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Abstract

We study the irregularity of hypergeometric D-modules MA(β) via the explicit construction of Gevrey
series solutions along coordinate subspaces in X = Cn. As a consequence, we prove that along coordinate
hyperplanes the combinatorial characterization of the slopes of MA(β) given by M. Schulze and U. Walther
(2008) in [23] still holds for any full rank integer matrix A. We also provide a lower bound for the dimen-
sions of the spaces of Gevrey solutions along coordinate subspaces in terms of volumes of polytopes and
prove the equality for very generic parameters. Holomorphic solutions of MA(β) at nonsingular points
can be understood as Gevrey solutions of order one along X at generic points and so they are included as
a particular case.
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

This paper is devoted to the study of the irregularity of the GKZ-hypergeometric D-modules.
To this end we explicitly construct Gevrey series solutions along coordinate subspaces in Cn. Let
us first recall some notions and results about the irregularity in D-module Theory.

Let X be a complex manifold and DX the sheaf of linear partial differential operators with
coefficients in the sheaf of holomorphic functions OX .

One fundamental problem in the study of the irregularity of a holonomic DX-module M is
the description of its analytic slopes along smooth hypersurfaces Y in X (see Z. Mebkhout [17]).
An analytic slope is a gap s > 1 in the Gevrey filtration Irr(s)Y (M) of the irregularity complex
IrrY (M) (see Definitions 2.4 and 2.5).

Y. Laurent also defined the algebraic slopes of M along a smooth variety Z (see [12,13])
as those real numbers s > 1 such that the s-micro-characteristic variety of M with respect to Z

is not homogeneous with respect to the filtration by the order of the differential operators. He
proved that the set of slopes of M along Z is a finite set of rational numbers (see [13]).

When M is a holonomic D-module and Z is a smooth hypersurface, the Comparison Theorem
of the slopes (due to Laurent and Mebkhout [14]) states that the algebraic slopes coincide with the
analytic ones. However, as far as we know, the analytic slopes of a holonomic D-module along
varieties of codimension greater than one are not defined yet in the literature. One problem is that
the complexes Irr(s)Z (M) and IrrY (M) are constructible but they are not necessarily perverse in
such a case (see in [16]).

The description of the Gevrey series solutions of a holonomic D-module M along a smooth
variety Z is another fundamental problem in the study of its irregularity. If Z is a smooth hyper-
surface the index of any non-convergent Gevrey solution of M along Z is an analytic slope of
M along Z (see Definition 2.5).

From now on we consider the complex manifold X = Cn and denote D := DX . We also will
write ∂i := ∂

∂xi
for the i-th partial derivative.

Hypergeometric systems were introduced by Gel’fand, Graev, Kapranov and Zelevinsky (see
[6] and [7]) and they are associated with a pair (A,β) where A is a full rank d × n matrix
A = (aij ) with integer entries (d � n) and β ∈ Cd is a vector of complex parameters. They are
left ideals HA(β) of the Weyl algebra C[x1, . . . , xn]〈∂1, . . . , ∂n〉 generated by the following set
of differential operators:

�u := ∂u+ − ∂u− for u ∈ Zn, Au = 0, (1)

where u = u+ − u− and u+, u− ∈ Nn have disjoint supports, and

Ei − βi :=
n∑

aij xj ∂j − βi for i = 1, . . . , d. (2)

j=1
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The hypergeometric D-module associated with the pair (A,β) is the quotient sheaf MA(β) =
D/DHA(β).

The operators given in (1) are called the toric operators associated with A and they generate
the so-called toric ideal IA ⊆ C[∂1, . . . , ∂n] associated with A. It is a prime ideal whose zeros
variety V (IA) ⊆ Cn is an affine toric variety with Krull dimension d (see for example [24]). The
operator Ei is called the i-th Euler operator associated with A for i = 1, . . . , d .

A good introduction for the theory of hypergeometric systems is [22]. These systems are
known to be holonomic and their holonomic rank (equivalently, the dimension of the space
of holomorphic solutions at nonsingular points) is the normalized volume of the matrix A =
(ai)

n
i=1 ∈ Zd×n with respect to the lattice ZA :=∑n

i=1 Zai ⊆ Zd (see Definition 7.1) when either
β is generic or IA is Cohen–Macaulay (see [7,1]). For results about rank-jumping parameters β

see [15,2] and the references therein. Several authors have studied the holomorphic solutions at
nonsingular points of MA(β) (see [7,22,19]).

A theorem of R. Hotta [11, Chapter II, Theorem 6.2] assures that when the toric ideal IA is
homogeneous the hypergeometric D-module MA(β) is regular holonomic. The converse to this
theorem was proved by Saito, Sturmfels and Takayama [22, Theorem 2.4.11] when β is generic
and by Schulze and Walther [23, Corollary 3.16] when A is a pointed matrix such that ZA = Zd .
A matrix A is said to be pointed if its columns a1, . . . , an lie in a single open linear half-space
of Rd (equivalently, the associated affine toric variety V (IA) passes through the origin). On the
other hand, when A is non-pointed then MA(β) is never regular holonomic: the existence of
a toric operator ∂u − 1 ∈ IA, u ∈ Nn, implies that the holonomic rank of some initial ideals of
HA(β) is zero and this cannot happen for regular holonomic ideals with positive rank (see [22,
Theorem 2.5.1]).

Let us explain the structure of this paper. In Section 2 we just recall some general definitions
(Gevrey series, irregularity and analytic slopes of a holonomic D-module).

In Section 3 we consider a simplex σ , i.e., a set σ ⊆ {1, . . . , n} such that Aσ = (ai)i∈σ is an
invertible submatrix of A, and we use the Γ -series introduced in [7] and slightly generalized
in [22] to explicitly construct a set of linearly independent Gevrey solutions of MA(β) along
Yσ = {xi = 0: i /∈ σ }. The cardinality of this set of solutions is the normalized volume of Aσ

with respect to the lattice ZA and we prove that they are Gevrey series of order s = max{|A−1
σ ai |:

i /∈ σ } along the coordinate subspace Y = {xi = 0: |A−1
σ ai | > 1} ⊇ Yσ . Moreover, we also prove

that s is their Gevrey index when β is very generic.
In Section 4 we construct for any simplex σ and for all β a set of Gevrey series along Y with

index s that are solutions of MA(β) modulo the sheaf of Gevrey series with lower index. This
implies for s > 1 that s is a slope of MA(β) along Y when Y is a hyperplane.

In Section 5 we describe all the slopes of MA(β) along coordinate hyperplanes Y at any
point p ∈ Y (see Theorem 5.9). To this end, and using some ideas of [23], we prove that the
s-micro-characteristic varieties with respect to Y of MA(β) are homogeneous with respect to
the order filtration for all s � 1 but a finite set of candidates s to be algebraic slopes. Then we
use the results in Sections 3 and 4 to prove that all the candidates s to be algebraic slopes along
hyperplanes occur as the Gevrey index of a Gevrey series solution of MA(β) modulo convergent
series and thus they are analytic slopes. In particular we prove that the set of algebraic slopes of
MA(β) along any coordinate hyperplane is contained in the set of analytic slopes without using
the Comparison Theorem of the slopes [14]. We use this theorem in the converse direction to
prove that there are no more slopes. M. Schulze and U. Walther [23] described combinatorially
all the algebraic slopes of MA(β) along coordinate subspaces assuming that ZA = Zd and that A
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is pointed. Previous computations in the cases d = 1 and n = d +1 of the slopes along coordinate
hyperplanes appear in [3,10,9].

In Section 6.1 we use the Gevrey series constructed in Section 3 and convenient regular tri-
angulations of the matrix A to provide a lower bound for the dimensions of the Gevrey solution
spaces. In particular, the lower bound that we obtain for the dimension of the formal solution
space of MA(β) along any coordinate subspace Yτ = {xi = 0: i /∈ τ } at generic points of Yτ is
nothing but the normalized volume of the matrix Aτ with respect to ZA.

In Section 6.2 we prove that this lower bound is actually an equality for very generic param-
eters β ∈ Cd and then we have the explicit description of the basis of the corresponding Gevrey
solution space. Example 5.11 shows that this condition on the parameters is necessary in general
to obtain a basis. This example also points out a special phenomenon: some algebraic slopes of
MA(β) along coordinate subspaces of codimension greater than one do not appear as the Gevrey
index of any formal solution modulo convergent series.

Finally, in Section 7 we assume some conditions (ZA = Zd , A is pointed, β is non-rank-
jumping and Y is a coordinate hyperplane) in order to use some multiplicity formulas for the
s-characteristic cycles of MA(β) obtained by M. Schulze and U. Walther in [23] and general
results on the irregularity of holonomic D-modules due to Y. Laurent and Z. Mebkhout [14] to
compute the dimension of H0(Irr(s)Y (MA(β)))p for generic points p ∈ Y . Then the set of the
classes in QY (s) of the Gevrey solutions that we construct along a hyperplane is a basis for very
generic parameters. Moreover, since Irr(s)Y (MA(β)) is a perverse sheaf on Y by a theorem of

Z. Mebkhout [17], we know that for all i � 1 the i-th cohomology sheaf of Irr(s)Y (MA(β)) has
support contained in a subvariety of Y with codimension i. This gives the stalk of the cohomology
of Irr(s)Y (MA(β)) at generic points of Y .

This paper is very related with [4] and [5]. In [5] we use deep results in D-module Theory and
restriction theorems to reduce the computation of the cohomology sheaves of Irr(s)Y (MA(β)) for a
pointed one-row matrix A to the case associated with a 1×2 matrix (that we solved by elementary
methods in [4]). We also described a basis of the Gevrey solutions in both articles. However, the
problem of the combinatorial description of the higher cohomology of the irregularity sheaves
Irr(s)Y (MA(β)) at non-generic points of Y for general hypergeometric D-modules seems much
more involved since free resolutions of MA(β) are very difficult to compute.

2. Gevrey series and slopes of D-modules

Let Y ⊆ X = Cn be a smooth analytic subvariety and IY ⊆ OX its defining ideal. The formal
completion of OX along Y is given by

OX̂|Y := lim←−
k

OX/I k
Y .

In this section, we can assume that locally Y = Yτ = {xi = 0: i /∈ τ } for τ ⊆ {1, . . . , n} with
cardinality r = dimC(Y ). We will denote xτ := (xi : i ∈ τ) and τ = {1, . . . , n} \ τ . A germ of
OX̂|Y at p ∈ Y has the form

f =
∑

n−r

fα(xτ )x
α
τ ∈ OX̂|Y ,p ⊆ C{xτ − pτ }[[xτ ]]
α∈N



M.-C. Fernández-Fernández / Advances in Mathematics 224 (2010) 1735–1764 1739
where fα(xτ ) ∈ OY (U) for certain nonempty relatively open subset U ⊆ Y , p ∈ U . The germs
of OX̂|Y are called formal series along Y .

Definition 2.1. A formal series

f =
∑

α∈Nn−r

fα(xτ )x
α
τ ∈ C{xτ − pτ }[[xτ ]]

is said to be Gevrey of multi-order s = (si)i /∈τ ∈ Rn−r along Y at p ∈ Y if the series

ρτ
s (f ) :=

∑
α∈Nn−r

fα(xτ )

α!s−1 xα
τ

is convergent at p. Here we denote α!s−1 =∏i /∈τ (αi !)si−1.

Definition 2.2. A formal series

f =
∑

α∈Nn−r

fα(xτ )x
α
τ ∈ C{xτ − pτ }[[xτ ]]

is said to be Gevrey of order s ∈ R along Y at p ∈ Y if the series

ρτ
s (f ) :=

∑
α∈Nn−r

fα(xτ )

(α!)s−1
xα
τ

is convergent at p.
Moreover, if ρτ

s′(f ) is not convergent at p for any s′ < s then s is said to be the Gevrey index
of f along Y at p. It is clear that such a series f belongs to OX̂|Y ,p and we denote by OX|Y (s)

the subsheaf of OX̂|Y whose germs are Gevrey series of order s along Y .

Remark 2.3. Notice that any Gevrey series of multi-order s = (si)i /∈τ along Y at p ∈ Y is also a
Gevrey series of order s = max{si : i /∈ τ } along Y at p.

For s = 1 we have that OX|Y (1) = OX|Y is the restriction of OX to Y and by convention
OX|Y (+∞) = OX̂|Y . We denote by QY the quotient sheaf OX̂|Y /OX|Y and by QY (s) its subsheaf
OX|Y (s)/OX|Y for 1 � s � ∞.

Definition 2.4. (See [17, Definition 6.3.1].) For each 1 � s � ∞, the irregularity complex of
order s of M along Y is

Irr(s)Y (M) := R HomDX

(
M, QY (s)

)
.

The irregularity complex of M along Y is IrrY (M) := Irr(∞)
(M).
Y
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Z. Mebkhout proved in [17, Theorem 6.3.3] that for any holonomic DX-module M and any
smooth hypersurface Y ⊂ X the complex Irr(s)Y (M) is a perverse sheaf on Y for 1 � s � ∞.

Furthermore, the sheaves Irr(s)Y (M), s � 1, determine an increasing filtration of IrrY (M). This
filtration is called the Gevrey filtration of IrrY (M) (see [17, Section 6]).

Definition 2.5. (See [14, Section 2.4].) A number s > 1 is said to be an analytic slope of M
along a smooth hypersurface Y at a point p ∈ Y if p belongs to the analytic closure of the set:

{
q ∈ Y : Irr(s

′)
Y (M)q �= Irr(s)Y (M)q, ∀s′ < s

}
.

Remark 2.6. By the results of [17] there exists a Whitney stratification {Yα}α of Y such that
Hi (Irr(s)Y (M))|Yα are locally constant sheaves for all s � 1 and i � 0. If Y is an irreducible
algebraic hypersurface and Yα are algebraic subvarieties then the set Yγ = Y \⋃dimYα<n−1 Yα is
a connected stratum (see [8, Théorème 2.1]). Thus, if U ∩ Yγ is a relatively open set in Yγ and s

is a slope of M along Y at any point of U , we have that s is a slope of M along Y at any point
of Yγ . This implies that s is a slope of M along Y at any point of Y by Definition 2.5 because Y

is the analytic closure of Yγ .

3. Gevrey solutions of MA(β) associated with a simplex

Let A = (a1 · · ·an) be a full rank matrix with columns aj ∈ Zd and β ∈ Cd .
For any set τ ⊆ {1, . . . , n} let conv(τ ) be the convex hull of {ai : i ∈ τ } ⊆ Rd and let 
τ be

the convex hull of {ai : i ∈ τ } ∪ {0} ⊆ Rd . We shall identify τ with the set {ai : i ∈ τ } and with
conv(τ ). We also denote by Aτ the matrix given by the columns of A indexed by τ .

We fix a set σ ⊆ {1, . . . , n} with cardinality d and det(Aσ ) �= 0 throughout this section. Then

σ is a d-simplex and σ is a (d − 1)-simplex. The normalized volume of 
σ with respect to ZA

is

volZA(
σ ) = d!vol(
σ )

[Zd : ZA] = |det(Aσ )|
[Zd : ZA]

where vol(
σ ) denotes the Euclidean volume of 
σ . The aims of this section are: (1) to explicitly
construct volZA(
σ ) linearly independent formal solutions of MA(β) along the subspace Yσ =
{xi = 0: i /∈ σ } at any point of Yσ ∩ {xj �= 0: j ∈ σ } and (2) to prove that these series are Gevrey
series along Yσ of multi-order (si)i /∈σ with si = |A−1

σ ai |.
We reorder the variables in order to have σ = {1, . . . , d} for simplicity. Then a basis of

ker(A) = {u ∈ Qn: Au = 0} is given by the columns of the matrix:

Bσ =
(

−A−1
σ Aσ

In−d

)
=

⎛⎜⎜⎜⎜⎜⎝
−A−1

σ ad+1 −A−1
σ ad+2 · · · −A−1

σ an

1 0 0
0 1 0
...

. . .
...

0 0 1

⎞⎟⎟⎟⎟⎟⎠ .
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For v ∈ Cn with Av = β the Γ -series defined in [7]:

ϕv :=
∑
u∈LA

1

Γ (v + u + 1)
xv+u

is formally annihilated by the differential operators (1) and (2). Here Γ is the Euler Gamma
function and LA := ker(A)∩Zn. Notice that ϕv is zero if and only if (v +LA)∩ (C \Z<0)

n = ∅.
In contrast, ϕv does not define a formal power series at any point if v ∈ (C \ Z)n. These series
were used in [7] in order to construct a basis of holomorphic solutions of MA(β) at nonsingular
points.

Set

vk =
(

A−1
σ

(
β −

∑
i /∈σ

kiai

)
,k
)

and observe that Avk = β for all k = (ki)i /∈σ ∈ Nn−d . Hence, according to Lemma 1 in Sec-
tion 1.1 of [7], we have that the formal series along Yσ := {xi = 0: i /∈ σ } at any point of
Yσ ∩ {xj �= 0: j ∈ σ }:

ϕvk = x
A−1

σ β
σ

∑
k+m∈Λk

x
−A−1

σ (
∑

i /∈σ (ki+mi)ai )
σ xk+m

σ

Γ (A−1
σ (β −∑i /∈σ (ki + mi)ai) + 1)(k + m)!

where

Λk :=
{

k + m = (ki + mi)i∈σ ∈ Nn−d :
∑
i∈σ

aimi ∈ ZAσ

}

is annihilated by the operators (1) and (2). Notice that ϕvk is zero if and only if for all m ∈ Λk,
A−1

σ (β −∑i /∈σ (ki + mi)ai) has at least one negative integer coordinate.
Let us consider the lattice Zσ = ZAσ =∑i∈σ Zai contained in ZA.

Lemma 3.1. The following statements are equivalent for all k,k′ ∈ Zn−d :

(1) vk − vk′ ∈ Zn.
(2) [Aσ k] = [Aσ k′] in ZA/Zσ .
(3) Λk = Λk′ .

Lemma 3.2. We have the equality:{
Λk: k ∈ Zn−d

}= {Λk: k ∈ Nn−d
}

and the cardinality of this set is [ZA : Zσ ].

Proof. The equality is clear because Aσ c ∈ Zσ for c = |det(Aσ )| · (1, . . . ,1) ∈ (N∗)n−d and then
for any k ∈ Zn−d there exists α ∈ N such that k + αc ∈ Nn−d and Λk = Λk+αc.
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∀λ ∈ ZA/Zσ there exists k ∈ Zn−d with Aσ k = λ ∈ ZA/Zσ . Then by the equivalence of (2)
and (3) in Lemma 3.1 we have that {Λk: k ∈ Zn−d} has the same cardinality as the finite group
ZA/Zσ . �
Remark 3.3. Recall that the support of a series

∑
v cvx

v is the set{
v ∈ Cn: cv �= 0

}
.

Then, for all k,k′ ∈ Nn−d such that vk − vk′ ∈ Zn we have that ϕvk = ϕ
vk′ and in the other case

we have that ϕvk , ϕ
vk′ have disjoint supports.

Remark 3.4. One may consider k(1), . . . ,k(r) ∈ Nn−d such that

ZA/Zσ = {[Aσ k(i)
]
: i = 1, . . . , r

}
with r = [ZA : Zσ ]. Then the set in Lemma 3.2 is equal to { Λk(i): i = 1, . . . , r} and it determines
a partition of Nn−d , i.e.,

(1) Λk(i) ∩ Λk(j) = ∅ if i �= j ;
(2)

⋃r
i=1 Λk(i) = Nn−d .

We have described [ZA : Zσ ] = |det(Aσ )|/[Zd : ZA] = volZA(
σ ) formal solutions along
Yσ associated with a simplex σ having pairwise disjoint supports. So we have [ZA : Zσ ] linearly
independent hypergeometric series solutions of MA(β) if none of them is zero.

These Γ -series are handled in [22] in such a way that they are not zero for any β ∈ Cd :

φv :=
∑
u∈Nv

[v]u−
[v + u]u+

xv+u

where v ∈ Cn verifies Av = β and Nv = {u ∈ LA: nsupp(v +u) = nsupp(v)}. Here nsupp(w) :=
{i ∈ {1, . . . , n}: wi ∈ Z<0} for w ∈ Cn, [v]u =∏i[vi]ui

and [vi]ui
=∏ui

j=1(vi − j + 1) is the
Pochhammer symbol for vi ∈ C, ui ∈ N. When v ∈ (C \ Z<0)

n we have:

φv = Γ (v + 1)ϕv.

Since Av = β the series φv is annihilated by the operators (2). It is annihilated by the toric
ideal IA if and only if the negative support of v is minimal, i.e., �u ∈ LA := ker(A) ∩ Zn with
nsupp(v + u) � nsupp(v) (see [22, Section 3.4]).

Remark 3.5. Observe that any u ∈ LA has the form (−∑j /∈σ rjA
−1
σ aj , r) with r = (rj )j /∈σ ∈

Zn−d such that Aσ r =∑j /∈σ rj aj ∈ Zσ . Then we can choose k ∈ Nn−d such that vk has minimal
negative support because we do not change the class of

∑
j /∈σ kjaj modulo ZAσ when replacing

k by k + r ∈ Nn−d . Then the new series φk
σ := φvk �= 0 has the form:

φk
σ =

∑ [vk]u(m)−
[vk + u(m)]u(m)+

xvk+u(m)
k+m∈Sk
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Fig. 1.

where Sk := {k+m ∈ Λk: nsupp(vk+m) = nsupp(vk)} ⊆ Λk and u(m) = (−∑i /∈σ miA
−1
σ ai,m)

for m = (mi)i /∈σ ∈ Zn−d .

Remark 3.6. Using that Sk ⊆ Λk, ∀k ∈ Nn−d and Remark 3.4 we have that two series in {φk
σ :

k ∈ Nn−d} are either equal up to multiplication by a nonzero scalar or they have disjoint supports.
Thus, the set {φk

σ : k ∈ Nn−d} has volZA(
σ ) linearly independent formal series solutions of
MA(β) along Yσ at any point of Yσ ∩ {xj �= 0: j ∈ σ } for all β ∈ Cd .

Example 3.7. Let A = (a1 a2 a3) ∈ Z2×3 be the matrix with columns:

a1 =
(

1
0

)
, a2 =

(
0
2

)
, a3 =

(
3
1

)
.

The kernel of A is generated by u = (6,1,−2) and so LA = Zu. Then the hypergeometric system
associated with A and β ∈ C2 is generated by the differential operators:

�u = ∂6
1 ∂2 − ∂2

3 , E1 − β1 = x1∂1 + 3x3∂3 − β1, E2 − β2 = 2x2∂2 + x3∂3 − β2.

In this example ZA = Z2, A is pointed and σ = {1,2} is a simplex with normalized volume
volZA(
σ ) = |det(Aσ )| = 2 (see Fig. 1).

Two convenient vectors associated with σ are

v0 = (β1, β2/2,0) and v1 = (β1 − 3, (β2 − 1)/2,1
)
.

The associated series

φv0 =
∑
m�0

[β1]6m[β2/2]m
(2m)! x

β1−6m

1 x
β2/2−m

2 x2m
3

and

φv1 =
∑
m�0

[β1 − 3]6m[(β2 − 1)/2]m
(2m + 1)! x

β1−3−6m

1 x
(β2−1)/2−m

2 x1+2m
3

are formal series along Yσ = {x3 = 0} at any point of Yσ ∩ {x1x2 �= 0} that are annihilated by the
Euler operators E1 − β1, E2 − β2 because Avk = β and by the toric operator �u since vk has
minimal negative support for all β ∈ C2 for k = 0,1.
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The following lemma is very related with [7, Proposition 1, Section 1.1], [19, Lemma 1] and
[20, Proposition 5], and it can be proved by using Stirling’s formula m! ∼ √

2πm(e/m)m and
another elementary estimates.

Lemma 3.8. Assume that {bi}ni=d+1 is a set of vectors in Qd × Nn−d , k ∈ Zn−d . Let us denote
u(m) =∑n

i=d+1 mibi and consider a set Dk ⊆ {k+m ∈ Nn−d : u(m) ∈ Zn} and a vector v ∈ Cn

such that nsupp(v + u(m)) = nsupp(v) for any m ∈ Dk − k. Then for all s ∈ Rn−d the following
statements are equivalent:

(1)
∑

k+m∈Dk

[v]u(m)−
[v+u(m)]u(m)+

yk+m is Gevrey of multi-order s along y = 0.

(2)
∑

k+m∈Dk

u(m)−!
u(m)+!y

k+m is Gevrey of multi-order s along y = 0.

(3)
∑

k+m∈Dk

∏n
j=d+1(kj + mj)!−|bj |yk+m is Gevrey of multi-order s along y = 0.

In particular, for s = (sd+1, . . . , sn) with si = 1 − |bi |, i = d + 1, . . . , n, (1)–(3) are satisfied.
Moreover, (1)–(3) are also equivalent if we write order s instead of multi-order s and all these
series are Gevrey of order s = maxi{1 − |bi |}.

Consider s = (sj )j /∈σ with

sj := ∣∣A−1
σ aj

∣∣, j /∈ σ,

and s = maxi{si} throughout this section.
Recall that β ∈ Cd is said to be generic if it runs in a Zariski open set and that β is said to be

very generic if it runs in a countable intersection of Zariski open sets. In this paper we say that
β is very generic when we want to assure that A−1

σ (β −∑i /∈σ kiai) does not have any integer
coordinate for some simplices σ of A and all k ∈ Nn−d . Thus, very generic parameter vectors β

lie in the complement of a countable union of hyperplanes that depends on A.

Corollary 3.9. The series φk
σ is Gevrey of multi-order s = (sj )j /∈σ along Yσ at any point of

Yσ ∩ {xi �= 0: i ∈ σ }. If β is very generic then it is Gevrey with index s along Yσ .

Proof. It follows from Lemma 3.8 (if we take bd+i equal to the i-th column of Bσ , Dk = Sk and
v = vk) that the series

ψk
σ :=

∑
k+m∈Sk

[vk]u(m)−
[vk + u(m)]u(m)+

yk+m

is Gevrey of multi-order s along y = 0 ∈ Cn−d for all k ∈ Nn−d .
If β is very generic we have that Sk = Λk and it is obvious that the series in (3) of Lemma 3.8

has Gevrey index s in this case.

If we take y = (yj )j /∈σ with yj := x
−A−1

σ aj
σ xj , j /∈ σ , then φk

σ (x) = x
A−1

σ β
σ ψk

σ (y) and the result
is obtained. �
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Example 3.10 (Continuation of Example 3.7). We have that

ρs(φv0) = x
β1
1 x

β2/2
2

∑
m�0

[β1]6m[β2/2]m
(2m)!s

(
x2

3

x6
1x2

)m

has a nonempty domain of convergence if and only if s � 7/2 when β1, β2/2 /∈ N (use D’Alem-
bert criterion for the series in one variable y = x2

3/(x6
1x2)). Then φv0 is a Gevrey series solution

of MA(β) with index s = 7/2 along Yσ = {x3 = 0} at any point of Yσ ∩ {x1x2 �= 0}. Neverthe-
less, φv0 is a finite sum if either β1 ∈ N or β2/2 ∈ N and so it has the same convergence domain
as the (multi-valued) function x

β1
1 x

β2/2
2 . If both β1, β2/2 ∈ N, then φv0 is a polynomial.

Analogously, φv1 is a Gevrey series solution of order s = 7/2 along Yσ at any point of Yσ ∩
{x1x2 �= 0}. It has Gevrey index s = 7/2 if β1 − 3, (β2 − 1)/2 /∈ N and it is convergent otherwise.

Notice that s = 7/2 is the unique algebraic slope of MA(β) along Yσ = {x3 = 0} at 0 ∈ C3

(see [23] or [9]).

The convergence domain of ρ∅
s (ψk

σ ) contains {y ∈ Cn−d : |yj | < R, j /∈ σ } for certain R > 0.
In particular, ρσ

s (φvk) converges in{
x ∈ Cn:

∏
i∈σ

xi �= 0, |xj | < R
∣∣xA−1

σ aj
σ

∣∣, ∀j /∈ σ

}
.

The unique hyperplane that contains σ is

Hσ = {y ∈ Rd :
∣∣A−1

σ y
∣∣= 1

}
and we denote by H−

σ := {y ∈ Rd : |A−1
σ y| < 1} (resp. by H+

σ := {y ∈ Rd : |A−1
σ y| > 1}) the open

affine half-space that contains (resp. does not contain) the origin 0 ∈ Rd .
Recall that s = (si)i /∈σ where si = |A−1

σ ai | is the unique rational number such that ai/si ∈ Hσ .
Moreover, si > 1 (resp. si < 1) if and only if ai ∈ H+

σ (resp. ai ∈ H−
σ ). Taking the set

τ = {i: ai /∈ H+
σ

}
and s′ = (si)i /∈τ we have that ρτ

s′(φvk) converges in the open set

U ′
σ :=

{
x ∈ Cn:

∏
i∈σ

xi �= 0, |xj | < R
∣∣xA−1

σ aj
σ

∣∣, ∀aj ∈ (Hσ \ σ) ∪ H+
σ

}
.

This implies that φvk is Gevrey of multi-order s′ along Yτ at any point of U ′
σ ∩ Yτ . Then, if we

consider

Uσ :=
{
x ∈ Cn:

∏
i∈σ

xi �= 0, |xj | < R
∣∣xA−1

σ aj
σ

∣∣, ∀aj ∈ Hσ \ σ

}

the following result is obtained.
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Theorem 3.11. For any set ς with σ ⊆ ς ⊆ τ the series

φk
σ =

∑
k+m∈Sk

[vk]u(m)−
[vk + u(m)]u(m)+

xvk+u(m)

is a Gevrey series solution of MA(β) of order s = max{si = |A−1
σ ai |: i /∈ σ } along Yς at any

point of Yς ∩ Uσ . If β is very generic then s is its Gevrey index.

Remark 3.12. If Hσ ∩ {ai : i = 1, . . . , n} = σ then Uσ = {∏i∈σ xi �= 0}.

Remark 3.13. Recall that in Theorem 3.11 the vector vk = (A−1
σ (β − Aσ k),k) has minimal

negative support because we have chosen k ∈ Λk this way (see Remark 3.5). This guarantees
that φvk is annihilated by IA by [22, Section 3.4]. However, this series is Gevrey of order s for
all k ∈ Nn−d .

4. Slopes of MA(β) associated with a simplex

In the context of Section 3 we fix a simplex σ ⊆ A with det(Aσ ) �= 0 and consider s = (si)i /∈σ

where si = |A−1
σ ai |. We consider τ = {j : aj /∈ H+

σ } ⊇ σ and the coordinate subspace Yτ =
{xj = 0: j /∈ τ } in this section.

Let us denote OX|Y (< s) :=⋃s′<s OX|Y (s′) for s ∈ R. Our purpose here is to construct one
nonzero Gevrey series solution of MA(β) in (OX|Yτ (s)/OX|Yτ (< s))p for p ∈ Yτ ∩ Uσ with
support contained in the set Λk ⊆ Nn−d in the partition of Nn−d (see Remark 3.4) for all β ∈ Cd .
In particular we will prove the following result:

Proposition 4.1. For s = max{si = |A−1
σ ai |: i /∈ σ }, for all p ∈ Yτ ∩ Uσ and for all β ∈ Cd :

dim
(

HomD
(

MA(β), OX|Yτ (s)/OX|Yτ (< s)
))

p
� volZA(
σ ).

As a consequence of Proposition 4.1, we obtain the following result that justifies the name of
this section:

Corollary 4.2. If Yτ is a coordinate hyperplane (equivalently, the cardinality of τ is n − 1) and
s = |A−1

σ aτ | > 1 then s is an analytic slope of MA(β) along Yτ at any point in the closure of
Yτ ∩ Uσ .

Remark 4.3. Observe that 0 is in the closure of Yτ ∩ Uσ . However, by Remark 2.6 we have that
s is a slope along Yτ at any point of Yτ .

Let us proceed with the construction of the announced series and the proof of Proposition 4.1.
We identify k + m ∈ Nn−d with vk+m = (A−1

σ (β − Aσ (k + m)),k + m) ∈ Cd × Nn−d and
establish a partition of Λk in terms of the negative support of the vector vk+m ∈ Cd × Nn−d as
follows. For any subset η ⊆ σ set:

Λk,η := {k + m ∈ Λk: nsupp
(
A−1

σ

(
β − Aσ (k + m)

))= η
}
.
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Consider the set

Ωk := {η ⊆ σ : Λk,η �= ∅}.

Then it is clear that {Λk,η: η ∈ Ωk} is a partition of Λk. Moreover Λk,η is the intersection of
a polytope with Λk because the conditions

nsupp
(
A−1

σ

(
β − Aσ (k + m)

))= η

are equivalent to inequalities of type:

(
A−1

σ

(
β − Aσ (k + m)

))
i
< 0

for i ∈ η and

(
A−1

σ

(
β − Aσ (k + m)

))
j

� 0

for j /∈ η such that (A−1
σ (β − Aσ k))j ∈ Z.

For any η ∈ Ωk the series φvk+m for k + m ∈ Λk,η depends on Λk,η but not on k + m ∈ Λk,η

up to multiplication by nonzero scalars. Let us fix any k̃ ∈ Λk,η and set:

φk,η := φ
vk̃ .

Observe that the support of the series φk,η is:

supp(φk,η) = {vk+m: k + m ∈ Λk,η

}
.

All the series in the finite set {φk,η: k ∈ Nn−d, η ∈ Ωk} are Gevrey series along Yσ = {xi = 0:
i /∈ σ } with multi-order s at points of Yσ ∩ {xj �= 0: j ∈ σ } (it follows from Lemma 3.8). In fact,
these series are Gevrey of order s along Yτ at any point of Yτ ∩ Uσ and they are all annihilated
by the Euler operators.

For all η ∈ Ωk, the support of the series φk,η is supp(φk,η) = {vk+m: k + m ∈ Λk,η} and⋃
η∈Ωk

Λk,η = Λk. Then there exists η ∈ Ωk such that φk,η ∈ OX|Yτ (s) has Gevrey index s.
But a series φv is annihilated by IA if and only if v has minimal negative support (see [22,
Section 3.4]) so if we take η′ ∈ Ωk with minimal cardinality then φk,η′ ∈ OX|Yτ (s) is a solution
of MA(β). In general, we cannot take η = η′.

The following lemma is the key of the proof of Proposition 4.1.

Lemma 4.4. Consider an element η of the set

{
η′ ∈ Ωk: φk,η′ has Gevrey index s

}
with minimal cardinality. Then �u(φk,η) ∈ OX|Yτ (< s) for all u ∈ LA.
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Proof. Consider Λk,η with η as above and u ∈ LA. Then there exists m̃ ∈ Zn−d such that u =
(−A−1

σ Aσ m̃, m̃) and then

�u = ∂
(A−1

σ Aσ m̃)−
σ ∂

m̃+
σ − ∂

(A−1
σ Aσ m̃)+

σ ∂
m̃−
σ .

On the other hand, the series φk,η has the form:

φk,η =
∑

k+m∈Λk,η

ck+mx
A−1

σ (β−Aσ (k+m))
σ xk+m

σ

where ck+m ∈ C verifies that ck+m+m̃/ck+m is a rational function on m (recall that there exists

k̃ ∈ Λk,η such that ck+m = [vk̃]u(k−k̃+m)−
[vk+m]u(k−k̃+m)+

by definition of φk,η).

A monomial xvk+m−u− = xvk+m+m̃−u+ appearing in �u(φk,η) comes from the monomials

xvk+m
and xvk+m+m̃

after one applies ∂u− and ∂u+ , respectively.
If k+m,k+m+ m̃ ∈ Λk,η then the monomial xvk+m−u− appears in ∂u−(φk,η) and ∂u+(φk,η)

with the same coefficients so it doesn’t appear in the difference.
If k + m ∈ Λk,η but k + m + m̃ /∈ Λk,η (the case k + m /∈ Λk,η but k + m + m̃ ∈ Λk,η is

analogous), we can distinguish two cases:

(1) There exists i such that vk+m
i ∈ N but vk+m+m̃

i < 0 so ui = vk+m+m̃
i − vk+m

i < 0. Then

∂u−(xvk+m
) = 0 and xvk+m−u− does not appear in �u(φk,η).

(2) We have nsupp(vk+m+m̃) = ς � nsupp(vk+m) = η. Then [vk+m]u− �= 0 and the coefficient

of xvk+m−u− in �u(φk,η) is ck+m[vk+m]u− �= 0. Furthermore, k + m + m̃ ∈ Λk,ς with ς ∈
Ωk such that φk,ς is Gevrey of index s′ < s because we chose η that way.

By (1), (2) and the analogous cases when k + m /∈ Λk,η but k + m + m̃ ∈ Λk,η, we have:

�u(φk,η) =
∑
ς ′

∑
k+m+m̃∈Λk,η

k+m∈Λk,ς ′

ck+m+m̃
[
vk+m+m̃]

u+xvk+m+m̃−u+

−
∑
ς

∑
k+m∈Λk,η

k+m+m̃∈Λk,ς

ck+m
[
vk+m]

u−xvk+m−u− . (3)

Here, ς,ς ′ ⊆ η varies in a subset of the finite set Ωk whose elements ς ′′ verify that the series
φk,ς ′′ has Gevrey index s′′ < s. Let us denote by s̃ < s the maximum of these s′′.

Since ck+m+m̃/ck+m, [vk+m]u− and [vk+m+m̃]u+ are rational functions on m the series�u(φk,η) has Gevrey index at most the maximum of the Gevrey index of the series

∑
ς ′

∑
k+m+m̃∈Λk,η

k+m∈Λ ′

ck+mxvk+m+m̃−u+ ,
k,ς
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∑
ς

∑
k+m∈Λk,η

k+m+m̃∈Λk,ς

ck+m+m̃xvk+m−u−

which is at most s̃ < s.
It follows that IA(φk,η) ∈ OX|Yτ (< s) while φk,η has Gevrey index s. �
Moreover the classes of the series {φk,ηk : k ∈ Nn−d} (with ηk ∈ Ωk chosen as η in

Lemma 4.4) in (OX|Yτ (s)/OX|Yτ (< s))p , p ∈ Yτ ∩Uσ , are linearly independent since the support
of φk,η restricted to the variables xi with i /∈ σ is Λk,ηk ⊆ Λk and {Λk: k ∈ Nn−d} is a partition
of Nn−d . This finishes the proof of Proposition 4.1.

5. Slopes of MA(β) along coordinate hyperplanes

In this section we will describe all the slopes of MA(β) along coordinate hyperplanes. First,
we recall here the definition of (A,L)-umbrella [23], but we will slightly modify the notation
in [23] for technical reasons. Consider any full rank matrix A = (a1 · · ·an) ∈ Zd×n and s =
(s1, . . . , sn) ∈ Rn

>0.

Definition 5.1. Set as
j := aj/sj , j = 1, . . . , n, and let


s
A := conv

({
as
i : i = 1, . . . , n

}∪ {0})
be the so-called (A, s)-polyhedron.

The (A, s)-umbrella is the set Φs
A of faces of 
s

A which do not contain the origin. Φ
s,q
A ⊆ Φs

A

denotes the subset of faces of dimension q for q = 0, . . . , d − 1.

The following statement is [23, Lemma 2.13]. The difference here is that we do not assume
that A is pointed but we just consider s ∈ Rn such that si > 0 for all i = 1, . . . , n. However, the
proof of [23, Lemma 2.13] can be adapted to this case.

Lemma 5.2. Let Ĩ s
A be the ideal of C[ξ1, . . . , ξn] generated by the following elements:

(i) ξi1 · · · ξir where ai1/si1, . . . , air /sir do not lie in a common facet of Φs
A.

(ii) ξu+ − ξu− where u ∈ kerZ A and supp(u) is contained in a facet of Φs
A.

Then Ĩ s
A = √

ins(IA).

Let τ ⊆ {1, . . . , n} be a set with cardinality l � 0 and consider the coordinate subspace Yτ =
{xi = 0: i /∈ τ } with dimension l.

The special filtration

Ls := F + (s − 1)Vτ

with s � 1 is an intermediate filtration between the filtration F by the order of the differential
operators and the Malgrange–Kashiwara filtration with respect to Yτ that we denote by Vτ . Recall
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that Vτ is associated with the weights −1 for the variables xτ , 1 for ∂τ and 0 for the rest of the
variables.

We shall identify s ∈ R>0 with (s1, . . . , sn) throughout this section, where si = 1 if i ∈ τ and
si = s if i /∈ τ . Then (Ls)n+j = sj for all j = 1, . . . , n.

Lemma 5.3. Assume s > 1 is such that Φs
A = Φs+ε

A = Φs−ε
A for sufficiently small ε > 0. Then

the ideal Ĩ s
A is homogeneous with respect to F and Vτ . In particular V (Ĩ s

A + 〈Axξ 〉) is a bi-

homogeneous variety in C2n.

Proof. We only need to prove that the elements in Lemma 5.2(ii) are bi-homogeneous with
respect to F and Vτ :

Consider ξu+ − ξu− ∈ Ĩ s
A with Au = 0 and supp(u) ⊆ τ ∈ Φs

A. Then, there exists hτ ∈ Qd

such that 〈hτ , ai/si〉 = 1, ∀i ∈ τ , i.e., 〈hτ , ai〉 = si , ∀i ∈ τ . Since Au = 0 and supp(u) ⊆ τ we
have

0 = 〈hτ ,Au〉 = 〈hτA,u〉 =
∑
i∈τ

siui =
n∑

i=1

siui

so inLs(�u) = ξu+ − ξu− . Thus ξu+ − ξu− is Ls -homogeneous. By assumption we have that
they are also (Ls ± εVτ )-homogeneous for all ε > 0 small enough. Since Ls ± εVτ = F + (s ±
ε − 1)Vτ we obtain that they are F -homogeneous and Vτ -homogeneous. �
Lemma 5.4. dimC(V (inLs (IA)) ∩ V (Axξ)) � n.

Proof. Let ω ∈ Rn
>0 be a generic weight vector such that inω(inLs (IA)) is a monomial ideal. For

ε > 0 small enough inω(inLs (IA)) = inω̃(IA) for ω̃ = s + εω ∈ Rn
>0.

Choose any monomial order < in C[x, ξ ] that refines the partial order given by (u, v) :=
(1 − εω1, . . . ,1 − εωn; εω1, . . . , εωn) ∈ R2n

>0. It is clear that in(u,v)(Axξ)i = (Axξ)i for all i =
1, . . . , d and that in(u,v)(inLs (IA)) = inω̃(IA). Then

inω̃(IA) + 〈Axξ 〉 ⊆ in(u,v)

(
inLs (IA) + 〈Axξ 〉)

and so we have that:

E<

(
inLs (IA) + 〈Axξ 〉)= E<

(
in(u,v)

(
inLs (IA) + 〈Axξ 〉))⊃ E<

(
inω̃(IA) + 〈Axξ 〉) (4)

where E<(I) := {(α, γ ) ∈ N2n: in<(P ) = cα,γ xαξγ , P ∈ I \ {0}} for any ideal I ⊆ C[x, ξ ]. The
inclusion (4) implies that the Krull dimension of the residue ring C[x, ξ ]/(inLs (IA) + 〈Axξ 〉) is
at most the one of C[x, ξ ]/(inω̃(IA) + 〈Axξ 〉).

Then it is enough to prove that C[x, ξ ]/(inω̃(IA) + 〈Axξ 〉) has Krull dimension n. Since
M = inω̃(IA) is a monomial ideal then:

inω̃(IA) =
⋂

(∂b,σ )∈S(M)

〈
ξ

bj +1
j : j /∈ σ

〉
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where S(M) denotes the set of standard pairs of M (see [22, Section 3.2]). This implies that

V
(
inω̃(IA) + 〈Axξ 〉)= ⋃

(∂b,σ )∈S(M)

V
(〈ξj : j /∈ σ 〉 + 〈Axξ 〉).

By [22, Corollary 3.2.9], the columns of A indexed by σ are linearly independent when (∂b, σ ) ∈
S(M), so the dimension of each component

V
(〈ξj : j /∈ σ 〉 + 〈Axξ 〉)= V

(〈ξj : j /∈ σ 〉 + 〈xj ξj : j ∈ σ 〉)
is n. �
Lemma 5.5. Under the assumptions of Lemma 5.3 we have that s is not an algebraic slope of
MA(β) along Yτ at any point of Yτ .

Proof. We know that:

Chs
(

MA(β)
)= V

(√
inLs

(
HA(β)

))⊆ V
(√

inLs (IA)
)∩ V (Axξ) = V

(
Ĩ s
A + 〈Axξ 〉).

Hence the s-characteristic variety of MA(β) is contained in a bi-homogeneous variety of di-
mension at most n when the assumptions in Lemma 5.3 are satisfied. Since Chs(MA(β)) is
known to be purely n-dimensional, each irreducible component is an irreducible component of
V (Ĩ s

A + 〈Axξ 〉) and so it is also bi-homogeneous. Moreover, this is true not only at the origin
x = 0 ∈ Rn but also at any point of Yτ because (Ls)i = 0 for i ∈ τ and Yτ = {xi = 0: i /∈ τ }.
Then s is not an algebraic slope of MA(β) along Yτ at any point of Yτ . �
Remark 5.6. Observe that after the proof of Lemma 5.5 we have the equality in Lemma 5.4.

Remark 5.7. A consequence of Lemma 5.5 is that MA(β) has no algebraic slopes along 0 ∈ Cn

at 0.

Example 5.8. Let A = (a1 a2 a3 a4) be the non-pointed matrix with columns

a1 =
(

1
−1

)
, a2 =

(
0
1

)
, a3 =

(−3
−2

)
, a4 =

(
2
2

)
and consider the associated hypergeometric system:

HA(β) = IA + 〈x1∂1 − 3x3∂3 + 2x4∂4 − β1,−x1∂1 + x2∂2 − 2x3∂3 + 2x4∂4 − β2〉

where IA = 〈∂1∂2∂3∂4 − 1, ∂1∂
3
2 − ∂3∂

2
4 , ∂2

3 ∂3
4 − ∂2

2 〉 and β1, β2 ∈ C.
From Lemma 5.5 we deduce that there is not any algebraic slope along a coordinate subspace

different from Y = {x2 = 0} and Z = {x4 = 0}. By Corollary 4.2 and using again Lemma 5.5
we know that the unique slope of MA(β) along Y is |A−1

σ a2| = 5/2 with σ = {3,4} and that
the unique slope of MA(β) along Z is |A−1

σ a4| = 6 with σ = {1,2}. Notice that 2a2/5 lies in
the affine line passing through a3 and a4 (see Fig. 2) and that a4/6 lies in the affine line passing
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Fig. 2. Fig. 3.

through a1 and a2 (see Fig. 3). We also can construct volZA(
σ ) = 2 Gevrey solutions of MA(β)

along Y (it is analogous for Z) as follows.
The matrix Bσ is

Bσ =

⎛⎜⎜⎝
1 0
0 1
2 −1

5/2 −3/2

⎞⎟⎟⎠
and we consider the vectors v1 = (0,0,A−1

σ β) = (0,0,−β1 + β2,−β1 + 3
2β2) and v2 =

(0,1,A−1
σ (β − a2)) = (0,1,−β1 + β2 − 1,−β1 + 3

2 (β2 − 1)).
If none of β1 − β2,−β1 + 3

2β2 and −β1 + 3
2 (β2 − 1) are integers then the series φv1 and φv2

are Gevrey series solutions along Y of MA(β) with index 5/2 at any point of Y ∩ {x1x2 �= 0}.
In other case, we can replace the vectors vi by vi,k := vi + k(0,1,−1,−3/2) with k ∈ 2N big
enough in order to obtain Gevrey solutions φvi,k of MA(β) modulo convergent series at any
point of Y ∩ {x1x2 �= 0} with index 5/2.

Denote for s > 1:

Ω
(s)
Yτ

= {σ ⊆ τ : det(Aσ ) �= 0, max
{∣∣A−1

σ ai

∣∣: i /∈ τ
}= s,

∣∣A−1
σ aj

∣∣� 1, ∀j ∈ τ
}
.

In the following result the equivalence of (3) and (4) is a particular case of the Comparison
Theorem of the slopes [14]. However, we just need to use this theorem for the implication (3) �⇒
(4).

Theorem 5.9. Let Y be a coordinate hyperplane and p ∈ Y . The following statements are equiv-
alent:

(1) Φs
A jumps at s = s0.

(2) Ω
(s0)
Y �= ∅.

(3) s0 is an analytic slope of MA(β) along Y at p.
(4) s0 is an algebraic slope of MA(β) along Y at p.

Proof. Assume for simplicity that Y = {xn = 0}. We will prove first the equivalence of (1)
and (2). Assume there exists σ ∈ Ω

(s0) �= ∅, then Hσ = {y ∈ Rd : |A−1y| = 1} is the only hy-
Y σ
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perplane containing ai for all i ∈ σ and |A−1
σ (an/(s0 + ε))| = s0/(s0 + ε) < 1, ∀ε > 0. Hence

an/s0 ∈ Hσ but an/(s0 + ε) /∈ Hσ , ∀ε > 0.
Consider η = {i: ai ∈ Hσ }, then η ∈ Φ

s0+ε,d−1
A , ∀ε > 0 and n /∈ η while η ∪ {n} ∈ Φ

s0,d−1
A , so

Φs
A jumps at s = s0.

Conversely if Ω
(s0)
Y = ∅ then ∀σ ⊆ {1,2, . . . , n − 1} such that |A−1

σ ai | � 1 for all i =
1, . . . , n − 1 we have |A−1

σ an| < s0 or |A−1
σ an| > s0.

Consider ε > 0 small enough such that |A−1
σ an| < s0 ±ε if |A−1

σ an| < s0 and |A−1
σ an| > s0 ±ε

if |A−1
σ an| > s0 for all simplices σ such that |A−1

σ ai | � 1 for all i = 1, . . . , n − 1.
Let us prove that Φ

s0,d−1
A = Φ

s0±ε,d−1
A .

Assume first that n /∈ η ⊆ {1, . . . , n}. Then: η ∈ Φ
s0,d−1
A ⇐⇒ ∃σ ⊆ η such that |A−1

σ ai | = 1
for i ∈ η, |A−1

σ ai | < 1 for i /∈ η ∪ {n} and |A−1
σ an| < s0 ⇐⇒ ∃σ ⊆ η such that |A−1

σ ai | = 1 for
i ∈ η, |A−1

σ ai | < 1 for i /∈ η ∪ {n} and |A−1
σ an| < s0 ± ε ⇐⇒ η ∈ Φ

s0±ε,d−1
A .

If n ∈ η ⊆ {1, . . . , n} and dim(conv(η \ {n})) = d − 1 then there exists a simplex σ ⊆ η \ {n}
such that det(Aσ ) �= 0. Then η /∈ Φ

s0,d−1
A because in such a case |A−1

σ ai | � 1 for all i �= n,

|A−1
σ an| = s0 and so σ ∈ Ω

(s0)
Y , a contradiction. Moreover η /∈ Φ

s0±ε,d−1
A for ε > 0 small enough

because |A−1
σ an| is a fixed value while s0 ± ε varies with ε.

Finally, if n ∈ η ⊆ {1, . . . , n} and dim(conv(η \ {n})) < d − 1 then there exists a hyperplane
H ′ = {y ∈ Rd : h′(y) = 0} that contains 0 ∈ Rd and ai for all i ∈ η \ {n}. We also can choose the
linear function h′ in the definition of H ′ such that h′(an) = 1. In this case:

η ∈ Φ
s0,d−1
A ⇐⇒ η \ {n} ∈ Φ

s0,d−2
A and ∃H ′′ = {y ∈ Rd : h′′(y) = 1} such that h′′(ai) = 1 for

i ∈ η \ {n}, h′′(an) = s0 and h′′(aj ) < 1 for j /∈ η. This imply for h := h′′ ± εh′ that h(ai) = 1
for all i ∈ η \ {n}, h(an) = s0 ± ε and h(aj ) = h′′(aj ) ± εh′(aj ) < 1 for j /∈ η and ε > 0 small

enough because h′′(aj ) < 1 for j /∈ η. Hence η ∈ Φ
s0±ε,d−1
A .

We have proved that Φ
s0,d−1
A ⊆ Φ

s0±ε,d−1
A . This implies equality since they are (A, s)-

umbrellas of the same matrix A and s = s0 ± ε > 0 (in particular
⋃

η∈Φ
s,d−1
A

pos(η) = pos(A)

for all s > 0). Moreover, the (A, s)-umbrellas are determined by their facets, so Φ
s0
A = Φ

s0±ε
A .

For the proof of the implication (2) �⇒ (3) consider any σ ∈ Ω
(s0)
Yτ

. If β is very generic

the Gevrey series solutions of MA(β) along Yτ associated with σ , {φk
σ }k (see Section 3), have

Gevrey index s0 = max{|A−1
σ ai |: i ∈ τ } along Yτ at p ∈ Yτ ∩ Uσ . If β is not very generic we

can proceed as in Section 4 in order to construct a Gevrey series associated with σ with index s0
which is a solution of MA(β) in (OX|Y (s0)/OX|Y (< s0))p for all p ∈ Y ∩ Uσ . This implies that
s0 is an analytic slope of MA(β) at any point of Y ∩ Uσ . Then by Remark 2.6 we obtain (3) for
all p ∈ Y .

For the implication (3) �⇒ (4) we use the Comparison Theorem of the slopes [14]. Finally,
the implication (4) �⇒ (1) is nothing but Lemma 5.5. �
Remark 5.10. Notice that if Y is a coordinate hyperplane then every algebraic slope s0 of MA(β)

along Y is the Gevrey index of certain Gevrey solutions of MA(β) along Y modulo convergent
series. Example 5.11 shows that this is not true for coordinate subspaces of codimension greater
than one.

Example 5.11. Let MA(β) be the hypergeometric D-module associated with the matrix

A =
(

1 0 3
0 1 −1

)
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and the parameter vector β ∈ C2. In this case n = 3 = d + 1 and so the toric ideal is principal
IA = 〈∂3

1 − ∂2∂3〉.
If we take Y = {x2 = x3 = 0} then the only algebraic slope of MA(β) along Y at p ∈ Y is

s0 = 3/2 (see [23] since A is pointed). Nevertheless, we will prove that if β2 /∈ Z then for all
s � 1, H0(Irr(s)Y (MA(β))) = 0:

For any formal series f =∑m∈N2 fm(x1)x
m2
2 x

m3
3 along Y at p = (p1,0,0) ∈ Y then

(E2 − β2)(f ) =
∑

m∈N2

(m2 − m3 − β2)fm(x1)x
m2
2 x

m3
3

and hence (E2 − β2)(f ) ∈ OX,p (resp. (E2 − β2)(f ) = 0) if and only if f ∈ OX,p (resp. f = 0)
because (m2 − m3 − β2) �= 0, ∀m2,m3 ∈ N.

On the other hand, if β2 ∈ Z we can take k ∈ N the minimum natural number such that v =
(β1 − 3k,β2 + k, k) ∈ C × N2 has minimal negative support. Since Av = β then

φv =
∑
m�0

k![β1 − 3k]3m

(k + m)![β2 + k + m]m x
β1−3(k+m)

1 x
β2+k+m

2 xk+m
3

is a formal solution of MA(β) along Y at any point p ∈ Y with p1 �= 0. In fact φv has Gevrey
index s0 = 3/2 if β1 − 3k /∈ N and it is a polynomial when β1 − 3k ∈ N. In this last case, if we
consider v′ = v + k′u with u = (−3,1,1) ∈ LA and k′ ∈ N such that v′

1 < 0 then φv′ is a Gevrey
series of index s0 and P(φv′) is convergent along Y at any point p ∈ Y \ {0}.

Thus, the algebraic slope s0 = 3/2 is the index of a Gevrey solution of MA(β) along Y if and
only if β2 ∈ Z. Observe that “the special parameters” are not contained in a Zariski closed set but
in a countable union of them. Note also that IA is Cohen–Macaulay and then it is known that the
set of rank-jumping parameters is empty.

6. Gevrey solutions of MA(β) along coordinate subspaces

6.1. Lower bound for the dimension

In this subsection we provide an optimal lower bound in terms of volumes of polytopes of the
dimension of HomD(MA(β), OX|Yτ (s))p , s ∈ R, for generic points p ∈ Yτ = {xi = 0: i /∈ τ }
and for all β ∈ Cd . To this end we will use regular triangulations T(τ ) of the submatrix Aτ =
(ai)i∈τ of A (see for example [7] and [24]) and Theorem 3.11.

Recall that a generic weight vector ω = (ωj )j∈τ ∈ Rτ = ∏j∈τ R defines a regular trian-

gulation Tω of Aτ as follows: σ ⊆ τ belongs to Tω if there exists a vector c ∈ Rd such that
〈c, aj 〉 = ωj for all j ∈ σ and 〈c, aj 〉 < ωj for all j ∈ τ \ σ .

Remark 6.1. It is easy to check the equality

C(σ) := {ω ∈ Rτ : Bσ ω > 0
}= {ω ∈ Rτ : σ ∈ Tω

}
for all (d − 1)-simplices σ ⊆ τ . Thus for any regular triangulation T(τ ) = Tω0 of Aτ we have

ω0 ∈ C
(
T(τ )

) := ⋂
C(σ).
σ∈T(τ )
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Hence C(T(τ )) = {ω ∈ Rτ : Tω = T(τ )} is a nonempty open rational convex polyhedral cone. It
is clear that

⋃
T(τ ) C(T) = Rτ where T(τ ) runs over all regular triangulations of Aτ and C(T(τ ))

denotes the Euclidean closure of C(T(τ )) in Rτ .

If the rank of Aτ is d then there exists a regular triangulation T(τ ) of Aτ such that

volZA(
τ ) =
∑

σ∈T(τ ),dimσ=d−1

volZA(
σ ). (5)

If the rank of Aτ is lower than d then this equality holds for any regular triangulation of the
matrix Aτ since all the volumes in (5) are zero.

For all s ∈ R we consider the following subset of T(τ ):

T(τ, s) := {σ ∈ T(τ ): dim(σ ) = d − 1, aj /s /∈ H+
σ , ∀j /∈ τ

}
.

The following theorem is the main result in this section.

Theorem 6.2. For all τ ⊆ {1, . . . , n},

dimC HomD
(

MA(β), O
X̂|Yτ

)
p

� volZA(
τ ) (6)

for p in the nonempty relatively open set WT(τ ) := Yτ ∩ (
⋂

σ∈T(τ ) Uσ ). More precisely,

dimC HomD
(

MA(β), OX|Yτ (s)
)
p

�
∑

σ∈T(τ,s)

volZA(
σ ) (7)

for all s ∈ R and p in the nonempty relative open set WT(τ,s) := Yτ ∩ (
⋂

σ∈T(τ,s) Uσ ).

Proof. WT(τ ) ⊆ WT(τ,s) are nonempty relatively open subsets of Yτ because T(τ ) is a regular
triangulation of Aτ . In fact, for any simplex σ ∈ T(τ ),

Uσ =
{
x ∈ Cn:

∏
i∈σ

xi �= 0,
(− log|x1|, . . . ,− log|xn|

)
Bσ,j > − logR, ∀aj ∈ Hσ \ σ

}

where Bσ,j is the j -th column of Bσ , i.e. the vector with σ -coordinates −A−1
σ aj and σ -coor-

dinates equal to the j -th column of the identity matrix of order n − d . Then Yτ ∩ Uσ contains
those points x ∈ Yτ ∩ {∏i∈σ xi �= 0} for which (− log|xi |)i∈τ lies in a sufficiently far translation
of the cone C(σ) inside itself. Then WT(τ ) = Yτ ∩ (

⋂
σ∈T(τ ) Uσ ) is a nonempty open set since

it contains those points x ∈ Yτ ∩ {∏i∈σ xi �= 0: σ ∈ T} for which (− log|xi |)i∈τ ∈ Rτ lies in a
sufficiently far translation of the nonempty open cone C(T) inside itself (see Remark 6.1).

For each fixed (d − 1)-simplex σ ∈ T(τ, s), we have that |A−1
σ aj | � 1 for all j ∈ τ and

|A−1
σ aj | � s for all j /∈ τ and we can construct volZA(
σ ) Gevrey solutions of MA(β) of order

s along Yτ at any point of Yτ ∩ Uσ by Theorem 3.11. These volZA(
σ ) series {φk
σ }k are linearly

independent because they have pairwise disjoint supports. The linear independency of the set of
all volZA(
τ ) series φk

σ when σ varies in T(τ ) is also clear if we assume that β is very generic
(because this implies that they have pairwise disjoint supports).
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If β is not very generic some of the series could be equal up to multiplication by a nonzero
scalar. In such a case one can proceed similarly to the proof of Theorem 3.5.1 in [22]:

We introduce a perturbation β �→ β + εβ ′ with β ′ ∈ Cd such that β + εβ ′ is very generic for
ε ∈ C with |ε| > 0 small enough (it is enough to consider β ′ ∈ Cd such that (A−1

σ β ′)i �= 0 for all
i = 1, . . . , d and σ ∈ T(τ )).

Consider the set {φk
σ : σ ∈ T(τ ), k ∈ Nn−d} with volZA(
τ ) Gevrey series solutions of

MA(β + εβ ′) with disjoint supports. We will denote these series by φk
σ (β + εβ ′) in this proof.

It is clear that φk
σ (β + εβ ′) = φvk

σ (β+εβ ′) for

vk
σ

(
β + εβ ′)= vk

σ (β) + εv0
σ

(
β ′).

Here vk
σ (β) has σ -coordinates A−1

σ (β − Aσ k) and σ -coordinates k. Similarly, v0
σ (β ′) has σ -

coordinates A−1
σ β ′ and σ -coordinates 0. Let T be a regular triangulation of A such that T(τ ) ⊆ T.

For any φk
σ (β) we can assume without loss of generality that vk

σ (β) has minimal negative support,

φk
σ (β) = φvk

σ (β) and inω(φk
σ (β)) = xvk

σ (β) for some fixed generic ω ∈ C(T). Then for two sim-

plices σ,σ ′ ∈ T(τ ) we have that φvk
σ (β) = cφ

vk′
σ ′ (β)

for some c ∈ C if and only if vk
σ (β) = vk′

σ ′(β).

Let us denote ν = volZA(
τ ). Since β + εβ ′ is very generic, there exist ν C(ε)-linearly inde-
pendent Gevrey series solutions of MA(β) along Yτ of the form

φk
σ

(
β + εβ ′)= ∑

k+m∈Λk

qk+m(ε)xvk
σ (β+εβ ′)+u(m)

where

qk+m(ε) = [vk
σ (β) + εv0

σ (β ′)]u(m)−
[vk

σ (β) + εv0
σ (β ′) + u(m)]u(m)−

for σ ∈ T(τ ) and k ∈ Nn−d verifying that φk
σ (β) = φvk

σ
(β). Observe that for all k + m ∈ Λk we

can write

xvk
σ (β)+εv0

σ (β ′)+u(m) = eε logx
A

−1
σ β′

σ xvk
σ (β).

Then we have:

φk
σ

(
β + εβ ′)= eε logx

A
−1
σ β′

σ
∑

k+m∈Λk

qk+m(ε)xvk
σ (β)+u(m).

It is clear that qk+m(ε) is a rational function on ε and it has a pole of order μk+m with

0 � μk+m � d . On the other hand eε logx
A

−1
σ β′

σ =∑l�0
(log(x

A
−1
σ (β′)

σ ))l

l! εl so we can expand the

series εμφk
σ (β + εβ ′) (with μ = max{μk+m} � d) and write it in the form

∑
j�0 φj (x)εj where

φ0(x) �= 0 and φj (x) are Gevrey solutions of MA(β) along Yτ that converge in a common rela-
tively open subset of Yτ for all j .

After a reiterative process making convenient linear combinations of the series and divid-
ing by convenient powers of ε, one obtain ν Gevrey solutions of MA(β + εβ ′) of the form
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∑
j�0 ψi,j (x)εj where ψi,0(x) �= 0, i = 1, . . . , ν, are linearly independent. Then we can sub-

stitute ε = 0 and obtain the desired ν linearly independent Gevrey series solutions of MA(β).
The logarithms log(xi) just appear for i ∈ σ with σ varying in T(τ ) at any step of the process.
Thus the ν = volZA(
τ ) final series just have logarithms log(xi) with i ∈ τ and they are Gevrey
series solutions of MA(β) along Yτ at points of WT(τ ). This proves (6). Moreover, it is clear
that the Gevrey index cannot increase with this process and so (7) can be proved with the same
argument. �
Remark 6.3. The proof of Proposition 5.2 in [21] guarantees that all the series solutions obtained
after the process that we mention in the proof of Theorem 6.2 have the form∑

v

gv

(
log(xi): i ∈ τ

)
xv

with gv(yτ ) a polynomial in C[yu
τ : u ∈ LAτ ].

Remark 6.4. Theorem 6.2 generalizes [22, Theorem 3.5.1] and [25, Corollary 1] (take τ =
{1, . . . , n} and s = 1 in (7)), that establish that the holonomic rank of a hypergeometric system
(i.e. the dimension of the space of holomorphic solutions at nonsingular points) is greater than
or equal to volZA(
A). A more precise statement than [25, Corollary 1] is given in [15]: the
holonomic rank is upper semi-continuous in β for holonomic families, including hypergeometric
systems MA(β).

Remark 6.5. Different regular triangulations T(τ ) of Aτ verifying the condition (5) will produce
different sets with volZA(
τ ) linearly independent solutions of MA(β) in O

X̂|Yτ ,p
for p in

pairwise disjoint open subsets WT(τ ) of Yτ . However, inequalities (6) and (7) are valid for generic
points p ∈ Yτ by a similar argument to the one of Remark 2.6.

Remark 6.6. An anonymous referee of the paper [5] asked us the following question. Is there
some understanding how Gevrey solutions of MA(β) relate to solutions of MAh(βh) with Ah

the matrix obtained from A by adding a row of 1’s and then a column equal to the first unit
vector? The idea is to consider a regular triangulation T of the matrix Ah containing a regular
triangulation T(τ ) of Ah

τ verifying (5). For any simplex σ ∈ T (τ), the dehomogenization (in the
sense of [19, Definition 2]) of the holomorphic solutions φk

σ of MAh(βh) are Gevrey solutions
of MA(β) with respect to Yτ .

6.2. Dimension for very generic parameters

In Section 6.1 we proved the lower bound (6) by explicitly constructing volZA(
τ ) Gevrey
series solutions of MA(β) along Yτ in certain relatively open subsets of Yτ . The aim of this
section is to prove that equality holds if β is very generic.

Let τ ⊆ {1, . . . , n} be a subset with cardinality l, 1 � l � n − 1, and recall that we denote
Yτ = {xi = 0: i /∈ τ }.

Theorem 6.7. For generic p ∈ Yτ and very generic β ,

dimC Hom
(

MA(β), O
X̂|Yτ

)
p

= volZA(
τ ).
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Remark 6.8. Theorem 6.7 implies that equality holds in (7) for very generic parameters β ∈ Cd

because the volZA(
τ ) Gevrey series φk
σ with σ ∈ T(τ ) have pairwise disjoint supports and their

index is max{|A−1
σ aj |: j /∈ τ } along Yτ .

Corollary 6.9. If β ∈ Cd is very generic then

dimC H0(Irr(s)Yτ

(
MA(β)

))
p

�
∑

σ∈T(τ,s)\T(τ,1)

volZA(
σ ) (8)

for generic p ∈ Yτ .

Lemma 6.10. If rank(Aτ ) = d then volZA(
τ ) = volZτ (
τ )[ZA : Zτ ].

Proof. We have that volZA(
τ ) = d!vol(
τ )

[Zd :ZA] and volZτ (
τ ) = d!vol(
τ )

[Zd :Zτ ] . Since Zτ ⊆ ZA ⊆ Zd

then [Zd : Zτ ] = [Zd : ZA][ZA : Zτ ] and the result is obtained. �
Lemma 6.11. If f = ∑m∈Nn−l fm(xτ )x

m
τ ∈ O

X̂|Yτ ,p
is a formal solution of MA(β), then

fm(xτ ) ∈ OYτ ,p is a holomorphic solution of MAτ (β − Aτm) for all m ∈ Nn−l .

Proof. It is clear that IA ∩ C[∂τ ] = IAτ . Then for any differential operators P ∈ IAτ ⊆ C[∂τ ] we
have that

0 = P(f ) =
∑

m∈Nn−l

P
(
fm(xτ )

)
xm
τ

and this implies that P(fm(xτ )) = 0 for all m ∈ Nn−l .
Let Θ denote the vector with coordinates Θi = xi∂i for i = 1, . . . , n. Then AΘ −β = AτΘτ +

AτΘτ − β and

0 = (AΘ − β)(f ) =
∑

m∈Nn−l

(AτΘτ + Aτm − β)
(
fm(xτ )

)
xm
τ

so fm(xτ ) must be annihilated by the Euler operators AτΘτ − (β − Aτm). �
Corollary 6.12. If rank(Aτ ) < d and β ∈ Cd is very generic then

dimC Hom
(

MA(β), O
X̂|Yτ

)= 0.

Proof. If rank(Aτ ) < d , then there exists a nonzero vector γ ∈ Qd such that the vector γAτ is
zero. If β is very generic (γAτΘτ − γ (β − Aτm)) = −γ (β − Aτm) �= 0 is a nonzero constant
that is a linear combination of the Euler operators in the definition of MAτ (β − Aτm) and so
MAτ (β − Aτm) = 0. By Lemma 6.11, the coefficients in OYτ ,p of any formal solution f of
MA(β) in O

X̂|Yτ ,p
must be solutions of MAτ (β − Aτm) = 0. This implies that the coefficients

of f are zero and so f = 0. �
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Remark 6.13. By Corollary 6.12 we have that the equality in Theorem 6.7 holds when
rank(Aτ ) < d . For the remainder of this section we shall assume that rank(Aτ ) = d and then
l � d .

The following lemma is a direct consequence of results from [1] and [7].

Lemma 6.14. If β is very generic and p ∈ Yτ , then for all m ∈ Nn−l:

dimC Hom
(

MAτ (β − Aτm), OYτ

)
p

� volZτ (
τ ).

Equality holds if p does not lie in the singular locus of MAτ (β) (which does not depend on β).

Let us consider T(τ ) a regular triangulation of Aτ verifying (5).

Lemma 6.15. Any formal solution f = ∑
m∈Nn−l fm(xτ )x

m
τ ∈ O

X̂|Yτ ,p
of MA(β), p ∈

WT(τ ) ⊆ Yτ , can be written as follows:

f =
∑

σ∈T(τ )

∑
m∈Nn−d

cσ,mx
A−1

σ (β−Aσ m)
σ xm

σ .

Proof. By Lemma 6.14 a basis of Hom(MAτ (β − Aτ mτ ), OYτ ,p) for p ∈ WT(τ ) ⊆ Yτ is given
by the volZτ (
τ ) series φk

σ with σ running in the (d − 1)-simplices of T(τ ) and Λk running in
the partition of Nl−d (see Remark 3.4 and apply it to the matrix Aτ with l columns and σ ⊆ τ ).
In particular we obtain that:

fmτ
(xτ ) =

∑
σ∈T(τ )

∑
mσ∩τ ∈Nl−d

cσ,mσ
x

A−1
σ (β−Aτ mτ −Aσ∩τ mσ∩τ )

σ x
mσ∩τ

σ∩τ

and this implies the result. �
Using the partition {Λk(i): i = 1, . . . , r} of Nn−d (see Remark 3.4) with r = [ZA : Zσ ] we

can write the formal solution in the previous lemma as:

f =
∑

σ∈T(τ )

r∑
i=1

∑
k(i)+m∈Λk(i)

cσ,k(i)+mx
A−1

σ (β−Aσ (k(i)+m))
σ x

k(i)+m
σ .

Let us denote by vσ,k(i)+m the exponent of the monomial x
A−1

σ (β−Aσ (k(i)+m))
σ x

k(i)+m
σ . Since Euler

operators Ei − βi annihilate every monomial xvσ,k(i)+m appearing in f we just need to use toric
operators �u = ∂u+ − ∂u− with u ∈ LA = ker(A) ∩ Zn in order prove that f is annihilated by
HA(β) if and only if the formal series∑

k(i)+m∈Λk(i)

cσ,k(i)+mx
A−1

σ (β−Aσ (k(i)+m))
σ x

k(i)+m
σ

is annihilated by HA(β) for all σ ∈ T(τ ) and i = 1, . . . , r .
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This is clear because vσ,k(i)+m − vσ ′,k(j)+m ∈ Zn if and only if σ = σ ′ and i = j (because
β is very generic and for fixed σ we have Lemma 3.1). Recall here that for u ∈ LA any pair of
monomials xv , xv′

verify that ∂u−(xv) = [v]u−xv−u− and ∂u+(xv′
) = [v′]u+xv′−u+ and xv−u− =

xv′−u+ if and only if v − v′ = u.

Moreover, a series
∑

k(i)+m∈Λk(i)
cσ,k(i)+mx

A−1
σ (β−Aσ (k(i)+m))

σ x
k(i)+m
σ is annihilated by IA if

and only if it is cφ
k(i)
σ for certain c ∈ C.

Thus we obtain that any formal solution of MA(β) along Yτ at p ∈ WT(τ ) ⊆ Yτ is a linear
combination of the linearly independent formal solutions φk

σ with σ ∈ T (τ) and {Λk(i): 1 � i �
volZA(
σ ) = [ZA : Zσ ]} the partition of Nn−d associated with σ . That is, we have a basis with
cardinality:

∑
σ∈T (τ)

volZA(
σ ) =
∑

σ∈T (τ)

volZτ (
σ )[ZA : Zτ ] = volZτ (
τ )[ZA : Zτ ] = volZA(
τ ).

7. Irregularity of MA(β) along coordinate hyperplanes under some conditions on (A,β)

Assume throughout this section that A is a pointed matrix such that ZA = Zd and that Y is a
coordinate hyperplane. Since Irr(s)Y (MA(β)) is a perverse sheaf on Y (see [18]) there exists an
analytic subvariety S ⊆ Y with codimension q > 0 in Y such that for all p ∈ Y \ S:

χ
(
Irr(s)Y

(
MA(β)

))
p

= dim
(

H0(Irr(s)Y

(
MA(β)

))
p

)
. (9)

Here χ(F ) =∑i�0(−1)i dim(Hi (F )) denotes the Euler–Poincaré characteristic of a bounded

constructible complex of sheaves F ∈ Db
c(CY ). The characteristic cycle of F ∈ Db

c(CY ) is the
unique lagrangian cycle

CCh(F ) = mY T ∗
Y Y +

∑
α: dimYα<dimY

mαT ∗
Yα

Y ⊆ T ∗Y

that satisfies the index formula:

χ(F ) = Eu

(
mY Y +

∑
α: dimYα<dimY

(−1)codimY (Yα)mαYα

)

where Eu denotes the Euler morphism between the group of cycles on Y and the group of con-
structible functions on Y with integer values. Thus by (9) we have that for all p ∈ Y \ S:

dim
(

H0(Irr(s)Y

(
MA(β)

))
p

)= Eu
(
CCh

(
Irr(s)Y

(
MA(β)

)))
p

= mY (10)

where mY is the multiplicity of T ∗
Y Y in CCh(Irr(s)Y (MA(β))).

The cycle CCh(Irr(s)Y (MA(β))) can be obtained from the (1 + ε)-characteristic cycle and the
(s + ε)-characteristic cycle of MA(β) for ε > 0 small enough by using a result of Y. Laurent
and Z. Mebkhout [14]. In particular, by [14] in order to compute the multiplicity mY of T ∗Y in
Y
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CCh(Irr(s)Y (MA(β))) we only need to know the multiplicity of T ∗
XX and T ∗

Y X in the (1 + ε)-
characteristic cycle of MA(β) and the (s + ε)-characteristic cycle of MA(β) with respect to Y

for ε > 0 small enough.
We are going to use the multiplicities formula for the s-characteristic cycle of MA(β) ob-

tained by M. Schulze and U. Walther in [23] in the case when A is pointed and β is non-rank-
jumping. First of all, we need to recall some definitions given in [23].

Let us consider Φs
A � τ ⊆ τ ′ ∈ Φ

s,d−1
A and the natural projection

πτ,τ ′ : Zτ ′ → Zτ ′/
(
Zτ ′ ∩ Qτ

)
.

Definition 7.1. In a lattice Λ, the volume function volΛ is normalized so that the unit simplex
of Λ has volume 1. We abbreviate volτ,τ ′ := volπτ,τ ′ (Zτ ′).

Definition 7.2. For Φs
A � τ ⊆ τ ′ ∈ Φ

s,d−1
A , define the polyhedra

Pτ,τ ′ := conv
(
πτ,τ ′

(
τ ′ ∪ {0})), Qτ,τ ′ := conv

(
πτ,τ ′

(
τ ′ \ τ

))
where conv means to take the convex hull.

The following theorem was proven by M. Schulze and U. Walther (see [23, Theorem 4.21]
and [23, Corollary 4.12]).

Theorem 7.3. For generic β ∈ Cd (more precisely, non-rank-jumping) and τ ∈ Φs
A, the multi-

plicity of Cτ
A in the s-characteristic cycle of MA(β) is:

μ
s,τ
A =

∑
τ⊆τ ′∈Φs

A

[
Zd : Zτ

] · [(Zτ ′ ∩ Qτ
) : Zτ

] · volτ,τ ′(Pτ,τ ′ \ Qτ,τ ′).

Here Cτ
A is the closure in T ∗X of the conormal space to the orbit Oτ

A ⊆ T ∗
0 X, where Oτ

A is the
orbit of 1τ ∈ {0,1}n ((1τ )i = 1 if ai ∈ τ , (1τ )i = 0 if ai /∈ τ ) by the d-torus action:(

C∗)d × T ∗
0 X → T ∗

0 X,

(t, ξ) �→ t · ξ := (ta1ξ1, . . . , t
anξn

)
.

Assume that Y = {xn = 0} by reordering the variables. We are interested in the multiplicities
of C∅

A = T ∗
XX and C

{n}
A = T ∗

Y X in the r-characteristic cycles of MA(β) for r = s + ε and r =
1 + ε with ε > 0 small enough. In particular, we need to compute μ

s+ε,∅
A ,μ

s+ε,{n}
A , μ

1+ε,∅
A and

μ
1+ε,{n}
A .

It is a well-known result that μ
1,∅
A = rank(MA(β)) = volZd (
A) for generic β (see [7,1,22,

15]).
From [23, Corollary 4.22] if τ = ∅ then

μ
s,∅
A = volZd

( ⋃
τ ′∈Φ

s,d−1

(

1

τ ′ \ conv
(
τ ′))).
A
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Since Φs+ε
A is constant for ε > 0 small enough we have that all its faces τ are F -homogeneous

and then volZd (conv(τ )) = 0. As a consequence,

μ
s+ε,∅
A = volZd

( ⋃
τ ′∈Φ

s+ε,d−1
A

(

1

τ ′
))

.

Let us compute μ
r,{n}
A for r = s + ε and r = 1 + ε.

Consider any τ ∈ Φ
s+ε,d−1
A such that n ∈ τ . Since ε > 0 is generic (Φt,d−1

A is locally constant
at t = s + ε) we have that an /∈ Q(τ \ {an}) and hence there exists certain (d − 1)-simplices
σ1, . . . , σr such that n ∈ σi ⊆ τ , τ =⋃i σi , σi ∩ σj is a k-simplex with k � d − 2 (σ1, . . . , σr is
a triangulation of τ ). Then volZd (
τ ) =∑r

i=1 volZd (
σi
) and we want to prove that

volZd (
τ ) = [Zd : Zτ
] · [Zτ ∩ Qan : Zan] · vol{n},τ (P{n},τ \ Q{n},τ ). (11)

Since Zσi ⊆ Zτ ⊆ Zd then volZd (
σi
) = [Zd : Zσi] = [Zd : Zτ ] · [Zτ : Zσi] so we only need to

prove:

r∑
i=1

[Zτ : Zσi] = [Zτ ∩ Qan : Zan] · vol{n},τ (P{n},τ \ Q{n},τ ).

But an /∈ Q(τ \ {an}) implies that [Zτ ∩ Qan : Zan] = 1 and τ is F -homogeneous so we have to
prove that:

vol{n},τ (P{n},τ ) =
r∑

i=1

[Zτ : Zσi].

We observe that π{n},τ (τ ∪ {0}) = (τ \ {n}) ∪ {0} in Zτ/(Zτ ∩ Qan) = Z(τ \ {n}). Consider a
(d − 2)-simplex σ̃ such that Zσ̃ = Z(τ \ {n}). Since an /∈∑i∈τ\{n} Qai there exists a hyperplane
H such that ai ∈ H for all i ∈ τ \ {n}, 0 ∈ H and σ̃ ⊆ H . Recall that the Euclidean volume of the
convex hull of a bounded polytope 
 contained in a hyperplane H ⊆ Rd and a point c /∈ H is the
product of the relative volume of the polytope volrel(
) and the distance from c to H , d(c,H),
divided by d!. Hence, we have the following equalities:

vol{n},τ (P{n},τ ) = volrel(
τ\{n})
volrel(
σ̃ )

= vol(
τ )

vol(
σ̃∪{n})
=

r∑
i=1

vol(
σi
)

vol(
σ̃∪{n})

=
r∑

i=1

[Zd : Zσi]
[Zd : Zτ ] =

r∑
i=1

[Zτ : Zσi].

We have proved (11) and as a consequence the following lemma.

Lemma 7.4. Consider s � 1 and β non-rank-jumping. Then for all ε > 0 small enough:

μ
s+ε,{n}
A =

∑
n∈τ∈Φs+ε

volZd (
τ ).
A
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We close this section with the following result about the irregularity along any coordinate
hyperplane Y of the hypergeometric system MA(β) associated with a full rank pointed matrix A

with ZA = Zd . It is a consequence of Lemma 7.4 and the results in [14].

Theorem 7.5. If β ∈ Cd is generic (more precisely, non-rank-jumping) then the dimension of
H0(Irr(s)Y (MA(β)))p is ∑

n/∈τ∈Φs
A

volZd (
τ ) −
∑

n/∈τ∈Φ1
A

volZd (
τ )

for all p ∈ Y \ S, where S is a subvariety of Y with dimS < dimY . Then, for very generic β the
nonzero classes in QY (s) of the constructed series φk

σ with σ ∈ T′ form a basis in their common
domain of definition U ⊆ Y .

Remark 7.6. Notice that Theorem 7.5 implies that under the assumptions of this section equality
holds in (8).
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