
ar
X

iv
:0

80
4.

22
19

v1
  [

m
at

h.
A

G
] 

 1
4 

A
pr

 2
00

8

Linearity conditions on the Jacobian ideal and

logarithmic–meromorphic comparison for free

divisors
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Abstract

In this paper we survey the role of D-module theory in the comparison

between logarithmic and meromorphic de Rham complexes of integrable

logarithmic connections with respect to free divisors, and we present some

new linearity conditions on the Jacobian ideal which arise in this setting.
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Introduction

The comparison between the meromorphic and the logarithmic de Rham com-
plexes of a vector bundle endowed with a logarithmic integrable connection
originally appeared in the case of normal crossing divisors [14].

In [31], the notion of free divisor was introduced, and it produced reasonable
logarithmic de Rham complexes with applications to Singularity theory.

In [10], a logarithmic-meromorphic comparison (for the trivial bundle) was
proved for locally quasi-homogeneous free divisors. The proof is topological and
is based on Grothendieck’s comparison theorem.

In the appendix A of [15], for the normal crossing case, and in [3], for general
free divisors, D-module theory enters the scene and the bases for an algebraic
treatment of the logarithmic-meromorphic comparison (at least for free divisors)
were established.

D-module theory has been used for characterizing the logarithmic-meromor-
phic comparison for the trivial bundle with respect to a free divisor in [12], [36],
[6], and in [6], [8] for general integrable connections, and also for proving alge-
braically the logarithmic-meromorphic comparison under the additional purely

∗Partially supported by MTM2004-07203-C02-01, MTM2007-66929 and FEDER.
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algebraic hypothesis that the Jacobian ideal is of linear type. This hypothesis
had been previously proved for locally quasi-homogeneous free divisors in [5].

In this paper we survey the above results and we highlight some (we be-
lieve) new linearity type conditions which appear in many examples and which
deserve further study. These conditions seem to play a role in understanding al-
gebraically the logarithmic-meromorphic comparison, and also have interesting
interactions with Bernstein polynomials and Bernstein functional equations.

Let us now comment on the content of this paper.
Section 1 is a survey on the use of D-module theory in the logarithmic-

meromorphic comparison and on the previous results.
In section 2 we first recall the notions of “commutative linear type” and

“differential linear type”. We also give an algebraic criterion for checking the
(pre)Spencer property. Second, we introduce some generalized linear type prop-
erties, which are illustrated in the examples in the third section, and we study
their relationship with “classical” properties. We end the section with a list of
open questions.

In section 3 we have collected several examples. As the reader can guess,
the computational complexity is often hard and we comment on the strategies
we have followed.

We thank F.J. Calderón Moreno, F.J. Castro Jiménez and T. Torelli for
many discussions on this subject. We also thank J. Mart́ın Morales for compu-
tational help. Finally, we thank the referee for his careful reading of our paper
and for his comments.

1 A survey on the logarithmic comparison pro-

blem for free divisors

1.1 Notations and basic notions

Let X be a n-dimensional complex analytic manifold and D ⊂ X a hypersurface
(= divisor), and let us denote by j : U = X − D →֒ X the corresponding
open inclusion. We denote by OX the sheaf of holomorphic functions on X ,
ID ⊂ OX the ideal ofD, DX the sheaf of linear differential operators on X (with
holomorphic coefficients), GrDX the graded ring associated with the filtration
F by the order and σ(P ) the principal symbol of a differential operator P . If
J ⊂ DX is a left ideal, we denote by σ(J) the corresponding graded ideal of
GrDX . We denote by ωX the sheaf of n-differential forms on X , which carries
a canonical structure of right DX -module. Given a complex of left DX -modules
M, we will denote by DRM its de Rham complex:

DRM = RHomDX
(OX ,M) =

(

ωX

L
⊗DX

M

)

[−n].

If M is a single left DX -module, the above definition coincides with the classical
one

DRM = M→ Ω1
X ⊗OX

M→ · · · → Ωn
X ⊗OX

M.
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Let us denote by Jac(D) ⊂ OX the Jacobian ideal ofD ⊂ X , i.e. the coherent
ideal of OX whose stalk at any p ∈ X is the ideal generated by h, ∂h

∂x1
, . . . , ∂h

∂xn
,

where h ∈ OX,p is any reduced local equation of D at p and x1, . . . , xn ∈ OX,p

is a system of local coordinates centered at p1.
For any bounded complexK of sheaves of C-vector spaces onX , let us denote

by K∨ = RHomCX
(K,CX) its Verdier dual.

If A is a commutative ring (or a sheaf of commutative rings) and M an
A-module, we will denote by SymA(M) its symmetric algebra. If I ⊂ A is an
ideal, we will denote by R(I) = ⊕∞

d=0I
dtd ⊂ A[t] its Rees algebra.

The sheaf of meromorphic functions along D is denoted by OX(⋆D). It
is filtered by the invertible sheaves OX(rD), r ≥ 0, formed by meromorphic
functions with poles along D of order at most r. As usual, let us also denote by
OX(−rD) de ideal of OX of functions vanishing at D with order al least r, r ≥ 0.
We have OX(0D) = OX , OX(−D) = ID, OX(rD)⊗OX

OX(sD) = OX((r+s)D)
and OX(−rD) = OX(rD)∗ for r, s ∈ Z. A key result in D-module theory is that
OX(⋆D) is a left holonomic DX -module.

Let us denote by Ωt
X(⋆D) the sheaf of meromorphic t-forms with poles along

D, for t = 0, . . . , n, and Ω•
X(⋆D) the meromorphic de Rham complex (along D).

We say that a meromorphic t-form (with poles along D) ω is logarithmic if
both ω and dω have simple poles alongD. The sheaf of logarithmic t-forms along
D is denoted by Ωt

X(logD). By definition, logarithmic forms along D endowed
with the exterior differential give rise to a subcomplex of Ω•

X(⋆D), which is
called logarithmic de Rham complex (along D) and is denoted by Ω•

X(logD).
The OX -module of (holomorphic) vector fields on X , or equivalently, the C-

derivations of OX , will be denoted by DerC(OX). A (holomorphic) vector field
δ on X is called logarithmic (along D) if the ideal of D is fixed by δ, i.e. if it is
tangent to D at the smooth locus. The sheaf of logarithmic vector fields (along
D) is denoted by Der(logD). The bracket of two logarithmic vector fields is
still logarithmic.

Let x1, . . . , xn be a system of local coordinates on a open neighborhood
U of a point p ∈ D and let h be a reduced local equation of D on U . The
module of syzygies (a0, a1, . . . , an) of (h, h

′
x1
, . . . , h′

xn
) is isomorphic to the sheaf

of logarithmic vector fields on U through the correspondences

(a0, a1, . . . , an) 99K
n∑

i=1

ai
∂

∂xi

,

(

− δ(h)
h

, δ(x1), . . . , δ(xn)
)

L99 δ

and so Der(logD) is a coherent module.
The above construction can be performed without choosing local coordinates

by considering the map

P ∈ F 1
DX 7→ P (h) ∈ Jac(D) (1)

1This definition of Jacobian ideal is independent of the (reduced) equation h and does not
match the usual definition in Singularity Theory, where the Jacobian ideal is generated by
∂h

∂x1
, . . . , ∂h

∂xn
and depends on h.
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provided that D has a reduced global equation h : X → C.
The usual pairing of vector fields and differential forms establishes a per-

fect OX -duality between Der(logD) and Ω1
X(logD) and then both modules are

reflexive [31], cor. (1.7).
We say thatD is a free divisor [31] if the OX -moduleDer(logD) is locally free

(necessarily of rank n), or equivalently if the OX-module Ω1
X(logD) is locally

free (of rank n).
Normal crossing divisors, plane curves, free hyperplane arrangements (e.g.

the union of reflecting hyperplanes of a complex reflection group), discriminants
of stable mappings or bifurcation sets of holomorphic functions are examples
of free divisors. More recently, another interesting source of examples of free
divisors has been studied in [17], [2].

Is D is a free divisor, then for any t ≥ 1 we have Ωt
X(logD) =

∧t
Ω1

X(logD)
[31].

The logarithmic-meromorphic comparison problem for D consists of whe-
ther the inclusion Ω•

X(logD) →֒ Ω•
X(⋆D) is a quasi-isomorphism or not, or

equivalently by Grothendieck’s comparison theorem [19], whether the canonical
morphism Ω•

X(logD)→ Rj∗CU is an isomorphism (in the derived category) or
not.

The meromorphic de Rham complex can be described in terms of D-module
theory as Ω•

X(⋆D) = DROX(⋆D). In sections 1.6 and 1.7 we will explain
how, at least in the case of free divisors, the logarithmic de Rham complex
can be also described in terms of D-module theory (see corollary (1.6.2)) and
how the logarithmic-meromorphic comparison problem can be translated into a
comparison between certain DX -modules (see theorem (1.7.1)).

1.2 Lie algebroids

The module DerC(OX) of vector fields on X is at the same time an OX -module
and a sheaf of C-Lie algebras. The interplay between both structures can be
summarized by the equality

[δ, fδ′] = f [δ, δ′] + δ(f)δ′

for any vector fields δ, δ′ and any holomorphic function f .
In order to understand how logarithmic differential operators (see section

1.3) and logarithmic vector fields are related, at least in the case of free divisors,
and the formal analogies with vector fields and differential operators, it is useful
to consider the notion of Lie algebroid. A general reference for this notion is
[22]. See also [13].

(1.2.1) Definition. A Lie algebroid (on X) is an OX -module L endowed
with a structure of sheaf of C-Lie algebras and a OX -linear morphism ρ : L →
DerC(OX), called anchor morphism, which is also a morphism of sheaves of Lie
algebras and satisfies [λ, fλ′] = f [λ, λ′] + ρ(λ)(f)λ′ for any local sections λ, λ′

of L and any holomorphic function f .

The notion of morphism of Lie algebroids is clear and is left up to the reader.

4



(1.2.2) Example. 1) The first example of Lie algebroid is L = DerC(OX)
with the identity as anchor morphism.
2) The sheaf of differential operators of degree ≤ 1, F 1DX = OX ⊕ DerC(OX),
with the projection F 1DX → DerC(OX) as anchor morphism, is a Lie algebroid.
3) Any submodule L ⊂ DerC(OX) which is closed for the bracket is a Lie
algebroid with the inclusion as anchor morphism. This applies in particular to
L = Der(logD).

An OX -ring is a sheaf of rings R on X endowed with a morphism of sheaves
of rings OX → R. We say that the OX -ring R is central over C if the map
OX → R sends the constant sheaf CX into the center of R. For instance, the
sheaf DX of linear differential operators is an OX -ring central over C.

(1.2.3) Definition. If (L, ρ) is a Lie algebroid on X and R is an OX -ring
central over C, we say that a C-linear map ϕ : L → R is admissible if the
following properties hold:

(a) ϕ is left OX -linear.

(b) ϕ([λ, λ′]) = ϕ(λ)ϕ(λ′)− ϕ(λ′)ϕ(λ) for any local sections λ, λ′ of L.

(c) ϕ(λ)f = fϕ(λ)+ ρ(λ)(f)1R for any local section λ of L and any holomor-
phic function f .

Any Lie algebroid L has a functorially associated enveloping algebra UL

(cf. [30] and [7], th. (1.6)), which is an OX-ring central over C, with a universal
admissible map L→ UL. The enveloping algebra UL is filtered with F 0 UL =
OX , F 1 UL = OX ⊕ L and its graded algebra is commutative. We have then a
canonical morphism of commutative OX-algebras

SymOX
L→ GrUL. (2)

(1.2.4) Example. 1) In the case of L = DerC(OX) the enveloping algebra
is nothing but the ring DX of differential operators with the filtration by the
order.
2) In the case of L = F 1DX the enveloping algebra is the polynomial ringDX [s],
where s is a central variable, endowed with the total order filtration FT given
by

F k
TDX [s] =

k∑

i=0

(F i
DX)sk−i, ∀k ≥ 0.

The universal admissible morphism F 1DX = OX ⊕ DerC(OX) → DX [s] is the
identity on DerC(OX) and sends any holomorphic function f to fs.
3) The case L = Der(logD) will be treated in the following section when D is
a free divisor.

We have the following version of the Poincaré-Birkhoff-Witt theorem. Its
proof can be easily deduced from the global case of Lie-Rinehart algebras [30],
th. 3.1.
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(1.2.5) Theorem. If L is a Lie algebroid on X which is locally free of finite
rank as OX-module, then the canonical morphism (2) is an isomorphism.

(1.2.6) Let us assume that L is a Lie algebroid on X which is locally free
of finite rank as OX -module and let E be a left UL-module. The Cartan-
Eilenberg-Chevalley-Rinehart-Spencer complex SpL E is defined in [8], (1.1.7). It
is a complex of left UL-modules and carries an obvious natural augmentation

ε0 : Sp0L E = UL⊗OX
E→ h0 (SpL E) = E.

One easily sees ([8], prop. (1.1.8)) that if the left UL-module E is locally
free of finite rank over OX then SpL E is a UL-locally free resolution of the
UL-module E, that will be simply called Spencer resolution of E.

1.3 Logarithmic differential operators

The Malgrange-Kashiwara V -filtration with respect to D on the sheaf DX of
linear differential operators on X is defined by2

VD
k DX = {P ∈ DX | P (ImD ) ⊂ Im−k

D ∀m ∈ Z}, k ∈ Z.

It is an increasing filtration and VD
0 DX is a subsheaf of rings of DX with

F 0VD
0 DX = OX and F 1VD

0 DX = OX ⊕ Der(logD). We have then a canonical
morphism of commutative OX -algebras

SymOX
Der(logD)→ GrF V

D
0 DX (3)

and a canonical morphism of non commutative OX -rings

UDer(logD)→ VD
0 DX . (4)

The 0’th term of the Malgrange-Kashiwara filtration with respect to D on
the sheaf DX , VD

0 DX , is also denoted by DX(logD), or simply by V0 if no
confusion is possible, and its sections are called logarithmic differential operators
with respect to D.

The following theorem is not explicitly stated in [3], but it is essentially
contained in proposition 2.2.5 of loc. cit. (see also [33]).

(1.3.1) Theorem. If D is a free divisor, then the canonical morphism (4) is
an isomorphism.

The proof of the above theorem given in [3] is based on the corollary 2.1.6
of loc. cit., which states that if D is free the morphism (3) is an isomorphism
of commutative OX -algebras. Let us note that, for proving corollary 2.1.6, it is
possible to avoid theorem 2.1.4 and to obtain it directly from proposition 2.1.2
in [3].

As a consequence of theorem (1.3.1) we deduce that if D is free, then V0 is
coherent and it has noetherian stalks of finite global homological dimension. If

2It was originally defined only for smooth D.
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{δ1, . . . , δn} is a local basis of the logarithmic vector fields on a connected open
set V , any differential operator in Γ(V,V0) can be written locally in a unique
way as a finite sum

∑

α∈Nn

|α|≤d

aαδ
α1

1 · · · δ
αn
n , (5)

where the aα are holomorphic functions on V .

1.4 Integrable logarithmic connections with respect to a

free divisor

Let E be a OX -module. A logarithmic connection with respect to D on E is
a C-linear morphism ∇ : E −→ Ω1

X(logD) ⊗OX
E satisfying Leibniz’s rule, i.e.

∇(ae) = a∇(e) + da ⊗ e for any holomorphic function a and any section e of
E. The data of a such logarithmic connection is equivalent to the data of a left
OX -linear map ∇• : Der(logD) −→ EndC(E), where the Leibniz rule becomes
∇δ(ae) = a∇δ(e) + δ(a)e for any logarithmic vector field δ, any holomorphic
function a and any section e of E.

From now on let us assume thatD is a free divisor and that∇ is a logarithmic
connection on E. As in the classical case (cf. [14], chap. I, 2.10) we define a
sequence of C-linear morphisms

E
∇
−→ Ω1

X(logD)⊗ E
∇
−→ Ω2

X(logD)⊗ E
∇
−→ · · ·

∇
−→ Ωn

X(logD)⊗ E. (6)

We say that ∇ is integrable if the sequence (6) is a complex of sheaves of
complex vector spaces. As in the classical case cf. [14, chap. I, 2.12–2.14], ∇
is integrable if and only if the morphism ∇• preserves Lie brackets (i.e. it is
admissible in the sense of definition (1.2.3) ), or merely if∇2 : E→ Ω2

X(logD)⊗E
vanishes.

If ∇ is integrable then the complex (6) will be called the logarithmic de
Rham complex of E (endowed with ∇) and will be denoted by Ω•

X(logD)(E).
The following proposition is a straightforward consequence of theorem (1.3.1)

(see [3], cor. 2.2.6) and it is similar to the well known case of integrable con-
nections and left DX -module structures.

(1.4.1) Proposition. To give an integrable logarithmic connection on E is
equivalent to giving a structure of left DX(logD)-module on E extending its
structure of OX-module.

The following theorem is the first step in describing logarithmic de Rham
complexes in terms of D-module theory (see corollary (1.6.2)). It is a conse-
quence of theorem (1.3.1) and of the existence of the Spencer resolution of OX

(1.2.6).

(1.4.2) Theorem. ([3], cor. 3.2.2) For any left V0-module E there is a cano-
nical isomorphism in the derived category RHomV0

(OX ,E) ≃ Ω•
X(logD)(E).
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From now on we will only consider integrable logarithmic connections on OX -
modules which are locally free of finite rank, and such an OX -module endowed
with an integrable logarithmic connection (with respect to D) will be simply
called an ILC (with respect to D). In other words, an ILC will be a left V0-
module which is locally free of finite rank over OX .

The first examples of ILC are the invertible OX -modules OX(mD) ⊂ OX(⋆D),
m ∈ Z. If f = 0 is a reduced local equation of D at p ∈ D and δ1, . . . , δn is
a local basis of Der(logD)p with δi(f) = αif , then f−m is a local basis of
OX,p(mD) over OX,p and from (5) we have the following local presentation over
DX,p(logD)

OX,p(mD) ≃ DX,p(logD)/DX,p(logD)(δ1 +mα1, . . . , δn +mαn).

For E = OX we have Ω•
X(logD)(OX) = Ω•

X(logD).
For any ILC E and any integer m, the locally free OX -modules E(mD) :=

E⊗OX
OX(mD) and E∗ := HomOX

(E,OX) are endowed with a natural structure
of left V0-module (cf. [6], §2 and [7], §2), and they are again ILC, and the usual
isomorphisms E(mD)(m′D) ≃ E((m + m′)D), E(mD)∗ ≃ E∗(−mD) are V0-
linear.

For any ILC E the complex SpE := SpDer(logD) E is a resolution of E as left
V0-module. In particular, any ILC is coherent as left V0-module.

1.5 Koszul and Spencer properties

In this section we recall two natural properties which appear when studying free
divisors and the logarithmic-meromorphic comparison problem.

From now on D ⊂ X is assumed to be a free divisor.

(1.5.1) Definition. ([3], def. 4.1.1) The (free) divisor D is said to be Koszul
at a point p ∈ D if the symbols of any (or some) local basis {δ1, . . . , δn} of
Der(logD)p form a regular sequence in GrDX,p. We say that D is a Koszul
divisor if it is so at any point p ∈ D.

For the free divisor D, to be Koszul is equivalent to being holonomic in the
sense of [31], def. (3.8), i.e. the logarithmic stratification of D is locally finite3.

Any plane curve is a Koszul free divisor (see the proof of corollary 4.2.2 in
[3]). Any locally quasi-homogeneous4 free divisor D is Koszul [5]. Examples
of locally quasi-homogeneous free divisors are free hyperplane arrangements or
discriminants of stable maps in Mather’s “nice dimensions”.

(1.5.2) Definition. ([11], def. 3.3) The (free) divisor D is said to be Spencer
if the complex of DX -modules DX ⊗V0

SpOX is holonomic and concentrated in
degree 0.

3This was noticed by M. Schulze.
4i.e. for which for any p ∈ D there is a system of local coordinates x centered at p such

that the germ (D, p) has a reduced weighted homogeneous defining equation (with strictly
positive weights) with respect to x.
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Since SpOX is a locally free resolution of the Der(logD)-module OX , we

haveDX

L
⊗V0

OX = DX⊗V0
SpOX and soD is Spencer if and only if hi

(

DX

L
⊗V0

OX

)

=

0 for i 6= 0 and h0

(

DX

L
⊗V0

OX

)

= DX ⊗V0
OX = DX/DX Der(logD) is holo-

nomic.

(1.5.3) Definition. The (free) divisor D is said to be pre-Spencer if the
complex of DX -modules DX ⊗V0

SpOX is concentrated in degree 0.

We have the following result ([6], prop. 1.2.3).

(1.5.4) Proposition. Any Koszul free divisor is Spencer.

There are lots of examples of Spencer free divisors which are not Koszul (see
for instance the examples in section 3).

It should be noted that (pre)Spencer property is not easy to check alge-
braically and in principle one needs to check that each hi (DX ⊗V0

SpOX) van-
ishes, for i = 1, . . . , n. However, see proposition (2.2.17), corollary (2.2.18) and
corollary (1.6.4).

1.6 Duality

In this section we review some results of [6] on the relationship between the
duality of integrable logarithmic connections with respect to a free divisor D ⊂
X and the duality of D-modules.

Let us denote by DDX
: Db

coh(DX) → Db
coh(DX) the duality functor of

D-module theory (cf. [24], def. I.4.1.6). It is defined by

DDX
M = HomOX

(ωX , RHomDX
(M,DX))[n].

The duality functor DDX
is a contravariant involutive self-equivalence of the

derived category Db
coh(DX) of bounded complexes of left DX -modules with co-

herent homologies, and it induces a contravariant involutive self-equivalence of
the abelian category of left holonomic DX -modules.

If we start with an ILC (with respect to D) E, we can take first its dual (as

ILC) and second the scalar extension from V0 to DX , and we obtain DX

L
⊗V0

E
∗,

or we can reverse the order and take first its scalar extension and second its dual

(asDX -module), and we obtain DDX
(DX

L
⊗V0

E). How are both results related?
The following theorem gives a precise answer to this question.

(1.6.1) Theorem. ([6], cor. 3.1.2) Let E be an ILC (with respect to D).
There is a natural isomorphism in Db

coh(DX):

DDX

(

DX

L
⊗V0

E

)

≃ DX

L
⊗V0

E
∗(D).

9



As a corollary of the above theorem and of theorem (1.4.2) we obtain the
following description of logarithmic de Rham complexes in terms of the de Rham
functor in D-module theory.

(1.6.2) Corollary. ([6], cor. 3.1.5) Let E be an ILC (with respect to D). There
is a natural isomorphism in the derived category of bounded complexes of sheaves
of complex vector spaces Db(CX):

Ω•
X(logD)(E) ≃ DR

(

DX

L
⊗V0

E(D)

)

.

The following theorem is proved in [6], cor. 3.1.6 and 3.1.8. It uses the deep
properties of the de Rham functor (cf. [24], th. II.4.1.5, th. I.10.13), the local
duality theorem in D-module theory (cf. [24], th. I.4.3.1; see also [28]) and the
faithful flatness of D∞

X over DX ([32]; see also [29]).

(1.6.3) Theorem. Let E be an ILC (with respect to D). The following prop-
erties are equivalent:

1) The complex DX

L
⊗V0

E(D) is holonomic and concentrated in degree 0.

2) The complex DX

L
⊗V0

E∗ is holonomic and concentrated in degree 0.

3) The complex Ω•
X(logD)(E) is a perverse sheaf.

4) The complex Ω•
X(logD)(E∗(−D)) is a perverse sheaf.

Moreover, if the above properties hold there is a natural isomorphism of perverse
sheaves Ω•

X(logD)(E) ≃ Ω•
X(logD)(E∗(−D))∨.

The formula Ω•
X(logD)(E) ≃ Ω•

X(logD)(E∗(−D))∨ has been proved in [15],
(A.2) in the case of a normal crossing divisor.

The following corollary deals with the case of the trivial ILC E = OX .

(1.6.4) Corollary. The following properties are equivalent:

1. The divisor D is Spencer.

2. The logarithmic de Rham complex Ω•
X(logD) is a perverse sheaf.

3. The complex Ω•
X(logD)(OX(−D)) is a perverse sheaf.

(1.6.5) Remark. In the above corollary, if h = 0 is a local reduced equation
of D, then the complex Ω•

X(logD)(OX(−D)) is nothing but hΩ•
X(logD), which

has been used in [27] to describe the Gauss-Manin connection on the cohomology
of families of free divisors.
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1.7 Logarithmic-meromorphic comparison

In this section we assume that D is a free divisor and E is an ILC along D.
Let us denote by DX(⋆D) the sheaf of meromorphic linear differential op-

erators with poles along D. One has obvious left and right OX(⋆D)-linear
isomorphisms

OX(⋆D)⊗OX
DX

left
≃ DX(⋆D)

right
≃ DX ⊗OX

OX(⋆D).

The induced maps OX(⋆D)⊗OX
V0 −→ DX(⋆D)←− V0⊗OX

OX(⋆D) are also iso-
morphisms and so, if E is a left V0-module, the localization E(⋆D) := OX(⋆D)⊗OX

E = DX(⋆D) ⊗V0
E is a left DX(⋆D)-module, and by scalar restriction, a left

DX -module. Moreover, if E is an ILC, then E(⋆D) is a meromorphic connection
(locally free of finite rank over OX(⋆D)) and so it is a holonomic DX -module
(cf. [26], Th. 4.1.3). Actually, E(⋆D) has regular singularities on the smooth
part of D (it has logarithmic poles! [14]) and so it is regular everywhere [25],
Cor. 4.3-14, which means that if L is the local system of horizontal sections of
E on U = X −D, the canonical morphism DRE(⋆D) = Ω•

X(E(⋆D)) −→ Rj∗L is
an isomorphism in the derived category.

We say that E satisfies the logarithmic comparison theorem (LCT) if the
canonical morphism Ω•

X(logD)(E) → Rj∗L is an isomorphism in the derived
category. If OX satisfies the LCT, we simply say that the divisor D satisfies the
LCT.

In [10] it has been proved that the LCT holds for any free divisor D which
is locally quasi-homogeneous.

For any ILC E and any integer m, E(mD) is a sub-V0-module of the regular
meromorphic connection (and holonomic DX -module) E(⋆D), and so we have a
canonical morphism in the derived category of left DX -modules

ρE,m : DX

L
⊗V0

E(mD)→ E(⋆D),

given by ρE,m(P ⊗ e) = Pe.
We have the following characterization for the LCT (see [6], th. 41 and [8],

th. (2.1.1)).

(1.7.1) Theorem. Let E be an ILC (with respect to the free divisor D) and
let L be the local system of its horizontal sections on U = X−D. The following
properties are equivalent:

1) E satisfies the LCT.

2) The inclusion Ω•
X(logD)(E) →֒ Ω•

X(E(⋆D)) is a quasi-isomorphism.

3) The morphism ρE,1 : DX

L
⊗V0

E(D) → E(⋆D) is an isomorphism in the
derived category of left DX-modules.

4) The complex DX

L
⊗V0

E(D) is concentrated in degree 0 and the DX-module
DX ⊗V0

E(D) is holonomic and isomorphic to its localization along D.

11



5) The canonical morphism j!L
∨ → Ω•

X(logD)(E∗(−D)) is an isomorphism
in the derived category of complexes of sheaves of complex vector spaces5.

In the case of the trivial ILC E = OX , we have the following.

(1.7.2) Corollary. The following properties are equivalent:

1) D satisfies the LCT.

2) The inclusion Ω•
X(logD) →֒ Ω•

X(⋆D) is a quasi-isomorphism.

3) The morphism ρ = ρOX ,1 : DX

L
⊗V0

OX(D)→ OX(⋆D) is an isomorphism
in the derived category of left DX-modules.

4) The complex DX

L
⊗V0

OX(D) is concentrated in degree 0 and the DX-
module DX ⊗V0

OX(D) is holonomic and isomorphic to its localization
along D.

5) The canonical morphism j!CU → Ω•
X(logD)(OX(−D)) is an isomorphism

in the derived category of complexes of sheaves of complex vector spaces6.

(1.7.3) Remark. Let f be a reduced local equation of D and δ1, . . . , δn a local
basis of Der(logD) with δi(f) = αif . Property 3) in corollary (1.7.2) means
the conjunction of the following properties:

a) D is pre-Spencer.

b) (b-1) The DX -module OX(⋆D) = OX(f−1) is generated by f−1 and (b-2)
annDX

f−1 is generated by order one operators, and so by δ1+α1, . . . , δn+
αn.

Actually, after [36], prop. 1.3, property (b-2) implies property (b-1) and so
we conclude that D satisfies the LCT if and only if it is pre-Spencer and
annDX

f−1 = DX(δ1 + α1, . . . , δn + αn) (see also [12]).

(1.7.4) Remark. In the case of locally quasi-homogeneous free divisors, prop-
erty 5) in corollary (1.7.2) holds by [27], Lemma 3.3, (6) and so we obtain
another proof of the LCT for such divisors [8], cor. (2.1.4). Let us also note
that the same argument can be applied to the case of locally weakly quasi-
homogeneous (LWQH) divisors, as it is noted in [9], remark 3.11, even without
the hypothesis of being Spencer. In fact, the corollary above says in particular
that any LWQH free divisor is Spencer (see also corollary (1.6.4)).

5In other words, Ω•

X
(logD)(E∗(−D))|D = 0, i.e. the complex Ω•

X
(logD)(E∗(−D)) is exact

on any point of D.
6In other words, Ω•

X
(logD)(OX (−D))|D = 0, i.e. the complex Ω•

X
(logD)(OX (−D)) is

exact on any point of D.
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2 Linearity conditions on the Jacobian ideal

2.1 The ring D[s] and the Bernstein construction

Let us suppose that the divisor D is given by a (locally) reduced global equation
f : X → C.

We know from the Poincaré-Birkhoff-Witt theorem (1.2.5) and example
(1.2.4), 2), that the canonical map η : SymOX

(F 1DX) → GrFT
DX [s] is an

isomorphism of graded OX -algebras.
The free module of rank one over OX [f−1, s] generated by the symbol f s,

OX [f−1, s]f s, has a natural left module structure over DX [s]: the action of a
derivation δ ∈ DerC(OX) is given by δ(f s) = δ(f)sf−1f s (see [1]).

Let us call ϕ0 : SymOX
(F 1DX) → R(Jac(D)) ⊂ OX [t] the composition of

the canonical surjective map SymOX
Jac(D) → R(Jac(D)) with the surjective

map SymOX
(F 1DX)→ SymOX

(Jac(D)) induced by (1) and

ϕ := ϕ0 ◦η−1 : GrFT
DX [s]→R(Jac(D)). (7)

For each P ∈ DX [s] of total order d, we have that P (f s) = Q(s)f−df s where
Q(s) is a polynomial of degree d in s with holomorphic coefficients. Let us denote
by CP,d ∈ OX the leading coefficient ofQ(s). A straightforward computation (cf.
[40], chap. I, Prop. 2.3) shows that ϕ(σT (P )) = CP,dt

d, where σT denotes the
symbol with respect to the total order filtration, and so σT (annDX [s] f

s) ⊂ kerϕ.
It is clear that F 0

T annDX [s] f
s = 0 and that

Θf,s := F 1
T annDX [s] f

s (8)

is formed by the operators δ − αs with δ ∈ DerC(OX), α ∈ OX and δ(f) = αf .
One easily sees that the OX-linear map

δ ∈ Der(logD) 7→ δ − δ(f)
f

s ∈ Θf,s (9)

is an isomorphism of Lie algebroids on X . We obtain a canonical isomorphism

Θf,s ≃ Gr1FT
annDX [s] f

s. Let us denote by ann
(1)
DX [s](f

s) the left ideal of DX [s]

generated by the total order one operators in annDX [s] f
s, i.e. ann

(1)
DX [s](f

s) =

DX [s] ·Θf,s. On the other hand, the homogeneous part of degree one [kerϕ]1 ⊂
kerϕ is also canonically isomorphic to Θf,s, and so we obtain

Gr1FT
annDX [s] f

s
(
=

[
σT (annDX [s] f

s)
]

1
= σT (Θf,s)

)
= [kerϕ]1.

2.2 Divisors of linear type

In this section D will be a hypersurface (= divisor) of X .

(2.2.1) Definition. (Cf. [39], §7.2) Let A be a commutative ring and I ⊂ A
an ideal. We say that I is of linear type if the canonical (surjective) map of
graded A-algebras SymA(I)→ R(I) is an isomorphism.
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Ideals generated by a regular sequence are the first example of ideals of
linear type. If A = C[x1, x2] and f ∈ A is a reduced polynomial such that the
divisor D = {f = 0} is not locally quasi-homogeneous, then the Jacobian ideal
(h, ∂h

∂x1

, ∂h
∂x2

) is not of linear type (see proposition (2.3.1)).

(2.2.2) Definition. ([8], def. (1.4.2)) We say that the divisor D is of commu-
tative linear type at p ∈ D if the stalk at p of its Jacobian ideal is of linear type.
We say that D is of commutative linear type if it is so at any p ∈ D.

(2.2.3) Definition. We say that the divisor D is Euler homogeneous at p ∈ D
if for some (and hence any) reduced local equation f of D at p there is a germ
of vector field χ at p such that χ(f) = f . We say that D is Euler homogeneous
if it is so at any p ∈ D.

(2.2.4) Example. If D is Euler homogeneous and has isolated singularities,
then D is of commutative linear type.

The following proposition is proved in [8], remark (1.6.6).

(2.2.5) Proposition. If D is of commutative linear type (at p), then D is
Euler homogeneous (at p).

Theorem (1.7.1) has been used in [8], §3 to give a criterion for the LCT to
be satisfied by integrable logarithmic connections with respect to a free divisor
of commutative linear type.

(2.2.6) Remark. To say that a divisor D given by a reduced global equation
f is of commutative linear type is equivalent to saying that kerϕ (see (7)) is
generated by its homogeneous part of degree 1, [kerϕ]1 = σT (Θf,s) (see (8)).

We have the following theorem ([5], th. 5.6).

(2.2.7) Theorem. Any locally quasi-homogeneous free divisor is of commuta-
tive linear type.

(2.2.8) Definition. Let p ∈ D and let us write O = OX,p and D = DX,p. We
say that D is of differential linear type at p ∈ D if for some (and hence any)7

reduced local equation f ∈ O of D at p, the ideal annD[s] f
s is generated by

total order one operators, i.e. annD[s] f
s = ann

(1)
D[s] f

s = D[s] · Θf,s (see (8)).

We say that D is of differential linear type if it is so at any p ∈ D.

It is clear that being of commutative or differential linear type for a divisor
are open conditions.

The following result is proved in [5], prop. 3.2.

(2.2.9) Proposition. If the divisor D is of commutative linear type (at p ∈ D),
then it is of differential linear type (at p ∈ D) and if f : X → C is a reduced
equation of D, then GrFT

annDX [s] f
s
(
= σT (annDX [s] f

s)
)
= kerϕ.

7One easily sees that this condition does not depend on the choice of the local equation.
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(2.2.10) Remark. Let us note that property

GrFT
annDX [s] f

s = kerϕ (10)

may hold without assuming any linearity condition. For instance, in examples
3.1, 3.2 the divisor D is not of differential linear type but property (10) holds.

(2.2.11) Question. A natural question is whether other locally quasi-homogeneous
non-necessarily free divisors, for instance arbitrary hyperplane arrangements,
are of commutative linear type (hence of differential linear type) or not. One
could try to imitate the proof of the theorem (2.2.7), and a new question ap-
pears: for which locally quasi-homogeneous divisors the symmetric algebra of
its Jacobian ideal is Cohen-Macaulay?

(2.2.12) Remark. Let us note that if property (10) holds, let’s say at a
point p ∈ D, then if {P1, . . . , Pr} is an involutive basis of annD[s] f

s, i.e.
{σT (P1), . . . , σT (Pr)} is a basis of GrFT

annD[s] f
s = kerϕp, then {f, P1, . . . , Pr}

is an involutive basis of D[s]f + annD[s] f
s. This is due to the fact that kerϕp

is a prime ideal and (kerϕp) : f = kerϕp.

In what follows we assume that D is a free divisor.

The following proposition is proved in [8], prop. (1.6.7). It had been pointed
out to us by Torrelli. See also [34], cor. 3.12 in the polynomial case.

(2.2.13) Proposition. If D is a free divisor of commutative linear type (at
p), then it is Koszul (at p).

Let p ∈ D and let us write O = OX,p and D = DX,p. Let us consider the
following properties:

(GK)p For some (and hence any) reduced local equation f of D at p and for some
(or any) local basis {δ1, . . . , δn} at p of the logarithmic vector fields (with
respect to D), one has that

σ

(

δ1 −
δ1(f)

f
s

)

, . . . , σ

(

δn −
δn(f)

f
s

)

is a regular sequence in GrFT
D[s] = SymO F 1D.

(GK) Property (GK)p holds at any p ∈ D.

We have the following result [8], prop. (1.6.2).

(2.2.14) Proposition. If D is Koszul then D satisfies property (GK).

(2.2.15) Example. In examples 3.1, 3.3.1, 3.3.2, D satisfies (GK) but is not
Koszul. Example 3.2 does not satisfy (GK).

(2.2.16) Proposition. Let us assume that D is an Euler homogeneous free
divisor. Let f be a reduced local equation of D at a point p and {δ1, . . . , δn} a
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local basis at p of the logarithmic vector fields (with respect to D), that we can
take in such a way that δi(f) = 0 for i = 1, . . . , n − 1 and δn(f) = f . The
following properties are equivalent:

(a) D satisfies property (GK)p at p.

(b) σ(δ1), . . . , σ(δn−1) is a regular sequence in GrF D.

Proof. Let x1, . . . , xn be a system of coordinates centered at p and let us write
ξi = σ(∂/∂xi) and σi = σ(δi). We have

GrFT
D[s] = O[s, ξ] ⊃ GrF D = O[ξ].

It is clear by faithful flatness that σ1, . . . , σn−1, σn − s is a regular sequence in
O[s, ξ] if and only if σ1, . . . , σn−1 is a regular sequence O[ξ]. �

The following proposition (with its corollary) gives a criterion to prove that
a free divisor is pre-Spencer.

(2.2.17) Proposition. Let us assume that D is given by a global reduced equa-
tion f : X → C and that the complex DX [s] ⊗UΘf,s

SpΘf,s
OX is concentrated

in degree 0, i.e. it is a DX [s]-resolution of DX [s]/DX [s] ·Θf,s (see (8)). Then,
the following properties are equivalent:

(a) The complex DX ⊗V0
SpOX is exact in degree −1.

(b) The module DX [s]/DX [s] ·Θf,s has no s-torsion.

(c) The divisor D is pre-Spencer.

Proof. To prove the proposition we can proceed locally at any point p ∈ D.
Let us write O = OX,p and D = DX,p, and let {δ1, . . . , δn} be a O-basis of
Der(logD)p, and {δ1 − α1s, . . . , δn − αns} the corresponding basis of (Θf,s)p,

with δi(f) = αif . Let us write, for i < j, [δi, δj ] =
∑n

k=0 a
ij
k δk and

Rij = (aij1 , . . . ,

i
︷ ︸︸ ︷

δj + aiji , . . . ,

j
︷ ︸︸ ︷

−δi + aijj , . . . , a
ij
n )

the corresponding syzygy of δ1, . . . , δn. Let us also write

Rij(s) = (aij1 , . . . ,

i
︷ ︸︸ ︷

δj − αjs+ aiji , . . . ,

j
︷ ︸︸ ︷

−δi + αis+ aijj , . . . , a
ij
n )

the corresponding syzygy of δ1 − α1s, . . . , δn − αns. We have Rij(0) = Rij .

(a) ⇒ (b) Let P (s) ∈ D[s] such that sP (s) ∈ D[s] ·Θf,s:

sP (s) =

n∑

i=1

Ai(s) (δi − αis) .
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By taking s = 0, we obtain 0 =
∑n

i=1 Ai(0)δi and from (a) we deduce that

(A1(0), . . . , An(0)) =
∑

i<j

cijRij .

Let us consider

(B1(s), . . . , Bn(s)) = (A1(s), . . . , An(s))−
∑

i<j

cijRij(s).

By taking s = 0 again we obtain that all the Bi(0) vanish, so Bi(s) = sB′
i(s),

sP (s) =

n∑

i=1

Ai(s) (δi − αis) =

n∑

i=1

Bi(s) (δi − αis) = s

n∑

i=1

B′
i(s) (δi − αis)

and P (s) ∈ D[s] ·Θf,s.

(b) ⇒ (c) Let C be the stalk at p of DX [s] ⊗UΘf,s
SpΘf,s

OX . It is a free

resolution of M := D[s]/D[s] · Θf,s. The complex C′ := D
L
⊗D[s] M can be

computed through the D[s]-free resolution of D given by D[s]
s·
−→ D[s] and so,

since M has no s-torsion, the complex

C′ =

(

D
L
⊗D[s] M

)

=

(
−1

M
s·
−→

0

M

)

is concentrated in degree 0. But C′ can be also computed as C′ = D ⊗D[s] C
and the second complex is nothing but the stalk at p of DX ⊗V0

SpOX , and so
it is concentrated in degree 0.

(c) ⇒ (a) It is trivial. �

(2.2.18) Corollary. Let us assume that D is given by a global reduced equation
f : X → C and that D satisfies property (GK). Then, the following properties
are equivalent:

(a) The complex DX ⊗V0
SpOX is exact in degree −1.

(b) The module DX [s]/DX [s] ·Θf,s has no s-torsion.

(c) The divisor D is pre-Spencer.

Proof. It is enough to prove that the property (GK) implies that the complex
L = DX [s]⊗UΘf,s

SpΘf,s
OX is concentrated in degree 0, but this is easily proved

by filtering L in such a way that its graded complex is the Koszul complex
associated with the sequence

δ1 −
δ1(f)

f
s, . . . , δn −

δn(f)

f
s
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over GrFT
DX [s] = SymOX

F 1DX , where {δ1, . . . , δn} is a local basis of the
logarithmic vector fields (with respect to D). See [8], prop. (1.5.3) for the
details. �

(2.2.19) Example. Corollary (2.2.18) is applied in examples 3.1, 3.3.1, 3.3.2
to deduce the pre-Spencer property. However, it does not apply to example 3.2.

In [37] the reader can find some related linearity properties and their rela-
tionship with the LCT.

(2.2.20) Remark. The property of being pre-Spencer is a non-commutative
version of the notion of regular sequence for δ1, . . . , δn. However, in the non-
commutative case the pre-Spencer property is not inherited by subsequences,
when that makes sense (see example 3.2).

2.3 Further linearity conditions: examples and questions

For a divisor D ⊂ X , the properties of being of commutative linear type or of
differential linear type are very restrictive. In dimension 2 we have the following
proposition.

(2.3.1) Proposition. Let assume that dimX = 2, and so D is automatically
free. The following properties are equivalent:

(a) D is of commutative linear type.

(b) D is of differential linear type.

(c) D satisfies the LCT.

(d) D is Euler homogeneous.

(e) D is locally quasi-homogeneous.

Proof. The implication (a) ⇒ (b) comes from proposition (2.2.9). The
equivalences (c) ⇔ (d) ⇔ (e) have been proved in [4]. The implication
(e) ⇒ (a) is a consequence of theorem (2.2.7).

For the remaining implication (b)⇒ (d), we use some results of T. Torrelli
(see [8], remark (1.6.6), c)). We can proceed locally and assume that D has a
reduced equation f = 0. Since dimX = 2, we know that D is free and Koszul.
Let {δ1, δ2} be a local basis of the logarithmic derivations, with δi(f) = αif .
Property (b) means that annD[s] f

s is generated by δ1 − α1s, δ2 − α2s. But the
Bernstein polynomial of f has no integer roots less than −1 (cf. [38]), and so
annD f−1 is generated by δ1 + α1, δ2 + α2. We can now apply proposition 4.1
and lemma 4.3 of [36] to conclude that f belongs to the ideal generated by its
partial derivatives, i.e. D is Euler homogeneous. �

In higher dimension, the relationship between the properties in the above
proposition, even for free divisors, is not clear (see conjecture 1.4 in [4] and
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[16]). For instance, examples in Section 3 satisfy the LCT but they are not of
differential linear type. Nevertheless, some generalized linear type conditions
appear.

Let us denote by DX(s) := C(s) ⊗C DX (resp. D(s) := C(s) ⊗C D), with
the filtration C(s)⊗C F , that we will also denote by F .

Let p ∈ D and let us write O = OX,p and D = DX,p. Let us consider the
following properties

(GDL)p For some (or any)8 reduced local equation f ∈ O of D at p, the ideal
annD(s) f

s is generated by order one operators, i.e. (see (8)) annD(s) f
s =

D(s) ·Θf,s.

(GDL) Property (GDL)p holds for any p ∈ D.

It is clear that the property (GDL) is an open condition.

(2.3.2) Remark. Since annD[s] f
s is an ideal finitely generated of D[s], prop-

erty (GDL)p holds if and only if there is a non zero polynomial β(s) ∈ C[s]

such that β(s) annD[s] f
s ⊂ ann

(1)
D[s] f

s. A sufficient condition for the existence

of a such polynomial is that the quotient annD[s] f
s/ ann

(1)
D[s] f

s is holonomic as

D-module. However this condition is not necessary as shown in example 3.1.

It is clear that any divisor of differential linear type satisfies (GDL).

(2.3.3) Example. The divisors of the examples in 3 satisfy (GDL) but are
not of differential linear type.

Let us assume that X is an open subset of Cn with coordinates x1, . . . , xn

and that D has reduced global equation f : X → C. Morphism ϕ in (7) is then
given explicitly by

ϕ : F (s, ξ) ∈ OX [s, ξ1, . . . , ξn] 7→ F (f, f ′
x)t

d ∈ R(OX(f, f ′
x1
, . . . , f ′

xn
))

for each homogeneous polynomial F of degree d, where ξi denotes the symbol of
∂

∂xi
. Let us denote by ker(1) ϕ the ideal of OX [s, ξ] generated by [kerϕ]1 ≡ Θf,s.

To say that D is of commutative linear type means that kerϕ = ker(1) ϕ.

(2.3.4) By shrinkingX if needed, let us take a system of generators ofDer(logD)
on X , δi =

∑n

j=1 aij
∂

∂xj
, 1 ≤ i ≤ m, with δi(f) = αif . In other words,

(−αi, ai1, . . . , ain), 1 ≤ i ≤ m, is a system of generators of the syzygies of
f, f ′

x1
, . . . , f ′

xn
. Clearly the homogeneous polynomials ∆i = −αis+ai1ξ1+ · · ·+

ainξn, 1 ≤ i ≤ m, generate ker(1) ϕ.

In examples in Section 3 the divisors are not of differential linear type but
they do satisfy the following property:

8One easily sees that this condition does not depend on the choice of the local equation.
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(GCL) There is an integer N ≥ 0 such that sN kerϕ ⊂ ker(1) ϕ.

In other words, if we consider the map

ϕ′ : OX [s, s−1, ξ] −→ R(OX(f, f ′
x))ft ⊂ OX [t]ft

induced by ϕ, property (GCL) exactly means that kerϕ′ is generated by ker(1) ϕ.
Let us note that property (GCL) does not depend on the particular equation

f and so it is a property of D. It is clear that any divisor of commutative linear
type satisfies (GCL).

(2.3.5) Proposition. If D satisfies property (GCL), then it is Euler homoge-
neous.

Proof. The proof is analogous to the proof of proposition (2.2.5). Let N > 0

be such that sN kerϕ ⊂ ker(1) ϕ. We can proceed locally at each point p ∈ D.
We know that f belongs to the integral closure of the gradient ideal I =

(f ′
x1
, . . . , f ′

xn
) ⊂ O (cf. [35], §0.5, 1)), i.e. there is an integer d > 0 and elements

ai ∈ Id−i such that fd+ad−1f
d−1+ · · ·+a0 = 0. Equivalently, there is a homo-

geneous polynomial F ∈ O[s, ξ] of degree d > 0 such that F (f, f ′
x1
, . . . , f ′

xn
) = 0

and F (s, 0, . . . , 0) = sd. Then F ∈ kerϕp and sNF =
∑m

i=1 Qi∆i, where the
∆i have been defined in (2.3.4). By taking ξ1 = · · · = ξn = 0 we deduce
that sN+d = −

∑

iQi(s, 0 . . . , 0)αis and so at least one of the αi is a unit, i.e.
f ∈ (f ′

x1
, . . . , f ′

xn
) and D is Euler homogeneous at p. �

(2.3.6) Corollary. If dimX = 2 and D satisfies (GCL), then it is of commu-
tative linear type.

(2.3.7) Remark. Proposition (2.2.13) suggests that property (GCL) could
imply property (GK), but the divisor in example 3.2 satisfies (GCL) and not
(GK).

Proposition (2.2.9) suggests the following question.

(2.3.8) Question. We do not know whether the implication (GCL)⇒ (GDL)
is true or not. In the same vein, we do not know whether there is some relation-
ship between N and the degree of β(s) or not, where sN kerϕ ⊂ ker(1) ϕ and

β(s) annDX [s] f
s ⊂ ann

(1)
DX [s] f

s (see examples in 3)

(2.3.9) Question. Concerning property (GDL), we do not know any “direct”
algorithm9 to find generators of the annihilator of f s over the Weyl algebra
Q(s)[x, ∂], for a given polynomial f ∈ Q[x].

(2.3.10) Question. All the examples of free divisors satisfying the LCT
we have been able to compute (see for instance examples in section 3) satisfy
properties (GCL) and (GDL), but we do not know whether this a general fact
or not.

9Not based on the known algorithms for computing the annihilator of fs over Q[s, x, ∂].
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(2.3.11) Question. Let b(s) be the Bernstein polynomial of f at a point10

p ∈ D. We have a functional equation b(s)f s = Pf s+1 with P ∈ D[s], which
means that b(s) − Pf ∈ annD[s] f

s. If D satisfies (GDL)p at p, then there

is a non zero polynomial β(s) ∈ C[s] such that β(s) annD[s] f
s ⊂ ann

(1)
D[s] f

s,

and so there is a functional equation b′(s)f s = P ′f s+1 with b′(s) − P ′f ∈

ann
(1)
D[s] f

s. In the examples in 3, property (GDL) is always satisfied (an also

the LCT), but more precise properties hold. Namely, b(s) is a multiple of
β(s) and the functional equation b(s)f s = Pf s+1 for the Bernstein polynomial

already satisfies b(s)−Pf ∈ ann
(1)
D[s] f

s without multiplying by β(s). We do not

know whether these properties are a consequence of the property (GCL), and
eventually of the LCT. On the other hand, a more precise relationship between
the factors of β(s) and the tower

ann
(1)
D[s] f

s  ann
(2)
D[s] f

s  · · ·  ann
(k0)
D[s] f

s = annD[s] f
s

appears in examples in section 3.3.

(2.3.12) Question. A natural question is to check whether linear free divisors
[17], or locally weakly quasi-homogeneous free divisors (LWQH) [9] satisfy or
not properties (GCL) or (GDL). For instance, all the divisors in section 3 are
free LWQH.

3 Examples

In this section we study some examples of free divisors in the affine space X =
Cn, for n = 3, 4 with a polynomial equation, from the point of view of properties
(GCL), (GDL) and relatives.

As a matter of notation, every time we have a global basis {δ1, . . . , δn} of
the logarithmic derivations, we write σi = σ(δi) ∈ C[x][ξ] ⊂ Γ(X,GrDX) =
OX(X)[ξ].

The computations are done at the global level of Weyl algebrasW = C[x, ∂]
or W[s] or polynomial rings, and we have used [21] and [18].

3.1 The example of “four lines” revisited

In this exampleX = C3 andD = {f = 0} with f = x1x2(x1+x2)(x1+x2x3) (see
[3, Remark 4.2.4], [5, ex. 6.2] and [4, 4]). There is a global basis of Der(logD),
{δ1, δ2, δ3}, with δ1(f) = δ2(f) = 0, δ3(f) = 4f .

Since (σ1, σ2) : σ3 = (σ1, σ2, τ), with τ a certain homogeneous polynomial
in ξ of degree 2, and (σ1, σ2) : τ = (x1, x2), we deduce that D is not Koszul at
any point of the line x1 = x2 = 0, which is strictly contained in the singular
locus of D.

10A similar question can be considered in the global polynomial case.
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The operators δ1, δ2, δ3 − 4s form a global OX-basis of F 1
T annDX [s](f

s) and
their symbols with respect to the total order filtration σ1, σ2, σ3−4s form a regu-
lar sequence in C[x][ξ, s], and so, by flatness, in GrFT

DX,p[s] = OX,p[ξ1, ξ2, ξ3, s]
for any p ∈ X . Then, the divisor D satisfies property (GK).

The kernel of ϕ : OX [s, ξ1, ξ2, ξ3]→R(Jac(D)) is generated by σ1, σ2, τ, σ3−
4s. Moreover (kerϕ)∩OX [ξ1, ξ2, ξ3] = OX [ξ](σ1, σ2, τ), τ /∈ OX [ξ, s](σ1, σ2, σ3−

4s) and kerϕ =
(

ker(1) ϕ
)

: f .

We have sτ ∈ (σ1, σ2, σ3 − 4s) and so s (kerϕ) ⊂ ker(1) ϕ. In particular, D
satisfies property (GCL).

On the other hand, it is possible to lift τ to an operator T ∈ W such that
σ(T ) = τ and T (f s) = 0. Then, we deduce that

annDX [s] f
s = DX [s](δ1, δ2, T, δ3 − 4s), annDX

f s = DX(δ1, δ2, T ),

and

GrFT

(
annDX [s] f

s
)
= kerϕ, GrF (annDX

f s) = (kerϕ) ∩ OX [ξ]

(i.e. D satisfies property (10)) and D is not of differential linear type.

We also have Tf ∈W(δ1, δ2) and so annDX
f s = {A | Af ∈ DX(δ1, δ2)}.

We find that (s+ 1/2)T ∈W[s](δ1, δ2, δ3 − 4s) and so

(s+ 1/2) annDX [s] f
s ⊂ ann

(1)
DX [s] f

s, (11)

i.e. D satisfies property (GDL). However, the DX -module

M = annDX [s](f
s)/ ann

(1)
DX [s](f

s)

is not holonomic: we have M = DX · P and a syzygy computation shows that

annDX [s] P = DX [s] (x1, x2, s+ 1/2) , annDX
P = DX (x1, x2)

and so M is not holonomic.

The global Bernstein polynomial of f is

bf(s) = (s+ 1)3(s+ 1/2)(s+ 3/4)(s+ 5/4).

From (11) and the fact that the bf (s) does not have any integer root less than
−1 we deduce that annDX

f−1 is generated by operators of order 1, even if D
is not of differential linear type.

Let us explain now “why” D is pre-Spencer without testing the definition
(1.5.2) itself. Let p be any point of D and let us write O = OX,p, D = DX,p.

For the exactness of DX ⊗V0
SpOX in degrees 6= 0 we can apply criterion

(2.2.18). We know that σ1, σ2, σ3 − 4s is a regular sequence in GrFT
D[s]. We
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need to prove that D[s]/ ann
(1)
D[s](f

s) has no s-torsion. For that, let Q ∈ D[s]

and suppose that sQ ∈ ann
(1)
D[s](f

s). It is clear that Q ∈ annD[s](f
s) and we

know from (11) that (s+ 1/2)Q ∈ ann
(1)
D[s](f

s), but

sQ, (s+ 1/2)Q ∈ ann
(1)
D[s](f

s)⇒ Q ∈ ann
(1)
D[s](f

s).

On the other hand, by specializing (11) at s = 0 we deduce that T ∈ D(δ1, δ2, δ3)
and so

(σ3) + (kerΦp) ∩ O[ξ] = (σ1, σ2, σ3, τ) ⊂ GrF D(δ1, δ2, δ3).

But

dim

(
O[ξ]

(σ1, σ2, σ3, τ)

)

= dim

(
O[ξ]

(σ1, σ2, τ)

)

− 1 = dimR(Jac(D)p)− 1 = 3

and D⊗D(logD) O = D/D(δ1, δ2, δ3) is holonomic.
Finally, we check that there exists an operator P in the Weyl algebra W of

order 6 such that the Bernstein functional equation bf(s)f
s = Pf s+1 holds, but

for which bf (s)− Pf is not on only in annW[s] f
s, but in W[s](δ1, δ2, δ3 − 4s).

3.2 The example of “five lines”

In this example X = C4 and D = {f = 0} with f = x1x2(x1 + x2)(x1 +
x2x3)(x1 + x2x4). There is a global basis of Der(logD), {δ1, δ2, δ3, δ4}, with
δ1(f) = δ2(f) = δ3(f) = 0, δ4(f) = 5f .

We have

a := (σ1, σ2) : σ3 6= (σ1, σ2), (σ1, σ2) : a = (x1, x2)

and so D is neither Koszul nor satisfies property (GK)p (i.e. σ1, σ2, σ3, σ4 − 5s
is not a regular sequence in GrFT

DX,p[s] = OX,p[ξ, s]) at any p in the plane
x1 = x2 = 0, which is strictly contained in the singular locus of D. So we
cannot use criterion (2.2.18) to prove that D is pre-Spencer. Nevertheless, a
global computation in W shows that the complex DX ⊗V0

SpOX is exact in
degrees 6= 0.

The vanishing of h−1 (DX ⊗V0
SpOX) exactly means that the syzygies of

δ1, δ2, δ3, δ4 are generated by those of “Spencer type”, i.e. those coming from the
relations expressing the brackets [δi, δj ], 1 ≤ i < j ≤ 4, as linear combinations of
the δk, 1 ≤ k ≤ 4 (see the proof of proposition (2.2.17)). However, the syzygies
of δ1, δ2, δ3 are not generated by those of “Spencer type”. That represents a big
difference with regular sequences in the commutative case.

The kernel of ϕ : OX [s, ξ]→R(Jac(D)) is generated by σ1, σ2, σ3, τ1, τ2, τ3, σ4−

5s, where the τi ∈ C[x][ξ] are homogeneous in ξ of degree 2 and τi /∈ ker(1) ϕ.
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Moreover (kerϕ) ∩ OX [ξ] = OX [ξ](σ1, σ2, σ3, τ1, τ2, τ3) and kerϕ =
(

ker(1) ϕ
)

:

f .

As in example 3.1, we have s (kerϕ) ⊂ ker(1) ϕ and so D satisfies property
(GCL).

On the other hand, there are operators Ti ∈ annDX
f s such that σ(Ti) = τi,

i = 1, 2, 3. We deduce that annDX [s] f
s = DX [s](δ1, δ2, δ3, T1, T2, T3, δ4 − 5s),

annDX
f s = DX(δ1, δ2, δ3, T1, T2, T3) and

GrFT

(
annDX [s] f

s
)
= kerϕ, GrF (annDX

f s) = (kerϕ) ∩ OX [ξ]

(i.e. D satisfies property (10)) and D is not of differential linear type.

We also have Tif ∈W(δ1, δ2, δ3) and so annDX
f s = {A | Af ∈ DX(δ1, δ2, δ3)}.

We also have the following

(s+ 2/5) annD[s] f
s ⊂ ann

(1)
D[s] f

s, (12)

i.e. D satisfies property (GDL).

The global Bernstein polynomial of f is

bf (s) = (s+ 1)4(s+ 2/5)(s+ 3/5)(s+ 4/5)(s+ 6/5).

From (12) and the fact that the bf (s) does not have any integer root less than
−1 we deduce that annDX

f−1 is generated by operators of order 1, even if D
is not of differential linear type.

To conclude that D is Spencer, we have to prove that DX ⊗V0
OX =

DX/DX(δ1, δ2, δ3, δ4) is holonomic, but this can be done in a completely similar
way as in the example 3.1.

Finally D satisfies the LCT after remark (1.7.3).

3.3 The family Dk = {fk = (x1x3 + x2)(x
k
1 − xk

2) = 0}

This family of examples has been studied in [12]. All of them satisfy the LCT.
Here we study their behavior with respect to properties (GCL), (GDL) and
relatives.

3.3.1 The case k = 4

There is a global basis {δ1, δ2, δ3} of Der(logD4) with δ1(f4) = δ2(f4) = 0
and δ3(f4) = 5f4. We see that σ1, σ2 is a regular sequence and so D4 satisfies
property (GK) (see proposition (2.2.16)) but

a := (σ1, σ2) : σ3 6= (σ1, σ2), (σ1, σ2) : a = (x1, x2)
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and so D4 is not Koszul at any p in the line x1 = x2 = 0, which is strictly
contained in the singular locus of D4.

The kernel of ϕ : OX [s, ξ]→ R(JacD4) is generated by σ1, σ2, σ3 − 5s, τ where

τ is homogeneous in ξ of degree 2 and τ /∈ ker(1) ϕ. Moreover (kerϕ)∩OX [ξ] =

(σ1, σ2, τ) and kerϕ =
(

ker(1) ϕ
)

: f4.

In this example we find that s2 (kerϕ) ⊂ ker(1) ϕ (but s (kerϕ) 6⊂ ker(1) ϕ)
and so D4 satisfies property (GCL).

In this example, property (10) does not hold, i.e. GrFT
annDX [s] f

s
4 6= kerϕ,

or equivalently GrF annDX
f s
4 6= (kerϕ) ∩ O[ξ].

Let us call Gr(l) annDX
f s
4 the ideal of GrDX generated by Gri annDX

f s
4 for

i ≤ l, and ann
(l)
DX

f s
4 the left ideal of DX generated by F l annDX

f s
4 .

We find the following facts:

l = 2: Gr(2) annDX
f s
4 = (σ1, σ2, x1τ) and ann

(2)
DX

f s
4 = DX(δ1, δ2, T1) with

σ(T1) = x1τ . We also find that the commutative relation sx1τ ∈ ker(1) ϕ lifts

to the differential relation (s+ 3/5)T1 ∈ ann
(1)
DX [s] f

s
4 . Moreover,

ann
(1)
DX [s] f

s
4 : (s+ 3/5) = DX [s](δ1, δ2, δ3 − 5s, T1) = ann

(2)
DX [s] f

s
4 .

l = 3: Gr(3) annDX
f s
4 = (σ1, σ2, x1τ, ξ3τ) and ann

(3)
DX

f s
4 = DX(δ1, δ2, T1, T2)

with σ(T2) = ξ3τ . We have (s+ 2/5)T2 ∈ ann
(2)
DX [s] f

s
4 . Moreover,

ann
(2)
DX [s] f

s
4 : (s+ 2/5) = ann

(3)
DX [s] f

s
4 .

We check that annDX [s] f
s
4 = ann

(3)
DX [s] f

s
4 , annDX

f s
4 = {A | Af4 ∈ DX(δ1, δ2)}

and δ1, δ2, T2 is a (non involutive) basis of annDX
f s
4 .

We have then that β(s) annDX [s] f
s
4 ⊂ ann

(1)
DX [s] f

s
4 , with β(s) = (s+3/5)(s+

2/5), and D4 satisfies property (GDL).

We conclude as in example 3.1 that D4 is Spencer.

The global Bernstein polynomial of f4 is

bf4(s) = (s+ 1)3(s+ 6/5)(s+ 3/5)(s+ 4/5)(s+ 2/5)

and it is a multiple of β(s).
Although the elements f, δ1, δ2, δ3 − 5s are not an involutive basis of the

ideal of DX [s] that they generate, it is possible to check, starting from the
commutative relation

s7 ∈ C[x][s, ξ](f, σ1, σ2, σ3 − 5s),
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that there exist P,A1, A2, A3 in C[x, ∂, s] such that

bf4(s)− Pf4 = A1δ1 +A2δ2 +A3(δ3 − 5s) ∈ ann
(1)
W[s] f

s
4 ,

with P of total order equal to 7 = deg bf4(s) (that means that the Bernstein
polynomial satisfies a “regular” functional equation [20]).

3.3.2 The case k = 7

There is a global basis {δ1, δ2, δ3} of Der(logD) with δ1(f7) = δ2(f7) = 0 and
δ3(f7) = 8f7. We see that σ1, σ2 is a regular sequence and so D7 satisfies
property (GK) (see proposition (2.2.16)) but

a := (σ1, σ2) : σ3 6= (σ1, σ2), (σ1, σ2) : a = (x1, x2)

and so D7 is not Koszul at any p in the line x1 = x2 = 0, which is strictly
contained in the singular locus of D7.

The kernel of ϕ : OX [s, ξ]→R(JacD4) is generated by σ1, σ2, σ3 − 8s, τ1, τ2, τ3

where τi is homogeneous in ξ of degree i + 1, 1 ≤ i ≤ 3, and τi /∈ ker(1) ϕ.

Moreover (kerϕ) ∩ OX [ξ] = (σ1, σ2, τ1, τ2, τ3) and kerϕ =
(

ker(1) ϕ
)

: f7.

In this example we find that s5 (kerϕ) ⊂ ker(1) ϕ (but s4 (kerϕ) 6⊂ ker(1) ϕ)
and so D7 satisfies property (GCL).

In this example, property (10) does not hold either, i.e. GrFT
annDX [s] f

s
7 6=

kerϕ, or equivalently GrF annDX
f s
7 6= (kerϕ) ∩ O[ξ].

l = 2: Gr(2) annDX
f s
7 = (σ1, σ2, x1τ1) and ann

(2)
DX

f s
4 = DX(δ1, δ2, T1) with

σ(T1) = x1τ1. We also find that the commutative relation sx1τ ∈ ker(1) ϕ lifts

to the differential relation (s+ 3/4)T1 ∈ ann
(1)
DX [s] f

s
7 . Moreover,

ann
(1)
DX [s] f

s
7 : (s+ 3/4) = DX [s](δ1, δ2, δ3 − 8s, T1) = ann

(2)
DX [s] f

s
7 .

l = 3: Gr(3) annDX
f s
7 = (σ1, σ2, x1τ1, ξ3τ1) and ann

(3)
DX

f s
7 = DX(δ1, δ2, T1, T2)

with σ(T2) = ξ3τ1. We have (s+ 5/8)T2 ∈ ann
(2)
DX [s] f

s
7 . Moreover,

ann
(2)
DX [s] f

s
7 : (s+ 5/8) = ann

(3)
DX [s] f

s
7 .

l = 4: Gr(4) annDX
f s
7 = (σ1, σ2, x1τ1, ξ3τ1, x1ξ3τ2) and ann

(4)
DX

f s
7 = ann

(3)
DX

f s
7+

DX(T3) with σ(T3) = x1ξ3τ2. We have (s+ 1/2)T3 ∈ ann
(3)
DX [s] f

s
7 . Moreover,

ann
(3)
DX [s] f

s
7 : (s+ 1/2) = ann

(4)
DX [s] f

s
7 .
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l = 5: Gr(5) annDX
f s
7 = (σ1, σ2, x1τ1, ξ3τ1, x1ξ3τ2, x1(x1ξ2−8ξ3)τ3) and ann

(5)
DX

f s
7 =

DX(δ1, δ2, T1, T2, T3, T4) with σ(T4) = x1(x1ξ2− 8ξ3)τ3. We have (s+3/8)T4 ∈

ann
(4)
DX [s] f

s
7 . Moreover,

ann
(4)
DX [s] f

s
7 : (s+ 3/8) = ann

(5)
DX [s] f

s
7 .

l = 6: Gr(6) annDX
f s
7 = (σ1, σ2, x1τ1, ξ3τ1, x1ξ3τ2, x1(x1ξ2 − 8ξ3)τ3, (x1ξ2 −

8ξ3)
2τ3 and ann

(6)
DX

f s
7 = DX(δ1, δ2, T1, T2, T3, T4, T5) with σ(T5) = (x1ξ2 −

8ξ3)
2τ3. We have (s+ 1/4)T5 ∈ ann

(5)
DX [s] f

s
7 . Moreover,

ann
(5)
DX [s] f

s
7 : (s+ 1/4) = ann

(6)
DX [s] f

s
7 .

We check that annDX [s] f
s
7 = ann

(6)
DX [s] f

s
7 , annDX

f s
7 = {A | Af7 ∈ DX(δ1, δ2)}

and δ1, δ2, T5 (resp. δ1, δ2, T1, T2, T3, T4, T5) is a non involutive (resp. involutive)
basis of annDX

f s
7 .

We have then that β(s) annDX [s] f
s
7 ⊂ ann

(1)
DX [s] f

s
7 , with β(s) = (s+3/4)(s+

5/8)(s+ 1/2)(s+ 3/8)(s+ 1/4), and D7 satisfies property (GDL).

We conclude as in examples 3.1 and 3.3.1 that D4 is Spencer.

The global Bernstein polynomial of f7 is

bf7(s) = (s+ 1)3(s+ 1/2)(s+ 7/8)(s+ 9/8)(s+5/8)(s+3/4)(s+3/8)(s+1/4)

and it is a multiple of β(s).
In this case we check that s10 /∈ (f7) + kerϕ and so there is no regular

functional equation bf7(s)f7 = Pf s+1
7 with P ∈W[s] of total order 10.

Nevertheless we are able to find a functional equation

bf7(s)− Pf7 = A1δ1 +A2δ2 +A3(δ3 − 8s) ∈ ann
(1)
W[s] f

s
7 , (13)

with P of total order 15, but the computations are quite involved. In fact, we
have not been able to find P and the Ai by using directly [21, 18]. What we have
done is to find a new system of generators of the ideal I =W(f7, δ1, δ2, δ3− 8s)
which “approximates” an involutive basis by iterating several times the following
process:

(Process) If we start with generators Q1, . . . , Qr of I, we compute a system of
generators of the syzygies of σT (Q1), . . . , σT (Qr), and with each of them we
check whether their lifting to W[s] produce a linear combination Q′ of the Qi

whose total symbol is in the ideal (σT (Q1), . . . , σT (Qr)) or not. If the answer
is not, we add this Q′ to our system of generators.

Once we have constructed a convenient system of generators Q1, . . . , Qs con-
taining the original one f7, δ1, δ2, δ3−8s, we start from the commutative relation
s10 ∈ C[x][s, ξ](σT (Q1), . . . , σT (Qs)) and we find (13).

Let us note that all examples above are (LWQH) and after remark (1.7.4)
we know that they are Spencer and satisfy the LCT.
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