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Characterization of gaps and elements of a numerical

semigroup using Groebner bases

Guadalupe Márquez–Campos and José M. Tornero

Abstract. This article is partly a survey and partly a research paper. It
tackles the use of Groebner bases for addressing problems of numerical semi-
groups, which is a topic that has been around for some years, but it does it in
a systematic way which enables us to prove some results and a hopefully in-
teresting characterization of the elements of a semigroup in terms of Groebner
bases.

1. Numerical semigroups

This paper deals with a very special family of semigroups. Recall that a semi-
group is a pair (X, ⋆), where X is a set and ⋆ is an associative internal operation.
Actually we will be considering monoids, that is, semigroups with unit element,
but there are no substantial differences for our concerns. We will be particularly
interested in the so–called numerical semigroups. Useful references for the basic
concepts are [11, 4].

Definition 1.1. A numerical semigroup is a semigroup S ⊂ Z≥0.

Example 1.2. The first natural example of a numerical semigroup is the semi-
group generated by a set {a1, ..., ak} ⊂ Z≥0, which is the set of linear combinations
of these integers with non–negative integral coefficients:

〈a1, ..., ak〉 = {λ1a1 + ...+ λkak | λi ∈ Z≥0} .

It turns out that this example is in fact the general case for a numerical semi-
group.

Proposition 1.3. Let 0 ≤ a1 ≤ ... ≤ ak be integers such that gcd(a1, ..., ak) =
1. Let us write S = 〈 a1, ..., ak 〉. Then there exists N ∈ Z such that x ∈ S, for all

x ≥ N .

Proof. Let us write, from Bezout’s Identity

m1a1 + ...+mkak = 1,
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for some mi ∈ Z and let

P =
∑

mi≥0

miai > 0, Q =
∑

mj≤0

mjaj ≤ 0.

We take an integer t ≥ (a1 − 1)(−Q) and write it as t = −Q(a1 − 1) + k, for a
certain k ≥ 0. We divide k by a1,

k = qa1 + r, con 0 ≤ r < a1

and then

t = −Q(a1 − 1) + qa1 + r

= −Q(a1 − 1) + qa1 + rP − rQ

= q · a1 + rP + (−Q)(a1 − 1− r)

This finishes the proof, as a1, P,−Q ∈ S and all their coefficients lie in Z≥0,
therefore t ∈ S. �

Remark 1.4. If we had gcd(a1, ..., ak) = d > 1 the situation would be pretty
analogous, taking into account that we should work in the ring Zd instead of Z.
This is why, in the sequel, when we talk about numerical semigroups we will assume
that {a1, ..., ak} generate Z as an additive group.

Corollary 1.5. Every numerical semigroup S 6= {0} can be written in the

form S = 〈a1, ..., ak〉.

Proof. Clearly if we take a1, ..., ak ∈ S then it must hold 〈a1, ..., ak〉 ⊂ S, so
there is an N ∈ Z≥0 as in the proposition for 〈a1, ..., ak〉. Then it is clear that S is
generated by

{a1, ..., ak} ∪ {x ∈ S | x < N} .

�

As S = 〈 a1, ..., ak 〉 is nothing but the set of non–negative integers that can
be written as a linear combination (with non–negative coefficients) of {a1, ..., ak},
the elements of S are often called representable integers (w.r.t. {a1, ..., ak}). In the
same fashion the elements of the (finite) set Z≥0 \ S are called non–representable

integers.

Definition 1.6. Some important invariants associated to a numerical semi-
group S are:

• The set of gaps, which is the finite set Z≥0 \ S, noted G(S).
• The genus of S, noted g(S), which is the cardinal of G(S).
• The Frobenius number of S which is the maximum of G(S), noted f(S).
• The set of sporadic elements, noted N(S), which are elements of S smaller
than f(S), that is N(S) = S ∩ [0, f(S)].
• The cardinal of N(S), noted n(S) (this invariant has not a properly sta-
blished name in the literature).
• The multiplicity of S, noted m(S), which is the smallest non–zero element
in S (obviously a generator in any case).
• The dimension of S, noted d(S), which is the smallest possible cardinal
of a set of generators.
• The conductor, noted c(S), which is f(S) + 1 ∈ S.
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Remark 1.7. The Frobenius number and its actual computation is a major
problem in numerical semigroups. For semigroups of dimension 2, S = 〈a1, a2〉 it
was solved by Sylvester [13], who proved

f(S) = a1a2 − a1 − a2, g(S) =
c(S)

2
.

This problem, also known as the money–changing problem or the nugget problem
has not an easy solution for d(S) ≥ 3. Some closed formulas are known for certain
cases, but Ramı́rez–Alfonśın proved that the general problem is NP–hard under
Turing reductions [10].

2. A characterization of elements and gaps in terms of Groebner bases

Remark 2.1. The relationship between numerical semigroups and computa-
tional algebra tools can be traced back to the pioneering work of Herzog [5] and
there is a great number of papers which build bridges between both subjects. This
section is intended as a survey of a small subset of this rich relationship, containing
the results we will be using afterwards in an organized and structured way.

Most results and related to Groebner bases can be found, for instance, in [1],
along with some results from this section, whose proofs we have included for the
convenience of the reader.

Let b be a fixed natural number, {a1, a2, a3, ..., ak} a set of coprime non–
negative integers, and {σ1, σ2, σ3, ..., σk} a set of variables taking values in Z≥0.
We consider the equation:

σ1a1 + σ2a2 + σ3a3 + ...+ σkak = b.

We introduce a new variable x and rewrite the previous equation as:

(xa1)σ1 (xa2)σ2(xa3 )σ3 ...(xak)σk = xb.

Next we introduce new variables yj , for j = 1, ..., k, and we set xai = yi,
obtaining:

yσ1

1 yσ2

2 yσ3

3 ...yσk

k = xb

where σ1, σ2, σ3, ..., σk are still unknown.
Consider the polynomial ideal

I = 〈y1 − xa1 , y2 − xa2 , y3 − xa3 , ..., yk − xak〉 ⊂ Q[x, y1, ..., yk],

and let B = {g1, g2, g3, ..., gr} a minimal Groebner basis of I (not necessarily a
reduced one), with respect to the usual lexicographic ordering x > y1 > y2 > ... >
yk.

Let us note qi = exp(gi), the exponents of the polynomials gi; and

Kqi = qi + Zk+1
≥0 ⊂ Zk+1

≥0 .

The main target is now to prove that there are one–to–one correspondences
between

G(S) ←→

[
⋂

i

Kqi

]
\ {x = 0} ⊂ Zk+1

≥0

S ←→

[
⋂

i

Kqi

]
∩ {x = 0} ⊂ Zk+1

≥0
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in a very explicit way.

In order to do that we will use two closely related maps:

φ : Q[y1, y2, ..., yk] −→ Q[x]

yj 7−→ xaj

and its extension

φ̃ : Q[x, y1, y2, ..., yk] −→ Q[x]

yj 7−→ xaj

x 7−→ x

Lemma 2.2. ker
(
φ̃
)
= I.

Proof. I ⊂ ker
(
φ̃
)

is clear. If we take f(x, y1, ..., yk) ∈ ker
(
φ̃
)

we can

perform Euclidean division w.r.t. yk, ..., y1 to get an expression

f = qk(x, y1, ..., yk) (yk − xak) + ...+ q1(x, y1) (y1 − xa1) + r(x)

and r(x) must lie in ker
(
φ̃
)
, therefore r(x) = 0. �

Lemma 2.3. B is a binomial basis. Therefore the normal form of a monomial

xN , which we will write NB

(
xN
)
, is always a monomial.

Proof. It is well–known that the Groebner basis of a binomial ideal is again
binomial [3]. Now assume we have a monomial M1 and we want to reduce it w.r.t.
a binomial M2 −M3, M2 being the leading term.

If we cannot perform reduction, there is nothing to do. Otherwise M2|M1 and
then the remainder of the division is

M1 −
M1

M2
(M2 −M3) =

M1M3

M2
,

that is, a monomial. �

Lemma 2.4. Let I be an ideal in a polynomial ring R = k[x1, ..., xn], B a

Groebner basis of I, and g, f ∈ R. Then f ≡ g mod I if and only if NB(f) =
NB(g).

Proof. It is a straightforward consequence of the fact that the mapping

f 7−→ NB(f)

is k–linear. �

Theorem 2.5. Let I = 〈y1−x
a1 , y2−x

a2 , y3−x
a3 , ..., yk−x

ak〉 ⊂ Q[x, y1, ..., yk]
and let B be the reduced Groebner basis of I w.r.t. the lexicographic order x < y1 <
... < yk.

Then f ∈ Q[x] lies in Im(φ) if and only if there exists h ∈ Q[y1, ..., yk] such
that NB(f) = h. Should this be the case

f = φ(h) = h (xa1 , ..., xak) .
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Proof. Assume f = φ(g) = g (xa1 , ..., xak). Then

f(x)− g(y1, ..., yk) ∈ ker
(
φ̃
)
= I

and therefore
NB(f) = NB(g) = h(x, y1, ..., yk).

Now, as B does not depend on x, the elements of B used in the computation of
NB(g) must have their leading terms in k[y1, ..., yk]. But, as we are using the lex
ordering, in fact they must lie completely in k[y1, ..., yk]. Therefore h ∈ Q[y1, ..., yk].

Assume now NB(f) = h ∈ Q[y1, ..., yk]. Then f − h ∈ I and therefore

f(x)− h (y1, ..., yk) =

k∑

i=1

gi (x, y1, ..., yk) (yi − xai) ,

and doing yi = xai we get f = φ(h) = h (xa1 , ..., xak). �

Corollary 2.6. If xN ∈ Im(φ) then it is the image of a monomial yσ1

1 ...yσk

k ∈
Q[y1, ..., yk].

Proof. From the theorem xN ∈ Im(φ) if and only if NB

(
xN
)
= h, with

xN = φ(h). As we saw previously, h must be a monomial. �

Remark 2.7. Although we have chosen the lex ordering, one may note that in
fact all we need for our argument is the fact that the ordering is an elimination one
for the variable x.

This idea will be most useful in the sequel, as it will allow us to change the
ordering in order to meet our needs, and different orders will be used to tackle
different problems.

Theorem 2.8. Let S = 〈a1, ..., ak〉, I and B as above, and let N ∈ Z≥0. Then

N ∈ S ⇐⇒ xN ∈ Im(φ).

Furthermore:

• If N ∈ S, then NB

(
xN
)
= yσ1

1 ...yσk

k and N = σ1a1 + ...+ σkak.

• If N /∈ S, then NB

(
xN
)
= xσ0yσ1

1 ...yσk

k , with σ0 6= 0 and N = σ0+σ1a1+
...+ σkak.

Proof. Let N ∈ S. Then there are σ1, ..., σk ∈ Z≥0 with

N = σ1a1 + ...+ σkak,

and then

xN = xa1σ1+a2σ2+...+akσk = (xa1)σ1(xa2)σ2 ...(xak)σk

= φ(yσ1

1 )...φ(yσk

k ) = φ(yσ1

1 ...yσk

k ),

that is, xN ∈ Im(φ).

On the other hand, if xN ∈ Im(φ), we know from the previous result

xN = φ(h) = φ (yσ1

1 ...yσk

k ) = (xa1

1 )
σ1 ... (xak

k )
σk ,

and N = σ1a1+...+σkak. We already know as well that, in this case, h = NB

(
xN
)
.

Now, if N /∈ S, we still know NB

(
xN
)
is a monomial, say

NB

(
xN
)
= xσ0yσ1

1 ...yσk

k .
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As N /∈ S, NB

(
xN
)
/∈ Q[y1, ..., yk], hence σ0 6= 0. As NB(f) − f ∈ I for all

polynomials f ,

∃hi ∈ Q[x, y1, ..., yk] | x
N − xσ

0y
σ1

1 ...yσk

k =
k∑

i=1

hi(yi − xai).

We do then yi = xai and

xN − xσ0xa1σ1 ...xakσk = 0

hence N = σ0 + σ1a1 + ...+ σkak. �

We are now ready to prove the one–to–one correspondences mentioned above.

Theorem 2.9. Let S = 〈a1, ..., ak〉 ⊂ Z≥0 be a numerical semigroup. Consider

I = 〈y1 − xa1 , y2 − xa2 , y3 − xa3 , ..., yk − xak〉 ⊂ Q[x, y1, ..., yk]

and let B = {g1, ..., gr} be the reduced Groebner basis of I w.r.t. an elimination

ordering for x, with qi = exp(gi).

• The mapping

F : G(S) −→

[
⋂

i

Kqi

]
\ {x = 0} ⊂ Zk+1

≥0

N 7−→ exp
(
NB

(
xN
))

is one–to–one.

• The mapping

G : S −→

[
⋂

i

Kqi

]
⋂
{x = 0} ⊂ Zk+1

≥0

M 7−→ exp
(
NB

(
xM
))

is one–to–one.

Proof. Most of the results are more or less proved by now.

I. F is surjective.

Let (σ0, σ1, ..., σk) ∈ Im(F). Then there is some N ∈ G(S) with

exp
(
NB

(
xN
))

= (σ0, σ1, ..., σk).

Being a normal form, it must hold

(σ0, σ1, ..., σk) ∈
⋂

i

Kqi ,

and we previously saw σ0 6= 0.
On the other hand, take

(σ0, σ1, ..., σk) ∈

[
⋂

i

Kqi

]
⋂
{x = 0} =

[
⋃

i

Kqi

]
⋂
{x = 0},

so (σ0, σ1, ..., σk) does not lie in any Kqi and therefore

xσ0xa1σ1 ...xakσk = NB (xσ0xa1σ1 ...xakσk) .

Consider now N = σ0 + σ1a1 + ...+ σkak. Then

φ̃
(
xN
)
= φ̃ (xσ0yσ1

1 ...yσk

k ) =⇒ xN ≡ xσ0yσ1

1 ...yσk

k mod I.
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From a previous proposition

NB

(
xN
)
= NB (xσ0yσ1

1 ...yσk

k ) ,

and the fact that such N is not in S comes from the unicity of the normal form
and the characterization of elements in S in the previous theorem.

II. G is surjective.

The proof goes parallel with the previous, with some necessary adjustments.
Let us first consider (σ0, σ1, ..., σk) ∈ Im(G). Then there is some N ∈ S with

exp(NB(x
N )) = (σ0, σ1, ..., σk).

Being a normal form, it must hold

(σ0, σ1, ..., σk) ∈
⋂

i

Kqi ,

and we have to see σ0 = 0. But we get this from the previous theorem.
Let us see now

Im(G) ⊃

[
⋂

i

Kqi

]
⋂
{x = 0}, ∀i = 1, .., r.

That is, for every (0, σ1, ..., σk) ∈
⋂

i Kqi , we will find M ∈ S with

exp
(
NB

(
xM
))

= (0, σ1, ..., σk).

But

(0, σ1, ..., σk) ∈
⋂

Kqi =⇒ yσ1

1 ...yσk

k = NB (yσ1

1 ...yσk

k ) .

We define M = σ1a1 + σ2a2 + σ3a3 + ...+ σkak and from φ̃ we can see

φ̃
(
xM
)
= φ̃ (yσ1

1 ...yσk

k ) =⇒ xM ≡ yσ1

1 ...yσk

k mod I.

This already implies NB

(
xM
)
= NB (yσ1

1 ...yσk

k ).

III. F and G are injective.

Should we have two non–negative integers N1, N2 with

exp
(
NB

(
xN1

))
= exp

(
NB

(
xN2

))

this implies xN1 ≡ xN2 mod I. Then there are polynomials h1, ..., hr with

xN1 = xN2 +

k∑

i=1

hi(yi − xai),

and doing yi = xai we get xN1 = xN2 and N1 = N2. �

Example 2.10. Let us see a simple example, for a semigroup of dimension 2,
S〈5, 7〉. Following Sylvester,

f(S) = 5 · 7− 5− 7 = 23,

and its set of gaps is

G(S) = {1, 2, 3, 4, 6, 8, 9, 11, 13, 16, 18, 23}.

We consider then the ideal

I = 〈y1 − x5, y2 − x7〉 ⊂ Q[x, y1, y2],
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and we compute the (minimal) Groebner basis of I, using an elimination ordering
for x. We have chosen the lex ordering x > y1 > y2. The resulting Groebner basis
is

B =
{
−y52 + y71 , −y

3
1 + y22x, −y

3
2 + y41x, y1x

2 − y2, y2x
3 − y21 , −y1 + x5

}
.

We can constuct now the sets

Kqi = qi + Z3
≥0 ⊂ Z3

≥0,

with the exponents of the elements in B (square points in the picture below):

q1 = (0, 7, 0), q2 = (1, 0, 2), q3 = (1, 4, 0),
q4 = (2, 1, 0), q5 = (3, 0, 1), q6 = (5, 0, 0).

Now we check all elements from G(S) and their one–to–one correspondence
with

[
⋂

i

Kqi

]
\ {x = 0}

⋂
Z3
≥0

In order to do this, we compute the normal form of all monomials xM with
M ∈ G(S), obtaining:

NB(x
1) = x NB(x

2) = x2 NB(x
3) = x3

NB(x
4) = x4 NB(x

6) = xy1 NB(x
8) = xy2

NB(x
9) = x2y2 NB(x

11) = xy21 NB(x
13) = xy1y2

NB(x
16) = xy31 NB(x

18) = xy21y2 NB(x
23) = xy31y2

These points can be seen in the lattice Z3, as expected (round points in the
picture).
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Example 2.11. Let us consider now an example of dimension 3. Let S =
〈7, 9, 11〉. The Frobenius number of this numerical semigroup is:

f(S) = 26,

and its set of gaps:

G(S) = {1, 2, 3, 4, 5, 6, 8, 10, 12, 13, 15, 17, 19, 24, 26}.

We can take the binomial ideal:

I = 〈y1 − x7, y2 − x9, y3 − x11〉 ⊂ Q[x, y1, y2, y3]

and find the Groebner basis B, using an elimination ordering w.r.t. x. For this
example, we have taken the usual lexicographic ordering x > y1 > y2 > y3. With
this particular choice we get:

B = {y112 − y93 ,−y
2
2 + y3y1, y

9
2y1 − y83 , y

7
2y

2
1 − y73 , y

5
2y

3
1 − y63 , y

3
2y

4
1 − y53 ,

y51y2 − y43 ,−y2y
3
3 + y61 ,−y2y

2
1 + y23x,−y

3
1 + y3y2x, y

3
2x− y41,

y22y
2
1x− y33 ,−y

2
3 + y31x, y2x

2 − y3, y1x
2 − y2, y3x

3 − y21 ,−y1 + x7}

We have to consider then, qi = exp(lt(gi)) where gi is the i–th polynomial in
B, and take the corresponding set

Kqi = qi + Zk+1
≥0 ⊂ Zk+1

≥0 ,

in order to establish our bijections F and G. In this case,

q1 = (0, 0, 11, 0), q2 = (0, 1, 0, 1), q3 = (0, 1, 9, 0),
q4 = (0, 2, 7, 0), q5 = (0, 3, 5, 0), q6 = (0, 4, 3, 0),
q7 = (0, 5, 1, 0), q8 = (0, 6, 0, 0), q9 = (1, 0, 0, 2),
q10 = (1, 0, 1, 1), q11 = (1, 0, 3, 0), q12 = (1, 2, 2, 0),
q13 = (1, 3, 0, 0), q14 = (2, 0, 1, 0), q15 = (2, 1, 0, 0),
q16 = (3, 0, 0, 1), q17 = (7, 0, 0, 0)

Let us have a closer look to F , so we are only interested in points of ∪Kqi

outside x = 0. In order to represent the points, we will consider the subcases
x = λ, with λ ∈ Z≥0. We have then:
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• x = 1. In this hyperplane we find several corners qi, precisely

q9 = (0, 0, 2), q10 = (0, 1, 1), q11 = (0, 3, 0), q12 = (2, 2, 0), q13 = (3, 0, 0)

These points determine the elements of Z4
≥0\∪Kqi , along with (1, 1, 0, 1) ∈

Kq2 . As in the previous pictures, we will draw square points for points in
∪Kqi , and round points for points outside ∪Kqi , thus associated with a
unique element of G(S) by means of F :

• At x = 2 these are the points which determine the set:

q14 = (0, 1, 0), q15 = (1, 0, 0), (0, 0, 2) ∈ Kq9

• At x = 3, we have these points in ∪Kqi

q16 = (0, 0, 1), (1, 0, 0) ∈ Kq15 , (0, 1, 0) ∈ Kq14
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• At x = 4, x = 5 and x = 6, the only relevant point is the origin, as yi < 1
for i = 1, 2, 3
• Last, in x = 7 we have (7, 0, 0, 0) = q17, so this is, so to speak, the ceiling

for variable x.

If we compute the normal form of monomials xni , where ni is the i–th gap, we
get:

NB(x
1) = x NB(x

2) = x2 NB(x
3) = x3

NB(x
4) = x4 NB(x

5) = x5 NB(x
6) = x6

NB(x
8) = xy1 NB(x

10) = xy2 NB(x
12) = xy3

NB(x
13) = x2y3 NG(x

15) = xy21 NB(x
17) = xy1y2

NB(x
19) = xy22 NB(x

24) = xy21y2 NB(x
26) = xy1y

2
2

Remark 2.12. Therefore, for a given N ≥ 0 we have a representation

exp
(
NB(x

N )
)
= (σ0, ..., σk) =⇒ N = σ0 +

k∑

i=1

aiσi,

which is unique, provided

(σ0, ..., σk) ∈

[
⋂

i

Kqi

]
,

and which determines easily whether N ∈ S or not, simply by looking at σ0.
Let us consider N ∈ S. A very interesting function related to S (actually to

the set {a1, ..., ak}) is the so–called denumerant, which is defined by

d : S −→ Z

N 7−→ d(N) = ♯

{
(y1, ..., yk) ∈ Zk

≥0 | N =

k∑

i=1

yiai

}

That is, d(N) is nothing but the number of different representations of N as a
non–negative integral linear combination of {a1, ..., ak}. The notion of denumerant
was rst introduced by Sylvester [14].

On the other hand, if we take N ∈ S, aside from the representation mentioned
above, we might have lots of others, only all of them in ∪Kqi . Just in case someone
is tempted, where is no relationship between d(N) and

♯
{
qi | x

N ∈ Kqi

}
,

as an easy example may show.
Take as before S = 〈5, 7〉, and consider N = 100. The number of non–

negative representations 100 = 5y1 + 7y2 can be computed quickly, as all integral
representations are given by

y1 = 7n+ 6, y2 = −5n+ 10, n ∈ Z.

Hence only n = 0, 1, 2 are suitable, and therefore d(100) = 3. Analogously for
N = 327 we get

y1 = 7n+ 1, y2 = −5n+ 46, n ∈ Z.

hence we get d(N) = 10. However, both elements lie in the same quadrant Kq6 ,
and only in this one.
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3. A first application: a bound “á la Wilf”

One of the most celebrated open problems in numerical semigroups is the so–
called Wilf’s Conjecture [16], which states a very simple relationship among three
important invariants:

Wilf’s Conjeture.– Let S be a numerical semigroup. Then

c(S) ≤ e(S)n(S).

That is to say, the conjecture fixes a lower bound for the proportion of sporadic
elements among those non–negative integers smaller than the conductor of S: they
must represent, at least, 1/e(S) of them.

The conjecture has been proved for a number of particular cases (see for instance
[6, 12]). It has also been checked for semigroups of genus up to 50 by M. Bras–
Amorós [2].

What follows is our approximation to the problem of relating n(S) and c(S),
using the techniques introduced above, resulting in a couple of bounds of different
nature.

Notation.– Given rational positive numbers α1, ..., αn, we define

P (α1, ..., αn) =

{
(x1, ..., xn) ∈ Zn

>0 |
x1

α1
+ ...+

xn

αn
≤ 1

}

Q(α1, ..., αn) =

{
(x1, ..., xn) ∈ Zn

≥0 |
x1

α1
+ ...+

xn

αn
≤ 1

}

and

p(α1, ..., αn) = ♯ (P (α1, ..., αn))

q(α1, ..., αn) = ♯ (Q(α1, ..., αn))

That is, q(α1, ..., αn) is the number of integral points in the tetrahedron limited
by the coordinate hyperplanes and

x1

α1
+ ...+

xn

αn
= 1,

as p(α1, ..., αn) is the same thing, but discarding the points in the coordinate faces.

The relationship between these two quantities is given by the following result.

Lemma 3.1. Under the previous conditions, if we call

α =
1

α1
+ ...+

1

αn
,

then

q(α1, ..., αn) = p(α1(1 + α), ..., αn(1 + α)).

Proof. Let us consider the following map:

Φ : Q(α1, ..., αn) −→ P (α1(1 + α), ..., αn(1 + α))

(x1, ..., xn) 7−→ (x1 + 1, ..., xn + 1)
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It is well–defined, as

n∑

i=1

xi + 1

αi(1 + α)
=

1

1 + α

(
n∑

i=1

xi

αi
+

n∑

i=1

1

αi

)
≤ 1,

hence Im(Φ) ⊂ P (α1(1 + α), ..., αn(1 + α)).
Φ is clearly injective, but is also surjective because

n∑

i=1

xi

αi(1 + α)
≤ 1 ⇐⇒

n∑

i=1

xi

αi
≤ 1 + α ⇐⇒

n∑

i=1

xi − 1

αi
≤ 1.

�

The hunt for a good, simple estimate of q(α1, ..., αn) and p(α1, ..., αn) led to
several results [7, 8, 9, 15, 17, 18, 19], finally put together in the GLY Conjeture,
named after its authors Granville, Lin and Yau.

GLY Conjecture.– Assume n ≥ 3 and let α1 ≥ ... ≥ αn ≥ 1 be real numbers.
Then:

• (Weak estimate) We have

n! · p(α1, ..., αn) ≤ (α1 − 1)...(αn − 1),

with equality if and only if αn = 1.
• (Strong estimate) Given n, there is a constant C(n) such that, for αn ≥
C(n) we have

n! · p(α1, ..., αn) ≤ An
n + (−1)

Sn−1
1

n
An

n−1 +

n−1∑

l=2

(−1)l
Sn−1
l(

n− 1
l − 1

)An−1
n−l ,

where Sn−1
l are the Stirling numbers, and Al

i are polynomials in α1, ..., αl

with degree i.

The weak version was finally proved by Yau and Zhang [20]. In the same
paper, the authors claim the strong version has been checked computationally up
to n ≤ 10. The fact is the conjecture might be checked for a particular n, but the
state–of–the–art has not changed since. According to the authors, the case n = 10
took weeks to be completed.

Assume then we have a numerical semigroup S = 〈a1, ..., ak〉 and let us consider
the binomial ideal associated to S, as in the previous section

I = 〈 yi − xai | i = 1, ..., k 〉 ⊂ Q[x, y1, ..., yk].

Let us fix an elimination ordering for x and let us compute the Groebner basis
B and the corresponding sets Kqi . As we know

S
1:1
←→

[
⋂

i

Kqi

]
⋂
{x = 0} ⊂ Zk+1

≥0

Therefore we may note
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n(S) = ♯{a ∈ S | a ≤ f(S)}

= ♯

{
(0, y1, ..., yk) ∈

[
⋂

i

Kqi

]
|
∑

yiai ≤ f(S)

}
⊂ Zk+1

≥0 ,

which proves that n(S) is less or equal to the number of integral points in the
tetrahedron defined by the coordinate hyperplanes and

y1
f(S)/a1

+ ...+
yk

f(S)/ak
≤ 1.

That is,

n(S) ≤ q

(
f(S)

a1
, ...,

f(S)

ak

)
,

and from the previous lemma and the Weak estimate of the GLY Conjecture,

n(S) ≤ p

(
f(S)

a1

(
1 +

∑ ai
f(S)

)
, ...,

f(S)

ak

(
1 +

∑ ai
f(S)

))

= p

(
f(S) +

∑
ai

a1
, ...,

f(S) +
∑

ai
ak

)

≤
1

k!

k∏

j=1

(
f(S) +

∑
ai

aj
− 1

)

=
1

k! a1...ak

k∏

j=1


f(S) +

∑

i6=j

ai




We have then proved:

Proposition 3.2. Given a numerical semigrup S = 〈a1, ..., ak〉, we have

n(S) ≤
1

k! a1...ak

k∏

j=1


f(S) +

∑

i6=j

ai




Hence we have actually proved a result which is, in certain sense, a reverse of
Wilf’s Conjecture, as we have actually proved an upper bound for n(S) in terms
of:

• k, which is an upper bound for e(S), although it can be assumed from the
beginning to be e(S).
• f(S).
• The generators of S.

Remark 3.3. Note that, if we make k = 2 in the statement above, we get

n(S) ≤
1

2a1a2
(a1a2 − a1) (a1a2 − a2) =

(a1 − 1)(a2 − 1)

2
= n(S),

from Sylvester’s result. So, in this case (where we cannot apply the GLY weak
estimate, as it is valid for k ≥ 3), the formula is still valid. Not only that, but the
bound turns out to be an equality.
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Remark 3.4. Accuracy of the bound. In the following tables there are some
examples of numerical semigroups, with the relevant information concerning the
previous result.

As it becomes plain, the bound gets less and less accurate as n grows. A
significant number of examples could be of help in order to look for a conjectural
improvement, we are still far from that.

Dimension Generators f(S) n(S) Bound Bound/n(S)

3 {5, 6, 11} 19 8 19 ≃ 2.375
3 {5, 6, 19} 14 5 10 ≃ 2.000
3 {5, 7, 16} 18 8 14 ≃ 1.750
3 {5, 7, 23} 18 7 13 ≃ 1.857
3 {6, 9, 20} 43 21 44 ≃ 2.095
3 {7, 9, 38} 40 18 28 ≃ 1.555
3 {7, 9, 40} 38 16 26 ≃ 1.625
3 {7, 9, 47} 40 17 28 ≃ 1.647
3 {7, 48, 50} 143 62 94 ≃ 1.516
3 {8, 9, 47} 46 20 31 ≃ 1.550
3 {8, 9, 55} 47 20 32 ≃ 1.600
3 {9, 10, 53} 61 28 42 ≃ 1.500

Dimension Generators f(S) n(S) Bound Bound/n(S)

4 {7, 11, 34, 37} 38 14 50 ≃ 3.571
4 {7, 11, 23, 24} 27 8 31 ≃ 3.875
4 {7, 11, 23, 17} 31 11 38 ≃ 3.454
4 {11, 25, 37, 56} 101 40 110 ≃ 2.750
4 {11, 25, 37, 115} 104 42 120 ≃ 2.857
4 {11, 25, 37, 104} 101 40 111 ≃ 2.775
4 {9, 13, 19, 21} 33 10 35 ≃ 3.500
4 {9, 10, 21, 35} 43 18 59 ≃ 3.277
4 {8, 11, 13, 15} 25 8 31 ≃ 3.875
4 {13, 15, 31, 63} 81 34 94 ≃ 2.764
4 {13, 16, 33, 56} 86 34 98 ≃ 2.882
4 {13, 15, 31, 63} 81 34 94 ≃ 2.764

Dimension Generators f(S) n(S) Bound Bound/n(S)

5 {7, 11, 31, 34, 37} 30 9 86 ≃ 9.555
5 {7, 15, 18, 26, 34} 38 17 112 ≃ 6.588
5 {9, 10, 21, 35, 43} 34 11 99 ≃ 9.000
5 {10, 19, 31, 37, 54} 65 25 154 ≃ 6.160
5 {8, 11, 13, 15, 20} 25 11 72 ≃ 6.545
5 {8, 11, 13, 15, 25} 20 6 53 ≃ 8.833
6 {10, 19, 31, 37, 54, 65} 63 24 366 ≃ 15.250
6 {10, 19, 31, 37, 54, 63} 65 26 382 ≃ 14.692
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We will try a different approach, taking advantage of the catalogue of Groebner
basis at our disposal. Let us take the lexicographic elimination ordering given by

x < yk < ... < y2 < y1.

Let us fix an integer α ≥ 0, and consider

n(S, α) = ♯{x ∈ S | x ≤ α},

so in particular n(S, f(S)) = n(S). We also have, as before

n(S, α) = ♯

{
Y = (y1, ..., yk) ∈ Zk

≥0 | yi ≥ 0,
∑

aiyi ≤ α, Y /∈

[
⋃

i

Kqi

]}

Let us call, without further mention of the bijection G, N(S, α) the previous
set, whose number of points is n(S, α). Mind that

Y = (y1, ..., yk) ∈ N(S, α) =⇒ 0 ≤ y1 ≤
α

a1

Assume first that we have α ≥ a1a2, the other case will be dealt with later and
with some important differences. That is, for now we will consider

α

a1
− a2 ≥ 0.

We are going to compute a bound for the set N(S, α) in two stages:

• First, we will construct a truncated prism C over a (k − 1)–hypercube,
which will contain all points in N(S, α) with 0 ≤ y1 ≤ α/a1 − a2.
• After this, we will construct a pyramidD which will contain the rest of the
integral points in N(S, α), and we will compute with no great difficulty
the number of integral points inside this pyramid.

Let us construct C. First note that the binomials ya1

i − yai

1 ∈ I, for all i =
2, ..., k. As their exponents are

(0, ..., 0,
(i)
a1, 0, ..., 0) ∈ Zk

≥0,

we have that

(0, ..., 0,
(i)
a1, 0, ..., 0) ∈

[
⋃

i

Kqi

]
⊂ Zk

≥0.

and then

N(S, α) =

{
Y = (y1, ..., yk) ∈ Zk

≥0 | yi ≥ 0,
∑

aiyi ≤ α, Y /∈

[
⋃

i

Kqi

]}

⊂
{
Y = (y1, ..., yk) ∈ Zk

≥0 | 0 ≤ yi < a1, for i = 2, ..., k
}
= C0,

which is clearly a prism over a (k − 1)–hypercube.
This bound could fit for all the set N(S), but we will try to do better in the

following way. First, we will compute at which point(s) the prism C0 hits the wall

defined by

a1y1 + ...+ akyk = α.
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If we set y2 = ... = yk = a1, then the (integral) boundary of C0 and the wall
meet at the point

R0 =

(
α

a1
−

k∑

i=2

ai, a1, ..., a1

)
.

In order to construct a pyramid which is easier to work with, we will take a
little more from C0 before truncating it, so we will actually get out of N(S, α).
More precisely, we will get to the point

R1 =

(
α

a1
− a2, a1, ..., a1

)
.

So, for now, what we have is

N(S, α)
⋂{

y1 ≤
α

a1
− a2

}

is contained in the truncated prism defined by

C =

{
(y1, ..., yk) ∈ Zk

≥0 | y1 ≤
α

a1
− a2, yi < a1 for i = 2, ..., k

}

Let us now build our pyramid D, which will have as its basis a (k − 1)–convex
on the hyperplane

y1 =
α

a1
− a2,
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and its vertex at

V =

(
α

a1
, 0, ..., 0

)
.

The precise description is

D =

{
V + λ1 (−a2, 0, ..., 0) +

k∑

i=2

λ1λi(0, ..., 0,
(i)
a1, 0, ..., 0) | 0 ≤ λi ≤ 1, ∀i

}
.

Lemma 3.5. Under the previous conditions, we have

N(S, α)
⋂{

y1 ≥
α

a1
− a2

}
⊂ D.

Proof. Let us take an integral point P = (y1, ..., yk) ∈ N(S, α), with

α

a1
− a2 ≤ y1 ≤

α

a1
,

and let us write

y1 =
α

a1
− λ1a2 =⇒ λ1 =

α/a1 − y1
a2

,

and clearly 0 ≤ λ1 ≤ 1. Obviously, we have to define

λi =
yi

λ1a1
, for i = 2, ..., k;

in order to write P as in the definition of D.
It is straightforward that λi ≥ 0. On the other hand, one has that, P being in

N(S, α),

α ≥ a1y1 + ...+ akyk = α− λ1a1a2 +

k∑

i=2

aiyi

and then, for i = 2, ..., k;

aiyi ≤ a2y2 + ...+ akyk ≤ λ1a1a2 ≤ λ1a1ai,

which implies yi ≤ λ1a1 and therefore λi ≤ 1, for i = 2, ..., k. �

We have finally proved:

Proposition 3.6. With the previous definitions and assumptions, we have

N(S, α) ⊂ C ∪D.
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Corollary 3.7. With the previous definitions and assumptions, we have

n(S, α) ≤ ♯
(
C ∪D ∩ Zk

≥0

)
.

The number of integral points in C is easy to compute:

♯
(
C ∩ Zk

≥0

)
= ak−1

1

(⌊
α

a1
− a2

⌋
+ 1

)

If a1 does not divide α, we can alternatively express it as

♯
(
C ∩ Zk

≥0

)
= ak−1

1

(⌈
α

a1

⌉
− a2

)
.

In order to find the number of integral points in D, let us fix our attention in
a y1–constant level of the pyramid. That is, fix λ1 such that

α

a1
− λ1a2 ∈ Z,

and then the set

D
⋂{

y1 =
α

a1
− λ1a2

}⋂
Zk
≥0

is once again a (k − 1)–hypercube determined by the vertices

λ1(0, ..., 0,
(i)
a1, 0, ..., 0) for i = 2, ..., k;

which have therefore (⌊λ1a1⌋+ 1)k−1 integral points.
All we need therefore is a precise description of the λ1 which verify

α

a1
− λ1a2 ∈ Z.

There must then be a λ ∈ Z such that

α

a1
− λ1a2 =

⌊
α

a1

⌋
− λ,

and this λ must verify 0 ≤ λ ≤ a2 − 1, for

α/a1 − a2 < y1 ≤ α/a1

to hold. As

λ1 =
λ+ α/a1 − ⌊α/a1⌋

a2
=

λ+ {α/a1}

a2
,

we have the number of points at the level determined by λ is

♯

(
D
⋂{

y1 =

⌊
α

a1

⌋
− λ

}⋂
Zk
≥0

)
=

(⌊
a1 ·

λ+ {α/a1}

a2

⌋
+ 1

)k−1

and

♯
(
D
⋂

Zk
≥0

)
=

a2−1∑

λ=0

(⌊
a1 ·

λ+ {α/a1}

a2

⌋
+ 1

)k−1

Theorem 3.8. Let S = 〈a1, ..., ak〉 be a numerical semigroup, α ≥ a1a2 an

integer. Then

n(S, α) ≤ ak−1
1

(⌊
α

a1
− a2

⌋
+ 1

)
+

a2−1∑

λ=0

(⌊
a1 ·

λ+ {α/a1}

a2

⌋
+ 1

)k−1

.
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Corollary 3.9. Let S = 〈a1, ..., ak〉 be a numerical semigroup, α ≥ a1a2 an

integer. Then

n(S, α) ≤ ak−1
1

⌊
α

a1

⌋

Proof. Directly, extend the prism C up to y1 = α/a1. Indirectly, as 0 ≤ λ ≤
a2 − 1 we have

λ+ {α/a1}

a2
< 1

and therefore ⌊
a1 ·

λ+ {α/a1}

a2

⌋
+ 1 ≤ a1

hence

♯
(
D
⋂

Zk
≥0

)
≤

a2−1∑

λ=0

ak−1

and finally this implies

n(S, α) ≤ ak−1
1

(⌊
α

a1
− a2

⌋
+ 1

)
+ (a2 − 1)ak−1

1 = ak−1
1

⌊
α

a1

⌋
,

as stated. �

We have been working under the assumption α ≥ a1a2. The other case α ≤
a1a2 or, otherwise said

α

a1
− a2 ≤ 0,

correspond to the following geometric situation: when we construct the prism, the
(k − 1)–hypercube in the basis is already out of n(S, α). We can still consider a
pyramid D, much in the same fashion as above, although we must not be very
optimistic with respect to the accuracy of the bound.

In this case, it is enough to consider the (k − 1)–hypercube on y1 = 0 to have
side length α/a2.
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We will not fill the technical details for this case, which are pretty similiar to
the previous one. Let us mention that now the pyramid is:

V =

(
α

a1
, 0, ..., 0

)
,

D =



V + λ1

(
−

α

a1
, 0, ..., 0

)
+

k∑

i=2

λ1λi



0, ..., 0,

(i)
α

a2
, 0, ..., 0



 | 0 ≤ λi ≤ 1, ∀i



 .

In this case, we can simply consider a certain λ ∈ Z such that

0 ≤ λ ≤

⌊
α

a1

⌋
,

which determines as above a y1–constant level which is again a (k− 1)–hypercube,
defined in this case by the points


λ, ..., 0,

(i)

α− λa1
a2

, 0, ..., 0


 , for i = 2, ..., n.

The equivalent result comes from adding up integral points in each y1– constant
level and is therefore as follows:

Theorem 3.10. Let S = 〈a1, ..., ak〉 be a numerical semigroup, 0 ≤ α ≤ a1a2
an integer. Then

n(S, α) ≤

⌊α/a1⌋∑

λ=0

(⌊
α− λa1

a2

⌋
+ 1

)k−1

.

Corollary 3.11. In the above conditions,

n(S) ≤

a2∑

λ=0

(⌊
a1

a2 − λ

a2

⌋
+ 1

)k−1

+ f(S)− a1a2.

Proof. As a1a2 ≥ f(S), we can take α = a1a2 and we have that

n(S, a1a2) = a1a2 − f(S) + n(S).
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�

Much work is yet to be done. Most probably a better version of the GLY
Conjecture will lead to a more precise results and there might be wiser ways to
bound n(S) than the ”prism + pyramid” method developed here.

We hope this work sheds some light to the power and usefulness of Groebner
bases in the study of numerical semigroups.
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