ν|≤|γ |<|e|

Cβ(ϕ, g)Dg(Cγ (ϕ
D, ν)).

for e ∈ Δ, ν ∈ ∇ with |e| ≥ 1 and |ν| ≤ |e|, starting with C0(ϕ
D, 0) = 1.

Proof First, the case f = 0 easily comes from the equality

∑

e∈Δ
|ν|≤|e|

Ce(ϕ, ν)te = ϕ(sν) = (ϕ ◦ D̃)(sν) =
((
ϕ̃ •D

)
◦ϕD
)
(sν) ∀ν ∈ ∇.

For arbitrary f one has to use Proposition 3. Details are left to the reader.

The proof of the following corollary is a consequence of Lemma 10.

Corollary 3 Under the hypotheses of Proposition 11, the following identity holds
for each e ∈ Δ

(ϕ •D)∗e =
∑

|μ+ν|≤|e|
D∗
μ ·Dν

(
Ce(ϕ

D,μ+ ν)
)
.

Proposition 13 Let D ∈ HSt
k(A;Δ) be a HS-derivation and ϕ : A[[s]]∇ →

A[[t]]Δ a substitution map. Then, the following identity holds:

D̃ ◦ϕ = (D(ϕ)⊗ π) ◦
(
κ̃ •D

)
◦ ι,

where:

• D(ϕ) : A[[s]]∇ → A[[t]]Δ is the substitution map determined by D(ϕ)(s) =
D̃(ϕ(s)) for all s ∈ s.

• π : A[[t]]Δ → A is the augmentation, or equivalently, the substitution map7

given by π(t) = 0 for all t ∈ t.

7The map π can be also understood as the truncation τΔ,{0} : A[[t]]Δ → A[[t]]{0} = A.
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• ι : A[[s]]∇ → A[[s ! t]]∇×Δ and κ : A[[t]]Δ → A[[s ! t]]∇×Δ are the
combinatorial substitution maps determined by the inclusions s ↪→ s ! t and
t ↪→ s ! t, respectively.

Proof It is enough to check that both maps coincide on any a ∈ A and on any s ∈ s.
Details are left to the reader.

Remark 6 Let us notice that with the notations of Propositions 11 and 13, we have
ϕD = (ϕ •D)∗(ϕ).

The following proposition will not be used in this paper and will be stated without
proof.

Proposition 14 For any HS-derivation D ∈ HSs
k(A; ∇) and any substitution map

ϕ ∈ S(t,u;Δ,Ω), there exists a substitution mapD'ϕ ∈ S(s!t, s!u; ∇×Δ,∇×
Ω) such that for each HS-derivation E ∈ HSt

k(A;Δ) we have:

D� (ϕ •E) = (D ' ϕ)•(D�E).

7 Generating HS-Derivations

In this section we show how the action of substitution maps allows us to express
any HS-derivation in terms of a fixed one under some natural hypotheses. We
will be concerned with (s, tm(s))-variate HS-derivations, where tm(s) = {α ∈
N
(s) | |α| ≤ m}. To simplify we will writeA[[s]]m := A[[s]]tm(s) and HSs

k(A;m) :=
HSs

k(A; tm(s)) for any integer m ≥ 1, and HSs
k(A; ∞) := HSs

k(A). For m ≥ n ≥ 1
we will denote τmn : HSs

k(A;m) → HSs
k(A; n) the truncation map.

Assume that m ≥ 1 is an integer and let ϕ : A[[s]]m → A[[t]]m be a substitution
map. Let us write

ϕ(s) = cs =
∑

β∈N(t)
0<|β|≤m

csβ tβ ∈ n0(t)/tm(t) ⊂ A[[t]]m, s ∈ s

and let us denote by ϕm, ϕ<m : A[[s]]m → A[[t]]m the substitution maps
determined by

ϕm(s) = csm :=
∑

β∈N(t)
|β|=m

csβ tβ ∈ n0(t)/tm(t) ∈ A[[t]]m, s ∈ s,

ϕ<m(s) = cs<m :=
∑

β∈N(t)
0<|β|<m

csβ tβ ∈ n0(t)/tm(t) ∈ A[[t]]m, s ∈ s.
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We have cs = csm + cs<m and so ϕ = ϕm + ϕ<m (see 3).

Proposition 15 With the above notations, for any HS-derivation D ∈ HSs
k(A;m)

the following properties hold:

(1) (ϕm •D)e = 0 for 0 < |e| < m and (ϕm •D)e =∑t∈s c
t
eDst for |e| = m, where

the st are the elements of the canonical basis of N(s).
(2) ϕ •D = (ϕm •D) ◦ (ϕ<m •D) = (ϕ<m •D) ◦ (ϕm •D).

Proof

(1) Let us denote E′ = ϕm •D. Since τm,m−1(E
′) coincides with τm,m−1(ϕm)•

τm,m−1(D) (see (28)) and τm,m−1(ϕm) is the trivial substitution map, we deduce
that τm,m−1(E

′) = I, i.e. Ee = 0 whenever 0 < |e| < m.
From (29) and (14), for |e| > 0 we have E′

e =∑0<|α|≤|e| Ce(ϕm, α)Dα , with

Ce(ϕm, α) =
∑

f••∈P(e,α)
Cf•• for |α| ≤ |e|, Cf•• =

∏

s∈supp α

αs∏

r=1

(csm)fsr .

Assume now that |e| = m, 1 < |α| ≤ m and let f•• ∈ P(e, α). Since

∑

s∈supp α

αs∑

r=1

fsr = e,

we deduce that |fsr | < |e| = m for all s, r and so (csm)fsr = 0 and Cf•• = 0.
Consequently, Ce(ϕm, α) = 0.

If |α| = 1, then α must be an element st of the canonical basis of N(s) and
from Lemma 6, (1), we know that Ce(ϕm, st ) = (ctm)e. We conclude that

E′
e = · · · =

∑

t∈s

Ce(ϕm, st )Dst =
∑

t∈s

(ctm)eDst =
∑

t∈s

cteDst .

(2) Let us write E = ϕ •D, E′ = ϕm •D and E′′ = ϕ<m •D. We have

τm,m−1(E) = τm,m−1(ϕ)•τm,m−1(D) =
τm,m−1(ϕ<m)•τm,m−1(D) = τm,m−1(E

′′).

By property (1), we know that τm,m−1(E
′) is the identity and we deduce that

τm,m−1(E) = τm,m−1(E
′ ◦E′′) = τm,m−1(E

′′ ◦E′). So Ee = (E′ ◦E′′)e =
(E′′ ◦E′)e for |e| < m.

Now, let e ∈ N
(t) be with |e| = m. By using again that τm,m−1(E

′) is the
identity, we have (E′ ◦E′′)e = · · · = E′

e + E′′
e = · · · = (E′′ ◦E′)e, and we

conclude that E′ ◦E′′ = E′′ ◦E′.
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On the other hand, from Lemma 6, (1), we have that Ce(ϕ<m, α) = 0
whenever |α| = 1, and one can see that Ce(ϕ, α) = Ce(ϕ<m, α) whenever
that 2 ≤ |α| ≤ |e|. So:

Ee =
∑

1≤|α|≤m
Ce(ϕ, α)Dα =

∑

|α|=1

Ce(ϕ, α)Dα +
∑

2≤|α|≤m
Ce(ϕ, α)Dα =

∑

t∈s

cteDst +
∑

2≤|α|≤m
Ce(ϕ<m, α)Dα = E′

e +
∑

1≤|α|≤m
Ce(ϕ<m, α)Dα = E′

e + E′′
e

and E = E′ ◦E′′ = E′′ ◦E′.

The following theorem generalizes Theorem 2.8 in [3] to the case where Derk(A)
is not necessarily a finitely generatedA-module. The use of substitution maps makes
its proof more conceptual.

Theorem 1 Let m ≥ 1 be an integer, or m = ∞, and D ∈ HSs
k(A;m) a s-variate

HS-derivation of length m such that {Dα, |α| = 1} is a system of generators of the
A-module Derk(A). Then, for each set t and each HS-derivation G ∈ HSt

k(A;m)
there is a substitution map ϕ : A[[s]]m → A[[t]]m such that G = ϕ •D. Moreover,
if {Dα, |α| = 1} is a basis of Derk(A), ϕ is uniquely determined.

Proof For m finite, we will proceed by induction on m. For m = 1 the result is
clear. Assume that the result is true for HS-derivations of lengthm− 1 and consider
aD ∈ HSs

k(A;m) such that {Dα, |α| = 1} is a system of generators of theA-module
Derk(A) and a G ∈ HSt

k(A;m). By the induction hypothesis, there is a substitution
map ϕ′ : A[[s]]m−1 → A[[t]]m−1, given by ϕ′(s) =∑|β|≤m−1 c

s
β tβ , s ∈ s, and such

that τm,m−1(G) = ϕ′ •τm,m−1(D). Let ϕ′′ : A[[s]]m → A[[u]]m be the substitution
map lifting ϕ′ (i.e. τm,m−1(ϕ

′′) = ϕ′) given by ϕ′′(s) = ∑|β|≤m−1 c
s
β tβ ∈ A[[t]]m,

s ∈ s, and consider F = ϕ′′ •D. We obviously have τm,m−1(F ) = τm,m−1(G)

and so, for H = G ◦F ∗, the truncation τm,m−1(H) is the identity and He = 0
for 0 < |e| < m. We deduce that each component of H of highest order, He
with |e| = m, must be a k-derivation of A and so there is a family {cse, s ∈ s}
of elements of A such that cse = 0 for all s except a finite number of indices and
He = ∑

s∈s c
s
eDss , where {ss, s ∈ s} is the canonical basis of N(s). To finish, let us

consider the substitution map ϕ : A[[s]]m → A[[t]]m given by ϕ(s) =∑|β|≤m c
s
β tβ ,

s ∈ s. From Proposition 15 we have

ϕ •D = (ϕm •D) ◦ (ϕ<m •D) = H ◦ (ϕ′′ •D) = H ◦F = G.

For HS-derivations of infinite length, following the above procedure we can
construct ϕ as a projective limit of substitution maps A[[s]]m → A[[t]]m, m ≥ 1.

Now assume that the set {Dα, |α| = 1} is linearly independent over A and let us
prove that

ϕ •D = ψ •D 5⇒ ϕ = ψ. (30)
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The infinite length case can be reduced to the finite case since ϕ = ψ if and only
if all their finite truncations are equal. For the finite length case, we proceed by
induction on the length m. Assume that the substitution maps are given by

ϕ(s) = cs :=
∑

β∈N(t)
0<|β|≤m

csβ tβ ∈ n0(t)/tm(t) ⊂ A[[t]]m, s ∈ s

ψ(s) = ds :=
∑

β∈N(t)
0<|β|≤m

dsβ tβ ∈ n0(t)/tm(t) ⊂ A[[t]]m, s ∈ s.

If m = 1, then ϕ = ϕ1 and ψ = ψ1 and for each e ∈ N
(t) with |e| = 1 we have

from Proposition 15

∑

s∈s

cseDss = (ϕ1 •D)e = (ϕ •D)e = (ψ •D)e = (ψ1 •D)e =
∑

s∈s

dseDss

and we deduce that cse = dse for all s ∈ s and so ϕ = ψ .
Now assume that (30) is true whenever the length is m − 1 and take D,ϕ and

ψ as before of length m with ϕ •D = ψ •D. By considering (m − 1)-truncations
and using the induction hypothesis we deduce that τm,m−1(ϕ) = τm,m−1(ψ), or
equivalently ϕ<m = ψ<m.

From Proposition 15 we obtain first that ϕm •D = ψm •D and second that for
each e ∈ N

(t) with |e| = m

∑

s∈s

cseDss =
∑

s∈s

dseDss .

We conclude that ϕm = ψm and so ϕ = ψ .

Now we recall the definition of integrability.

Definition 11 (Cf. [1, 7]) Let m ≥ 1 be an integer or m = ∞ and s a set.

(i) We say that a k-derivation δ : A → A is m-integrable (over k) if there is a
Hasse–Schmidt derivation D ∈ HSk(A;m) such that D1 = δ. Any such D
will be called an m-integral of δ. The set of m-integrable k-derivations of A is
denoted by Iderk(A;m). We simply say that δ is integrable if it is ∞-integrable
and we denote Iderk(A) := Iderk(A; ∞).

(ii) We say that a s-variate HS-derivation D′ ∈ HSs
k(A; n), with 1 ≤ n < m, is

m-integrable (over k) if there is a s-variate HS-derivationD ∈ HSs
k(A;m) such

that τmnD = D′. Any such D will be called an m-integral of D′. The set of
m-integrable s-variate HS-derivations of A over k of length n is denoted by
IHSs

k(A; n;m). We simply say thatD′ is integrable if it is ∞-integrable and we
denote IHSs

k(A; n) := IHSs
k(A; n; ∞).
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Corollary 4 Let m ≥ 1 be an integer or m = ∞. The following properties are
equivalent:

(1) Iderk(A;m) = Derk(A).
(2) IHSs

k(A; n;m) = HSs
k(A; n) for all n with 1 ≤ n < m and all sets s.

Proof We only have to prove (1) 5⇒ (2). Let {δt , t ∈ t} be a system of generators of
the A-module Derk(A), and for each t ∈ t let Dt ∈ HSk(A;m) be an m-integral of
δt . By considering some total ordering< on t, we can define D ∈ HSt

k(A;m) as the
external product (see Definition 3) of the ordered family {Dt , t ∈ t}, i.e. D0 = Id
and for each α ∈ N

(t), α �= 0,

Dα = Dt1
αt1

◦ · · · ◦Dte
αte

with suppα = {t1 < · · · < te}.

Let n be an integer with 1 ≤ n < m, s a set and E ∈ HSs
k(A; n). After Theorem 1,

there exists a substitution map ϕ : A[[t]]n → A[[s]]n such that E = ϕ •τmn(D).
By considering any substitution map ϕ′ : A[[t]]m → A[[s]]m lifting ϕ we find that
ϕ′ •D is an m-integral of E and so E ∈ IHSs

k(A; n;m).
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