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Characteristic cycles and Gevrey series solutions
of A-hypergeometric systems

Christine Berkesch and María-Cruz Fernández-Fernández

We compute the L-characteristic cycle of an A-hypergeometric system and higher Euler–Koszul homology
modules of the toric ring. We also prove upper semicontinuity results about the multiplicities in these
cycles and apply our results to analyze the behavior of Gevrey solution spaces of the system.

Introduction

Let D denote the Weyl algebra on X = Cn with coordinates x = x1, . . . , xn . Let ∂i denote the variable
that acts on C[x] as ∂/∂xi and write ∂ = ∂1, . . . , ∂n . A weight vector on D is L = (L x , L∂) ∈Qn

×Qn

such that L x + L∂ ≥ 0. Such a vector induces an exhaustive increasing filtration L on D by, for k ∈Q,

Lk D := C · {xu∂v | L · (u, v)≤ k}.

Write L<k D :=
⋃
`<k L`D. For any P in Lk D \ L<k D, set

inL(P) := P + L<k D ∈ grL ,k D := Lk D/L<k D ⊆ grL D and degL(P) := k.

For a left D-ideal I and the D-module M = D/I , set

grL(I ) := 〈inL(P) | P ∈ I 〉 ⊆ grL(D) and grL(M) := grL(D)/ grL(I ).

If L x + L∂ = 0, the associated graded ring grL D is isomorphic to D and grL(I ) can be identified with a
left D-ideal, which is also called a Gröbner deformation of I in [Saito et al. 2000]. It is suggestive to
call grL(M) the Gröbner deformation of M with respect to L . On the other hand, if L x + L∂ > 0, the
associated graded ring grL D is isomorphic to the coordinate ring of T ∗X ∼= C2n , which is a polynomial
ring in 2n variables. In this latter case, the L-characteristic variety of M is

CharL(M) := Var(grL(I ))⊆ T ∗X ∼= C2n. (0-1)

The L-characteristic cycle of M is the finite formal sum

CCL(M) :=
∑

C

µL ,C(M) ·C,
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where C runs over the irreducible components of CharL(M), and

µL ,C(M) := `((grL(M))PC )

is the multiplicity of grL(M) along C , where PC is the defining ideal of C in grL(D) and ` denotes the
length of a grL(D)PC -module.

The weight vector F = (0n, 1n) := (0, . . . , 0, 1, . . . , 1) ∈Qn
×Qn induces the order filtration on D.

We notice that CharF (M) and CCF (M) are called, respectively, the characteristic variety and the char-
acteristic cycle of M. If M is holonomic, that is, the dimension of its characteristic variety is n, then
the rank of M, defined rank(M) := dimC(x) C(x)⊗C[x] M, coincides with the dimension of the space of
germs of its holomorphic solutions at any nonsingular point by a result of Kashiwara (see e.g., [Saito
et al. 2000, Theorem 1.4.19]). Notice that rank(M)= µF,C(M) for C = T ∗X X .

One motivation for the study of L-characteristic cycles comes from the theory of irregularity of
holonomic D-modules. For a flavor of this deep and involved theory that fits the goals of this paper, a
projective weight vector of the form

L = F + (s− 1)V

where s ∈ Q and V = (−w,w), with w = (0, . . . , 0, 1), induces the Kashiwara–Malgrange filtration
along the coordinate hyperplane Y = {xn = 0} ⊆ X = Cn . In this case, the L-characteristic variety
CharF+(s−1)V (M) is locally constant with respect to s ∈ Q, except for at a finite set of values called
algebraic slopes of M along Y . This is a global version of the algebraic slopes defined and studied by
Laurent [1987]. On the other hand, the analytic slopes of M along Y were defined as jumps in the Gevrey
filtration of the irregularity sheaf of M along Y by Mebkhout [1990]. The comparison theorem for slopes
states that the algebraic and analytic slopes for M along Y coincide, and, even more, the Euler–Poincaré
characteristic of the irregularity sheaf can be computed in terms of the L-characteristic cycles of M
[Laurent and Mebkhout 1999]. In particular, certain multiplicities in the L-characteristic cycles are closely
related to the dimension of the space of Gevrey solutions of M along Y .

Another motivating idea of this article is that the F-characteristic cycle of a Gröbner deformation
of a holonomic D-module M is equal to the L-characteristic cycle of M for an appropriate L (see
Lemma 3.1 for the precise statement). In particular, the holonomic rank of such a Gröbner deformation is
the multiplicity of the component T ∗X X in CCL(M).

Our main interest is A-hypergeometric D-modules, also known as GKZ-systems after their introduction
and study by Gelfand, Graev, Kapranov, and Zelevinsky [Gelfand et al. 1987; 1989; 1990]. Let

A = [ai j ] = [a1 · · · an] ∈ Zd×n

be an integral matrix such that the group generated by the columns of A, ZA, is equal to Zd , and the
positive real cone R≥0 A over the columns is pointed. Let

IA := 〈∂
u
− ∂v | Au = Av〉 ⊆ C[∂]
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denote the toric ideal of A. For β ∈ Cd , write E −β for the sequence of Euler operators given by

Ei −βi :=

n∑
j=1

ai j x j∂ j −βi

for i = 1, . . . , d . The A-hypergeometric system of A at β ∈ Cd is

HA(β) := D · (IA+〈E −β〉) with associated module MA(β) := D/HA(β).

A weight vector L= (L x , L∂)∈Qn
×Qn as above is called projective if L x+L∂ = c ·1n := c ·(1, . . . , 1)

for some constant c> 0. Notice that any Euler operator Ei is homogeneous with respect to such a filtration.
In [Schulze and Walther 2008], the irreducible components of CCL(MA(β)) were enumerated, and when
β is generic (or not rank-jumping), CCL(MA(β)) was computed. In this article, we compute CCL(MA(β))

for any β, along with the characteristic cycles of higher Euler–Koszul homology modules (see Section 1)
of the toric ring C[∂]/IA. We also provide upper semicontinuity results for some of these multiplicities
and apply our results to the Gevrey solution spaces of MA(β).

Outline. In Sections 1–2, we provide background and preliminary results on Euler–Koszul homology and
L-characteristic cycles of A-hypergeometric systems. We compute the multiplicities in the characteristic
cycles of the Euler–Koszul homology of the toric ring in Section 4, with consequences in Section 5. We
provide upper semicontinuity results in Section 6 and study Gevrey solutions of HA(β) in Section 7.

1. Euler–Koszul homology

In this section, we present background related to Euler–Koszul homology, as found in [Matusevich et al.
2005; Schulze and Walther 2009], with some additions needed in the sequel. We use the convention that
0 ∈N. Recall that ai denotes the i-th column of the matrix A. Given a subset τ ⊆ A of the column set
of A, the semigroup generated by τ ,

Nτ :=

{∑
ai∈τ

ji ai
∣∣ ji ∈ N for all ai ∈ τ

}
,

generates the semigroup ring Sτ := C[Nτ ]. With πτ : C[∂τ ] := C[∂ j | a j ∈ τ ] → Sτ denoting the map
induced by τ , we have the isomorphism of rings Sτ ∼= C[∂τ ]/ kerπτ . When convenient, we will abuse
notation and also view τ as a matrix.

A subset G of the columns of the matrix A is a face of A, denoted G � A, if R≥0G is a face of the
cone R≥0 A and G = A ∩RG. The codimension of a nonempty face G is codim(G) := d − dim(RG),
with codim(∅)= d by convention. Let Gc denote the complement of G in A.

Define a Zd -grading on D via deg(xi ) :=−ai and deg(∂xi ) := ai . A Zd -graded C[∂]-module N is toric
if it has a filtration

0= N (0)
⊆ N (1)

⊆ · · · ⊆ N (`−1)
⊆ N (`)

= N
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such that N (i)/N (i−1), for each i , is a Zd -graded translate of SGi for some face Gi � A. The degree set of
a finitely generated Zd -graded C[∂]-module N is deg(N ) := {α ∈Zd

| Nα 6= 0}. The quasidegree set of N ,
denoted qdeg(N ), is the Zariski closure of deg(N ) under the natural embedding Zd ↪→ Cd . A Zd -graded
C[∂]-module N is weakly toric if there is a filtered partially ordered set (S,≤) and a Zd-graded direct
limit

φs : N (s)
→ lim
−→s∈S

N (s)
= N ,

where N (s) is a toric C[∂]-module for each s ∈S. The quasidegrees of N are

qdeg(N ) :=
⋃
s∈S

qdeg(φs(N (s))),

where each qdeg(φs(N (s))) is already defined since φs(N (s)) is toric for each s.
Let N be a weakly toric module. Given a homogeneous y ∈ D⊗C[∂] N , define an action of the Euler

operators for 1≤ i ≤ d by

(Ei −βi ) ◦ y = (Ei −βi + degi (y))y,

and extend this action C-linearly to D⊗ N . With this sequence of commuting endomorphisms on D⊗ N ,
let KA

•
(N , β) denote the Koszul complex on the left D-module D⊗C[∂]N , which we call the Euler–Koszul

complex of N at β. Its homology is denoted HA
i (N , β) := Hi (KA

•
(N , β)) or simply Hi (N , β) when A is

clear from the context. Euler–Koszul homology was first introduced in [Matusevich et al. 2005] for toric
modules and extended to weakly toric modules in [Schulze and Walther 2009].

If b ∈ Zd , we denote by N (b) a Zd -graded translated copy of N such that N (b)v = Nv−b for all v ∈ Zd.
Thus, deg(N (b))= b+ deg(N ). For example, if N = SA = C[NA] then N (b)= C[NA]tb. Euler–Koszul
homology is compatible with these graded shifts. Namely, we have

Hq(N (b), β)∼=Hq(N , β − b)(b). (1-1)

Theorem 1.1 [Schulze and Walther 2009, Theorem 5.4]. For a weakly toric module N , the following are
equivalent:

(1) Hi (N , β)= 0 for all i ≥ 0.

(2) H0(N , β)= 0.

(3) β /∈ qdeg(N ). �

Theorem 1.2 [Matusevich et al. 2005, Theorem 6.6; Schulze and Walther 2009]. Let N be a weakly toric
module. Then Hi (N , β)= 0 for all i > 0 and for all β ∈Cd if and only if N is a maximal Cohen–Macaulay
SA-module. �

For a subset τ ⊆ A, given an Nτ -module S, define the Sτ -module C{S} :=
⊕

s∈S C · t s as a C-vector
space with Sτ -action given by ∂i ·t s

= t s+ai . Then C{S} has a multiplicative structure given by t s
·t s′
= t s+s′ ,

and Sτ ∼= C{Nτ } as rings. The saturation of τ in Zτ is the semigroup Ñτ = R≥0τ ∩Zτ . The saturation
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of Sτ is the semigroup ring of the saturation of τ in Zτ , which is given by S̃τ = C{Ñτ } as a Zd-graded
Sτ -module. By [Hochster 1972], S̃τ is a Cohen–Macaulay Sτ -module.

2. Characteristic cycles of A-hypergeometric systems

Let L = (L x , L∂) ∈ Q2n be a projective weight vector on D. In this section, we recall from [Schulze
and Walther 2008] the description of the L-characteristic variety of an A-hypergeometric system, which
includes the computation of the L-characteristic cycle of HA(β) when β is not rank-jumping for A.

Let h= (h1, . . . , hd)∈Qd be such that h ·ai >0 for i =1, . . . , n. Choose ε>0 such that h ·ai+εL∂i >0
for i = 1, . . . , n, and denote by Hε the hyperplane in Pd

Q
given by

{[y0 : y1 : · · · : yd ] ∈ Pd
Q | εy0+ h1 y1+ · · ·+ hd yd = 0}.

The L-polyhedron of A is the convex hull of {[1 : 0d ], [L∂1 : a1], . . . , [L∂n : an]} in the affine space Pd
Q
\Hε.

The (A, L)-umbrella, denoted 8L
A, is the set of faces of the L-polyhedron of A that do not contain [1 : 0d ].

We denote by 8L ,k
A ⊂ 8

L
A the subset of faces τ of dimension k (equivalently, dim(Cτ) = k + 1). A

face τ of 8L
A will be identified with { j ∈ {1, . . . , n} | [L∂ j : a j ] ∈ τ } or with the submatrix of A indexed

by this set, when necessary. With this identification, 8L
A is an abstract polyhedral complex. For any face

G � A, set 8L
G := {τ ∈8

L
A | τ ⊆ G}.

Let (x, ξ) denote the coordinates on T ∗X = T ∗Cn . For any τ ⊆ {1, . . . , n}, let

Cτ
A :=

{
(x, ξ) ∈ T ∗X

∣∣ ξi = 0 for i /∈ τ,
∑
i∈τ

ai xiξi = 0 and ∃t ∈ (C∗)d , ξ j = ta j ,∀ j ∈ τ
}
,

and let Cτ
A denote the Zariski closure of Cτ

A in T ∗X , with defining ideal Pτ ⊆ C[x, ξ ]. In particular,
C∅

A = T ∗X X and C { j}A = T ∗(x j=0)X .

If N is a Zd -graded C[∂]-module and C = Cτ
A for some τ ∈8L

A, we write

µ
L ,τ
A,i (N , β) := µ

L ,C(Hi (N , β))= `((grL(Hi (N , β)))Pτ ). (2-1)

We will also denote µL ,τ
A,i (β) := µ

L ,τ
A,i (SA, β). By [Schulze and Walther 2008, Corollary 4.13],

µ
L ,τ
A :=

d∑
j=0

(−1) jµ
L ,τ
A, j (β)= µ

L ,τ
A,0(S̃A, β)= µ

L ,τ
A,0(SA[∂

−1
A ], β) (2-2)

is independent of β ∈ Cd .
Note that rank(MA(β)) is equal to µF,∅

A,0 (β). Since MA(β) is always holonomic [Gelfand et al. 1987;
Adolphson 1994], its rank is always finite. Further, the rank of MA(β) is upper semicontinuous as a
function of the parameter β, with a generic value equal to volZd (A), the normalized volume in ZA = Zd

of the convex hull of the columns of A and the origin [Matusevich et al. 2005; Adolphson 1994; Gelfand
et al. 1990]. We recall that the normalized volume function in a lattice �, denoted by vol�, is defined so
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that the volume of the unit simplex in � (that is, the convex hull of the origin and a lattice basis of �) is
one.

A parameter β is said to be rank-jumping when rank(MA(β)) > volZd (A). The set of rank-jumping
parameters is described in [Matusevich et al. 2005]; namely, with εA :=

∑n
i=1 ai ,

EA := {β ∈ Cd
| rank(MA(β)) > volZd (A)} = − qdeg

( d−1⊕
i=0

Extn−i
C[∂](SA,C[∂])(−εA)

)
.

Schulze and Walther provided a description of CCL(HA(β)) when β is not rank-jumping, as summarized
through the following two results.

Theorem 2.1 [Schulze and Walther 2008, Theorem 4.21]. For all G � A, if τ ∈8L
G , then

µ
L ,τ
G =

∑
τ⊆τ ′∈8

L ,d′−1
G

[ZG : Zτ ′] · [(Zτ ′ ∩Qτ) : Zτ ] · volπ(Zτ ′)(Pτ,τ ′ \ Qτ,τ ′),

where d ′ = dim(CG), π : Zτ ′� Zτ ′/(Zτ ′ ∩Qτ) is the natural projection and Pτ,τ ′ and Qτ,τ ′ denote the
convex hull of π(τ ′ ∪ {0}) and π(τ ′ \ τ) respectively.

In [Schulze and Walther 2008], Theorem 4.21 is only stated for G= A. Theorem 2.1 is a straightforward
adaptation that will be useful in the sequel. Note that here we are using (2-1) and (2-2) with A replaced
by G, but we still write L for the filtration induced on the Weyl Algebra DG in the variables {x j | j ∈ G}
by the projective weight vector given by the G-coordinates of L x and L∂ .

Theorem 2.2 [Schulze and Walther 2008, Corollary 4.12]. The L-characteristic variety of MA(β) is
independent of β ∈ Cd and given by

CharL(MA(β))=
⋃
τ∈8L

A

Cτ
A,

where each component Cτ
A is irreducible. Moreover, µL ,τ

A,0(β) ≥ µ
L ,τ
A , and equality holds if β is not

rank-jumping.

Theorem 2.2 implies that when β is not rank-jumping,

CCL(MA(β))=
∑
τ∈8L

A

µ
L ,τ
A ·C

τ
A,

and for each τ ∈8L
A, the multiplicity µL ,τ

A is computed in Theorem 2.1.
A subset τ ⊆ A is called F-homogeneous if the set of columns of A indexed by τ lie in a common

affine hyperplane off the origin. For a subset τ ⊆ A, let 1τ = conv(τ ∪ {0})⊆ Rd denote the convex hull
of the origin and all the columns of τ .

By [Schulze and Walther 2008, Corollary 4.22 and Remark 4.23],

µ
L ,∅
A = volZd

( ⋃
τ ′∈8

L ,d−1
A

1τ ′ \ conv(τ ′)
)
. (2-3)
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Hence if all the facets of the (A, L)-umbrella are F-homogeneous, then

µ
L ,∅
A = volZd

( ⋃
τ ′∈8

L ,d−1
A

1τ ′

)
. (2-4)

3. F-characteristic cycles of initial ideals are L-characteristic cycles

Given any real vector w ∈ Rn and any left ideal J ⊆ D, we can consider the initial ideal in(−w,w)(J ) as
defined in [Saito et al. 2000]. We recall that by [loc. cit., Theorem 2.2.1], if M = D/J is a holonomic
D-module, then so is gr(−w,w)(M) := D/in(−w,w)(J ) and, moreover,

rank(gr(−w,w) M)≤ rank(M). (3-1)

On the other hand, by [loc. cit., Lemma 2.1.6], for any weight vector (u, v) ∈ R2n and L = (−w,w)+
ε(u, v) with ε > 0 small enough,

gr(u,v)(gr(−w,w)(M))= grL(M). (3-2)

Lemma 3.1. If M = D/J is a holonomic D-module, then for L chosen as in (3-2) with (u, v)= F ,

CCF (gr(−w,w)(M))= CCL(M).

The holonomic rank of in(−w,w)(MA(β)), a central object of study in [loc. cit.], equals the multiplicity
µ

L ,∅
A,0 (β) for L = (−w,w)+ εF and ε > 0 small enough. Notice that, by the form of L , all the facets of

8L
A are F-homogeneous. We will see in Section 4 that for any projective weight vector L , the multiplicity

µ
L ,∅
A,0 (β) equals the rank of a Gröbner deformation of MA(β) (see Corollaries 4.3 and 4.5).

4. Computing multiplicities in L-characteristic cycles

In this section, we use the approach of [Berkesch 2011] to compute the multiplicities in the L-characteristic
cycles of Euler–Koszul homology modules of the toric ring SA. We first recall some definitions from
[Berkesch 2011; Berkesch et al. 2018].

For a face G � A, consider the union of the lattice translates

E
β

G := [Z
d
∩ (β +CG)] \ (NA+ZG)=

⊔
b∈BβG

(b+ZG), (4-1)

where BβG is a set of lattice translate representatives. As such, |BβG | is the number of translates of ZG
appearing in Eβ , which is by definition equal to the difference between [Zd

∩QG : ZG] and the number
of translates of ZG along β +CG that are contained in NA+ZG.

For a face τ ∈8L
A of the (A, L)-umbrella, let E

β
τ denote the union of the ranking lattices E

β

G , where
G � A contains τ .

Theorem 4.1. Let L be a projective weight vector and τ ∈8L
A be a face of the (A, L)-umbrella. For each i

and β, the multiplicity µL ,τ
A,i (β), which is the coefficient of Cτ

A in the characteristic cycle CCL(Hi (SA, β))
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(see (2-1)), can be computed from the combinatorics of the ranking lattices at β and the (A, L)-umbrella
8L

A. More precisely, there is a spectral sequence involving the faces of 8L
A that contain τ and the ranking

lattices in E
β
τ , from which µL ,τ

A,i (β) can be computed.

Before proving Theorem 4.1, we state some consequences.

Corollary 4.2. For all β ∈ Cd and all projective weight vectors L , L ′,

CCL(MA(β))= CCL ′(MA(β)) if and only if 8L
A =8

L ′
A .

Proof. While the only if direction follows from Theorem 2.2, the if direction uses Theorems 2.1, 2.2,
and 4.1. �

Corollary 4.3. For any projective weight vector L = (u, v) on D such that all the facets of 8L
A are

F-homogeneous,

CCF (gr(−v,v)(MA(β)))= CCL(MA(β)).

In particular, rank(gr(−v,v)(MA(β)))= µ
L ,∅
A,0 (β).

Proof. Let ε > 0 be as small as necessary in the sequel. Notice first that CCF (gr(−v,v)(MA(β))) =

CCLε (MA(β)) for Lε := (−v, v)+ εF by Lemma 3.1. Moreover, by the assumption on the (A, L)-
umbrella, we have 8L

A =8
L+εF
A . On the other hand, the last n coordinates of L + εF and Lε are equal

to v+ ε · 1n , and hence 8L
A =8

Lε
A . Thus, the result follows from Corollary 4.2. �

As a particular case of Corollary 4.3, the characteristic cycles, and hence the ranks, of the modules
gr(−1n,1n)(MA(β)) and MA(β) are equal. We next show that [Saito et al. 2000, Corollary 3.2.14] holds
with weakened hypotheses.

Corollary 4.4. For any β ∈ Cd and any (not necessarily homogeneous) A, the small Gröbner fan of the
hypergeometric ideal HA(β) refines the secondary fan of A.

Proof. It suffices to see that each open cone of the small Gröbner fan of HA(β) is contained in an open
cone of the secondary fan of A. Since such an open cone corresponds to a Gröbner deformation with
respect to a generic weight vector w ∈ Rn , it follows that L = (−w+ c · 1n, w) is a projective weight
vector for any c> 0 and 8L

A, which only depends on w, has only F-homogeneous facets. Thus, beginning
with generic vectors w,w′ with

gr(−w,w)(MA(β))= gr(−w
′,w′)(MA(β)),

Corollaries 4.2 and 4.3 imply that 8L
A = 8

L ′
A where the last coordinates of L and L ′ are w and w′,

respectively. This means that w and w′ belong to the same cone of the secondary fan of A. �

Corollary 4.5. Any projective weight vector L = (u, v) on D has a perturbation L ′ such that all the
facets of the (A, L ′)-umbrella 8L ′

A are F-homogeneous and µL ,∅
A,0 (β)= µ

L ′,∅
A,0 (β).
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Proof. If L ′(ε) := L+ε(1n,−1n) for ε > 0, then there is an ε0> 0 such that the L ′(ε)-umbrella is constant
for ε ∈ (0, ε0]. Thus, if we fix L ′ = L ′(ε0), then all the facets of 8L ′

A are F-homogeneous. Moreover, by
the choice of L ′, any F-homogeneous facet of 8L

A is a facet of 8L ′
A , while each non-F-homogeneous

facet τ of 8L
A is replaced in 8L ′

A by the set of facets of 8L ′′
τ , where L ′′ := (c1n,−1n) is a projective

weight vector for any c > 1. This latter set is the set of facets of conv(τ ) that are not facets of 1τ . This
proves that µL ,∅

A = µ
L ′,∅
A by using (2-3) to compute µL ,∅

A and (2-4) to compute µL ′,∅
A . Analogously,

µ
L ,∅
G =µ

L ′,∅
G for any face G � A. Finally, the result follows from previous equality and Theorem 4.1. �

Corollary 4.6. Given any projective weight vector L and β ∈ Cd ,

µ
L ,∅
A,0 (β)≤ rank(MA(β))≤ 4(d+1) vol(A).

Proof. The first inequality is a consequence of (3-1) and Corollaries 4.5 and 4.3. The second is [Berkesch
et al. 2018, Corollary 6.2]. �

To prove Theorem 4.1, we will follow the approach used to compute the rank of an A-hypergeometric
system from [Berkesch 2011] (see also [Berkesch et al. 2018]). We will use the set

CA(β) := Zd
∩ (Reβ +R≥0 A).

Note that CA(β) here is defined differently than in [Berkesch 2011]. However, the quotient between
the subsequent modules with the same names, defined using CA(β) here or as in [loc. cit.], all have
quasidegree sets that do not contain β. Hence, by Theorem 1.1, the Euler–Koszul homology modules for
modules with the same names here and in [loc. cit.] are isomorphic.

Given a subset
J ⊆ J (β) := {(G, b) | G � A, b ∈ BβG, E

β

G 6=∅}, (4-2)

define
E
β

J :=
⋃

(G,b)∈J

(b+ZG) and P
β

J := CA(β)∩ E
β

J .

Now define the respective sets and SA-modules

Tβ :=NA∪
[ ⋃

b∈P
β

J (β)

(b+ ÑA)
]
, T β

:=C{Tβ}, S
β

J := Tβ \P
β

J , SβJ :=C{S
β

J }, and PβJ :=
T β

SβJ
.

The degree set of PβJ is deg(PβJ ) = P
β

J . If a toric module N is isomorphic to PβJ for some J ⊆ J (β)
and β, then we say that N is a ranking toric module determined by J . A simple ranking toric module is a
module isomorphic to PβG,J := PβJ (G), where G � A is a fixed face of A such that E

β

G 6=∅ and

J (G) := {(G, b) ∈ J | b ∈ BβG}.

When J = J (β), we suppress it from the notation and write Pβ and PβG in place of PβJ and PβG,J ,
respectively. If (G, b) ∈ J and there is not any other pair (G ′, b′) ∈ J such that b+ZG ( b′+ZG ′ we
say that (G, b) is a maximal pair in J . We denote by max(J ) the set of all maximal pairs in J .
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Lemma 4.7. If G � A and τ ∈8L
A, then the multiplicity µL ,τ

A,q(P
β

G , β) of the simple ranking toric module
PβG is

µ
L ,τ
A,q(P

β

G , β)= |B
β

G | ·µ
L ,τ
A,q(S̃G(b), β)=

{
|BβG | ·

(codim(G)
q

)
·µ

L ,τ
G if τ ⊆ G,

0 otherwise.

for any b ∈ BβG .

Proof. For all j /∈G we have that ∂ j · S̃G = 0, hence that ξ j ·grL(H0(S̃G(b), β))= 0 where ξ j = inL(∂ j )∈

C[x, ξ ] ∼= grL(D). On the other hand, by the definition of Pτ , it is clear that ξ j ∈ Pτ if and only if j /∈ τ .
Thus, we have that (grL(H0(S̃G(b), β)))Pτ = 0 if τ * G. Now, with µL ,Cτ

A in place of rank, the arguments
in the proof of [Berkesch 2011, Theorem 6.1] yield this result. �

Proof of Theorem 4.1. The argument proving [Berkesch 2011, Theorem 6.6] can be used to obtain this
result, when J is chosen to be the right hand side of (4-2) and µL ,Cτ

A in place of rank. We make note of
the necessary modifications below.

To begin, it follows from Theorem 1.2 and (2-2) that

µ
L ,τ
A,i (β)=

{
µ

L ,τ
A +µ

L ,τ
A,1(Q A, β)−µ

L ,τ
A,0(Q A, β) if i = 0,

µ
L ,τ
A,i+1(Q A, β) if i > 0,

(4-3)

where Q A sits in the short exact sequence 0→ SA → SA[∂
−1
] → Q A → 0. Then [Berkesch 2011,

Proposition 5.10] implies that

µ
L ,τ
A,i (Q A, β)= µ

L ,τ
A,i (P

β

J , β), (4-4)

where J is equal to the right hand side of (4-2). Now [loc. cit., Lemmas 6.9, 6.10, 6.11, and 6.14] can be
applied verbatim, while Lemma 4.7 replaces the need for [loc. cit., Lemma 6.13]. Finally, as [loc. cit.,
Lemmas 6.12 and 6.15] hold when rank is replaced with µL ,Cτ

A
A , which is possible since localization at Pτ

and grL(−) are exact functors and length is additive, the arguments of the proof of [loc. cit., Theorem 6.6]
yield the desired result. In particular, the spectral sequence involved begins with the cellular resolution of
PβJ as constructed in [loc. cit., (6.3)]:

0→ PJ → I 0
J → I 1

J → · · · → I r
J → 0, (4-5)

where I •J is constructed as follows. Set

10
J = {F � A | ∃(F, b) ∈max(J )},

1
p
J = {s ⊆1

0
J | |s| = p+ 1}, and

Fs =
⋂
G∈s

G for s ∈1p
J .

With r + 1= |10
J |, let 1=1βJ be the standard r-simplex with vertices corresponding to the elements

of 10
J . To the p-face of 1 spanned by the vertices corresponding to the elements in s ∈ 1p

J , assign
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the ranking toric module PβFs ,J . Choosing the natural maps PβFs ,J → PβFt ,J for s ⊆ t induces a cellular
complex supported on 1,

I •J : I 0
J → I 1

J → · · · → I r
J → 0 with I p

J =
⊕
s∈1p

J

PβFs ,J . (4-6)

Applying Euler–Koszul homology to (4-6) yields a double complex. The desired spectral sequence arises
from this double complex after localizing at Pτ and applying grL(−). �

Remark 4.8. If β ∈Cd is such that max(J (β)) involves two faces, F1, F2, then the proof of Theorem 4.1
shows that

µ
L ,τ
A,0(β)−µ

L ,τ
A =

2∑
i=1

(|BβFi
| · [codim(Fi )− 1] ·µL ,τ

Fi
)+ |BβG | ·C

β
·µ

L ,τ
G , (4-7)

where G = F1 ∩ F2 and the constant Cβ is given by

Cβ
=

(codim(G)
2

)
− codim(G)+ 1−

(codim(F1)

2

)
−

(codim(F2)

2

)
+

(codim(CF1+CF2)

2

)
.

Example 4.9. The values of the µL ,τ
A,0(β) for a fixed β are dependent upon the choice of face τ ∈ 8L

A.
For example, consider the matrix

A =

2 3 1 0 0 0 1
0 0 0 2 3 1 1
0 0 1 0 0 1 0

 ,
and the parameter β = (0, 0,−1)t , which lies outside the cone R≥0 A. It turns out that

ÑA \NA = (β +NG1)∩R≥0 A = (β +NG1) \ {β},

where G1 = {a3, a6} and G2 = {a1, a2, a4, a5, a7} are facets of A. In particular, EA = {β} and the ranking
lattices at β are

Eβ = (β +ZG1)∪ (β +ZG2).

By Remark 4.8, µL ,∅
A,0 (β)−µ

L ,∅
A =1 for any projective weight vector L . On the other hand, µL ,τ

A,0(β)=µ
L ,τ
A

if τ 6=∅.

Example 4.10. The choice of projective weight vector impacts the resulting stratification via multiplicities
of EA. For example, consider the matrix

A =

2 3 0 0 0 0 1
0 0 1 3 0 0 1
0 0 0 0 1 2 1

 ,
which has

ÑA \NA = (β +NG1)∪ (β +NG2),



334 Christine Berkesch and María-Cruz Fernández-Fernández

where G1 = {a3, a4},G2 = {a5, a6} � A and β = (1, 0, 0)t . Moreover, we also have

Eβ = (β +ZG1)∪ (β +ZG2) and EA = (β +CG1)∪ (β +CG2).

If L∂ = (1, 4, 1, 4, 1, 3, 1) and L x = 5 ·17− L∂ , then µL ,∅
A,0 (β

′)−µ
L ,∅
A = 1 for any β ′ ∈ EA. On the other

hand, the stratification of EA by the rank jump is different:

µ
F,∅
A,0 (β

′)−µ
F,∅
A =


2 if β ′ ∈ (β +CG2) \ {β},

3 if β ′ ∈ (β +CG1) \ {β},

4 if β ′ = β.

5. More consequences of the multiplicity computation

For τ ∈8L
A, let

j L ,τ
A (β) := µ

L ,τ
A,0(β)−µ

L ,τ
A

be the (L , τ )-multiplicity jump at β, and let

E L ,τ
A := {β ∈ Cd

| j L ,τ
A (β) > 0}

be the (L , τ )-exceptional set of A. In this section, we record consequences of Theorem 4.1 and its
implications for E L ,τ

A . We also propose a description of E L ,τ
A and prove it holds in a special case.

Corollary 5.1. If τ ∈8L
A is a face of the (A, L)-umbrella such that τ is not contained in any face of A of

codimension 2, then E L ,τ
A =∅.

Proof. Fix β ∈ Cd . By hypothesis, τ is contained in at most one facet of A. Recall that the cellular
resolution of PβJ is made of ranking toric modules PβG for faces G � A such that E

β

G 6=∅.
If τ is not contained in any proper face of A or it is contained in a unique facet F � A with E

β

F =∅,
then Lemma 4.7 guarantees that µL ,τ

A,q(P
β

G , β)= 0 for all q ≥ 0 for any proper face G � A with E
β

G 6=∅.
Thus, the formula from Theorem 4.1 computes that µL ,τ

A,i (P
β, β)= 0 for all i ≥ 0.

For the remaining case when τ is contained in a unique facet F � A and E
β

F 6=∅,

µ
L ,τ
A,i (P

β, β)= µ
L ,τ
A,i (P

β

F , β)= |B
β

F | ·µ
L ,τ
A,i (S̃F , β)= |B

β

F | ·

(1
i

)
·µ

L ,τ
F

for all i ≥ 0. Therefore, as in the proof of Theorem 4.1,

j L ,τ
A (β)= µ

L ,τ
A,1(P

β, β)−µ
L ,τ
A,0(P

β, β)= 0. �

Remark 5.2. As an immediate consequence of Corollary 5.1, if dim(Cτ) ≥ d − 1, then µL ,τ
A,0(β) is

independent of β. Notice that this fact was known when dim(Cτ)= d (see [Schulze and Walther 2008,
Theorem 3.10]). �
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Corollary 5.3. If τ ∈8L
A is a face of the (A, L)-umbrella such that τ is contained in a unique face G � A

of codimension 2, then

j L ,τ
A (β)=

{
|BβG | ·µ

L ,τ
G if (G, b) ∈max(J (β)) for b ∈ BβG, see (4-2),

0 otherwise.

Proof. By the proof of Theorem 4.1 and Lemma 4.7,

j L ,τ
A (β)= µ

L ,τ
A,1(P

β, β)−µ
L ,τ
A,0(P

β, β)= µ
L ,τ
A,1(P

β

J ′, β)−µ
L ,τ
A,0(P

β

J ′, β),

where J ′ = {(F, b) ∈ J | τ ⊆ F} for J = J (β). If (G, b) ∈ max(J ) and b ∈ BβG , then J ′ = J (G) and
PβJ ′ = PβG . Thus, it is enough to consider the case when (G, b) /∈ max(J ) for any b but there exists
at least one facet F such that τ ⊆ G � F and (F, b) ∈ max(J ). In this case, either max(J ′) = J (F)
or J ′ = J (F) ∪ J (F ′) for some other facet F ′ such that F ∩ F ′ = G. Either way, it follows that
µ

L ,τ
A,1(P

β

J ′, β)−µ
L ,τ
A,0(P

β

J ′, β)= 0. �

By Corollaries 5.1 and 5.3, if dim(Cτ) = d − 2, then j L ,τ
A (β) > 0 only when there is a (unique)

codimension 2 face G of A containing τ and (G, b) ∈max(J (β)) for some b ∈ BβG .

Notation 5.4. For any τ ∈8L
A, let us denote SτA := C[(NA+Zτ)∩R≥0 A].

Conjecture 5.5. There is an equality

E L ,τ
A =− qdeg

( d−1⊕
q=0

Extn−q
C[∂](S

τ
A,C[∂])(−εA)

)
,

where εA :=
∑n

i=1 ai . In particular, E L ,τ
A =∅ if and only if SτA is Cohen–Macaulay.

As evidence of the truth of Conjecture 5.5, we exhibit a containment between the two sets involved.
We then prove the second part of conjecture in the case that R≥0 A is a simplicial cone.

Proposition 5.6. There is a containment

E L ,τ
A ⊆− qdeg

( d−1⊕
q=0

Extn−q
C[∂](S

τ
A,C[∂])(−εA)

)
.

Proof. By the definition of SτA, it is clear that SτA[∂
−1
τ ] = SA[∂

−1
τ ] and thus,

µ
L ,τ
A,0(SA, β)= µ

L ,τ
A,0(SA[∂

−1
τ ], β)= µ

L ,τ
A,0(S

τ
A[∂
−1
τ ], β)= µ

L ,τ
A,0(S

τ
A, β),

where the first and third equalities follows from the definition of µL ,τ
A,0 (see (2-1)) and the fact that

ξ j = inL(∂ j ) /∈ Pτ if and only if j ∈ τ .
If β /∈ − qdeg(Extn−q

C[∂](S
τ
A,C[∂])(−εA)) for any q = 0, . . . , d − 1, then Hi (SτA, β) = 0 for all i > 0

by [Matusevich et al. 2005, Theorem 6.6]. Thus, µL ,τ
A,0(S

τ
A, β) =

∑d
j=0(−1) jµ

L ,τ
A, j (S

τ
A, β), which is

independent of β by [Schulze and Walther 2008, Theorem 4.11] and hence equal to the generic value µL ,τ
A .

In particular, β /∈ E L ,τ
A . �
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Proposition 5.7. Fix β ∈ Cd and let J be as in (4-2). If J involves only facets of A satisfying that the
intersection of r of them is a face of codimension at most r , then Hq(P

β

J , β)= 0 for all q ≥ 2.

Proof. Consider the cellular resolution of PβJ as constructed in [Berkesch 2011, (6.3)]:

0→ PJ → I 0
J → I 1

J → · · · → I r
J → 0,

where r + 1 is the cardinality of J . On the other hand, if K p := ker(I p
J → I p+1

J ) for 0≤ p ≤ r − 1 and
Kr = I r

J , then there are short exact sequences

0→ PJ → I 0
J → K1→ 0 and 0→ K p→ I p

J → K p+1→ 0 for 1≤ p ≤ r − 1.

By the assumption on J , I p
J is a direct sum of simple ranking toric modules PG for faces G of codimension

at most p+1, so by [Berkesch 2011, Proposition 3.2], Hq(I
p
J , β)= 0 for all q ≥ p+2 and p = 0, . . . , r .

Therefore

Hq(PJ , β)∼=Hq+1(K1, β)∼= · · · ∼=Hq+r−1(Kr−1, β)∼=Hq+r (I r
J , β)= 0

for all q ≥ 2, as desired. �

Note that if R≥0 A is simplicial then any set of facets of A satisfies the property required in Proposition 5.7.
To the contrary, Example 4.9 does not satisfy this property.

Theorem 5.8. Let τ ∈8L
A and assume that R≥0 A is a simplicial cone. Then E L ,τ

A =∅ if and only if SτA is
Cohen–Macaulay.

Proof. The if direction is proven in Proposition 5.6. By the definition of SτA we have that

rank(H0(SτA, β))= vol(A)+µF,∅
A,1 (PJ ′)−µ

F,∅
A,0 (PJ ′),

where J ′ := {(G, b) ∈ J (β) | τ ⊆ G}. If SτA is not Cohen–Macaulay, then by Theorem 1.2, there exists
β ∈ Cd such that rank(H0(SτA, β)) > vol(A). Since R≥0 A is simplicial, by Proposition 5.7 there must be
a face G of codimension at least 2 such that (G, b) ∈max(J ′). Thus, for generic β ′ ∈ b+CG, we have
that max(J (β ′))= {(G, b1), . . . , (G, br )} with r = |Bβ

′

G |. Now, using Lemma 4.7, we have that

µ
L ,τ
A (SA, β

′)= µ
L ,τ
A (SτA, β

′)= µ
L ,τ
A + r(codim(G)− 1) ·µL ,τ

G > µ
L ,τ
A

and thus β ′ ∈ E L ,τ
A 6=∅. �

6. Upper-semicontinuity and convex filtrations

It was conjectured in [Schulze and Walther 2008] that the multiplicities µL ,τ
A,0(β) are upper semicontinuous

in β ∈ Cd for any projective L and τ ∈ 8L
A. We prove this conjecture when L and τ satisfy certain

conditions with respect to A (see Theorem 6.1 and Corollary 6.6). We also prove Conjecture 5.5 in this
setting when τ =∅ (see Corollary 6.5).
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Given a submatrix σ ⊆ A with rank d , denote by Eσi the Euler operator associated with the i-th row of
the matrix σ . Let Dσ denote the Weyl algebra associated to the variables xσ = {xi | ai ∈ σ }. We have that
ZA = Zd

=
⊕r

j=13 j , where r = [Zd
: Zσ ] and 3 j = b j +Zσ for some b j ∈ Zd with j = 1, . . . , r .

If N is a Zd-graded SA-module, then N j :=
⊕

α∈3 j
Nα is an Sσ -module. Let Kσ

•
(N , β) denote

the direct sum over j of the Euler–Koszul complexes on Dσ ⊗C[∂σ ] N j (−b j ) given by the operators
{Eσi −βi + (b j )i }

d
i=1, where each such Euler–Koszul complex is placed in degree b j . That is,

Kσ (N , β) :=
r⊕

j=1

Kσ (N j (−b j ), β − b j )(b j ),

where the right-hand side Euler–Koszul complexes where defined before since N j (−b j ) is a Zσ -graded
Sσ -module. This definition is independent of the chosen elements b1, . . . , br ∈ Zd by (1-1). With this
setup, Dσ ⊗ N ∼=

⊕r
j=1(Dσ ⊗ N j ), and Kσ

•
(N , β) is a Zd -graded complex of left Dσ -modules. Set

Hσ
i (N , β) := Hi (Kσ• (N , β)),

and note that these definitions make (1-1) and Theorem 1.1 also valid for the homology modules Hσ
i (N , β).

Let L be a projective weight vector, which induces a filtration on D as considered in the introduction.
We denote by AL the submatrix of A whose columns belong to facets of 8L

A. We say that L is a convex
filtration with respect to A if all facets of 8L

A are F-homogeneous and⋃
τ ′∈8

L ,d−1
A

1τ ′ (6-1)

is a convex polytope, and thus equal to 1AL . Notice that, by the inclusion SAL ⊆ SA, the ring SA is an
SAL -module.

Theorem 6.1. If L is a convex filtration with respect to A, then µL ,∅
A,0 (β) = rank(HAL

0 (SA, β)). In
particular, µL ,∅

A,0 (β) is upper-semicontinuous in β.

Before proving Theorem 6.1, we first consider the simple case.

Proposition 6.2. Let L be a convex filtration of D with respect to A and G� A. Then for all (G, b)∈J (β),

µ
L ,∅
G = volZG(GL)= rank(HGL

0 (Pβ(G,b), β)),

where GL denotes the submatrix of A whose columns belong to facets of 8L
G .

Proof. The first equality follows from Theorem 2.1 and (2-4) since L is convex. For the second equality,
by definition of the (G, L)-umbrella 8L

G , the submatrix GL of G is such that R≥0G = R≥0GL and
rank(G)= rank(GL). This implies that SG is a toric SGL -module. Further,

Pβ(G,b) ⊆ SG[∂
−1
G ](b)∼=

⊕
α∈3

SGL [∂−1
GL ](α),
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where 3 is a finite subset of b+ZG of cardinality [ZG : ZGL
]. Since

deg(SG[∂
−1
G ](b)/Pβ(G,b))= (b+ZG) \P

β

(G,b),

it follows from the definition of CA(β) that the parameter β does not belong to the quasidegrees set of
the weakly toric module SG[∂

−1
G ](b)/Pβ(G,b). Thus, since SGL [∂−1

GL ] is a Cohen–Macaulay SGL -module,

by Theorem 1.1 and Theorem 1.2, HGL

i (Pβ(G,b), β)= 0 for all i ≥ 1 and

rank(HGL

0 (Pβ(G,b), β))= [ZG : ZGL
] · volZGL (GL)= volZG(GL). �

Remark 6.3. Notice that any weakly toric SA-module M ⊆ SA[∂
−1
A ] can be viewed as a weakly toric SAL -

module. Indeed, since AL and A have the same rank, then ZA=
⊕r

j=1(b j+ZAL) for some b j ∈ZA with
j = 1, . . . , r . Thus SA[∂

−1
A ] =

⊕r
j=1 SAL [∂−1

AL ](b j ) as SAL -modules. Setting M j := M ∩ SAL [∂−1
AL ](b j ),

then M is the direct sum of the weakly toric SAL -modules M j . Moreover, for any face G 4 A,

E
β

G =
⊔

b∈BβG

(b+ZG)=
⊔

c∈Bβ
GL

(c+ZGL), (6-2)

where BβG and BβGL is a set of lattice representatives (see (4-1)).

Lemma 6.4. The module Pβ is a direct sum of toric SAL -modules, and for any face G � A and q ≥ 0,

µ
L ,∅
A,q (P

β

G , β)= µ
F,∅
AL ,q(P

β

G , β).

Proof. The decomposition of M = SA as a direct sum of weakly toric SL
A-modules M j given in Remark 6.3

induces a decomposition of SA[∂
−1
A ]/M as a direct sum of the weakly toric SL

A-modules SAL [∂−1
AL ](b j )/M j .

Then, by the two short exact sequences in the proof of [Berkesch 2011, Proposition 5.10], Pβ is a direct
sum of weakly toric SAL -modules. Moreover, since Pβ = Eβ ∩CA(β) and CA(β)= CAL (β), it follows that
Pβ is a direct sum of toric SL

A-modules.
On the other hand, if G is a face of A, then by (6-2), |BβG |[ZG :ZGL

] = |BβGL |. Thus, using Lemma 4.7
and Proposition 6.2,

µ
L ,∅
A,q (P

β

G , β)=|B
β

G |·

(codim(G)
q

)
·volZG(GL)=|BβGL |·

(codim(G)
q

)
·volZGL (GL)=µ

F,∅
AL ,q(P

β

G , β). �

The proof of Theorem 6.1 makes use of the notion of a holonomic family from [Matusevich et al. 2005,
Definition 2.1], which we now recall. While defined over any algebraic variety B with structure sheaf OB ,
we will need only the case when B = Ad

C
, affine d-space over C.

If β ∈ B, denote by pβ the prime ideal (sheaf) of β and set κβ =OB,β/pβOB,β , the residue field of
the stalk OB,β . A coherent sheaf of (D⊗C OB)-modules is a quasicoherent sheaf of OB-modules on B
whose sections over each open affine subset U ⊂ B are finitely generated over the ring of global sections
H 0(B, D⊗C OU ). Let OB(x) denote the localization at 〈0〉 ∈ Spec(C[x]) of OB[x] := C[x] ⊗C OB ⊂

D⊗C OB . The sheaf-spectrum of OB(x) is the base-extended scheme B(x) := Spec C(x)×Spec C B.
A holonomic family over B is a coherent sheaf M̃ of left (D⊗C OB)-modules such that
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(1) the fibers Mβ = M̃⊗OB κβ are holonomic D-modules for all β ∈ B, and

(2) OB(x)⊗OB M̃ is coherent on B(x).

Proof of Theorem 6.1. Since SA[∂
−1
] is a maximal Cohen–Macaulay weakly toric SAL -module,

HAL

i (SA[∂
−1
], β)= 0

for all i > 0 by Theorem 1.2. Thus, applying Euler–Koszul homology with respect to AL to the short
exact sequence

0→ SA→ SA[∂
−1
] → Q→ 0

and using that HAL

q (Pβ, β)'HAL

q (Q, β) (see the proof of [Berkesch 2011, Proposition 5.10], which can
be adapted to this case), it follows that

rank(HAL

0 (SA, β))= rank(HAL

0 (SA[∂
−1
], β))+µ

F,∅
AL ,1(P

β, β)−µ
F,∅
AL ,0(P

β, β).

The proofs of [loc. cit., Theorem 6.6] and Theorem 4.1 and the induction argument in the proof of [loc. cit.,
Proposition 6.18] reduces the computation of

µ
F,∅
AL ,1(P

β, β)−µ
F,∅
AL ,0(P

β, β) (and respectively µL ,∅
A,1 (P

β, β)−µ
L ,∅
A,0 (P

β, β))

to that of µF,∅
AL ,q(N , β) (and respectively µL ,∅

A,q (N , β)) for q ≥ 0 and simple toric modules N = PβG with
E
β

G 6=∅. Thus, by Lemma 6.4,

µ
F,∅
AL ,1(P

β, β)−µ
F,∅
AL ,0(P

β, β)= µ
L ,∅
A,1 (P

β, β)−µ
L ,∅
A,0 (P

β, β)= µ
L ,∅
A,0 (β)−µ

L ,∅
A

which yields the desired equality.
Finally, since SA is a toric SAL -module, HAL

0 (SA, b) is a holonomic family by [Matusevich et al. 2005,
Theorem 7.5]. Hence [loc. cit., Theorem 2.6] guarantees that

β 7→ rank(HAL

0 (SA, β))

is an upper semicontinuous function. �

Theorem 6.1 provides a way to prove Conjecture 5.5 when L is a convex filtration of D with respect
to A and τ =∅.

Corollary 6.5. If L is a convex filtration of D with respect to A, then

E L ,∅
A =− qdeg

( d−1⊕
q=0

Extn−q
C[∂](SA,C[∂])(−εA)

)
.

Proof. By the proof of Theorem 6.1, HAL

0 (SA, b) is a holonomic family and E L ,∅
A = E F,∅

AL , and thus by
[Matusevich et al. 2005, Theorem 9.1],

E L ,∅
A = deg

(
2

d−1⊕
i=0

H i
mL
(SA)

)
Zariski,
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where mL denotes the maximal homogeneous ideal in SAL . However, since R≥0 A = R≥0 AL , the radical
of the extended ideal mL SA in SA equals m. Therefore, by applying graded Matlis duality, we obtain the
desired result. �

Let L be a filtration on D induced by a projective weight vector. For τ ∈8L
A, we denote by AL ,τ the

submatrix of A whose columns belong to facets τ ′ ∈8L ,d−1
A such that τ ⊆ τ ′. We say that L is τ -convex

if all facets of 8L
A containing τ are F-homogeneous and the polytope⋃

τ⊆τ ′∈8
L ,d−1
A

1τ ′ (6-3)

is convex, and thus equal to 1AL ,τ .
We recall that a subset η′ ⊆ A is said to be a pyramid over η ⊆ η′ if

rankZ(Zη)+ |η
′
\ η| = d,

where we denote by |λ| the cardinality of a set λ.
Theorem 6.1 can now be generalized as follows.

Corollary 6.6. If L induces a τ -convex filtration for some τ ∈8L
A and any τ ′ ∈8L ,d−1

A such that τ ⊆ τ ′

is a pyramid over τ ′ \ τ , then

µ
L ,τ
A,0(β)= rank(HAL ,τ

0 (SA, β)).

In particular, µL ,τ
A,0(β) is upper-semicontinuous in β.

Proof. Recall the formula in Theorem 2.1. For any τ ′ ∈8L
A containing τ , since τ ′ is a pyramid over τ ′ \τ ,

it follows that

Zτ ′ ∩Qτ = Zτ, πτ,τ ′(Zτ
′)= Z(τ ′ \ τ), Pτ,τ ′ =1τ ′\τ ,

Qτ,τ ′ is the convex hull of τ ′ \ τ (whose volume is zero because τ ′ is F-homogeneous), and volZτ ′(τ ′)=
volZ(τ ′\τ)(τ ′ \ τ). Thus, for any face G � A that contains τ ,

µ
L ,τ
G =

∑
τ⊆τ ′∈8

L ,d−1
G

[ZG : Zτ ′] · volZτ ′(1τ ′)= volZG

( ⋃
τ⊆τ ′∈8

L ,d−1
G

1τ ′

)
= volZG(1GL ,τ ).

When (G, b) ∈ J (β), to obtain the equality

rank(HGL ,τ

0 (Pβ(G,b), β))= volZG(1GL ,τ ) (6-4)

we can proceed as in the proof of Proposition 6.2, but now R≥0G is not equal to R≥0GL ,τ , so SA is only
a direct sum of weakly toric SAL ,τ -modules (by Remark 6.3) instead of a toric SAL ,τ -module. On the other
hand, in the proof of Theorem 6.1 we can use PβJ with J = {(G, b) ∈ J (β) | τ ⊆ G} instead of Pβ and
consider each PβG as a direct sum of weakly toric Cohen–Macaulay SGL ,τ -modules.
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Finally, by [Schulze and Walther 2009, Remark 5.5.(5)], in the analytic topology, HAL ,τ

0 (SA, β) is
locally a holonomic family on Ad . This fact along with [Matusevich et al. 2005, Theorem 2.6] and
Theorem 4.1 imply that the function β 7→ rank(HAL ,τ

0 (SA, β)) is upper-semicontinuous. �

7. Gevrey series solutions associated to slopes

Let D be the sheaf of linear partial differential operators with coefficients in the sheaf Oan
X of holomorphic

functions on X = Cn . The irregularity sheaf of order s > 1 of a holonomic D-module M along a
hypersurface Y was introduced and proved to be a perverse sheaf on Y by Mebkhout [1990]. In particular,
higher cohomology of the irregularity sheaf vanishes at generic points of Y .

In this section, for a coordinate hyperplane Y ⊂ X , we compute the dimension of the stalk at a generic
point p ∈ Y of the irregularity sheaf of order s of MA(β) := D⊗D MA(β) along Y for any parameter
β ∈ Cd , generalizing results from [Fernández-Fernández 2010]. As a consequence, we provide some
formulas for the dimension of the Gevrey solution spaces of MA(β) in particular cases, and we show that
the dimension of the generic stalk of the irregularity sheaf of MA(β) along Y is upper-semicontinuous
in β.

We assume for simplicity that Y = Var(xn) and write s instead of L(s) for the filtration given by
L(s) := F + (s − 1)Vn with s ≥ 1, where F = (0n, 1n) is the filtration by the order of the differential
operators and Vn is the Kashiwara–Malgrange filtration along Y . Recall that this filtration is induced by
the weight vector Vn := (0, . . . , 0,−1, 0, . . . , 0, 1), where −1 is the weight for the variable xn . More
precisely, the filtration L(s) is determined by

degs ∂i =

{
1 if 1≤ i ≤ n− 1,
s if i = n,

and degs(xi )= 1− degs(∂i ).

In this section, we call the (A, L(s))-umbrella the (A, s)-umbrella, and we denote 8s
A :=8

L(s)
A for

s ≥ 1.
A global version of Laurent’s slope theory [1987] proceeds as follows. Let M be a holonomic D-

module. A number s > 1 is said to be a slope of M along Y = Var(xn) if and only if the s-characteristic
variety Chars(M) of M along Y is not homogeneous with respect to the weight vector F = (0n, 1n).

Remark 7.1. Denote by A′ the submatrix of A defined by the first n− 1 columns and by 1′ the convex
hull of the columns of A′ and the origin. Note that an/s belongs to a hyperplane off the origin that
contains a facet of 1A′ if and only if there exists a facet of the (A, s)-umbrella, in other words an element
of 8s,d−1

A , that is not F-homogeneous. Moreover, by [Schulze and Walther 2008, Corollary 4.18], this
condition holds if and only if s > 1 is a slope of MA(β) along Var(xn).

Let OX̂ |Y denote the formal completion of OX along Y . A germ f ∈ OX̂ |Y ,p with p ∈ Y is a formal
series

f =
∞∑

m=0

fm(x1, . . . , xn−1)xm
n
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such that there exists some open subset U ⊆Cn−1 so that fm is a holomorphic function in U for all m ≥ 0.
The formal series f ∈OX̂ |Y ,p is said to be a Gevrey series of order s ∈ R along Y at p ∈ Y if the series

ρs( f ) :=
∞∑

m=0

fm(x1, . . . , xn−1)

(m!)s−1 xm
n

is convergent at p. Moreover, if ρs′( f ) is not convergent at p for any s ′ < s, then s is said to be the
Gevrey index of f along Y at p. Denote by OX |Y (s) the subsheaf of OX̂ |Y whose germs are Gevrey series
of order s along Y .

The irregularity sheaf of a D-module M along Y of order s > 1 is

Irr(s)Y (M) := RHomD(M,OX̂ |Y (s)/OX |Y ).

For s =∞, the sheaf Irr∞Y (M) is simply called the irregularity sheaf of M along Y . If M is a D-module,
we define Irr(s)Y (M) := Irr(s)Y (M), where M := D⊗D M .

Set ds(A, β) :=dim H 0(Irr(s)Y (MA(β))p) for a generic point p∈Y =Var(xn). Applying Théorème 2.3.1
and (2.3.1) in [Laurent and Mebkhout 1999] to this setting yields the equality

ds(A, β)= µ
s+ε,∅
A,0 (β)−µ

1+ε,∅
A,0 (β)+µ

1+ε,{n}
A,0 (β)−µ

s+ε,{n}
A,0 (β) (7-1)

for ε > 0 small enough. In particular, if β is not rank-jumping for A, then by Theorem 2.1 and [Fernández-
Fernández 2010, Theorem 7.5], ds(A, β) is equal to

ds(A) := µ
s+ε,∅
A −µ

1+ε,∅
A +µ

1+ε,{n}
A −µ

s+ε,{n}
A =

∑
n /∈τ∈8s+ε,d−1

A \8
1+ε,d−1
A

volZd (Aτ ). (7-2)

Remark 7.2. Notice that (7-2) also holds for any face G � A in place of A when an ∈ G. Moreover,
ds(G) = dim H 0(Irr(s)Y (MG(β

′))p for a generic point p ∈ Y ′ = Var(xn) ⊆ CG and β ′ ∈ CG that is not
rank-jumping for G. The genericity condition on p requires that it avoids any other irreducible component
of the singular locus of MG(β

′) (which is independent of β ′ as a consequence of Theorem 2.2). On the
other hand, if an /∈ G, then the coordinates indexed by G of the projective weight vectors L(s) and F
are the same. Hence the two induced filtrations over (any cyclic module over) the Weyl algebra in the
variables indexed by G are also the same. Thus, µ1+ε,τ

G = µ
s+ε,τ
G for τ = {n} and τ =∅ in this case, so

ds(G)= 0.

Proposition 7.3. For any β ∈ Cd , there is a lower bound ds(A, β)≥ ds(A).

Proof. For a Zd-graded C[∂]-module N , define d( j)
s (N , β) := dim H 0(Irr(s)Y (H j (N , β))p) for a generic

point p ∈ Y = Var(xn). Then by the same argument as in (7-1),

d( j)
s (N , β)= µs+ε,∅

A, j (N , β)−µ1+ε,∅
A, j (N , β)+µ1+ε,{n}

A, j (N , β)−µs+ε,{n}
A, j (N , β) (7-3)

for ε >0 small enough. Notice that ds(A, β)=d(0)s (SA, β). By [Schulze and Walther 2008, Corollary 4.13]
and (7-3), d(0)s (S̃A, β) = ds(A). Moreover, if j ≥ 1, then d( j)

s (S̃A, β) = 0 because H j (S̃A, β) = 0 by
Theorem 1.2.
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On the other hand, if N is a toric module with dimension lower than d, it follows that

d(0)s (N , β)≤ d(1)s (N , β)

by the same argument as in the proof of [Schulze and Walther 2008, Lemma 4.29], with the replacement,
for each D-module M that appears in that proof, of the role of CCL(M) by dim H 0(Irr(s)Y (M)p) for a
generic point p ∈ Y = Var(xn). This is allowable because H 1(Irr(s)Y (M)p)= 0 for generic points p ∈ Y
when M is holonomic (see [Mebkhout 1990]). Thus, with the previous ingredients, the proof of [Schulze
and Walther 2008, Theorem 4.28] gives the result with d(0)s in place of µL ,τ

A,0. �

Corollary 7.4. For s > 1, the dimension ds(A, β) of the stalk of Irr(s)Y (MA(β)) at a generic point p of Y
can be computed from the combinatorics of 8s+ε

A \8
1+ε
A for ε > 0 small enough and the ranking lattices

E
β

G at β such that an ∈ G � A.

Proof. It follows from (7-1) and Theorem 4.1 that ds(A, β) can be computed from the combinatorics of
the (A, s ′)-umbrellas for s ′ ∈ {1+ ε, s+ ε} and the ranking lattices Eβ . Thus, by Remark 7.2, it is enough
to consider the ranking lattices E

β

G at β corresponding to the faces G � A containing an . �

We now state further consequences for ds(A, β).

Corollary 7.5. If Pβ = PβG for some G � A, then

ds(A, β)= ds(A)+ |B
β

G | · (codim(G)− 1) · ds(G).

In particular, if an /∈ G or codim(G)= 1, then ds(A, β)= ds(A).

Proof. It is a direct consequence of (4-3), (4-4), Lemma 4.7, (7-1), (7-2), and Remark 7.2. �

Corollary 7.6. If d = 2, then ds(A, β)= ds(A) for any β ∈ Cd .

Proof. Since d = 2, the matrix A has only two proper faces G1,G2 � A, which both have codimension 1.
Moreover, an belongs to at most one of these two facets. Thus, by Corollaries 7.4 and 7.5, it is enough to
consider the case when an ∈ G1 and max(J (β)) involves G1. In this case, ds(A, β) can be computed
as in the simple case, so the formula in Corollary 7.5 can be applied, giving ds(A, β) = ds(A) since
codim(G1)= 1. �

Notice that Corollary 7.6 also follows from [Schulze and Walther 2008, Proposition 4.25] and (7-1).

Corollary 7.7. If d = 3, then ds(A, β) > ds(A) if and only if max(J (β)) involves a face G with an ∈ G
and dim G = 1. If this is the case, ds(A, β)= ds(A)+ |B

β

G | · ds(G).

Proof. Again by Corollary 7.4, we only need to consider the ranking lattices E
β

G such that an ∈ G. Thus,
by the reduction given in [Berkesch 2011, Section 5.3], it is enough to prove the result in the following
two cases.

The first case is that an belongs to a unique face G among those involved in max(J (β)). In this case,
the computation follows as in the simple case, and we obtain the same formula as in Corollary 7.5.
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In the second case, we may assume that there are exactly two faces G1 and G2 involved in max(J (β))
that contain an . Since the face G1 ∩G2 contains an and d = 3, it follows that G1 and G2 are two facets
intersecting in a face of codimension 2. In this case, Remark 4.8 shows that µL ,τ

A,0(β) = µ
L ,τ
A for any

filtration L and any τ ∈8L
A, so ds(A, β)= ds(A). �

Lemma 7.8. Let s > 1 be such that the (A, s)-umbrella 8s
A has a unique facet τ that is not F-

homogeneous, p is a generic point of Y = Var(xn), and ε > 0 small enough. Then the function

β 7→ d(A, β, s) := dimHomD(MA(β),OX̂ |Y (s+ ε)/OX̂ |Y (s− ε))p

is upper-semicontinuous.

Proof. Notice first that by the assumption and Remark 7.1, s is a slope of MA(β) along Y and an ∈ τ .
Indeed, the assumption implies that τ ′ := τ \ {n} is the unique facet of 8s+ε

A that does not contain an and
is also not a facet of 8s−ε

A . On the other hand,

d(A, β, s)= ds+ε(A, β)− ds−ε(A, β)= µ
s+ε,∅
A,0 (β)−µ

s−ε,∅
A,0 (β)+µ

s−ε,{n}
A,0 (β)−µ

s+ε,{n}
A,0 (β).

Thus, setting d(A, s) := µs+ε,∅
A,0 −µ

s−ε,∅
A,0 +µ

s−ε,{n}
A,0 −µ

s+ε,{n}
A,0 yields

d(A, s)= volZA(1τ ′)= rank(Hτ ′

0 (S̃A, β)),

where the first equality follows by the assumption, (2-4), and [Fernández-Fernández 2010, Lemma 7.4].
The second equality follows as in the proof of (6-4), since Aτ ′ is a rank d submatrix of A. Simi-
larly, for faces G of A such that an ∈ G and τ ′′ := τ ′ ∩ G is a facet of 8s+ε

G , we also have that
d(G, s)= rank(Hτ ′′

0 (S̃G, β)). Thus, arguments similar to those in Corollary 6.6 show that d(A, β, s)=
rank(Hτ ′

0 (SA, β)) and that the function β 7→ d(A, β, s) = rank(Hτ ′

0 (SA, β)) is upper-semicontinuous
in β. �

Theorem 7.9. Assume that for all s > 1, an/s is in at most one of the hyperplanes off the origin supported
in a facet of 1′ (see Remark 7.1). Then the function β 7→ ds(A, β) is upper-semicontinuous for all s > 1.

Proof. Let 1 < s1 < · · · < sr be the set of slopes of MA(β) along Y that are lower or equal to s. Then
ds(A, β)=

∑r
j=1 d(A, β, s j ), and the result follows by Lemma 7.8. �

In view of the preceding results we state the following conjecture.

Conjecture 7.10. The map β 7→ ds(A, β) is upper-semicontinuous. Moreover, there is an equality

En
A(s) := {β ∈ Cd

| ds(A, β) > ds(A)} = − qdeg
(

2
d−1⊕
q=0

Extn−q
C[∂](S

{n}
A ,C[∂])(−εA)

)
,

where εA :=
∑n

i=1 ai . In particular, En
A(s)=∅ if and only if S{n}A is Cohen–Macaulay.

The values ds(A, β) and ds(A) defined in this section depend on the variety Y along which we are
considering the irregularity sheaf of MA(β). Although we assumed Y = Var(xn) for simplicity, we can
consider any Y j := Var(x j )⊆ Cn since reordering the variables is equivalent to reordering the columns
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of A. Let ds(A, β, j) and ds(A, j) denote the values of ds(A, β) and ds(A) respectively for Y j in place
of Y . In the following example, we compute the difference ds(A, β, j)−ds(A, j) for different j by using
Corollary 7.7.

Example 7.11. Let us consider the matrix A in Example 4.10. The hyperplanes contained in the singular
locus of MA(β) are exactly Y j for j ∈ {2, 4, 6, 7} and there is exactly one slope s j ≥ 1 of MA(β) along
each Y j . More precisely, by Remark 7.1, s2=

3
2 , s4= 3, s6= 2, and s7=

7
6 . It is clear that ds(A, β ′, j)= 0

if 1≤ s< s j for any β ′ ∈Cd , so let us assume that s≥ s j in each case. We have that ds(A, β ′, j)=ds(A, j)
for all β ′ and j ∈ {2, 7}. On the other hand, ds(A, β ′, 4)− ds(A, 4) is 1 if β ′ ∈ β+CG1 and 0 otherwise.
Finally, ds(A, β ′, 6)− ds(A, 6) is 1 if β ′ ∈ β +CG2 and zero otherwise.

One natural problem after the computation of ds(A, β)= m is to construct an explicit set of Gevrey
series ϕ1, . . . , ϕm along Y at a nonsingular point p ∈ Y so that their classes in the space (OX̂ |Y (s)/OX |Y )p

form a basis of H 0(Irr(s)Y (MA(β))p). This was done in [Fernández-Fernández 2010] when β is generic
enough. At any parameter β, this problem is much more involved in general. However, it is easy to
compute some examples by using a slightly modified version of a method used in [Fernández-Fernández
2013]. In order to do so, recall that the direct sum of two matrices A1 ∈ Zd1×n1, A2 ∈ Zd2×n2 is the
following (d1+ d2)× (n1+ n2) matrix:

A1⊕ A2 =

(
A1 0d1×n2

0d2×n1 A2

)
,

where 0d×n denotes the d × n zero matrix. Let β = (β(1), β(2)) denote a complex vector in Cd1+d2 ∼=

Cd1 ×Cd2 . It is easy to show using [Fernández-Fernández 2013, Lemma 2.2] that

ds(A, β, n1)= ds(A1, β
(1), n1) · rank(MA2(β

(2))).

Now, let us take (A1, β
(1)) such that MA1(β

(1)) has slopes along {xn1 = 0}, and let consider the subset of
Gevery series {g1, . . . , gr(1)} ⊆OX̂ |Y (s) whose classes form a basis of

H 0(Irr(s)
{xn2=0}(MA1(β

(1)))p).

Let us take also a pair (A2, β
(2)) for which a basis { f1, . . . , fr(2)} of convergent series solutions of

MA2(β
2) at a nonsingular point p′ is known for a rank-jumping parameter β(2) ∈ Cd2 . Then {gi f j |

1≤ i ≤ r(1), 1≤ j ≤ r(2)} is a basis of

H 0(Irr(s)
{xn2=0}(MA1⊕A2(β))(p,p′)),

where β = (β(1), β(2)). Note that

dim H 0(Irr(s)
{xn2=0}(MA1⊕A2(β))(p,p′))= r(1) · r(2) > ds(A, n1)= ds(A1, n1) ·µ

F
A2,0.

In particular, the smallest example of this family is the one obtained by taking A= A1⊕ A2 for A1= (1 2)
and A2 = (0̃, 1̃, 3̃, 4̃), where ã = (1, a)t and β = (b, 1, 2)t for any b ∈ C\Z. We notice that MA2((1, 2)t)
was the first example known of an A-hypergeometric system for which the rank is greater than the
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normalized volume [Sturmfels and Takayama 1998]. Indeed, a basis of H 0(Irr(s)
{xn2=0}(MA1(b))p) is

{φv} ⊂ (OX̂ |Y (s)/OX |Y )p, where φv is the 0-series associated to v = (b, 0) (see [Fernández-Fernández
2010]) and rank(MA2(β

(2)))= volZ2(A2)+ 1= 5 (see [Sturmfels and Takayama 1998], where a basis of
solutions is also described). Thus, in this case, MA(β) has the slope s = 2 along x2 = 0 and for s ≥ 2,
ds(A, β, 2)= ds(A, 2)+ 1= 5.
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