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A shared control method, called Shared Control Dynamic Window Approach, is presented. It is inspired in the
Dynamic Window Approach (DWA) for autonomous mobile robots. It takes user commands by means of the control
interface and provide the most suitable and kinodinamically feasible trajectory that guarantees obstacle avoidance. It
provides navigation assistance to drive vehicles in unstructured environments and other scenarios where dynamic
constraints play an important role . In order to keep an intuitive control for the user, the intrusiveness of the method
varies gradually and proportionally with the danger of collision. Preliminary experiments with users driving vehicles
in a simulated world validate the method. Its implementation is public under General Public License.

1 Introduction

Driving a vehicle in unstructured environments may be a
challenging task for a human pilot. The difficulty and
dangerousness increases when the driving has to be
performed at high speed, the vehicle has non-holonomic
constraints or it does not have a fast dynamic response.
Although a computer can provide some high navigation
capabilities in terms of precision, perception and reaction
time, a human mind can perform better complex
reasoning and can interpret properly complex scenarios,
for instance predicting other drivers' intentions. Shared
control methods arise from the need of improving vehicle
navigation but following the guidelines of a human pilot
through user interfaces such as joysticks.

Some navigation assistance methods have been
developed by Car industry, such as: forward collision
detection, automatic braking, lane guidance systems, etc.
These methods do not improves the capacity of avoiding
obstacles. On the contrary, shared control is a kind of
navigation assistance that have been mainly investigated
in the field of intelligent wheelchairs. It can help
handicapped users colliding with obstacles, causing
damages to themselves, to other people, to the vehicle or
to the environment. Advantages of shared control
methods go beyond the assistance of handicapped people.
They can be also useful for driving kinodynamic
constrained and complex-driving vehicles, like cars at
high speeds. Moreover, they may improve the learning of
driving since novel human pilots typically need a long
time to do it [1].

This work introduces a shared control method to control
a kinodinamically constrained ground vehicle by means
of a joystick or other Local Control Interface (LCI). The
need for shared control in wheelchairs and the
experience of our Lab in this field [2], [3] have inspired
our present proposal. It enables unexperienced or

handicapped pilots to drive vehicles safely in challenging
scenarios. The resulting method is specially interesting
when it is applied to vehicles moving at high speed and
with a slow dynamic response (see 1).

Paper is organized as follows: section 2 introduces some
of the previous works in this field. Section 3 states a
general approach about how reactive local planners can
be used as shared-control systems and summarizes
classic DWA method whereas 4 discuses different
collision metrics. Later, in section 5 our method is
described. Implementation and experimental validation
are presented in section 6, while conclusions in section 7.

2 Previous work

Works [4]-[6] survey the most important shared control
methods for wheelchairs, which can be classified in three
main approaches: the “goal prediction based” and the
“behavior based” ones and the “continuous shared
control”. The first one is based on guessing where the
user wants to go. This concept is commonly known as
“prediction of intent”. “Behavior based” approaches use a
set of navigation behaviors (ie: manual mode and
autonomous mode) that are activated in different contexts
(crossing a door, navigating a corridor, etc.). Finally, in
“continuous shared control” approaches, the desired
trajectory given by the LCI is combined with other
obstacle avoidance criteria. This approach gives the user
a direct influence in the performed trajectory and not
only in the a final position objective.

The use of goal predictors enables any automatic
navigation method to be used as a shared control method.
The desired trajectory can be guess using landmarks such
as artificial rails on the ground [7], [8]. However, this has
two main drawbacks: the loss of autonomy that the user
suffers, and the need of inferring the final user goal
through a programmatic system. This implies that the
performed trajectory may be completely different to what



the user expected. Conversely, according to some studies
[9], navigation assistance should appear (in a gradual an
continuous way) only when it is needed, and should be
the less intrusive as possible (wheelchair users are
reluctant to lose the control of his/her wheelchair)
Behavior based approaches such as [10][11] alternates
autonomous navigation methods with manual control.
The main drawback of these approaches is that the
automatic change of navigation modes may produce
confusion to the user. A non clear switching between the
autonomous mode and the manual one may even produce
an erratic steering. Once again, the assistance should be
predictable and appear in a gradual and seamlessly
manner.

Other approaches such as [12] proposes the use of an
elastic bands planner. This method enables the user to
introduce small deviations of the global trajectory that is
being performed by means of the LCI, which can be
considered a combination of the “goal prediction” and
the “continuous shared control” approaches.

Other navigation assistance approaches are based on the
Reactive Navigation Paradigm. These methods compute
the movement of the vehicle from the LCI commands
and the position of the obstacles. In this sense, they can
be considered as “goal prediction based” approaches.
Methods [5], [13]-[15] are inspired on the potential field
paradigm, whereas [S] proposes that the LCI generates
an artificial short-term goal and obstacles produce
repulsive forces.

Figure 1. Two captures of Shared Control working. Thick
circular arcs indicate estimated user intentions. The rest
of arcs are kinodynamycally feasible trajectories, from
which Shared-DWA method selects the best trajectory. An

important drawback of these methods is that they do not
usually take into account the non-holonomic vehicle
constraints. This can produce a collision when the user
copes some challenges like moving close to a wall or
trying to cross a door.

Recently, methods [16], [17] takes into account the
kinematic constraints, so they follow the “continuous
shared control” approach. However, these methods are
only suitable for slow movements (like backwards
maneuvering), since vehicle dynamics is neglected.

The other field that has inspired our work is Intelligent
Cars. Works [18][19] survey an important part of the
current research work on navigation assistance for
intelligent cars. A promising recent work [20] proposes a
shared control method for intelligent cars based on the
geometric computation of path homotopies from a
Voronoi diagram (computed from the input obstacles).
However, the computation of the homotopy does not take
into account explicitly the kinodynamic constraints of the
vehicle and, additionally, it need a previously known
final goal position.

3 Motion planning and the DWA
method

The Shared-DWA method is based on ideas from the
wheelchair assistance navigation field and from vehicle
assisted driving [21], [22]. The consideration of the
kinodynamic constraints of the vehicle is one of the
novelty features that it provides. Thus, the “shared
control problem” is a particular case of the “obstacle
avoidance problem”, that is, the concept of goal position
in the workspace must be generalized to a goal trajectory
in the action space. This enables the conversion of many
local planners in shared control methods by introducing
the required modifications. In order to illustrate the
proposed idea, the DWA (Dynamic Window Approach)
method has been chosen to be redefined as a shared
control system, although it is possible to redefine almost
any other obstacle avoidance methods wusing our
approach.

Let us define the obstacle avoidance problem statement
like this: Let R be a robot that moves in a workspace W
with a state xe.Xxand whose dynamic behavior is defined
byi=F(x,u), where ueUis the applied action. The set of
known or sensed obstacles is given byocw, and the
mission goal is ge€G. A motion planner takes the state,
the goal and the obstacles and provide the output, that is,
the set of actions that the robot should follow in order to
reach the goal. The goal space G has been intentionally
defined in an abstract way because many representations
are possible.

Conversely to most autonomous obstacle avoidance
methods, which typically considers the goal like a
position in the workspace, the goal position is unknown
in a LCI-based shared control system. Each LCI
command is only a partial view of user's intention while
the final goal position is only in the pilot's mind. The
sequence of LCI commands represents conceptually a



flow of desired actions that the user has thought as a way
of reaching the goal position (user acts as a global
planner). From authors point of view, the goal of a shared
control system should be a commanded trajectory instead
of a goal position. It must be noticed that this general
approach may be considered a formalization of the
“continuous shared control” approaches (see section 2).
The Dynamic Window Approach (DWA) is a reactive
planner that performs a search of an optimal action in a
subset 7, of the action space called “The Dynamic
Window” (see 2). ¥, is the subset of dynamically possible
speeds V,c[v,.. X[ o given the current state
x€X and the action bounds, which are linear and angular
acceleration limits of the dynamical system: [a,,,a,,] and
.o 1. Note that a,,, is the maximum braking capacity
whilea,  is the maximum acceleration. By convenience,
this window is assumed to be symmetric around its center
(in practice it does not). Hence ¥, bounds depend on
(dpins @pe)s [0is ), @and on the sampling period 8¢ For
example the upper bound for linear speed in ¥, would be:
max(v+a,,d¢,v,,). The subset ¥, is sampled in a regular
grid fashion, which gives a discrete set of actions 7,. A
filter to discard non-admissible actions is applied to 7,
which result in a subset of admissible actions ¥, cV,. An
action (v,,w,)eV, is admissible if it is possible to perform
an emergency braking along the circular trajectory
defined by(v,,w,) without colliding with any obstacle.
Original DWA defines goals as points in the
workspace, geG=W. For a goal and a set of obstacles
ocw, DWA finds the best action (v,,,, w,.)€V, as the one
that minimizes the aggregated cost function G, which is
defined as:
G(v,w,0, 2)=k uurance clearance(v o, 0)+k
+K peading - heading (v,w,g)
Function G depends on 3 components, weighted with
the  free  parameters K etocity K cearancer K reading L NE
clearance (v, w,o)function describes and evaluates the
distance to the obstacles. The ve/(v)function evaluates the
cost on the speed. In original DWA method, faster speed
commands were preferred against slower ones, while
other variants are possible. The heading(g,v,w)function
quantifies how well the vehicle will be orientated to the
goal.
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Figure 2: Main concept of the DWA algorithm. A
dynamic window ¥, is a subset of the kinematically
possible action space U. Sampled actions in ¥ represent a
set of kinodynamically feasible trajectories of the robot in
the Workspacew.

4 Distance to collision metrics for
obstacle avoidance

In order to avoid collisions, DWA uses two mechanisms:
the Clearance Cost Function (CCF) and the
Non-Admissibility Filter (NAF). From the authors point
of view, the capacity of obstacle avoidance of such
mechanisms may worsen in some typical scenarios. Due
to this, we propose a novel distance to collision metric to
improve the reliability of the obstacle avoidance task in
the DWA and in the Shared-DWA.

CCF in DWA has two main limitations: first, it only
considers the distance to the obstacle along a circular
trajectory. Second, it neglects the dynamic constraints of
the vehicle. Thus CCF may not describe properly the
danger of collision of the circular trajectory. An example
of the CCF limitations can be seen in pure turn
trajectories for shaped robots. Here, the clearance cost got
is always zero neglecting the possible collisions of this
movement. Because of these limitations, the main
responsibility in the obstacle avoidance falls on NAF.
NAF makes DWA algorithm totally safe in theory.
However, it is not a continuous metric, but a discrete one
(of just two opposite values). Therefore, small errors
when sensing the state or the obstacles may convert an
inadmissible trajectory to an admissible one and
viceversa. Due to this, sometimes the best fitted action
computed by DWA is recklessly similar to a
non-admissible action in the same or in a similar circular
path. In our experiments with a real robot into intricate
zones, robot usually fell into non-admissible states that
sometimes ended up in collisions.

To sum up, the question is: What should a distance to
collision metric consider? A general answer could be to
compute how far the current state is from an inevitable
collision state [23]. However, computing the distance to
inevitable collision states may not be affordable in terms
of computational complexity. This is because of the
computational cost of exploring all the possible future
trajectories. During last decades, most of the collision to
distance metrics have assumed a simplification: the
vehicle would follow a known path in the near future.
Classical methods such as “Virtual Force Field” (VFF)
[24] or “Vector Field Histogram” (VHF) [25] used the
linear euclidean distance in the workspace. DWA
[26] and Curvature Velocity Method (CVM)
[27] generalized this idea to measure the distance along
circular  paths. The  “Ego-Kinematic Space”
[28] combined linear and angular distances to obstacles
along circular admissible trajectories. The “Trajectory
Parameter-Space” [29] proposed a coherent metric in the
C-Space for arbitrary shaped paths, but it does not
consider vehicle dynamic constraints.

Bearing in mind previous discussion, we propose a
distance to collision metric that takes into account the
dynamic constraints of the vehicle and considers both
angular and linear distances to the closer obstacle.
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Figure 3: Candidate actions u, have different distance
cost depending on: the distance to the obstacle, the linear
and angular speeds of the action, and the dynamic limits
of the vehicle. Left image shows a set of candidate
actions in the workspace (arrow width is proportional to
their linear speeds). Right image shows these candidate
actions (empty blobs) in the action space, and the nearest
non-admissible actions u’, (black blobs) with the same
curvature.

This metric answers to the following question: “What is
the distance d, between the candidate action « to the
nearest inevitable collision action u,, along the same
circular path?”. That is, d(u)=|lu— ...
Two challenges appear: computing the inevitable
collision action for the same circular path, and using a
suitable distance metric in the action space.

The nearest inevitable collision trajectory u;.,=(v .., W)
can be easily computed by means of the classic equations
of the uniform acceleration motion (as NAF does). Let
a,, be the linear maximum deceleration, d,,,, the arc
distance to the obstacle, «,, the angular deceleration
brake and 4, the orientation distance to the obstacle
(along the circular path). Thus, the maximum speed such
that the vehicle can do an emergency brake will be given
by one of these two braking formulas: v, =y2-a,,-d,..,
Wy =V 270
The distance metric of the action space has to cope with
the problem of the different units of the linear (m-s™' )
and angular velocities (rad-s'). A proposal is a
conservative norm using the worst case between the
linear and the angular non-admissibility degrees':
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One of the characteristic of this approach is that the
distance values are normalized in [0,1]. The distance
value of any feasible action is always lower than 1.
Figure 3 illustrates this idea. The danger of collision of a
trajectory depends on the distance to the obstacle and
also on the wvehicle kinodynamic constraints. For
instance, u, would be a safer action than u, despite that its
linear distance is lower if the vehicle were able to execute
high angular decelerations.

'This expression only considers forward movements
(backwards movement can be obtained with the same
procedure).

5 The Shared-DWA method

In order to find the best kinodynamically feasible action,
Shared-DWA method tries to follow the commanded goal
trajectory from the LCI while guarantecing avoidance of
obstacles (see 1). Thus, DWA cost functions must be
redefined.
In order to fix ideas, let us consider a simple dynamical
model of a planar wheeled mobile robot, where x=(x, x, ¢)
represents the Cartesian coordinates and the orientation
w.rt. x, axis. Action u=(v,0) is composed of the linear
and angular speeds. Let j=(j,, j,)Je/be an LCI command,
which is mapped to the target circular path (instead of as
a goal position in the workspace), that is, there is a
function:  f,,,..(/,x)>g=(v,, o,). Replacement of goal
space G makes Shared-DWA look much more a velocity
control system. Conversely, the original DWA statement
was a position control system .
The Shared-DWA design follows the next two principles:
* In non dangerous scenarios, users should have full
control of the system like in manual navigation. Due
to this, the selected actions in (v,w)e¥, must be the
closer to the goal action g=(v,,»,). This minimizes
the intrusiveness of the system according to the
principles explained at [30] .
e If a collision may occur, the navigation assistance
degree must be increased.
Admissibility cost plays the role of CCF and NAF in
DWA. It regulates the influence of the velocity heading
functions according to their safety. It can be defined as
the complementary of previous d, that is:
Adm(v,w)=(1-d ,(v,®))
The aggregated cost function must be different from that
of DWA, because the non admissibility function is not
required. The admissibility factor serves to regulate the
intrusiveness of the automatic control. If the action is
safe, the cost is only related with the previous explained
factor. Otherwise the cost get increased until reaching 1
when the action is non-admissible. To sum up:
cost =Adm+1— Adm)|(k,,,, heading ., +k., velocity(m)
The heading function describes the desired direction that
the vehicle should take at the original DWA. In
Shared-DWA, the heading function measures how well
the curvature fits the target curvature. Hence, the heading

function is reformulated according to:

heading., (v, 0, v, (Dg): ‘atan2(v,w)—réztan2(vg, wg)‘

The velocity cost function for Shared-DWA describes
how an action fits the desired velocity. This is evaluated
as the linear error between the candidate v and the target
velocity v, normalized by the maximum possible velocity

v max *

_b=vy
Vé‘lm(‘/:vg)—Tﬂg
When the speed of the wvehicle increases, the

non-admissibility degree for most of the actions get
increased. In this situation, it is possible to reach a state
where almost all the actions have cost 1, which can be
called “non-admissibility saturation”. Approaching this
state is not recommendable because it would limit too



much the user movement freedom. This situation is
common when running fast in a corridor. If it happened,
it would be very difficult to do a 90° turn.
In order to have a rich set of candidate actions,
experience has shown us that linear speed must be
decreased when approaching this situation. This can be
done by introducing an extra regulation to the velocity,
like this:
v—v v
vel( v, vg)Z(l —D)%+D%

D is a global dangerousness metric of the current
navigation context. It can be defined like a reduction
function for any speed in 7:
clearance (v, w)
D:wmem count(Vd)
When global dangerousness is high, system intrusiveness
is increased. With this regulation the non-admissibility
saturation is not reached and the admissible candidate
actions hold diverse enough.

6 Implementation and Experimental
validation

Shared-DWA implementation is freely available for the
community as open source under the terms of the GPL
license. The developed system support frequencies higher
than 50Hz in a Intel Core 17 2GHz processor with a
resolution of the dynamic window of 20x15. The method
uses Continuous Collision Detection (CCD) in order to
compute  the  non-admissibility  degree. The
implementation can consider robot shape using
precomputed lookup tables or a circular robot shape
computing the collision at real time. Due that sampling
frequency of the laser ranger is 20 Hz (with 120
samples), both methods can be efficiently computed in
0.05 s. During the execution, user gets force feedback
with the factor D described in the previous section. This
gives the user information about the global danger of the
current state and encourages him/her to decrease the
speed.

Test have been done using the simulator “Stage” [31].
This simulator has been extended to support dynamic
constraints (angular and linear acceleration limits) .

This software is built on top of the following open source
software: ROS (http://www.ros.org) and The Robot
Navigation Template Library (RNTL)
(https://sites.google.com/site/robotnavigationtemplatelibr
ary/) developed by the authors.

Some experiments that validate Shared-DWA algorithm
are summarized below. Four human users tested the
system in the simulated environment. The simulator
experiments have been performed by users showing two
different views to drive the vehicle: a ortogonal-top view
perspective, or from a first-person view with a simulated
on-board camera. Users were asked to do two trials: first
driving the vehicle using a joy-pad without any assisted
help (here named manual control); second, driving with
the Shared-DWA assistance. This makes possible to
compare both methods. The users had no previous

experience about how to control this vehicle.

Three vehicles with different kinodynamic characteristics
were tested. Vehicle A is similar to a bicycle, vehicle B to
a motorcycle, and vehicle C to a very agile motorcycle
(see Table 1).

V @yt T Wy W e
Al 4ms™ 6ms™’ 3ms™? 1.5rad s™ 50rad s~
B| 8ms™ 6ms™ 6ms™ 3rads™ 50rad s
C| 10ms™ 15ms™ Tms™ 3rads™ 50rad s

Table 1. Kinodynamic description of the vehicles.

Manual control. Results showed that vehicles B and C
were very hard to control with manual control in both
views (first-person view and top-view). Users collided in
less than 10 meters and found severe problems to
perform 90° turns. They also had problems trying to
manage the vehicle at slower speeds since they were not
accustomed to the LCI. Better results were achieved with
vehicles B and C if velocities were v, =4ms™' and

max

o,.=1.5rad s”'. After several minutes of training they were
able to drive the vehicle with less than one collision per
minute using the global view. Finally, they had some
problems steering the vehicle along a desired path. In
this case, users mentioned that they were not able to react
quickly to obstacles (specially in the first-person view)
and also they pointed out that they did not feel
comfortable with a joypad controlling a non-holonomic
vehicle at high speed.

Shared-DWA control. Users could manage without
collisions the three robots reaching velocities near to the
maximum and accomplishing some requested missions.
For vehicle A, users got similar results than in manual
control (after the training process) and satisfaction
degree were pretty similar. However some of them
complained about the slower speeds (in comparison with
manual control) when they drove through narrow
corridors or close to the walls. The results were also
positive when managing vehicle B. They were able to
achieve different requested goals in the scenarios without
colliding. However, at the first trials they complained
because sometimes directions chosen by the system were
different to the desired. This was because system
intrusiveness increased and users lose much more control
over the vehicle. After 5 minutes of training two of the
users were able to overtake this problem by commanding
slower speeds at the intersections. Results and
satisfaction degree was higher for vehicle C, where
system intrusiveness decreased because of its higher
braking capability. Therefore they were able to take hard
90° turns at high speeds without colliding (mean speed of
vV, =9ms") .

7 Conclusions and Future work

A novel navigation assistance method for controlling a
kinodynamically constrained vehicle has been proposed.
It makes possible avoid collisions when driving vehicles
at high speed in unstructured scenarios. Moreover a
state-space collision distance metric was presented,



which is very useful to regulate the navigation assistance
intrusiveness in a continuous and gradual way (avoiding
context switching). Preliminary testing with 4 users in a
simulated environment showed that the method could be
specially useful for semi-autonomous teleoperation of a
mobile robot whose shape and collision distance were
hard to perceive properly by a human using a first-person
camera. Future work includes usability tests with real
vehicles and considering non-circular trajectories. The
last would make possible to take hard turns at high
speed, by performing an automatic aperture trajectory
even if the user is not familiar with the vehicle
kinodynamic constraints.
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