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ON THE COMPUTATION OF THE APÉRY SET OF

NUMERICAL MONOIDS AND AFFINE SEMIGROUPS

GUADALUPE MÁRQUEZ–CAMPOS, IGNACIO OJEDA, AND JOSÉ M. TORNERO

Abstract. A simple way of computing the Apéry set of a numerical semigroup
(or monoid) with respect to a generator, using Groebner bases, is presented,
together with a generalization for affine semigroups. This computation allows
us to calculate the type set and, henceforth, to check the Gorenstein condition
which characterizes the symmetric numerical subgroups.

1. Introduction

The most elementary structure this paper deals with is that of numerical monoid.
A numerical monoid is a very special kind of semigroup that can be thought of as
a set

〈 a1, ..., ak 〉 = {λ1a1 + ...+ λkak | λi ∈ Z≥0} , with gcd(a1, ..., ak) = 1.

This object has been thoroughly studied in the last years, when a significant
number of problems concerning the description of these semigroups and some of
their more interesting invariants have been tackled. Unless otherwise stated, all
proofs which are not included can be found in [9, 15].

Given a numerical monoid S, there are some invariants which will be of interest
for us. The most relevant will be the set of gaps, noted G(S), and defined by

G(S) = Z≥0 \ S,

which is a finite set. Its cardinal will be noted g(S) and its maximumm, noted
f(S), is called the Frobenius number of S.

The Apéry set of S [2] with respect to an element s ∈ S can be defined as

Ap(S, s) = {0, w0, ..., ws−1}

where wi is the smallest element in S congruent with i modulo s.
This set has some highly interesting properties, which we will review now.

Lemma 1. With the previous notations, for all s ∈ S,

Ap(S, s) = {x ∈ S | x− s /∈ S}

Example 1.1. Let S = 〈7, 9, 11, 15〉. Some of the Apéry sets associated to its
generators are:

Ap(S, 7) = {0, 9, 11, 15, 20, 24, 26}

Ap(S, 15) = {0, 7, 9, 11, 14, 16, 18, 20, 21, 23, 25, 27, 28, 32, 34}

In particular, for a monoid with two generators, the Apéry sets associated to its
generators are fully determined.
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Lemma 2. Let S = 〈 a1, a2 〉. Then

Ap(S, ai) = {0, aj , 2aj, ..., (ai − 1)aj}

The importance of the Apéry set can be illustrated in the following result, where
the previous numerical invariants of a numerical monoid are expressed in terms of
Apéry sets.

Proposition 3. Let S be a monoid, s ∈ S. Then:

f(S) = max
{
Ap(S, s)− s

}
, g(S) =

1

s

∑

w∈Ap(S,s)

w +
s− 1

2
.

This expression of g(S) in terms of the Apéry set is known as Selmer’s formula.
Our first purpose is to develop an easy algorithm to compute the Apéry set

of a S associated to any of its generators. As it turns out, these are the most
interesting ones. We will do that with the help of Groebner bases with respect to
some monomial orderings, and more specifically in terms of the characterization of
elements in (respectively, out) a monoid in terms of these bases.

This characterization can be found in [12], but we will review it in the second
section of the paper for the convenience of the reader (Theorem 5). It will be
extensively used in the sequel as it provides an easy (not necessarily in complexity
terms) and versatile characterization of elements in (or not in) S, with a quite wide
choice of monomial orderings.

After that, in the third section, we show how to compute (and see) the Apéry
set associated to the generators (Theorem 6). We are interested not only on the
computation, but also on the variety of choices we can make for the orderings. This
will be the most important feature in the sequel.

The computation can be generalized to a wider class of semigroups: the affine
semigroups. This will be done in the fourth section of the paper at the cost of being
more restrictive with the orderings.

The computation of the Apéry set will prove useful in order to study a related
concept: the set of pseudo–Frobenius elements (PF (S)) and the type set. We will
explore this relationship in the fifth section. Precisely, if we consider, for a given
S = 〈a1, ..., ak〉, with a1 < · · · < ak, its type set

T (S) = {m ∈ Ap(S, ak) | m+ ai /∈ Ap(S, ak), ∀i = 1, ..., k} ,

then we have [13, 10]

g(S) =
1

2
(f(S) + 1) ⇐⇒ #T (S) = 1.

This condition (#T (S) = 1) always holds for monoids with two generators [18],
but in general it is not so. The condition is subsequently known as the Gorenstein
condition. Concerning this, we will show how we can compute the type set by
calculating the Apéry set Ap(S, ak) for a variety of monomial orderings (Theorem
15).

We will end with a word on pseudo–Frobenius elements and how they are related
with more complex algebraic structures which can be defined from S.

Finally, something should be said on previous work. The Apéry set has been
thoroughly studied in the literature [4, 5, 16, 11, 17] but its computation has not
been treated so often.

The work by P. Pisón–Casares [14] used a technique close to Groebner bases (al-
though the orderings used there were not strictly monomial orderings) to compute
Apéry sets in the context of affine semigroups. Our third and fourth section are
actually a twist of her arguments, in order to use monomial orderings.
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In particular, our main result in section 3 (generalized in section 4) is included
anyway, both for the convenience of the reader and also because it provides a
detailed description of the several orderings that we can consider. This will be the
most important thing in section 6 and hopefully in future applications.

2. The Groebner correspondence

All the general results referred to the general theory of Groebner bases that we
will use can be found in standard textbooks on the subject; for instance in [1, 6].

We will work in the polynomial ring Q[x, y1, ..., yk]. Given a polynomial

g =
∑

α=(α0,...,αk)∈Z
k+1

≥0

aαx
α0yα1

1 ...yαk

k ∈ Q[x, y1, ..., yk],

and a monomial ordering ≺, define

exp(g) = max
≺

{
α | aα 6= 0

}
∈ Zk+1

≥0 .

Let then S = 〈a1, ..., ak〉 ⊂ Z≥0 be a numerical monoid. Consider the following
binomial ideal associated to S:

IS = 〈y1 − xa1 , y2 − xa2 , y3 − xa3 , ..., yk − xak〉 ⊂ Q[x, y1, ..., yk].

As IS is a binomial ideal (i.e., it can be generated by binomials), it has a lot of
special properties [8]. In particular we are interested in the following ones:

• A reduced Groebner basis of IS consists of binomials.
• The normal form of a monomial with respect to a reduced Groebner basis
of IS is again a monomial.

So, consider IS and let B = {g1, ..., gr} be the reduced Groebner basis of IS with
respect to ≺, an elimination ordering for x, and NB the normal form with respect
to B.

Let us write also:

qi = exp≺(gi) ∈ Zk+1
≥0 , Kqi = qi + Zk+1

≥0 , E (IS) =

r⋃

i=1

Kqi ⊂ Zk+1
≥0 .

A preliminary elementary result is:

Lemma 4. Let φ̃ be the ring homomorphism defined by:

φ̃ : Q[x, y1, y2, ..., yk] −→ Q[x]

yj 7−→ xaj

x 7−→ x

Then ker
(
φ̃
)
= IS . Therefore

NB(g) = NB(h) ⇐⇒ g − h ∈ ker
(
φ̃
)

⇐⇒ φ̃(g) = φ̃(h).

The main result in [12] goes as follows:

Theorem 5. With the previous notations, let E(IS) = Zk+1 \E(IS). Then:

• The mapping

F : G(S) −→ E(IS) \ {x = 0} ⊂ Zk+1
≥0

N 7−→ exp
(
NB

(
xN

))

is bijective.
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• The mapping

G : S −→ E(IS)
⋂

{x = 0} ⊂ Zk+1
≥0

M 7−→ exp
(
NB

(
xM

))

is bijective.

Furthermore, for any l ∈ Z≥0, if

NB

(
xl
)
= (σ0, σ1, ..., σk) ,

then
l = σ0 + σ1a1 + ...+ σkak.

So the mapping l 7−→ NB

(
xl
)
separates the non–negative integers into (or out

of) E(IS) ∩ {x = 0}, depending on whether they are in S or not.

Example 2.1. Let us consider an example of dimension 3 (taken from [12]). Let
S = 〈7, 9, 11〉. The Frobenius number of this numerical semigroup is:

f(S) = 26,

and its set of gaps:

G(S) = {1, 2, 3, 4, 5, 6, 8, 10, 12, 13, 15, 17, 19, 24, 26}.

We can take the binomial ideal:

IS = 〈y1 − x7, y2 − x9, y3 − x11〉 ⊂ Q[x, y1, y2, y3]

and find the Groebner basis B, using an elimination ordering for x. For this exam-
ple, we have taken the usual lexicographic ordering x > y1 > y2 > y3. With this
particular choice we get:

B =
{
y112 − y93 , −y22 + y3y1, y

9
2y1 − y83 , y

7
2y

2
1 − y73 , y

5
2y

3
1 − y63 , y

3
2y

4
1 − y53 ,

y51y2 − y43 , −y2y
3
3 + y61 , −y2y

2
1 + y23x, −y31 + y3y2x, y

3
2x− y41 ,

y22y
2
1x− y33 , −y23 + y31x, y2x

2 − y3, y1x
2 − y2, y3x

3 − y21 , −y1 + x7
}
.

We have to consider then, qi = exp(gi) where gi is the i–th polynomial in B, and
take the corresponding set

Kqi = qi + Zk+1
≥0 ⊂ Zk+1

≥0 ,

in order to establish our bijections F and G. In this case,

q1 = (0, 0, 11, 0), q2 = (0, 1, 0, 1), q3 = (0, 1, 9, 0),
q4 = (0, 2, 7, 0), q5 = (0, 3, 5, 0), q6 = (0, 4, 3, 0),
q7 = (0, 5, 1, 0), q8 = (0, 6, 0, 0), q9 = (1, 0, 0, 2),
q10 = (1, 0, 1, 1), q11 = (1, 0, 3, 0), q12 = (1, 2, 2, 0),
q13 = (1, 3, 0, 0), q14 = (2, 0, 1, 0), q15 = (2, 1, 0, 0),
q16 = (3, 0, 0, 1), q17 = (7, 0, 0, 0)

Let us have a closer look to F , so we are only interested in points of E(I) outside
x = 0. In order to represent the points, we will consider the subcases x = λ, with
λ ∈ Z≥0. We have then:

• x = 1. In this hyperplane we find several corners qi, precisely

q9 = (0, 0, 2), q10 = (0, 1, 1), q11 = (0, 3, 0), q12 = (2, 2, 0), q13 = (3, 0, 0)

These points determine the elements of E(IS) ⊂ Z4
≥0, along with the point

(1, 1, 0, 1) ∈ Kq2 . In the following pictures we will draw square points for
points in ∪Kqi and round points for points outside ∪Kqi , thus associated
with a unique element of G(S) by means of F :
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• At x = 2 these are the points which determine the set:

q14 = (0, 1, 0), q15 = (1, 0, 0), (0, 0, 2) ∈ Kq9

• At x = 3, we have these points in ∪Kqi

q16 = (0, 0, 1), (1, 0, 0) ∈ Kq15 , (0, 1, 0) ∈ Kq14

• At x = 4, x = 5 and x = 6, the only relevant point is the origin, as yi < 1
for i = 1, 2, 3.

• Last, in x = 7 we have (7, 0, 0, 0) = q17, so this is, so to speak, the ceiling
for variable x.
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If we compute the normal form of monomials xni , where ni is the i–th gap, we
get:

NB(x
1) = x NB(x

2) = x2 NB(x
3) = x3

NB(x
4) = x4 NB(x

5) = x5 NB(x
6) = x6

NB(x
8) = xy1 NB(x

10) = xy2 NB(x
12) = xy3

NB(x
13) = x2y3 NG(x

15) = xy21 NB(x
17) = xy1y2

NB(x
19) = xy22 NB(x

24) = xy21y2 NB(x
26) = xy1y

2
2

3. Computation of the Apéry set: the numerical case

Consider the polynomial ring Q[x, y1, ..., yk], and let us define an elimination
ordering for x, written ≺j, as follows:

(1) First, we take into account the exponent on x.
(2) After that, we take a graded ordering in {y1, ..., yk} leaving aside yj, and

determined by the generators a1, ..., ak, that is, we order by

i=k∑

i=1,i6=j

αiai,

where αi is the exponent on yi.
(3) Then we use any monomial ordering for all variables yi, where i = 1, ..., k

and i 6= j.
(4) Finally, we use the exponent on yj.

We will call such an ordering an Apéry ordering (with respect to aj).

Example 3.1. If one wants to use the matrix notation for the ordering, an example
of ≺j will be given by1




1 0 0 ...

(j+1)︷︸︸︷
0 ... 0

0 a1 a2 ... 0 ... ak
0 1 0 ... 0 ... 0
0 0 1 ... 0 ... 0
...

...
...

...
...

0 0 0 ... 0 ... 1
0 0 0 ... 1 ... 0




This will be precisely the matrix of the Apéry ordering we should use if we con-
sider in (3) the lexicographic ordering y1 < ... < yj−1 < yj+1 < ... < yk.

Let S = 〈a1, ..., ak〉 be a numerical monoid with ai 6= 0, and the ideal IS defined
as in the previous section. Let Bj be the reduced Groebner basis of IS with respect
to ≺j , and let us write Nj the normal form with respect to this basis.

We define the following set:

∆≺j
(S, aj) =

{
N ∈ Z≥0 | exp

(
Nj

(
xN

))
∈ {x = yj = 0} ∩ E(IS)

}
.

The important result in this section is the following:

Theorem 6. ∆≺j
(S, aj) = Ap(S, aj).

1Note that, if one needs a square matrix, as some computer algebra packages do, one can
always add a numb variable or erase a row between the 3rd and the (k + 1)–th.
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Proof. Let us show first Ap(S, aj) ⊆ ∆≺j
(S, aj). Let n ∈ Ap(S, aj) other than 0 (as

the zero case is trivial), which implies n ∈ S and n > aj . There are x1, ..., xk ∈ Z≥0

such that

n =

k∑

i=1

aixi

and, being in the Apéry set, we already know n− aj /∈ S.
We want to prove

exp (Nj (x
n)) ∈ {x = 0} ∩ {yj = 0}.

But the exponent lies in {x = 0} from Theorem 5. Let us write

exp (Nj (x
n)) = (γ1, γ2, ..., γk).

From the expression above

n− aj = a1γ1 + ...+ ajγj + ...+ akγk − aj
= a1γ1 + ...+ aj(γj − 1) + ...+ akγk.

As n− aj ∈ G(S), the above expression must have a strictly negative coefficient.
As γi ∈ Z≥0 for i = 1, ..., k; it must be (γj − 1) /∈ Z≥0 and therefore γj = 0, as we
wanted to show.

Let us prove now ∆≺j
(S, aj) ⊆ Ap(S, aj), so take n ∈ ∆≺j

(S, aj). From the
definition of ∆≺j

(S, aj) we know n ∈ S and

exp (Nj (x
n)) ∈ {yj = 0} ∩ {x = 0}.

Hence there must exist

γ1, ..., γj−1, γj+1, ..., γk ∈ Z≥0,

such that

Nj (x
n) = yγ1

1 ...y
γj−1

j−1 · y
γj+1

j+1 ...yγk

k ,

which, from Theorem 5 yields

n = γ1a1 + ...γj−1aj−1 + γj+1aj+1 + ...+ γkak.

Let us assume n /∈ Ap(S, aj). So, either n /∈ S (which is impossible as n ∈
∆≺j

(S, aj)) or n > aj and besides n− aj ∈ S.
Then there are α1, ..., αk ∈ Z≥0 verifying

n− aj =

k∑

i=1

aiαi,

that is,

n =
k∑

i=1,i6=j

aiαi + aj(αj + 1).

So we have two expressions for n, and

n = a1γ1 + ...+ aj−1γj−1 + aj+1γj+1 + ...+ akγk
= a1α1 + ...+ aj(αj + 1) + ...+ akαk,

which yields
k∑

i=1,i6=j

ai(αi − γi) + aj(αj + 1) = 0. (∗)

From Lemma 4 and the definition of (γ1, ..., γk),

yγ1

1 · ... · y
γj−1

j−1 · y
γj+1

j+1 · ... · yγk

k = Nj (x
n) = Nj

(
yα1

1 · ... · y
αj+1
j · ... · yαk

k

)
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So, as the normal form of a monomial must be a monomial, we know that

(0, γ1, ..., γj−1, 0, γj+1, ..., γk) ≺j (0, α1, α2, ..., αk)

which implies

k∑

i=1,i6=j

γiai ≤

k∑

i=1,i6=j

αiai =⇒

k∑

i=1,i6=j

ai (αi − γi) ≥ 0.

This contradicts (∗), as aj(αj + 1) must be positive. �

Note that our assumptions on the monomial ordering are in fact quite sparse.
This will give us a lot of elbow room to work with, and we will take advantage of
this fact.

Corollary 7. The set ∆≺(S, aj) does not depend on the choice of ≺ (as long as it
is an Apéry ordering).

Example 3.2. Let S = 〈7, 8, 9, 13〉. We have

IS =
〈
y1 − x7, y2 − x8, y3 − x9, y4 − x13

〉
⊂ Q[x, y1, y2, y3, y4],

For this monoid we have

G(S) = { 1, 2, 3, 4, 5, 6, 10, 11, 12, 19 }

and

Ap(S, 13) = { 0, 7, 8, 9, 14, 15, 16, 17, 18, 23, 24, 25, 32 }, T = { 32 }.

Let us take an Apéry ordering ≺1, taking the lex ordering y1 < y2 < y3 in step
(3). The Groebner basis is

B1 =
{
x7 − y1, x4y3 − y4, x2y23 − y1y4, xy2 − y3, xy1 − y2, xy4 − y21 ,

y52 − y21y
2
4 , y32y3 − y1y

2
4 , y1y

3
2 − y23y4, y33 − y21y4, y2y

2
3 − y24 ,

y21y2 − y3y4, y31 − y2y4, y1y3 − y22

}
.

Let us compute ∆≺1
(S, 13). In order to do that let us draw in {x = y4 = 0} the

integer corresponding by G−1 to each element (0, α1, α2, α3, 0) (that is, 7α1+8α2+

9α3). The shadowed regions in the picture below are precisely E(IS)∩{x = y4 = 0}
(the horizontal axis is y1, the vertical is y2).

At y3 = 0

On the other hand, at y3 = 1
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Finally, at y3 = 3

That is, as expected,

∆≺3
(S, 13) = { 0, 7, 8, 9, 14, 15, 16, 17, 18, 23, 24, 25, 32 }.

Mind that, although the set ∆≺j
(S, aj) does not depend on the chosen ordering

for {y1, ..., yk} \ {yj}, the actual arranging of the integers inside ∆≺j
(S, aj) might

well depend. In the same example, consider now in the step (3) the ordering ≺2,
taking the lex ordering y2 < y3 < y1 in step (3). The Groebner basis is

B2 =
{
x7 − y1, x4y3 − y4, x2y23 − y1y4, xy2 − y3, xy1 − y2, xy4 − y21 ,

y33 − y21y4, y2y
2
3 − y24, y21y2 − y3y4, y31 − y2y4, y22 − y1y3

}
.

Then the picture of ∆≺3
(S, 13) is, at x = y4 = y3 = 0,

At x = y4 = 0, y3 = 1,

And at last, at x = y4 = 0, y3 = 2,
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4. Computation of the Apéry set: the affine case

An affine monoid is a finitely generated monoid that is isomorphic to a submonoid
of Zd, d ≥ 0. For the sake of simplicity, we will assume that all our affine monoids
are submonoids of Zd for some d ≥ 0.

Let S = 〈a1, . . . , ak〉 be an affine monoid with ai ∈ Zd \ {0}. We will say that S
is pointed if S ∩ (−S) = {0}, that is to say, if 0 is the only invertible element of S.
Equivalently, if the rational cone

pos(S) := {λ1a1 + . . .+ λkak | λi ∈ Q≥0}

is pointed.
Observe that if d = 1, then pointed affine monoids are nothing but numerical

monoids. In this case, the corresponding rational cones are all equal to Q≥0.
Let Λ ⊆ {a1, . . . , ak} be such that pos(S) = pos(Λ). The Apéry set of S with

respect to Λ is defined as follows (see, e.g., [14, Definition 1.1])

Ap(S,Λ) = {a ∈ S | a− b 6∈ S, ∀b ∈ Λ}.

For d = 1, one has that pos(S) = pos(s), for all s ∈ S \ {0}. Thus, by Lemma 1,
the above definition of Apéry set is a generalization of the one given for numerical
semigroups.

Let us fix Λ ⊆ {a1, . . . , ak} such that pos(S) = pos(Λ). Without loss of general-
ity, we may suppose that Λ = {ak−n+1, . . . , ak}, n ≤ k.

Consider the polynomial ring Q[x1, . . . , xd, y1, . . . , yk] and let ≺Λ be a block
ordering on A such that ≺Λ is an arbitrary monomial ordering ≺x for x and ≺Λ is
a S–graded reverse lexicographical ordering ≺y for y such that yj ≺y yi, for every
j ∈ {1, . . . , k − n} and j ∈ {k − n+ 1, . . . , k}.

Example 4.1. If ≺x is the lexicographical ordering with xd ≺x . . . ≺x x1 and ≺y

is the S–graded reverse lexicographical ordering with yk ≺y · · · ≺y y1, then ≺Λ is
given by 



Id 0 0 · · · 0
0 a1 a2 · · · ak
0 0 0 · · · −1
...

...
...

...
0 0 −1 · · · 0




Let IS be the kernel of the ring homomorphism

φ̃ : Q[x1, . . . , xd, y1, . . . , yk] −→ Q[x1, . . . , xd]

yj 7−→ xaj := x
a1j

1 · · ·x
adj

d

xi 7−→ xi

Let BΛ be the reduced Groebner basis of IS with respect to ≺Λ and set NΛ for
the normal form operator with respect to this basis. For the sake of convenience,
we will write {z1, . . . , zn} instead of {yk−n+1, . . . , yk} in what follows.

Now, define the following set

Q≺Λ
(S) =

{
a ∈ Zd

≥0 | exp
(
NΛ(x

a)
)
∈ {x1 = . . . xd = z1 = . . . = zn = 0} ∩ E(IS)

}
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Notice that there are finitely many elements in Q≺Λ
(S). Indeed, since pos(S) =

pos(Λ), then, for each aj, j = 1, . . . , k − n, there exist uj ∈ Z≥0 and vj =
(v1j , . . . , vnj) ∈ Zn

≥0 such that ujaj =
∑n

i=1 vijak−n+i. Therefore,

y
uj

j −NΛ(z
vj ) ∈ BΛ.

The next theorem generalizes Theorem 6 for affine monoids.

Theorem 8. Q≺Λ
(S) = Ap(S,Λ).

Proof. Let a ∈ Q≺Λ
(S) and consider the fiber of

π : Zd+k
≥0 −→ S

(u1, . . . , ud+k) 7−→

d+k∑

i=d+1

uiak

over a, that will be denoted by π−1(a).
By hypothesis, there exists

u = (0, . . . , 0, ud+1, . . . , ud+k−n, 0, . . . , 0) ∈ π−1(a) ∩ E(IS).

If a − b ∈ S, for some b ∈ Λ, there exist v = (0, . . . , 0, vd+1, . . . , vd+k−n, 0, . . . , 0)

and w = (0, . . . , 0, w1, . . . , wn) ∈ Zd+k
≥0 with wi 6= 0, for some i, and v+w ∈ π−1(a).

That is to say, there exists a nonzero

f = yu − yvzw ∈ IS .

Finally, since, by the definition of ≺Λ, v +w ≺Λ u, we obtain that u ∈ E(IS),
a contradiction.

Conversely, if a ∈ Ap(S,Λ) and u ∈ π−1(a), then ui = 0, for every i ∈
{d+ k − n+ 1, . . . , d+ k}. In particular,

exp(NΛ(x
a)) ∈ {x1 = . . . xd = z1 = . . . = zn = 0}

and we are done. �

5. Pseudo–Frobenius numbers and the type set

Let us fix a numerical monoid S and let us review some classical definitions.
First, we define a partial ordering ≤S in S as follows:

x ≤S y ⇐⇒ y − x ∈ S.

We also say x ∈ Z is a pseudo–Frobenius number for S if:

• x /∈ S.
• x+ s ∈ S for all s ∈ S \ {0}.

The set of pseudo–Frobenius numbers for S will be noted PF (S) and its cardinal,
which we will call the type of S will be written as t(S).

It is clear that f(S) is the maximum of PF (S) (with respect to the usual ordering
in Z). A very special familiy of monoids are precisely those where PF (S) = {f(S)}
(equivalently, where t(S) = 1). These monoids are called symmetric.

The relationship between <S and PF (S) comes from the next result.

Proposition 9. An integer g ∈ Z belongs to PF (S) if and only if for any n ∈ S,
g + n is a maximal element in Ap(S, n) with respect to the ordering ≤S.

Corollary 10. t(S) = # {max≤S
Ap(S, n)} .
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In [13] Nijenhuis and Wilf studied when the property

g(S) =
1

2
(f(S) + 1)

holds for a given numerical semigroup S (the same goes for monoids, of course). As
we mentioned, the case k = 2 was completely known from Sylvester [18]. Looking
for conditions that are equivalent to this property, they proved the following result
(essentially proved independently by Kunz [10]).

Theorem 11. Let S = 〈a1, ..., ak〉 and let us consider the set

T (S) = {m ∈ Ap(S, ak) | m+ ai /∈ Ap(S, ak), ∀i = 1, ..., k} .

Then

g(S) =
1

2
(f(S) + 1) ⇐⇒ ♯T (S) = 1.

The set T (S) will be called the type set of S, and the condition ♯T (S) = 1 will
be called (after [13]) Gorenstein condition.

There is also a tight relationship between T (S) and PF (S) [13].

Proposition 12. PF (S) = {m− ak | m ∈ T (S)}.

Corollary 13. Under the previous assumptions:

• # T (S) = t(S).
• A monoid verifies the Gorenstein condition if and only if it is symmetric.
• T (S) =

{
max≤S

Ap(S, ak)
}
.

In the following section we will give a different method for computing the type
set using the algorithm we developed above.

6. Computation of the type set

Example 6.1. Let us take again our monoid from a previous example S = 〈3, 7, 11〉.
Remember we already computed

Ap(S, 11) = {0, 3, 6, 7, 9, 10, 12, 13, 15, 16, 19}.

If we want to compute the type set T (S) and the set PF (S) we can use the partial
ordering ≤S as indicated above. In fact, the ordering induces the following diagram
in Ap(S, 11) (an arrow x −→ y indicates x ≤S y):

7 // 10 // 13 // 16 // 19

0

@@
�
�
�
�
�
�
�
�

// 3

??
⑦
⑦
⑦
⑦
⑦
⑦
⑦
⑦

// 6

>>
⑤
⑤
⑤
⑤
⑤
⑤
⑤
⑤

// 9

>>
⑤
⑤
⑤
⑤
⑤
⑤
⑤
⑤

// 12

>>
⑤
⑤
⑤
⑤
⑤
⑤
⑤
⑤

// 15

Therefore we have T (S) = {15, 19}, PF (S) = {4, 8}.

In this section we will give a different, systematic way of computing T (S), using
our previous algorithm to compute Ap(S, s).

Under the assumptions of the previous section, we compute Ap(S, ak) using an
Apéry monomial ordering ≺ whose normal form will be denoted by Nk(·). Let
N ∈ Ap(S, ak), and therefore let us write

exp
(
Nk

(
xN

))
= (0, γ1, ..., γk−1, 0).

We will say N is an extremal element of Ap(S, ak) for ≺ if, for all i = 1, ..., k we
have

(0, γ1, ..., γi + 1, ..., γk−1, 0) /∈ E(IS) ∩ { x = yk = 0 }.
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Mind that the set of extremal elements does depend on the ordering chosen ≺.
That is why we will denote

∂≺(S, ak) = { Extremal elements of Ap(S, ak) for ≺ } .

Lemma 14. T (S) ⊂ ∂≺(S, ak) for any Apéry ordering ≺ with respect to ak.

Proof. Assume it is not so, for some N ∈ T (S) with

exp
(
Nk

(
xN

))
= (0, γ1, ..., γk−1, 0).

Then there exists i ∈ {1, ..., k − 1} such that

(0, γ1, ..., γi + 1, ..., γk−1, 0) ∈ E(IS) ∩ { x = yk = 0 }.

This implies, from Theorem 6, and using G−1 from Theorem 5, that N + ai ∈
Ap(S, ak), contradicting the fact that N ∈ T (S). �

Theorem 15. If O is the set of Apéry orderings with respect to ak, then
⋂

≺∈O

∂≺(S, ak) = T (S).

Proof. By the previous lemma, we only need to proof the following: If N /∈ T (S),
then there exists an Apéry ordering ≺∈ O such that N /∈ ∂≺(S, ak).

If N /∈ T (S), there must exist a generator ai for i = 1, ..., k − 1 such that
N + ai ∈ Ap(S, ak). Let us take ≺∈ O any monomial ordering such that, in step
(3), we choose the reverse lexicographic ordering with respect to

{y1, ..., yi−1, yi+1, ..., yk−1, yi} .

That is, given two (k + 1)–uples, the smallest is the one with bigger (i + 1)–th
coefficient (corresponding with yi) and so on. Mind that this is a monomial ordering
(in particular, it is a well ordering) only beacuse of the grading stablished in step
(2) of the definition of Apéry orderings.

Let us write

exp
(
N≺

(
xN

))
= (0, β1, ..., βi, ..., βk−1, 0).

Then it must hold that,

exp
(
N≺

(
xN+ai

))
= (0, β1, ..., βi + 1, ..., βk−1, 0),

This comes straightforwardly, if we had otherwise

exp
(
N≺

(
xN+ai

))
= (0, α1, ..., αi, ..., αk−1, 0),

then, from our ordering, we must have either αi > βi + 1, or αi = βi + 1 and we
break the tie in another coordinate of the (k + 1)–uple.

This last case cannot happen, because the rest of the coordinates must be the
coefficients of the smallest representation (with respect to our chosen ordering) of
N − βiai.

The first option is also impossible, because if αi > βi + 1, then it is clear that

(0, α1, ..., αi − 1, ..., αk−1, 0) ∈ Zk
≥0

is a (k+ 1)–uple which represents N and it is smaller than (0, β1, ..., βi, ..., βk−1, 0)
with respect to our ordering. Therefore N /∈ ∂≺(S, ak). �

Despite our result displays a infinite intersection it is clear from the proof that
we need, at most, k − 1 monomial orderings (and the subsequent computations of
the sets ∂≺(S, ak)) for the full computation of T (S).
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Example 6.2. Let us consider again the monoid S = 〈7, 8, 9, 13〉, which verifies

G(S) = { 1, 2, 3, 4, 5, 6, 10, 11, 12, 19 }

and

Ap(S, 13) = { 0, 7, 8, 9, 14, 15, 16, 17, 18, 23, 24, 25, 32},

T (S) = { 32 },

that is, S is symmetric.
From Theorem 15 we need to consider (at most) 3 monomial orderings. Let

us write ≺1 the Apéry ordering which takes, in step (3), the reverse lexicographic
ordering with respect to {y1, y2, y3}. The Grobner basis is precisely the basis B2

in Example 3.2. From the arrangement of the set Ap(S, 13) according to this basis,
we see that the extremal elements are precisely:

∂≺1
(S, 13) = { 24, 32}.

Note that 24 /∈ T (S) because 24+ a2 = 24+ 8 ∈ Ap(S, 13). The same results are
obtained if we use the ordering ≺3, which uses the reverse lexicographic ordering
with respect to {y2, y3, y1}.

However, if we consider (following the strategy of the proof) the ordering ≺2,
taking in step (3) the reverse lexicographic ordering with respect to {y1, y3, y2},
we get the Grobner basis B1 from Example 3.2.

In this case we have

∂≺2
(S, 13) = { 14, 18, 23, 25, 32 },

so we have four stowaways, namely {14, 18, 23, 25} which verify

14 + a3 = 14 + 9 ∈ Ap(S, 13), 18 + a1 = 18 + 7 ∈ Ap(S, 13),

23 + a3 = 23 + 9 ∈ Ap(S, 13), 25 + a1 = 25 + 7 ∈ Ap(S, 13).

As expected, T (S) = { 32 } = ∂≺1
(S, 13) ∩ ∂≺2

(S, 13).

7. Another interpretation of pseudo–Frobenius numbers

We will end with a word on an important feature of the pseudo–Frobenius ele-
ments (and hence the set T (S)) in a more highbrow context. Let

S = 〈a1, . . . , ak〉 ⊂ Z≥0

be a numerical monoid and let Q[S] be the monoid algebra associated to S, that is
to say,

Q[S] :=
⊕

s∈S

Qχs, with χs · χs′ := χs+s′ .

Obviously, the monoid algebra Q[S] is an S−graded ring. We also consider the
polynomial ring A := Q[y1, . . . , yk] as an S–graded ring, by assigning degree ai to
yi. Thus, the ring homomorphism

ϕ0 : A −→ Q[S]

yi 7−→ χai

is clearly S–graded too.
This allows to construct an S–graded minimal free resolution of Q[S] as A–mo-

dule that will be finite of length dim(A)− depth(Q[S]) = k − 1, by the Auslander-
Buchbaum theorem. More explicitly, the resolution has the form

0 →

lk−1⊕

j=1

Ark−1 j (−bk−1 j) −→ . . . −→

l1⊕

j=1

Ar1 j (−b1 j) −→ A
ϕ0
−→ Q[S] → 0,
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where the integer βi :=
∑lj

j=1 rij is the rank of the i–th syzygy module of Q[S] and

bij 6= bij′ , j 6= j′.
The integers bij do not depend on the resolution and they can be combinatorially

characterized as follows.
Let a ∈ S. Consider the abstract simplicial complex ∆a consisting of all subsets

F of {1, . . . , k} such that a −
∑

i∈F ai ∈ S, and let H̃i(∆a) be the i–th simplicial
homology vector space of ∆a with values in Q.

Theorem 16. H̃i−1(∆a) 6= 0 if and only if a = bij for some j. Moreover, in this

case, dim(H̃i−1(∆a)) = rij

Proof. See [3, Theorem 2.1]. �

Corollary 17. PF (S) =
{
b−

∑k
i=1 ai | b ∈ {bk−1 1, . . . , bk−1 lk−1

}
}
.

Proof. It suffices to observe that a ∈ PF (S) if and only if ∆a+
∑

k
i=1

ai
has the

reduced homology of a (k − 2)-sphere. �

8. Final remarks

The computation of the Apéry set and the type set may be seen as a first step
in the understanding of more complicated structures inside a numerical monoid. In
particular, different partial orderings from ≤S can be considered in order to gather
more interesting data (see for instance [7]). We hope this work may serve as a first
approach to tackle this further–reaching problems.

The authors wish to thank P. Garćıa–Sánchez, for pointing us the example which
eventually led to Theorem 15, to J.L. Ramı́rez–Alfonśın and M. D’Anna for their
help and advice and also to S. Robbins for his enlightening conversations during
his stay in Seville in December 2013.
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